The Compiler</> <para>This chapter will discuss most compiler issues other than efficiency, including compiler error messages, the &SBCL compiler's unusual approach to type safety in the presence of type declarations, the effects of various compiler optimization policies, and the way that inlining and open coding may cause optimized code to differ from a naive translation. Efficiency issues are sufficiently varied and separate that they have <link linkend="efficiency">their own chapter</link>.</para> <sect1><title>Error Messages</> <!--INDEX {error messages}{compiler}--> <!--INDEX {compiler error messages}--> <para>The compiler supplies a large amount of source location information in error messages. The error messages contain a lot of detail in a terse format, so they may be confusing at first. Error messages will be illustrated using this example program: <programlisting>(defmacro zoq (x) `(roq (ploq (+ ,x 3)))) (defun foo (y) (declare (symbol y)) (zoq y))</programlisting> The main problem with this program is that it is trying to add <literal>3</> to a symbol. Note also that the functions <function>roq</> and <function>ploq</> aren't defined anywhere. </para> <sect2><title>The Parts of the Error Message</> <para>When processing this program, the compiler will produce this warning: <screen>file: /tmp/foo.lisp in: DEFUN FOO (ZOQ Y) --> ROQ PLOQ + ==> Y caught WARNING: Result is a SYMBOL, not a NUMBER.</screen> In this example we see each of the six possible parts of a compiler error message: <orderedlist> <listitem><para><computeroutput>File: /tmp/foo.lisp</> This is the name of the file that the compiler read the relevant code from. The file name is displayed because it may not be immediately obvious when there is an error during compilation of a large system, especially when <function>with-compilation-unit</> is used to delay undefined warnings.</para></listitem> <listitem><para><computeroutput>in: DEFUN FOO</> This is the definition top level form responsible for the error. It is obtained by taking the first two elements of the enclosing form whose first element is a symbol beginning with <quote><literal>def</></>. If there is no such enclosing <quote><literal>def</></> form, then the outermost form is used. If there are multiple <literal>def</> forms, then they are all printed from the outside in, separated by <literal>=></>'s. In this example, the problem was in the <function>defun</> for <function>foo</>.</para></listitem> <listitem><para><computeroutput>(ZOQ Y)</> This is the <emphasis>original source</> form responsible for the error. Original source means that the form directly appeared in the original input to the compiler, i.e. in the lambda passed to <function>compile</> or in the top level form read from the source file. In this example, the expansion of the <function>zoq</> macro was responsible for the error.</para></listitem> <listitem><para><computeroutput>--> ROQ PLOQ +</> This is the <emphasis>processing path</> that the compiler used to produce the errorful code. The processing path is a representation of the evaluated forms enclosing the actual source that the compiler encountered when processing the original source. The path is the first element of each form, or the form itself if the form is not a list. These forms result from the expansion of macros or source-to-source transformation done by the compiler. In this example, the enclosing evaluated forms are the calls to <function>roq</>, <function>ploq</> and <function>+</>. These calls resulted from the expansion of the <function>zoq</> macro.</para></listitem> <listitem><para><computeroutput>==> Y</> This is the <emphasis>actual source</> responsible for the error. If the actual source appears in the explanation, then we print the next enclosing evaluated form, instead of printing the actual source twice. (This is the form that would otherwise have been the last form of the processing path.) In this example, the problem is with the evaluation of the reference to the variable <varname>y</>.</para></listitem> <listitem><para> <computeroutput>caught WARNING: Result is a SYMBOL, not a NUMBER.</> This is the <emphasis>explanation</> of the problem. In this example, the problem is that <varname>y</> evaluates to a symbol, but is in a context where a number is required (the argument to <function>+</>).</para></listitem> </orderedlist> Note that each part of the error message is distinctively marked: <itemizedlist> <listitem><para> <computeroutput>file:</> and <computeroutput>in:</> mark the file and definition, respectively.</para></listitem> <listitem><para> The original source is an indented form with no prefix.