;;; ecmalisp.lisp --- ;; Copyright (C) 2012, 2013 David Vazquez ;; Copyright (C) 2012 Raimon Grau ;; This program is free software: you can redistribute it and/or ;; modify it under the terms of the GNU General Public License as ;; published by the Free Software Foundation, either version 3 of the ;; License, or (at your option) any later version. ;; ;; This program is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with this program. If not, see . #+common-lisp (eval-when (:load-toplevel :compile-toplevel :execute) (load "compat")) ;;; At this point, no matter if Common Lisp or ecmalisp is compiling ;;; from here, this code will compile on both. We define some helper ;;; functions now for string manipulation and so on. They will be ;;; useful in the compiler, mostly. (defvar *newline* (string (code-char 10))) #+ecmalisp (defun concat (&rest strs) (!reduce #'concat-two strs :initial-value "")) #+common-lisp (eval-when (:compile-toplevel :load-toplevel :execute) (defun concat (&rest strs) (apply #'concatenate 'string strs))) (defmacro concatf (variable &body form) `(setq ,variable (concat ,variable (progn ,@form)))) ;;; This couple of helper functions will be defined in both Common ;;; Lisp and in Ecmalisp. (defun ensure-list (x) (if (listp x) x (list x))) (defun !reduce (func list &key initial-value) (if (null list) initial-value (!reduce func (cdr list) :initial-value (funcall func initial-value (car list))))) ;;; Concatenate a list of strings, with a separator (defun join (list &optional (separator "")) (cond ((null list) "") ((null (cdr list)) (car list)) (t (concat (car list) separator (join (cdr list) separator))))) (defun join-trailing (list &optional (separator "")) (if (null list) "" (concat (car list) separator (join-trailing (cdr list) separator)))) (defun mapconcat (func list) (join (mapcar func list))) (defun vector-to-list (vector) (let ((list nil) (size (length vector))) (dotimes (i size (reverse list)) (push (aref vector i) list)))) (defun list-to-vector (list) (let ((v (make-array (length list))) (i 0)) (dolist (x list v) (aset v i x) (incf i)))) (defmacro awhen (condition &body body) `(let ((it ,condition)) (when it ,@body))) #+ecmalisp (progn (defun values-list (list) (values-array (list-to-vector list))) (defun values (&rest args) (values-list args))) (defun integer-to-string (x) (cond ((zerop x) "0") ((minusp x) (concat "-" (integer-to-string (- 0 x)))) (t (let ((digits nil)) (while (not (zerop x)) (push (mod x 10) digits) (setq x (truncate x 10))) (mapconcat (lambda (x) (string (digit-char x))) digits))))) ;;; Printer #+ecmalisp (progn (defun prin1-to-string (form) (cond ((symbolp form) (multiple-value-bind (symbol foundp) (find-symbol (symbol-name form) *package*) (if (and foundp (eq symbol form)) (symbol-name form) (let ((package (symbol-package form)) (name (symbol-name form))) (concat (cond ((null package) "#") ((eq package (find-package "KEYWORD")) "") (t (package-name package))) ":" name))))) ((integerp form) (integer-to-string form)) ((stringp form) (concat "\"" (escape-string form) "\"")) ((functionp form) (let ((name (oget form "fname"))) (if name (concat "#") (concat "#")))) ((listp form) (concat "(" (join-trailing (mapcar #'prin1-to-string (butlast form)) " ") (let ((last (last form))) (if (null (cdr last)) (prin1-to-string (car last)) (concat (prin1-to-string (car last)) " . " (prin1-to-string (cdr last))))) ")")) ((arrayp form) (concat "#" (if (zerop (length form)) "()" (prin1-to-string (vector-to-list form))))) ((packagep form) (concat "#")) (t (concat "#")))) (defun write-line (x) (write-string x) (write-string *newline*) x) (defun warn (string) (write-string "WARNING: ") (write-line string)) (defun print (x) (write-line (prin1-to-string x)) x)) ;;;; Reader ;;; The Lisp reader, parse strings and return Lisp objects. The main ;;; entry points are `ls-read' and `ls-read-from-string'. (defun make-string-stream (string) (cons string 0)) (defun %peek-char (stream) (and (< (cdr stream) (length (car stream))) (char (car stream) (cdr stream)))) (defun %read-char (stream) (and (< (cdr stream) (length (car stream))) (prog1 (char (car stream) (cdr stream)) (rplacd stream (1+ (cdr stream)))))) (defun whitespacep (ch) (or (char= ch #\space) (char= ch #\newline) (char= ch #\tab))) (defun skip-whitespaces (stream) (let (ch) (setq ch (%peek-char stream)) (while (and ch (whitespacep ch)) (%read-char stream) (setq ch (%peek-char stream))))) (defun terminalp (ch) (or (null ch) (whitespacep ch) (char= #\) ch) (char= #\( ch))) (defun read-until (stream func) (let ((string "") (ch)) (setq ch (%peek-char stream)) (while (and ch (not (funcall func ch))) (setq string (concat string (string ch))) (%read-char stream) (setq ch (%peek-char stream))) string)) (defun skip-whitespaces-and-comments (stream) (let (ch) (skip-whitespaces stream) (setq ch (%peek-char stream)) (while (and ch (char= ch #\;)) (read-until stream (lambda (x) (char= x #\newline))) (skip-whitespaces stream) (setq ch (%peek-char