;;;; The files ;;;; compiler-extras.lisp ;;;; code-extras.lisp ;;;; hold things that I (WHN) am working on which are sufficiently ;;;; closely tied to the system that they want to be under the same ;;;; revision control, but which aren't yet ready for prime time. ;;;; ;;;; As of around sbcl-0.6.10, these are mostly performance fixes. ;;;; Fixes for logical bugs tend to go straight into the system, but ;;;; fixes for performance problems can easily introduce logical bugs, ;;;; and no one's going to thank me for replacing old slow correct ;;;; code with new fast wrong code. ;;;; ;;;; Unless you want to live *very* dangerously, you don't want to be ;;;; running these. There might be some small value to looking at ;;;; these files to see whether I'm working on optimizing something ;;;; whose performance you care about, so that you can patch it, or ;;;; write test cases for it, or pester me to release it, or whatever. (in-package "SB-KERNEL") (eval-when (:compile-toplevel :load-toplevel :execute) (export '(index-or-minus-1 %find-position %find-position-vector-macro %find-position-if %find-position-if-vector-macro))) (in-package "SB-C") (deftype index-or-minus-1 () `(integer -1 ,(1- most-positive-fixnum))) (declaim (optimize (speed 1) (space 2))) (deftransform fill ((seq item &key (start 0) (end (length seq))) (vector t &key (:start t) (:end index)) * :policy (> speed space)) "open code" (let ((element-type (upgraded-element-type-specifier-or-give-up seq))) `(with-array-data ((data seq) (start start) (end end)) (declare (type (simple-array ,element-type 1) data)) (do ((i start (1+ i))) ((= i end) seq) (declare (type index i)) ;; WITH-ARRAY-DATA does our range checks once and for all, so ;; it'd be wasteful to check again on every AREF. (declare (optimize (safety 0))) (setf (aref data i) item))))) ;;; TO DO for DEFTRANSFORM FILL: ;;; ?? This DEFTRANSFORM, and the old DEFTRANSFORMs, should only ;;; apply when SPEED > SPACE. ;;; ?? Add test cases. #+nil ; not tested yet.. (deftransform replace ((seq1 seq2 &key (start1 0) end1 (start2 0) end2) (vector vector &key (:start1 index) (:end1 (or index null)) (:start2 index) (:end2 (or index null))) * ;; This is potentially an awfully big transform ;; (if things like (EQ SEQ1 SEQ2) aren't known ;; at runtime). We need to make it available ;; inline, since otherwise there's no way to do ;; it efficiently on all array types, but it ;; probably doesn't belong inline all the time. :policy (> speed (1+ space))) "open code" (let ((et1 (upgraded-element-type-specifier-or-give-up seq1)) (et2 (upgraded-element-type-specifier-or-give-up seq2))) `(let* ((n-copied (min (- end1 start1) (- end2 start2))) (effective-end1 (+ start1 n-copied))) (if (eq seq1 seq2) (with-array-data ((seq seq1) (start (min start1 start2)) (end (max end1 end2))) (declare (type (simple-array ,et1 1) seq)) (if (<= start1 start2) (let ((index2 start2)) (declare (type index index2)) (loop for index1 of-type index from start1 below effective-end1 do (setf (aref seq index1) (aref seq index2)) (incf index2))) (let ((index2 (1- end2))) (declare (type (integer -2 #.most-positive-fixnum) index2)) (loop for index1 of-type index-or-minus-1 from (1- effective-end1) downto start1 do (setf (aref seq index1) (aref seq index2)) (decf index2))))) (with-array-data ((seq1 seq1) (start1 start1) (end1 end1)) (declare (type (simple-array ,et1 1) seq1)) (with-array-data ((seq2 seq2) (start2 start2) (end2 end2)) (declare (type (simple-array ,et2 1) seq2)) (let ((index2 start2)) (declare (type index index2)) (loop for index1 of-type index from start1 below effective-end1 do (setf (aref seq index1) (aref seq index2)) (incf index2)))))) seq1))) (setf (function-info-transforms (info :function :info 'coerce)) nil) (deftransform coerce ((x type) (* *) * :when :both) (unless (constant-continuation-p type) (give-up-ir1-transform)) (let ((tspec (specifier-type (continuation-value type)))) (if (csubtypep (continuation-type x) tspec) 'x ;; Note: The THE here makes sure that specifiers like ;; (SINGLE-FLOAT 0.0 1.0) can raise a TYPE-ERROR. `(the ,(continuation-value type) ,(cond ((csubtypep tspec (specifier-type 'double-float)) '(%double-float x)) ;; FIXME: #!+long-float (t ,(error "LONG-FLOAT case needed")) ((csubtypep tspec (specifier-type 'float)) '(%single-float x)) ((csubtypep tspec (specifier-type 'simple-vector)) '(coerce-to-simple-vector x)) ; FIXME: needs DEFKNOWN return type (t (give-up-ir1-transform))))))) (defun coerce-to-simple-vector (x) (if (simple-vector-p x) x (replace (make-array (length x)) x))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;; setting up for POSITION/FIND stuff (defknown %find-position (t sequence t index sequence-end function function) (values t (or index null)) (flushable call)) (defknown %find-position-if (function sequence t index sequence-end function) (values t (or index null)) (call)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;; POSITION, POSITION-IF, FIND, and FIND-IF proper ;;; FIXME: Blow away old CMU CL implementation: ;;; * the section of seq.lisp with VECTOR-LOCATER-MACRO and LOCATER-TEST-NOT ;;; * matches to 'find' and 'position' in seq.lisp ;;; We want to make sure that %FIND-POSITION is inline-expanded into ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline ;;; expansion, so we factor out the condition into this function. (defun check-inlineability-of-find-position-if (sequence from-end) (let ((ctype (continuation-type sequence))) (cond ((csubtypep ctype (specifier-type 'vector)) ;; It's not