</para></listitem> <listitem><para> Each line of the processing path is prefixed with <computeroutput>--></computeroutput></para></listitem> <listitem><para> The actual source form is indented like the original source, but is marked by a preceding <computeroutput>==></> line. </para></listitem> <listitem><para> The explanation is prefixed with the error severity, which can be <computeroutput>caught ERROR:</>, <computeroutput>caught WARNING:</>, <computeroutput>caught STYLE-WARNING:</>, or <computeroutput>note:</>. </para></listitem> </itemizedlist> </para> <para>Each part of the error message is more specific than the preceding one. If consecutive error messages are for nearby locations, then the front part of the error messages would be the same. In this case, the compiler omits as much of the second message as in common with the first. For example: <screen>file: /tmp/foo.lisp in: DEFUN FOO (ZOQ Y) --> ROQ ==> (PLOQ (+ Y 3)) caught STYLE-WARNING: undefined function: PLOQ ==> (ROQ (PLOQ (+ Y 3))) caught STYLE-WARNING: undefined function: ROQ</screen> In this example, the file, definition and original source are identical for the two messages, so the compiler omits them in the second message. If consecutive messages are entirely identical, then the compiler prints only the first message, followed by: <computeroutput>[Last message occurs <replaceable>repeats</> times]</> where <replaceable>repeats</> is the number of times the message was given.</para> <para>If the source was not from a file, then no file line is printed. If the actual source is the same as the original source, then the processing path and actual source will be omitted. If no forms intervene between the original source and the actual source, then the processing path will also be omitted.</para> </sect2> <sect2><title>The Original and Actual Source</> <para>The <emphasis>original source</> displayed will almost always be a list. If the actual source for an error message is a symbol, the original source will be the immediately enclosing evaluated list form. So even if the offending symbol does appear in the original source, the compiler will print the enclosing list and then print the symbol as the actual source (as though the symbol were introduced by a macro.)</para> <para>When the <emphasis>actual source</> is displayed (and is not a symbol), it will always be code that resulted from the expansion of a macro or a source-to-source compiler optimization. This is code that did not appear in the original source program; it was introduced by the compiler.</para> <para>Keep in mind that when the compiler displays a source form in an error message, it always displays the most specific (innermost) responsible form. For example, compiling this function <programlisting>(defun bar (x) (let (a) (declare (fixnum a)) (setq a (foo x)) a))</programlisting> gives this error message <screen>in: DEFUN BAR (LET (A) (DECLARE (FIXNUM A)) (SETQ A (FOO X)) A) caught WARNING: The binding of A is not a FIXNUM: NIL</screen> This error message is not saying <quote>there is a problem somewhere in this <function>let</></quote> — it is saying that there is a problem with the <function>let</> itself. In this example, the problem is that <varname>a</>'s <literal>nil</> initial value is not a <type>fixnum</>.</para> </sect2> <sect2><title>The Processing Path</> <!--INDEX processing path--> <!--INDEX macroexpansion--> <!--INDEX source-to-source transformation--> <para>The processing path is mainly useful for debugging macros, so if you don't write macros, you can probably ignore it. Consider this example: <programlisting>(defun foo (n) (dotimes (i n *undefined*))) </programlisting> Compiling results in this error message: <screen>in: DEFUN FOO (DOTIMES (I N *UNDEFINED*)) --> DO BLOCK LET TAGBODY RETURN-FROM ==> (PROGN *UNDEFINED*) caught STYLE-WARNING: undefined variable: *UNDEFINED*</screen> Note that <function>do</> appears in the processing path. This is because <function>dotimes</> expands into: <programlisting>(do ((i 0 (1+ i)) (#:g1 n)) ((>= i #:g1) *undefined*) (declare (type unsigned-byte i)))</programlisting> The rest of the processing path results from the expansion of <function>do</>: <programlisting> (block nil (let ((i 0) (#:g1 n)) (declare (type unsigned-byte i)) (tagbody (go #:g3) #:g2 (psetq i (1+ i)) #:g3 (unless (>= i #:g1) (go #:g2)) (return-from nil (progn *undefined*))))) </programlisting> In this example, the compiler descended into the <function>block</>, <function>let</>, <function>tagbody</> and <function>return-from</> to reach the <function>progn</> printed as the actual source. This is a place where the <quote>actual source appears in explanation</> rule was applied. The innermost actual source form was the symbol <varname>*undefined*</> itself, but that also appeared in the explanation, so the compiler backed out one level.</para> </sect2> <sect2><title>Error Severity</> <!--INDEX severity of compiler errors --> <!