stream))))) (defun %read-list (stream) (skip-whitespaces-and-comments stream) (let ((ch (%peek-char stream))) (cond ((null ch) (error "Unspected EOF")) ((char= ch #\)) (%read-char stream) nil) ((char= ch #\.) (%read-char stream) (prog1 (ls-read stream) (skip-whitespaces-and-comments stream) (unless (char= (%read-char stream) #\)) (error "')' was expected.")))) (t (cons (ls-read stream) (%read-list stream)))))) (defun read-string (stream) (let ((string "") (ch nil)) (setq ch (%read-char stream)) (while (not (eql ch #\")) (when (null ch) (error "Unexpected EOF")) (when (eql ch #\\) (setq ch (%read-char stream))) (setq string (concat string (string ch))) (setq ch (%read-char stream))) string)) (defun read-sharp (stream) (%read-char stream) (ecase (%read-char stream) (#\' (list 'function (ls-read stream))) (#\( (list-to-vector (%read-list stream))) (#\: (make-symbol (string-upcase (read-until stream #'terminalp)))) (#\\ (let ((cname (concat (string (%read-char stream)) (read-until stream #'terminalp)))) (cond ((string= cname "space") (char-code #\space)) ((string= cname "tab") (char-code #\tab)) ((string= cname "newline") (char-code #\newline)) (t (char-code (char cname 0)))))) (#\+ (let ((feature (read-until stream #'terminalp))) (cond ((string= feature "common-lisp") (ls-read stream) ;ignore (ls-read stream)) ((string= feature "ecmalisp") (ls-read stream)) (t (error "Unknown reader form."))))))) ;;; Parse a string of the form NAME, PACKAGE:NAME or ;;; PACKAGE::NAME and return the name. If the string is of the ;;; form 1) or 3), but the symbol does not exist, it will be created ;;; and interned in that package. (defun read-symbol (string) (let ((size (length string)) package name internalp index) (setq index 0) (while (and (< index size) (not (char= (char string index) #\:))) (incf index)) (cond ;; No package prefix ((= index size) (setq name string) (setq package *package*) (setq internalp t)) (t ;; Package prefix (if (zerop index) (setq package "KEYWORD") (setq package (string-upcase (subseq string 0 index)))) (incf index) (when (char= (char string index) #\:) (setq internalp t) (incf index)) (setq name (subseq string index)))) ;; Canonalize symbol name and package (when (not (eq package "JS")) (setq name (string-upcase name))) (setq package (find-package package)) ;; TODO: PACKAGE:SYMBOL should signal error if SYMBOL is not an ;; external symbol from PACKAGE. (if (or internalp (eq package (find-package "KEYWORD")) (eq package (find-package "JS"))) (intern name package) (find-symbol name package)))) (defun !parse-integer (string junk-allow) (block nil (let ((value 0) (index 0) (size (length string)) (sign 1)) ;; Leading whitespace (while (and (< index size) (whitespacep (char string index))) (incf index)) (unless (< index size) (return (values nil 0))) ;; Optional sign (case (char string 0) (#\+ (incf index)) (#\- (setq sign -1) (incf index))) ;; First digit (unless (and (< index size) (setq value (digit-char-p (char string index)))) (return (values nil index))) (incf index) ;; Other digits (while (< index size) (let ((digit (digit-char-p (char string index)))) (unless digit (return)) (setq value (+ (* value 10) digit)) (incf index))) ;; Trailing whitespace (do ((i index (1+ i))) ((or (= i size) (not (whitespacep (char string i)))) (and (= i size) (setq index i)))) (if (or junk-allow (= index size)) (values (* sign value) index) (values nil index))))) #+ecmalisp (defun parse-integer (string &key junk-allowed) (multiple-value-bind (num index) (!parse-integer string junk-allowed) (when num (values num index) (error "junk detected.")))) (defvar *eof* (gensym)) (defun ls-read (stream) (skip-whitespaces-and-comments stream) (let ((ch (%peek-char stream))) (cond ((or (null ch) (char= ch #\))) *eof*) ((char= ch #\() (%read-char stream) (%read-list stream)) ((char= ch #\') (%read-char stream) (list 'quote (ls-read stream))) ((char= ch #\`) (%read-char stream) (list 'backquote (ls-read stream))) ((char= ch #\") (%read-char stream) (read-string stream)) ((char= ch #\,) (%read-char stream) (if (eql (%peek-char stream) #\@) (progn (%read-char stream) (list 'unquote-splicing (ls-read stream))) (list 'unquote (ls-read stream)))) ((char= ch #\#) (read-sharp stream)) (t (let ((string (read-until stream #'terminalp))) (or (values (!parse-integer string nil)) (read-symbol string))))))) (defun ls-read-from-string (string) (ls-read (make-string-stream string))) ;;;; Compiler ;;; Translate the Lisp code to Javascript. It will compile the special ;;; forms. Some primitive functions are compiled as special forms ;;; too. The respective real functions are defined in the target (see ;;; the beginning of this file) as well as some primitive functions. (defun code (&rest args) (mapconcat (lambda (arg) (cond ((null arg) "") ((integerp arg) (integer-to-string arg)) ((stringp arg) arg) (t (error "Unknown argument.")))) args)) ;;; Wrap X with a Javascript code to convert the result from ;;; Javascript generalized booleans to T or NIL. (defun