worth trying to inline vector code unless we know ;; a fair amount about it at compile time. (upgraded-element-type-specifier-or-give-up sequence) (unless (constant-continuation-p from-end) (give-up-ir1-transform "FROM-END argument value not known at compile time"))) ((csubtypep ctype (specifier-type 'list)) ;; Inlining on lists is generally worthwhile. ) (t (give-up-ir1-transform "sequence type not known at compile time"))))) ;;; %FIND-POSITION-IF for LIST data (deftransform %find-position-if ((predicate sequence from-end start end key) (function list t t t function) * :policy (> speed space) :important t) "expand inline" '(let ((index 0) (find nil) (position nil)) (declare (type index index)) (dolist (i sequence (values find position)) (let ((key-i (funcall key i))) (when (and end (>= index end)) (return (values find position))) (when (>= index start) (when (funcall predicate key-i) ;; This hack of dealing with non-NIL FROM-END for list data ;; by iterating forward through the list and keeping track of ;; the last time we found a match might be more screwy than ;; what the user expects, but it seems to be allowed by the ;; ANSI standard. (And if the user is screwy enough to ask ;; for FROM-END behavior on list data, turnabout is fair play.) ;; ;; It's also not enormously efficient, calling PREDICATE and ;; KEY more often than necessary; but all the alternatives ;; seem to have their own efficiency problems. (if from-end (setf find i position index) (return (values i index)))))) (incf index)))) ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF ;;; without loss of efficiency. (I.e., the optimizer should be able ;;; to straighten everything out.) (deftransform %find-position ((item sequence from-end start end key test) (t list t t t t t) * :policy (> speed space) :important t) "expand inline" '(%find-position-if (let ((test-fun (%coerce-callable-to-function test))) (lambda (i) (funcall test-fun i item))) sequence from-end start end (%coerce-callable-to-function key))) ;;; The inline expansions for the VECTOR case are saved as macros so ;;; that we can share them between the DEFTRANSFORMs and the default ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.) (defun %find-position-or-find-position-if-vector-expansion (sequence-arg from-end start end-arg element done-p-expr) (let ((offset (gensym "OFFSET")) (block (gensym "BLOCK")) (index (gensym "INDEX")) (n-sequence (gensym "N-SEQUENCE-")) (sequence (gensym "SEQUENCE")) (n-end (gensym "N-END-")) (end (gensym "END-"))) `(let ((,n-sequence ,sequence-arg) (,n-end ,end-arg)) (with-array-data ((,sequence ,n-sequence :offset-var ,offset) (,start ,start) (,end (or ,n-end (length ,n-sequence)))) (block ,block (macrolet ((maybe-return () '(let ((,element (aref ,sequence ,index))) (when ,done-p-expr (return-from ,block (values ,element (- ,index ,offset))))))) (if ,from-end (loop for ,index ;; (If we aren't fastidious about declaring that ;; INDEX might be -1, then (FIND 1 #() :FROM-END T) ;; can send us off into never-never land, since ;; INDEX is initialized to -1.) of-type index-or-minus-1 from (1- ,end) downto ,start do (maybe-return)) (loop for ,index of-type index from ,start below ,end do (maybe-return)))) (values nil nil)))))) (defmacro %find-position-vector-macro (item sequence from-end start end key test) (let ((element (gensym "ELEMENT"))) (%find-position-or-find-position-if-vector-expansion sequence from-end start end element `(funcall ,test ,item (funcall ,key ,element))))) (defmacro %find-position-if-vector-macro (predicate sequence from-end start end key) (let ((element (gensym "ELEMENT"))) (%find-position-or-find-position-if-vector-expansion sequence from-end start end element `(funcall ,predicate (funcall ,key ,element))))) ;;; %FIND-POSITION and %FIND-POSITION-IF for VECTOR data (deftransform %find-position-if ((predicate sequence from-end start end key) (function vector t t t function) * :policy (> speed space) :important t) "expand inline" (check-inlineability-of-find-position-if sequence from-end) '(%find-position-if-vector-macro predicate sequence from-end start end key)) (deftransform %find-position ((item sequence from-end start end key test) (t vector t t t function function) * :policy (> speed space) :important t) "expand inline" (check-inlineability-of-find-position-if sequence from-end) '(%find-position-vector-macro item sequence from-end start end key test)) ;;;; optimizations for floating point FLOOR, CEILING, TRUNCATE, and ;;;; ROUND, lifted from CMU CL 18c ;;;; ;;;; (Without these optimizations, these functions cons!) ;;; Convert (TRUNCATE x y) to the obvious implementation. We only want ;;; this when under certain conditions and let the generic TRUNCATE ;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y ;;; should be removed by other DEFTRANSFORMs.) (deftransform truncate ((x &optional y) (float &optional (or float integer))) '(let ((res (%unary-truncate (/ x y)))) (values res (- x (* y res))))) (deftransform floor ((number &optional divisor) (float &optional (or integer float))) '(multiple-value-bind (tru rem) (truncate number divisor) (if (and (not (zerop rem)) (if (minusp divisor) (plusp number) (minusp number))) (values (1- tru) (+ rem divisor)) (values tru rem)))) (deftransform ceiling ((number &optional divisor) (float &optional (or integer float))) '(multiple-value-bind (tru rem) (truncate number divisor) (if (and (not (zerop rem)) (if (minusp divisor) (minusp number) (plusp number))) (values (1+ tru) (- rem divisor)) (values tru rem))))