--INDEX compiler error severity --> <para>There are four levels of compiler error severity: <wordasword>error</>, <wordasword>warning</>, <wordasword>style warning</>, and <wordasword>note</>. The first three levels correspond to condition classes which are defined in the &ANSI; standard for &CommonLisp; and which have special significance to the <function>compile</> and <function>compile-file</> functions. These levels of compiler error severity occur when the compiler handles conditions of these classes. The fourth level of compiler error severity, <wordasword>note</>, is used for problems which are too mild for the standard condition classes, typically hints about how efficiency might be improved.</para> </sect2> <sect2><title>Errors During Macroexpansion</> <!--INDEX {macroexpansion}{errors during}--> <para>The compiler handles errors that happen during macroexpansion, turning them into compiler errors. If you want to debug the error (to debug a macro), you can set <varname>*break-on-signals*</> to <literal>error</>. For example, this definition: <programlisting>(defun foo (e l) (do ((current l (cdr current)) ((atom current) nil)) (when (eq (car current) e) (return current))))</programlisting> gives this error: <screen>in: DEFUN FOO (DO ((CURRENT L #) (# NIL)) (WHEN (EQ # E) (RETURN CURRENT)) ) caught ERROR: (in macroexpansion of (DO # #)) (hint: For more precise location, try *BREAK-ON-SIGNALS*.) DO step variable is not a symbol: (ATOM CURRENT)</screen> </para> </sect2> <sect2><title>Read Errors</> <!--INDEX {read errors}{compiler}--> <para>&SBCL;'s compiler (unlike &CMUCL;'s) does not attempt to recover from read errors when reading a source file, but instead just reports the offending character position and gives up on the entire source file.</para> </sect2> <!-- FIXME: How much control over error messages is in SBCL? _ How much should be? How much of this documentation should _ we save or adapt? _ _ %%\node Error Message Parameterization, , Read Errors, Interpreting Error Messages _ \subsection{Error Message Parameterization} _ \cpsubindex{error messages}{verbosity} _ \cpsubindex{verbosity}{of error messages} _ _ There is some control over the verbosity of error messages. See also _ \varref{undefined-warning-limit}, \code{*efficiency-note-limit*} and _ \varref{efficiency-note-cost-threshold}. _ _ \begin{defvar}{}{enclosing-source-cutoff} _ _ This variable specifies the number of enclosing actual source forms _ that are printed in full, rather than in the abbreviated processing _ path format. Increasing the value from its default of \code{1} _ allows you to see more of the guts of the macroexpanded source, _ which is useful when debugging macros. _ \end{defvar} _ _ \begin{defvar}{}{error-print-length} _ \defvarx{error-print-level} _ _ These variables are the print level and print length used in _ printing error messages. The default values are \code{5} and _ \code{3}. If null, the global values of \code{*print-level*} and _ \code{*print-length*} are used. _ \end{defvar} _ _ \begin{defmac}{extensions:}{define-source-context}{% _ \args{\var{name} \var{lambda-list} \mstar{form}}} _ _ This macro defines how to extract an abbreviated source context from _ the \var{name}d form when it appears in the compiler input. _ \var{lambda-list} is a \code{defmacro} style lambda-list used to _ parse the arguments. The \var{body} should return a list of _ subforms that can be printed on about one line. There are _ predefined methods for \code{defstruct}, \code{defmethod}, etc. If _ no method is defined, then the first two subforms are returned. _ Note that this facility implicitly determines the string name _ associated with anonymous functions. _ \end{defmac} _ _ --> </sect1> <sect1><title>The Compiler's Handling of Types</> <para>The most unusual features of the &SBCL; compiler (which is very similar to the original &CMUCL compiler, also known as &Python;) is its unusually sophisticated understanding of the &CommonLisp; type system and its unusually conservative approach to the implementation of type declarations. These two features reward the use of type declarations throughout development, even when high performance is not a concern. (Also, as discussed <link linkend="efficiency">in the chapter on performance</>, the use of appropriate type declarations can be very important for performance as well.)</para> <para>The &SBCL; compiler, like the related compiler in &CMUCL;, treats type declarations much differently than other Lisp compilers. By default (<emphasis>i.e.</>, at ordinary levels of the <parameter>safety</> compiler optimization parameter), the compiler doesn't blindly believe most type declarations; it considers them assertions about the program that should be checked.</para> <para>The &SBCL; compiler also has a greater knowledge of the &CommonLisp; type system than other compilers. Support is incomplete only for the <type>not</>, <type>and</> and <type>satisfies</> types. <!