js!bool (x) (code "(" x "?" (ls-compile t) ": " (ls-compile nil) ")")) ;;; Concatenate the arguments and wrap them with a self-calling ;;; Javascript anonymous function. It is used to make some Javascript ;;; statements valid expressions and provide a private scope as well. ;;; It could be defined as function, but we could do some ;;; preprocessing in the future. (defmacro js!selfcall (&body body) `(code "(function(){" *newline* (indent ,@body) "})()")) ;;; Like CODE, but prefix each line with four spaces. Two versions ;;; of this function are available, because the Ecmalisp version is ;;; very slow and bootstraping was annoying. #+ecmalisp (defun indent (&rest string) (let ((input (apply #'code string))) (let ((output "") (index 0) (size (length input))) (when (plusp (length input)) (concatf output " ")) (while (< index size) (let ((str (if (and (char= (char input index) #\newline) (< index (1- size)) (not (char= (char input (1+ index)) #\newline))) (concat (string #\newline) " ") (string (char input index))))) (concatf output str)) (incf index)) output))) #+common-lisp (defun indent (&rest string) (with-output-to-string (*standard-output*) (with-input-from-string (input (apply #'code string)) (loop for line = (read-line input nil) while line do (write-string " ") do (write-line line))))) ;;; A Form can return a multiple values object calling VALUES, like ;;; values(arg1, arg2, ...). It will work in any context, as well as ;;; returning an individual object. However, if the special variable ;;; `*multiple-value-p*' is NIL, is granted that only the primary ;;; value will be used, so we can optimize to avoid the VALUES ;;; function call. (defvar *multiple-value-p* nil) ;; A very simple defstruct built on lists. It supports just slot with ;; an optional default initform, and it will create a constructor, ;; predicate and accessors for you. (defmacro def!struct (name &rest slots) (unless (symbolp name) (error "It is not a full defstruct implementation.")) (let* ((name-string (symbol-name name)) (slot-descriptions (mapcar (lambda (sd) (cond ((symbolp sd) (list sd)) ((and (listp sd) (car sd) (cddr sd)) sd) (t (error "Bad slot accessor.")))) slots)) (predicate (intern (concat name-string "-P")))) `(progn ;; Constructor (defun ,(intern (concat "MAKE-" name-string)) (&key ,@slot-descriptions) (list ',name ,@(mapcar #'car slot-descriptions))) ;; Predicate (defun ,predicate (x) (and (consp x) (eq (car x) ',name))) ;; Copier (defun ,(intern (concat "COPY-" name-string)) (x) (copy-list x)) ;; Slot accessors ,@(with-collect (let ((index 1)) (dolist (slot slot-descriptions) (let* ((name (car slot)) (accessor-name (intern (concat name-string "-" (string name))))) (collect `(defun ,accessor-name (x) (unless (,predicate x) (error ,(concat "The object is not a type " name-string))) (nth ,index x))) ;; TODO: Implement this with a higher level ;; abstraction like defsetf or (defun (setf ..)) (collect `(define-setf-expander ,accessor-name (x) (let ((object (gensym)) (new-value (gensym))) (values (list object) (list x) (list new-value) `(progn (rplaca (nthcdr ,',index ,object) ,new-value) ,new-value) `(,',accessor-name ,object))))) (incf index))))) ',name))) ;;; Environment (def!struct binding name type value declarations) (def!struct lexenv variable function block gotag) (defun lookup-in-lexenv (name lexenv namespace) (find name (ecase namespace (variable (lexenv-variable lexenv)) (function (lexenv-function lexenv)) (block (lexenv-block lexenv)) (gotag (lexenv-gotag lexenv))) :key #'binding-name)) (defun push-to-lexenv (binding lexenv namespace) (ecase namespace (variable (push binding (lexenv-variable lexenv))) (function (push binding (lexenv-function lexenv))) (block (push binding (lexenv-block lexenv))) (gotag (push binding (lexenv-gotag lexenv))))) (defun extend-lexenv (bindings lexenv namespace) (let ((env (copy-lexenv lexenv))) (dolist (binding (reverse bindings) env) (push-to-lexenv binding env namespace)))) (defvar *environment* (make-lexenv)) (defvar *variable-counter* 0) (defun gvarname (symbol) (code "v" (incf *variable-counter*))) (defun translate-variable (symbol) (awhen (lookup-in-lexenv symbol *environment* 'variable) (binding-value it))) (defun extend-local-env (args) (let ((new (copy-lexenv *environment*))) (dolist (symbol args new) (let ((b (make-binding :name symbol :type 'variable :value (gvarname symbol)))) (push-to-lexenv b new 'variable))))) ;;; Toplevel compilations (defvar *toplevel-compilations* nil) (defun toplevel-compilation (string) (push string *toplevel-compilations*)) (defun null-or-empty-p (x) (zerop (length x))) (defun get-toplevel-compilations () (reverse (remove-if #'null-or-empty-p *toplevel-compilations*))) (defun %compile-defmacro (name lambda) (toplevel-compilation (ls-compile `',name)) (let ((binding (make-binding :name name :type 'macro :value lambda))) (push-to-lexenv binding *environment* 'function)) name) (defun global-binding (name type namespace) (or (lookup-in-lexenv name *environment* namespace) (let ((b (make-binding :name name :type type :value nil))) (push-to-lexenv b *environment* namespace) b))) (defun claimp (symbol namespace claim) (let ((b (lookup-in-lexenv symbol *environment* namespace))) (and b (member claim (binding-declarations b))))) (defun !proclaim (decl) (case (car decl) (special (dolist (name (cdr decl)) (let ((b (global-binding name 'variable 'variable))) (push 'special (binding-declarations b))))) (notinline (dolist (name (cdr decl)) (let ((b (global-binding name 'function 'function))) (push 'notinline (binding-declarations b))))) (constant (dolist (name (cdr decl)) (let ((b (global-binding name 'variable 'variable))) (push 'constant (binding-declarations b))))))) #+ecmalisp (fset 'proclaim #'!proclaim) (defun %define-symbol-macro (name expansion) (let ((b (make-binding :name name :type 'macro :value expansion))) (push-to-lexenv b *environment* 'variable) name)) #+ecmalisp (defmacro define-symbol-macro (name expansion) `(%define-symbol-macro ',name ',expansion)) ;;; Special forms (defvar *compilations* nil) (defmacro define-compilation (name args &body body) ;; Creates a new primitive `name' with parameters args and ;; @body. The body can access to the local environment through the ;; variable *ENVIRONMENT*. `(push (list ',name (lambda ,args (block ,name ,@body))) *compilations*)) (define-compilation if (condition true false) (code "(" (ls-compile condition) " !== " (ls-compile nil) " ? " (ls-compile true *multiple-value-p*) " : " (ls-compile false *multiple-value-p*) ")")) (defvar *ll-keywords* '(&optional &rest &key)) (defun list-until-keyword (list) (if (or (null list) (member (car list) *ll-keywords*)) nil (cons (car list) (list-until-keyword (cdr list))))) (defun ll-section (keyword ll) (list-until-keyword (cdr (member keyword ll)))) (defun ll-required-arguments (ll) (list-until-keyword ll)) (defun ll-optional-arguments-canonical (ll) (mapcar #'ensure-list (ll-section '&optional ll))) (defun ll-optional-arguments (ll) (mapcar #'car (ll-optional-arguments-canonical ll))) (defun ll-rest-argument (ll) (let ((rest (ll-section '&rest ll))) (when (cdr rest) (error "Bad lambda-list")) (car rest))) (defun ll-keyword-arguments-canonical (ll) (flet ((canonicalize (keyarg) ;; Build a canonical keyword argument descriptor, filling ;; the optional fields. The result is a list of the form ;; ((keyword-name var) init-form). (let ((arg (ensure-list keyarg))) (cons (if (listp (car arg)) (car arg) (list (intern (symbol-name (car arg)) "KEYWORD") (car arg))) (cdr arg))))) (mapcar #'canonicalize (ll-section '&key ll)))) (defun ll-keyword-arguments (ll) (mapcar (lambda (keyarg) (second (first keyarg))) (ll-keyword-arguments-canonical ll))) (defun ll-svars (lambda-list) (let ((args (append (ll-keyword-arguments-canonical lambda-list) (ll-optional-arguments-canonical lambda-list)))) (remove nil (mapcar #'third args)))) (defun lambda-docstring-wrapper (docstring &rest strs) (if docstring (js!selfcall "var func = " (join strs) ";" *newline* "func.docstring = '" docstring "';" *newline* "return func;" *newline*) (apply #'code strs))) (defun lambda-check-argument-count (n-required-arguments n-optional-arguments rest-p) ;; Note: Remember that we assume that the number of arguments of a ;; call is at least 1 (the values argument). (let ((min (1+ n-required-arguments)) (max (if rest-p 'n/a (+ 1 n-required-arguments n-optional-arguments)))) (block nil ;; Special case: a positive exact number of arguments. (when (and (< 1 min) (eql min max)) (return (code "checkArgs(arguments, " min ");" *newline*))) ;; General case: (code (when (< 1 min) (code "checkArgsAtLeast(arguments, " min ");" *newline*)) (when (numberp max) (code "checkArgsAtMost(arguments, " max ");" *newline*)))))) (defun compile-lambda-optional (ll) (let* ((optional-arguments (ll-optional-arguments-canonical ll)) (n-required-arguments (length (ll-required-arguments ll))) (n-optional-arguments (length optional-arguments))) (when optional-arguments (code (mapconcat (lambda (arg) (code "var " (translate-variable (first arg)) "; " *newline* (when (third arg) (code "var " (translate-variable (third arg)) " = " (ls-compile t) "; " *newline*)))) optional-arguments) "switch(arguments.length-1){" *newline* (let ((cases nil) (idx 0)) (progn (while (< idx n-optional-arguments) (let ((arg (nth idx optional-arguments))) (push (code "case " (+ idx n-required-arguments) ":" *newline* (indent (translate-variable (car arg)) "=" (ls-compile (cadr arg)) ";" *newline*) (when (third arg) (indent (translate-variable (third arg)) "=" (ls-compile nil) ";" *newline*))) cases) (incf idx))) (push (code "default: break;" *newline*) cases) (join (reverse cases)))) "}" *newline*)))) (defun compile-lambda-rest (ll) (let ((n-required-arguments (length (ll-required-arguments ll))) (n-optional-arguments (length (ll-optional-arguments ll))) (rest-argument (ll-rest-argument ll))) (when rest-argument (let ((js!rest (translate-variable rest-argument))) (code "var " js!rest "= " (ls-compile nil) ";" *newline* "for (var i = arguments.length-1; i>=" (+ 1 n-required-arguments n-optional-arguments) "; i--)" *newline* (indent js!rest " = {car: arguments[i], cdr: ") js!rest "};" *newline*))))) (defun compile-lambda-parse-keywords (ll) (let ((n-required-arguments (length (ll-required-arguments ll))) (n-optional-arguments (length (ll-optional-arguments ll))) (keyword-arguments (ll-keyword-arguments-canonical ll))) (code ;; Declare variables (mapconcat (lambda (arg) (let ((var (second (car arg)))) (code "var " (translate-variable var) "; " *newline* (when (third arg) (code "var " (translate-variable (third arg)) " = " (ls-compile nil) ";" *newline*))))) keyword-arguments) ;; Parse keywords (flet ((parse-keyword (keyarg) ;; ((keyword-name var) init-form) (code "for (i=" (+ 1 n-required-arguments n-optional-arguments) "; i (LIST* a b c foo) ;;; provided a, b, c are not splicing frobs ;;; (APPEND (LIST* a b c) foo) => (LIST* a b (APPEND c foo)) ;;; provided a, b, c are not splicing frobs ;;; (APPEND (QUOTE (x)) foo) => (LIST* (QUOTE x) foo) ;;; (APPEND (CLOBBERABLE x) foo) => (NCONC x foo) (defun bq-simplify (x) (if (atom x) x (let ((x (if (eq (car x) *bq-quote*) x (maptree #'bq-simplify x)))) (if (not (eq (car x) *bq-append*)) x (bq-simplify-args x))))) (defun bq-simplify-args (x) (do ((args (reverse (cdr x)) (cdr args)) (result nil (cond ((atom (car args)) (bq-attach-append *bq-append* (car args) result)) ((and (eq (caar args) *bq-list*) (notany #'bq-splicing-frob (cdar args))) (bq-attach-conses (cdar args) result)) ((and (eq (caar args) *bq-list**) (notany #'bq-splicing-frob (cdar args))) (bq-attach-conses (reverse (cdr (reverse (cdar args)))) (bq-attach-append *bq-append* (car (last (car args))) result))) ((and (eq (caar args) *bq-quote*) (consp (cadar args)) (not (bq-frob (cadar args))) (null (cddar args))) (bq-attach-conses (list (list *bq-quote* (caadar args))) result)) ((eq (caar args) *bq-clobberable*) (bq-attach-append *bq-nconc* (cadar args) result)) (t (bq-attach-append *bq-append* (car args) result))))) ((null args) result))) (defun null-or-quoted (x) (or (null x) (and (consp x) (eq (car x) *bq-quote*)))) ;;; When BQ-ATTACH-APPEND is called, the OP should be #:BQ-APPEND ;;; or #:BQ-NCONC. This produces a form (op item result) but ;;; some simplifications are done on the fly: ;;; ;;; (op '(a b c) '(d e f g)) => '(a b c d e f g) ;;; (op item 'nil) => item, provided item is not a splicable frob ;;; (op item 'nil) => (op item), if item is a splicable frob ;;; (op item (op a b c)) => (op item a b c) (defun bq-attach-append (op item result) (cond ((and (null-or-quoted item) (null-or-quoted result)) (list *bq-quote* (append (cadr item) (cadr result)))) ((or (null result) (equal result *bq-quote-nil*)) (if (bq-splicing-frob item) (list op item) item)) ((and (consp result) (eq (car result) op)) (list* (car result) item (cdr result))) (t (list op item result)))) ;;; The effect of BQ-ATTACH-CONSES is to produce a form as if by ;;; `(LIST* ,@items ,result) but some simplifications are done ;;; on the fly. ;;; ;;; (LIST* 'a 'b 'c 'd) => '(a b c . d) ;;; (LIST* a b c 'nil) => (LIST a b c) ;;; (LIST* a b c (LIST* d e f g)) => (LIST* a b c d e f g) ;;; (LIST* a b c (LIST d e f g)) => (LIST a b c d e f g) (defun bq-attach-conses (items result) (cond ((and (every #'null-or-quoted items) (null-or-quoted result)) (list *bq-quote* (append (mapcar #'cadr items) (cadr result)))) ((or (null result) (equal result *bq-quote-nil*)) (cons *bq-list* items)) ((and (consp result) (or (eq (car result) *bq-list*) (eq (car result) *bq-list**))) (cons (car result) (append items (cdr result)))) (t (cons *bq-list** (append items (list result)))))) ;;; Removes funny tokens and changes (#:BQ-LIST* a b) into ;;; (CONS a b) instead of (LIST* a b), purely for readability. (defun bq-remove-tokens (x) (cond ((eq x *bq-list*) 'list) ((eq x *bq-append*) 'append) ((eq x *bq-nconc*) 'nconc) ((eq x *bq-list**) 'list*) ((eq x *bq-quote*) 'quote) ((atom x) x) ((eq (car x) *bq-clobberable*) (bq-remove-tokens (cadr x))) ((and (eq (car x) *bq-list**) (consp (cddr x)) (null (cdddr x))) (cons 'cons (maptree #'bq-remove-tokens (cdr x)))) (t (maptree #'bq-remove-tokens x)))) (define-transformation backquote (form) (bq-completely-process form)) ;;; Primitives (defvar *builtins* nil) (defmacro define-raw-builtin (name args &body body) ;; Creates a new primitive function `name' with parameters args and ;; @body. The body can access to the local environment through the ;; variable *ENVIRONMENT*. `(push (list ',name (lambda ,args (block ,name ,@body))) *builtins*)) (defmacro define-builtin (name args &body body) `(define-raw-builtin ,name ,args (let ,(mapcar (lambda (arg) `(,arg (ls-compile ,arg))) args) ,@body))) ;;; DECLS is a list of (JSVARNAME TYPE LISPFORM) declarations. (defmacro type-check (decls &body body) `(js!selfcall ,@(mapcar (lambda (decl) `(code "var " ,(first decl) " = " ,(third decl) ";" *newline*)) decls) ,@(mapcar (lambda (decl) `(code "if (typeof " ,(first decl) " != '" ,(second decl) "')" *newline* (indent "throw 'The value ' + " ,(first decl) " + ' is not a type " ,(second decl) ".';" *newline*))) decls) (code "return " (progn ,@body) ";" *newline*))) ;;; VARIABLE-ARITY compiles variable arity operations. ARGS stands for ;;; a variable which holds a list of forms. It will compile them and ;;; store the result in some Javascript variables. BODY is evaluated ;;; with ARGS bound to the list of these variables to generate the ;;; code which performs the transformation on these variables. (defun variable-arity-call (args function) (unless (consp args) (error "ARGS must be a non-empty list")) (let ((counter 0) (fargs '()) (prelude "")) (dolist (x args) (if (numberp x) (push (integer-to-string x) fargs) (let ((v (code "x" (incf counter)))) (push v fargs) (concatf prelude (code "var " v " = " (ls-compile x) ";" *newline* "if (typeof " v " !== 'number') throw 'Not a number!';" *newline*))))) (js!selfcall prelude (funcall function (reverse fargs))))) (defmacro variable-arity (args &body body) (unless (symbolp args) (error "Bad usage of VARIABLE-ARITY, you must pass a symbol")) `(variable-arity-call ,args (lambda (,args) (code "return " ,@body ";" *newline*)))) (defun num-op-num (x op y) (type-check (("x" "number" x) ("y" "number" y)) (code "x" op "y"))) (define-raw-builtin + (&rest numbers) (if (null numbers) "0" (variable-arity numbers (join numbers "+")))) (define-raw-builtin - (x &rest others) (let ((args (cons x others))) (variable-arity args (if (null others) (concat "-" (car args)) (join args "-"))))) (define-raw-builtin * (&rest numbers) (if (null numbers) "1" (variable-arity numbers (join numbers "*")))) (define-raw-builtin / (x &rest others) (let ((args (cons x others))) (variable-arity args (if (null others) (concat "1 /" (car args)) (join args "/"))))) (define-builtin mod (x y) (num-op-num x "%" y)) (defun comparison-conjuntion (vars op) (cond ((null (cdr vars)) "true") ((null (cddr vars)) (concat (car vars) op (cadr vars))) (t (concat (car vars) op (cadr vars) " && " (comparison-conjuntion (cdr vars) op))))) (defmacro define-builtin-comparison (op sym) `(define-raw-builtin ,op (x &rest args) (let ((args (cons x args))) (variable-arity args (js!bool (comparison-conjuntion args ,sym)))))) (define-builtin-comparison > ">") (define-builtin-comparison < "<") (define-builtin-comparison >= ">=") (define-builtin-comparison <= "<=") (define-builtin-comparison = "==") (define-builtin numberp (x) (js!bool (code "(typeof (" x ") == \"number\")"))) (define-builtin floor (x) (type-check (("x" "number" x)) "Math.floor(x)")) (define-builtin cons (x y) (code "({car: " x ", cdr: " y "})")) (define-builtin consp (x) (js!bool (js!selfcall "var tmp = " x ";" *newline* "return (typeof tmp == 'object' && 'car' in tmp);" *newline*))) (define-builtin car (x) (js!selfcall "var tmp = " x ";" *newline* "return tmp === " (ls-compile nil) "? " (ls-compile nil) ": tmp.car;" *newline*)) (define-builtin cdr (x) (js!selfcall "var tmp = " x ";" *newline* "return tmp === " (ls-compile nil) "? " (ls-compile nil) ": tmp.cdr;" *newline*)) (define-builtin rplaca (x new) (type-check (("x" "object" x)) (code "(x.car = " new ", x)"))) (define-builtin rplacd (x new) (type-check (("x" "object" x)) (code "(x.cdr = " new ", x)"))) (define-builtin symbolp (x) (js!bool (js!selfcall "var tmp = " x ";" *newline* "return (typeof tmp == 'object' && 'name' in tmp);" *newline*))) (define-builtin make-symbol (name) (type-check (("name" "string" name)) "({name: name})")) (define-builtin symbol-name (x) (code "(" x ").name")) (define-builtin set (symbol value) (code "(" symbol ").value = " value)) (define-builtin fset (symbol value) (code "(" symbol ").fvalue = " value)) (define-builtin boundp (x) (js!bool (code "(" x ".value !== undefined)"))) (define-builtin symbol-value (x) (js!selfcall "var symbol = " x ";" *newline* "var value = symbol.value;" *newline* "if (value === undefined) throw \"Variable `\" + symbol.name + \"' is unbound.\";" *newline* "return value;" *newline*)) (define-builtin symbol-function (x) (js!selfcall "var symbol = " x ";" *newline* "var func = symbol.fvalue;" *newline* "if (func === undefined) throw \"Function `\" + symbol.name + \"' is undefined.