-- FIXME: See also sections \ref{advanced-type-stuff} and \ref{type-inference}, once we snarf them from the CMU CL manual. --> </para> <sect2 id=compiler-impl-limitations><title>Implementation Limitations</> <para> Ideally, the compiler would consider <emphasis>all</> type declarations to be assertions, so that adding type declarations to a program, no matter how incorrect they might be, would <emphasis>never</> cause undefined behavior. As of &SBCL; version 0.8.1, the compiler is known to fall short of this goal in two areas: <itemizedlist> <listitem><para><function>Proclaim</>ed constraints on argument and result types of a function are supposed to be checked by the function. If the function type is proclaimed before function definition, type checks are inserted by the compiler, but the standard allows the reversed order, in which case the compiler will trust the declaration.</para></listitem> <listitem><para>The compiler cannot check types of an unknown number of values; if the number of generated values is unknown, but the number of consumed is known, only consumed values are checked.</para></listitem> <listitem><para>There are a few poorly characterized but apparently very uncommon situations where a type declaration in an unexpected location will be trusted and never checked by the compiler.</para></listitem> </itemizedlist></para> <para>These are important bugs, but are not necessarily easy to fix, so they may, alas, remain in the system for a while.</para> </sect2> <sect2><title>Type Errors at Compile Time</> <!--INDEX compile time type errors--> <!--INDEX type checking}{at compile time}--> <para>If the compiler can prove at compile time that some portion of the program cannot be executed without a type error, then it will give a warning at compile time. It is possible that the offending code would never actually be executed at run-time due to some higher level consistency constraint unknown to the compiler, so a type warning doesn't always indicate an incorrect program. For example, consider this code fragment: <programlisting>(defun raz (foo) (let ((x (case foo (:this 13) (:that 9) (:the-other 42)))) (declare (fixnum x)) (foo x))) </programlisting> Compilation produces this warning: <screen>in: DEFUN RAZ (CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42)) --> LET COND IF COND IF COND IF ==> (COND) caught WARNING: This is not a FIXNUM: NIL</screen> In this case, the warning means that if <varname>foo</> isn't any of <literal>:this</>, <literal>:that</> or <literal>:the-other</>, then <varname>x</> will be initialized to <literal>nil</>, which the <type>fixnum</> declaration makes illegal. The warning will go away if <function>ecase</> is used instead of <function>case</>, or if <literal>:the-other</> is changed to <literal>t</>.</para> <para>This sort of spurious type warning happens moderately often in the expansion of complex macros and in inline functions. In such cases, there may be dead code that is impossible to correctly execute. The compiler can't always prove this code is dead (could never be executed), so it compiles the erroneous code (which will always signal an error if it is executed) and gives a warning.</para> <para> Type warnings are inhibited when the <parameter>sb-ext:inhibit-warnings</> optimization quality is <literal>3</>. (See <link linkend="compiler-policy">the section on compiler policy</>.) This can be used in a local declaration to inhibit type warnings in a code fragment that has spurious warnings.</para> </sect2> <sect2 id="precisetypechecking"><title>Precise Type Checking</> <!--INDEX precise type checking--> <!--INDEX {type checking}{precise}--> <para>With the default compilation policy, all type declarations are precisely checked, except in a few situations where they are simply ignored instead. Precise checking means that the check is done as though <function>typep</> had been called with the exact type specifier that appeared in the declaration. In &SBCL;, adding type declarations makes code safer. (Except that as noted <link linkend="compiler-impl-limitations">elsewhere</link>, remaining bugs in the compiler's handling of types unfortunately provide some exceptions to this rule.)</para> <para>If a variable is declared to be <type>(integer 3 17)</> then its value must always be an integer between <literal>3</> and <literal>17</>. If multiple type declarations apply to a single variable, then all the declarations must be correct; it is as though all the types were intersected producing a single <type>and</> type specifier.</para> <para>Argument and result type declarations are automatically enforced. If you declare the type of a function argument, a type check will be done when that function is called. In a function call, the called function does the argument type checking.</para> <para>The types of structure slots are also checked. The value of a structure slot must always be of the type indicated in any <literal>:type</> slot option. </para> <para>In traditional &CommonLisp; compilers, not all type assertions are checked, and type checks are not precise. Traditional compilers blindly trust explicit type declarations, but may check the argument type assertions for built-in functions. Type checking is not precise, since the argument type checks will be for the most general type legal for that argument. In many systems, type declarations suppress what little type checking is being done, so adding type declarations makes code unsafe. This is a problem since it discourages writing type declarations during initial coding. In addition to being more error prone, adding type declarations during tuning also loses all the benefits of debugging with checked type assertions.</para> <para>To gain maximum benefit from the compiler's type checking, you should always declare the types of function arguments and structure slots as precisely as possible. This often involves the use of <type>or</>, <type>member</>, and other list-style type specifiers.</para> </sect2> <sect2 id="weakened-type-checking"><title>Weakened Type Checking</> <!--INDEX weakened type checking--> <!--INDEX {type checking}{weakened}--> <para>At one time, &CMUCL; supported another level of type checking, <quote>weakened type checking</>, when the value for the <parameter>speed</> optimization quality is greater than <parameter>safety</>, and <parameter>safety</> is not <literal>0</>. The &CMUCL; manual still has a description of it, but even the CMU CL code no longer corresponds to the manual. Some of this partial safety checking lingers on in SBCL, but it's not a supported feature, and should not be relied on. If you ask the compiler to optimize <parameter>speed</> to a higher level than <parameter>safety</>, your program is performing without a safety net, because &SBCL; may at its option believe any or all type declarations with either partial or nonexistent runtime checking.</para> </sect2> <sect2><title>Getting Existing Programs to Run</> <!--INDEX {existing programs}{to run}--> <!--INDEX {types}{portability}--> <!--INDEX {compatibility with other Lisps} (should also have an entry in the non-&ANSI;-isms section)--> <para>Since &SBCL;'s compiler, like &CMUCL;'s compiler, does much more comprehensive type checking than most Lisp compilers, &SBCL; may detect type errors in programs that have been debugged using other compilers. These errors are mostly incorrect declarations, although compile-time type errors can find actual bugs if parts of the program have never been tested.</para> <para>Some incorrect declarations can only be detected by run-time type checking. It is very important to initially compile a program with full type checks (high <parameter>safety</> optimization) and then test this safe version. After the checking version has been tested, then you can consider weakening or eliminating type checks. <emphasis>This applies even to previously debugged programs,</emphasis> because the &SBCL; compiler does much more type inference than other &CommonLisp; compilers, so an incorrect declaration can do more damage.</para> <para>The most common problem is with variables whose constant initial value doesn't match the type declaration. Incorrect constant initial values will always be flagged by a compile-time type error, and they are simple to fix once located. Consider this code fragment: <programlisting>(prog (foo) (declare (fixnum foo)) (setq foo ...) ...)</programlisting> Here <varname>foo</> is given an initial value of <literal>nil</>, but is declared to be a <type>fixnum</>. Even if it is never read, the initial value of a variable must match the declared type. There are two ways to fix this problem. Change the declaration <programlisting>(prog (foo) (declare (type (or fixnum null) foo)) (setq foo ...) ...)</programlisting> or change the initial value <programlisting>(prog ((foo 0)) (declare (fixnum foo)) (setq foo ...) ...)</programlisting> It is generally preferable to change to a legal initial value rather than to weaken the declaration, but sometimes it is simpler to weaken the declaration than to try to make an initial value of the appropriate type.</para> <para>Another declaration problem occasionally encountered is incorrect declarations on <function>defmacro</> arguments. This can happen when a function is converted into a macro. Consider this macro: <programlisting>(defmacro my-1+ (x) (declare (fixnum x)) `(the fixnum (1+ ,x)))</programlisting> Although legal and well-defined &CommonLisp; code, this meaning of this definition is almost certainly not what the writer intended. For example, this call is illegal: <programlisting>(my-1+ (+ 4 5))</> This call is illegal because the argument to the macro is <literal>(+ 4 5)</>, which is a <type>list</>, not a <type>fixnum</>. Because of macro semantics, it is hardly ever useful to declare the types of macro arguments. If you really want to assert something about the type of the result of evaluating a macro argument, then put a <function>the</> in the expansion: <programlisting>(defmacro my-1+ (x) `(the fixnum (1+ (the fixnum ,x))))</programlisting> In this case, it would be stylistically preferable to change this macro back to a function and declare it inline. <!--FIXME: <xref>inline-expansion</>, once we crib the relevant text from the CMU CL manual.--> </para> <para> Some more subtle problems are caused by incorrect declarations that can't be detected at compile time. Consider this code: <programlisting>(do ((pos 0 (position #\a string :start (1+ pos)))) ((null pos)) (declare (fixnum pos)) ...)</programlisting> Although <varname>pos</> is almost always a <varname>fixnum</>, it is <literal>nil</> at the end of the loop. If this example is compiled with full type checks (the default), then running it will signal a type error at the end of the loop. If compiled without type checks, the program will go into an infinite loop (or perhaps <function>position</> will complain because <literal>(1+ nil)</> isn't a sensible start.) Why? Because if you compile without type checks, the compiler just quietly believes the type declaration. Since the compiler believes that <varname>pos</> is always a <type>fixnum</>, it believes that <varname>pos</> is never <literal>nil</>, so <literal>(null pos)</> is never true, and the loop exit test is optimized away. Such errors are sometimes flagged by unreachable code notes, but it is still important to initially compile and test any system with full type checks, even if the system works fine when compiled using other compilers.</para> <para>In this case, the fix is to weaken the type declaration to <type>(or fixnum null)</>. <footnote><para>Actually, this declaration is unnecessary in &SBCL;, since it already knows that <function>position</> returns a non-negative <type>fixnum</> or <literal>nil</>. </para></footnote> Note that there is usually little performance penalty for weakening a declaration in this way. Any numeric operations in the body can still assume that the variable is a <type>fixnum</>, since <literal>nil</> is not a legal numeric argument. Another possible fix would be to say: <programlisting>(do ((pos 0 (position #\a string :start (1+ pos)))) ((null pos)) (let ((pos pos)) (declare (fixnum pos)) ...))</programlisting> This would be preferable in some circumstances, since it would allow a non-standard representation to be used for the local <varname>pos</> variable in the loop body. <!-- FIXME: <xref>ND-variables</>, once we crib the text from the CMU CL manual. --> </para> </sect2> </sect1> <sect1 id="compiler-policy"><title>Compiler Policy</> <para>As of version 0.6.4, &SBCL; still uses most of the &CMUCL; code for compiler policy. The &CMUCL; code has many features and high-quality documentation, but the two unfortunately do not match. So this area of the compiler and its interface needs to be cleaned up. Meanwhile, here is some rudimentary documentation on the current behavior of the system.</para> <para>Compiler policy is controlled by the <parameter>optimize</> declaration. The compiler supports the &ANSI; optimization qualities, and also an extension <parameter>sb-ext:inhibit-warnings</>.</para> <para>Ordinarily, when the <parameter>speed</> quality is high, the compiler emits notes to notify the programmer about its inability to apply various optimizations. Setting <parameter>sb-ext:inhibit-warnings</> to a value at least as large as the <parameter>speed</> quality inhibits this notification. This can be useful to suppress notes about code which is known to be unavoidably inefficient. (For example, the compiler issues notes about having to use generic arithmetic instead of fixnum arithmetic, which is not helpful for code which by design supports arbitrary-sized integers instead of being limited to fixnums.)</para> <note><para>The basic functionality of the <parameter>optimize inhibit-warnings</> extension will probably be supported in all future versions of the system, but it will probably be renamed when the compiler and its interface are cleaned up. The current name is misleading, because it mostly inhibits optimization notes, not warnings. And making it an optimization quality is misleading, because it shouldn't affect the resulting code at all. It may become a declaration identifier with a name like <parameter>sb-ext:inhibit-notes</>, so that what's currently written <programlisting>(declaim (optimize (sb-ext:inhibit-warnings 2)))</> would become something like <programlisting>(declaim (sb-ext:inhibit-notes 2))</> </para></note> <para> (In early versions of SBCL, a <parameter>speed</> value of zero was used to enable byte compilation, but since version 0.7.0, SBCL only supports native compilation.)</para> <para>When <parameter>safety</> is zero, almost all runtime checking of types, array bounds, and so forth is suppressed.</para> <para>When <parameter>safety</> is less than <parameter>speed</>, any and all type checks may be suppressed. At some point in the past, &CMUCL; had <link linkend="weakened-type-checking">a more nuanced interpretation of this</link>. However, &SBCL; doesn't support that interpretation, and setting <parameter>safety</> less than <parameter>speed</> may have roughly the same effect as setting <parameter>safety</> to zero.</para> <para>The value of <parameter>space</> mostly influences the compiler's decision whether to inline operations, which tend to increase the size of programs. Use the value <literal>0</> with caution, since it can cause the compiler to inline operations so indiscriminately that the net effect is to slow the program by causing cache misses or swapping.</para> <!-- FIXME: old CMU CL compiler policy, should perhaps be adapted _ for SBCL. (Unfortunately, the CMU CL docs are out of sync with the _ CMU CL code, so adapting this requires not only reformatting _ the documentation, but rooting out code rot.) _ _<sect2 id="compiler-policy"><title>Compiler Policy</> _ INDEX {policy}{compiler} _ INDEX compiler policy _ _<para>The policy is what tells the compiler <emphasis>how</> to _compile a program. This is logically (and often textually) distinct _from the program itself. Broad control of policy is provided by the _<parameter>optimize</> declaration; other declarations and variables _control more specific aspects of compilation.</para> _ _\begin{comment} _* The Optimize Declaration:: _* The Optimize-Interface Declaration:: _\end{comment} _ _%%\node The Optimize Declaration, The Optimize-Interface Declaration, Compiler Policy, Compiler Policy _\subsection{The Optimize Declaration} _\label{optimize-declaration} _\cindex{optimize declaration} _\cpsubindex{declarations}{\code{optimize}} _ _The \code{optimize} declaration recognizes six different _\var{qualities}. The qualities are conceptually independent aspects _of program performance. In reality, increasing one quality tends to _have adverse effects on other qualities. The compiler compares the _relative values of qualities when it needs to make a trade-off; i.e., _if \code{speed} is greater than \code{safety}, then improve speed at _the cost of safety. _ _The default for all qualities (except \code{debug}) is \code{1}. _Whenever qualities are equal, ties are broken according to a broad _idea of what a good default environment is supposed to be. Generally _this downplays \code{speed}, \code{compile-speed} and \code{space} in _favor of \code{safety} and \code{debug}. Novice and casual users _should stick to the default policy. Advanced users often want to _improve speed and memory usage at the cost of safety and _debuggability. _ _If the value for a quality is \code{0} or \code{3}, then it may have a _special interpretation. A value of \code{0} means ``totally _unimportant'', and a \code{3} means ``ultimately important.'' These _extreme optimization values enable ``heroic'' compilation strategies _that are not always desirable and sometimes self-defeating. _Specifying more than one quality as \code{3} is not desirable, since _it doesn't tell the compiler which quality is most important. _ _ _These are the optimization qualities: _\begin{Lentry} _ _\item[\code{speed}] \cindex{speed optimization quality}How fast the _ program should is run. \code{speed 3} enables some optimizations _ that hurt debuggability. _ _\item[\code{compilation-speed}] \cindex{compilation-speed optimization _ quality}How fast the compiler should run. Note that increasing _ this above \code{safety} weakens type checking. _ _\item[\code{space}] \cindex{space optimization quality}How much space _ the compiled code should take up. Inline expansion is mostly _ inhibited when \code{space} is greater than \code{speed}. A value _ of \code{0} enables indiscriminate inline expansion. Wide use of a _ \code{0} value is not recommended, as it may waste so much space _ that run time is slowed. \xlref{inline-expansion} for a discussion _ of inline expansion. _ _\item[\code{debug}] \cindex{debug optimization quality}How debuggable _ the program should be. The quality is treated differently from the _ other qualities: each value indicates a particular level of debugger _ information; it is not compared with the other qualities. _ \xlref{debugger-policy} for more details. _ _\item[\code{safety}] \cindex{safety optimization quality}How much _ error checking should be done. If \code{speed}, \code{space} or _ \code{compilation-speed} is more important than \code{safety}, then _ type checking is weakened (\pxlref{weakened-type-checks}). If _ \code{safety} if \code{0}, then no run time error checking is done. _ In addition to suppressing type checks, \code{0} also suppresses _ argument count checking, unbound-symbol checking and array bounds _ checks. _ _\item[\code{extensions:inhibit-warnings}] \cindex{inhibit-warnings _ optimization quality}This is a CMU extension that determines how _ little (or how much) diagnostic output should be printed during _ compilation. This quality is compared to other qualities to _ determine whether to print style notes and warnings concerning those _ qualities. If \code{speed} is greater than \code{inhibit-warnings}, _ then notes about how to improve speed will be printed, etc. The _ default value is \code{1}, so raising the value for any standard _ quality above its default enables notes for that quality. If _ \code{inhibit-warnings} is \code{3}, then all notes and most _ non-serious warnings are inhibited. This is useful with _ \code{declare} to suppress warnings about unavoidable problems. _\end{Lentry} _ _%%\node The Optimize-Interface Declaration, , The Optimize Declaration, Compiler Policy _\subsection{The Optimize-Interface Declaration} _\label{optimize-interface-declaration} _\cindex{optimize-interface declaration} _\cpsubindex{declarations}{\code{optimize-interface}} _ _The \code{extensions:optimize-interface} declaration is identical in _syntax to the \code{optimize} declaration, but it specifies the policy _used during compilation of code the compiler automatically generates _to check the number and type of arguments supplied to a function. It _is useful to specify this policy separately, since even thoroughly _debugged functions are vulnerable to being passed the wrong arguments. _The \code{optimize-interface} declaration can specify that arguments _should be checked even when the general \code{optimize} policy is _unsafe. _ _Note that this argument checking is the checking of user-supplied _arguments to any functions defined within the scope of the _declaration, \code{not} the checking of arguments to \llisp{} _primitives that appear in those definitions. _ _The idea behind this declaration is that it allows the definition of _functions that appear fully safe to other callers, but that do no _internal error checking. Of course, it is possible that arguments may _be invalid in ways other than having incorrect type. Functions _compiled unsafely must still protect themselves against things like _user-supplied array indices that are out of bounds and improper lists. _See also the \kwd{context-declarations} option to _\macref{with-compilation-unit}. _ _(end of section on compiler policy) _--> </sect1> <sect1><title>Open Coding and Inline Expansion</> <!--INDEX open-coding--> <!--INDEX inline expansion--> <!--INDEX static functions--> <para>Since &CommonLisp; forbids the redefinition of standard functions, the compiler can have special knowledge of these standard functions embedded in it. This special knowledge is used in various ways (open coding, inline expansion, source transformation), but the implications to the user are basically the same: <itemizedlist> <listitem><para> Attempts to redefine standard functions may be frustrated, since the function may never be called. Although it is technically illegal to redefine standard functions, users sometimes want to implicitly redefine these functions when they are debugging using the <function>trace</> macro. Special-casing of standard functions can be inhibited using the <parameter>notinline</> declaration.</para></listitem> <listitem><para> The compiler can have multiple alternate implementations of standard functions that implement different trade-offs of speed, space and safety. This selection is based on the <link linkend="compiler-policy">compiler policy</link>. </para></listitem> </itemizedlist> </para> <para>When a function call is <emphasis>open coded</>, inline code whose effect is equivalent to the function call is substituted for that function call. When a function call is <emphasis>closed coded</>, it is usually left as is, although it might be turned into a call to a different function with different arguments. As an example, if <function>nthcdr</> were to be open coded, then <programlisting>(nthcdr 4 foobar)</programlisting> might turn into <programlisting>(cdr (cdr (cdr (cdr foobar))))</> or even <programlisting>(do ((i 0 (1+ i)) (list foobar (cdr foobar))) ((= i 4) list))</programlisting> If <function>nth</> is closed coded, then <programlisting> (nth x l) </programlisting> might stay the same, or turn into something like <programlisting> (car (nthcdr x l)) </programlisting> </para> <para>In general, open coding sacrifices space for speed, but some functions (such as <function>car</>) are so simple that they are always open-coded. Even when not open-coded, a call to a standard function may be transformed into a different function call (as in the last example) or compiled as <emphasis>static call</>. Static function call uses a more efficient calling convention that forbids redefinition.</para> </sect1> </chapter>