\";" *newline* "return func;" *newline*)) (define-builtin symbol-plist (x) (code "((" x ").plist || " (ls-compile nil) ")")) (define-builtin lambda-code (x) (code "(" x ").toString()")) (define-builtin eq (x y) (js!bool (code "(" x " === " y ")"))) (define-builtin equal (x y) (js!bool (code "(" x " == " y ")"))) (define-builtin char-to-string (x) (type-check (("x" "number" x)) "String.fromCharCode(x)")) (define-builtin stringp (x) (js!bool (code "(typeof(" x ") == \"string\")"))) (define-builtin string-upcase (x) (type-check (("x" "string" x)) "x.toUpperCase()")) (define-builtin string-length (x) (type-check (("x" "string" x)) "x.length")) (define-raw-builtin slice (string a &optional b) (js!selfcall "var str = " (ls-compile string) ";" *newline* "var a = " (ls-compile a) ";" *newline* "var b;" *newline* (when b (code "b = " (ls-compile b) ";" *newline*)) "return str.slice(a,b);" *newline*)) (define-builtin char (string index) (type-check (("string" "string" string) ("index" "number" index)) "string.charCodeAt(index)")) (define-builtin concat-two (string1 string2) (type-check (("string1" "string" string1) ("string2" "string" string2)) "string1.concat(string2)")) (define-raw-builtin funcall (func &rest args) (js!selfcall "var f = " (ls-compile func) ";" *newline* "return (typeof f === 'function'? f: f.fvalue)(" (join (cons (if *multiple-value-p* "values" "pv") (mapcar #'ls-compile args)) ", ") ")")) (define-raw-builtin apply (func &rest args) (if (null args) (code "(" (ls-compile func) ")()") (let ((args (butlast args)) (last (car (last args)))) (js!selfcall "var f = " (ls-compile func) ";" *newline* "var args = [" (join (cons (if *multiple-value-p* "values" "pv") (mapcar #'ls-compile args)) ", ") "];" *newline* "var tail = (" (ls-compile last) ");" *newline* "while (tail != " (ls-compile nil) "){" *newline* " args.push(tail.car);" *newline* " tail = tail.cdr;" *newline* "}" *newline* "return (typeof f === 'function'? f : f.fvalue).apply(this, args);" *newline*)))) (define-builtin js-eval (string) (type-check (("string" "string" string)) (if *multiple-value-p* (js!selfcall "var v = eval.apply(window, [string]);" *newline* "if (typeof v !== 'object' || !('multiple-value' in v)){" *newline* (indent "v = [v];" *newline* "v['multiple-value'] = true;" *newline*) "}" *newline* "return values.apply(this, v);" *newline*) "eval.apply(window, [string])"))) (define-builtin error (string) (js!selfcall "throw " string ";" *newline*)) (define-builtin new () "{}") (define-builtin objectp (x) (js!bool (code "(typeof (" x ") === 'object')"))) (define-builtin oget (object key) (js!selfcall "var tmp = " "(" object ")[" key "];" *newline* "return tmp == undefined? " (ls-compile nil) ": tmp ;" *newline*)) (define-builtin oset (object key value) (code "((" object ")[" key "] = " value ")")) (define-builtin in (key object) (js!bool (code "((" key ") in (" object "))"))) (define-builtin functionp (x) (js!bool (code "(typeof " x " == 'function')"))) (define-builtin write-string (x) (type-check (("x" "string" x)) "lisp.write(x)")) (define-builtin make-array (n) (js!selfcall "var r = [];" *newline* "for (var i = 0; i < " n "; i++)" *newline* (indent "r.push(" (ls-compile nil) ");" *newline*) "return r;" *newline*)) (define-builtin arrayp (x) (js!bool (js!selfcall "var x = " x ";" *newline* "return typeof x === 'object' && 'length' in x;"))) (define-builtin aref (array n) (js!selfcall "var x = " "(" array ")[" n "];" *newline* "if (x === undefined) throw 'Out of range';" *newline* "return x;" *newline*)) (define-builtin aset (array n value) (js!selfcall "var x = " array ";" *newline* "var i = " n ";" *newline* "if (i < 0 || i >= x.length) throw 'Out of range';" *newline* "return x[i] = " value ";" *newline*)) (define-builtin get-unix-time () (code "(Math.round(new Date() / 1000))")) (define-builtin values-array (array) (if *multiple-value-p* (code "values.apply(this, " array ")") (code "pv.apply(this, " array ")"))) (define-raw-builtin values (&rest args) (if *multiple-value-p* (code "values(" (join (mapcar #'ls-compile args) ", ") ")") (code "pv(" (join (mapcar #'ls-compile args) ", ") ")"))) ;; Receives the JS function as first argument as a literal string. The ;; second argument is compiled and should evaluate to a vector of ;; values to apply to the the function. The result returned. (define-builtin %js-call (fun args) (code fun ".apply(this, " args ")")) (defun macro (x) (and (symbolp x) (let ((b (lookup-in-lexenv x *environment* 'function))) (if (and b (eq (binding-type b) 'macro)) b nil)))) #+common-lisp (defvar *macroexpander-cache* (make-hash-table :test #'eq)) (defun ls-macroexpand-1 (form) (cond ((symbolp form) (let ((b (lookup-in-lexenv form *environment* 'variable))) (if (and b (eq (binding-type b) 'macro)) (values (binding-value b) t) (values form nil)))) ((consp form) (let ((macro-binding (macro (car form)))) (if macro-binding (let ((expander (binding-value macro-binding))) (cond #+common-lisp ((gethash macro-binding *macroexpander-cache*) (setq expander (gethash macro-binding *macroexpander-cache*))) ((listp expander) (let ((compiled (eval expander))) ;; The list representation are useful while ;; bootstrapping, as we can dump the definition of the ;; macros easily, but they are slow because we have to ;; evaluate them and compile them now and again. So, let ;; us replace the list representation version of the ;; function with the compiled one. ;; #+ecmalisp (setf (binding-value macro-binding) compiled) #+common-lisp (setf (gethash macro-binding *macroexpander-cache*) compiled) (setq expander compiled)))) (values (apply expander (cdr form)) t)) (values form nil)))) (t (values form nil)))) (defun compile-funcall (function args) (let* ((values-funcs (if *multiple-value-p* "values" "pv")) (arglist (concat "(" (join (cons values-funcs (mapcar #'ls-compile args)) ", ") ")"))) (cond ((translate-function function) (concat (translate-function function) arglist)) ((and (symbolp function) #+ecmalisp (eq (symbol-package function) (find-package "COMMON-LISP")) #+common-lisp t) (code (ls-compile `',function) ".fvalue" arglist)) (t (code (ls-compile `#',function) arglist))))) (defun ls-compile-block (sexps &optional return-last-p) (if return-last-p (code (ls-compile-block (butlast sexps)) "return " (ls-compile (car (last sexps)) *multiple-value-p*) ";") (join-trailing (remove-if #'null-or-empty-p (mapcar #'ls-compile sexps)) (concat ";" *newline*)))) (defun ls-compile (sexp &optional multiple-value-p) (multiple-value-bind (sexp expandedp) (ls-macroexpand-1 sexp) (when expandedp (return-from ls-compile (ls-compile sexp multiple-value-p))) ;; The expression has been macroexpanded. Now compile it! (let ((*multiple-value-p* multiple-value-p)) (cond ((symbolp sexp) (let ((b (lookup-in-lexenv sexp *environment* 'variable))) (cond ((and b (not (member 'special (binding-declarations b)))) (binding-value b)) ((or (keywordp sexp) (and b (member 'constant (binding-declarations b)))) (code (ls-compile `',sexp) ".value")) (t (ls-compile `(symbol-value ',sexp)))))) ((integerp sexp) (integer-to-string sexp)) ((stringp sexp) (code "\"" (escape-string sexp) "\"")) ((arrayp sexp) (literal sexp)) ((listp sexp) (let ((name (car sexp)) (args (cdr sexp))) (cond ;; Special forms ((assoc name *compilations*) (let ((comp (second (assoc name *compilations*)))) (apply comp args))) ;; Built-in functions ((and (assoc name *builtins*) (not (claimp name 'function 'notinline))) (let ((comp (second (assoc name *builtins*)))) (apply comp args))) (t (compile-funcall name args))))) (t (error (concat "How should I compile " (prin1-to-string sexp) "?"))))))) (defvar *compile-print-toplevels* nil) (defun truncate-string (string &optional (width 60)) (let ((n (or (position #\newline string) (min width (length string))))) (subseq string 0 n))) (defun ls-compile-toplevel (sexp &optional multiple-value-p) (let ((*toplevel-compilations* nil)) (cond ((and (consp sexp) (eq (car sexp) 'progn)) (let ((subs (mapcar (lambda (s) (ls-compile-toplevel s t)) (cdr sexp)))) (join (remove-if #'null-or-empty-p subs)))) (t (when *compile-print-toplevels* (let ((form-string (prin1-to-string sexp))) (write-string "Compiling ") (write-string (truncate-string form-string)) (write-line "..."))) (let ((code (ls-compile sexp multiple-value-p))) (code (join-trailing (get-toplevel-compilations) (code ";" *newline*)) (when code (code code ";" *newline*)))))))) ;;; Once we have the compiler, we define the runtime environment and ;;; interactive development (eval), which works calling the compiler ;;; and evaluating the Javascript result globally. #+ecmalisp (progn (defun eval (x) (js-eval (ls-compile-toplevel x t))) (defvar * nil) (defvar ** nil) (defvar *** nil) (defvar / nil) (defvar // nil) (defvar /// nil) (defvar + nil) (defvar ++ nil) (defvar +++ nil) (defvar - nil) (defun eval-interactive (x) (setf - x) (let ((results (multiple-value-list (eval x)))) (setf /// // // / / results *** ** ** * * (car results))) (setf +++ ++ ++ + + -) (values-list /)) (export '(&body &key &optional &rest * *gensym-counter* *package* + - / 1+ 1- < <= = = > >= and append apply aref arrayp assoc atom block boundp boundp butlast caar cadddr caddr cadr car car case catch cdar cdddr cddr cdr cdr char char-code char= code-char cond cons consp constantly copy-list decf declaim defconstant define-setf-expander define-symbol-macro defmacro defparameter defun defvar digit-char digit-char-p disassemble do do* documentation dolist dotimes ecase eq eql equal error eval every export fdefinition find-package find-symbol first flet fourth fset funcall function functionp gensym get-setf-expansion get-universal-time go identity if in-package incf integerp integerp intern keywordp labels lambda last length let let* list list* list-all-packages listp loop make-array make-package make-symbol mapcar member minusp mod multiple-value-bind multiple-value-call multiple-value-list multiple-value-prog1 nconc nil not nreconc nth nthcdr null numberp or package-name package-use-list packagep parse-integer plusp prin1-to-string print proclaim prog1 prog2 progn psetq push quote remove remove-if remove-if-not return return-from revappend reverse rplaca rplacd second set setf setq some string string-upcase string= stringp subseq symbol-function symbol-name symbol-package symbol-plist symbol-value symbolp t tagbody third throw truncate unless unwind-protect values values-list variable warn when write-line write-string zerop ** *** // /// ++ +++)) (setq *package* *user-package*) (js-eval "var lisp") (%js-vset "lisp" (new)) (%js-vset "lisp.read" #'ls-read-from-string) (%js-vset "lisp.print" #'prin1-to-string) (%js-vset "lisp.eval" #'eval) (%js-vset "lisp.compile" (lambda (s) (ls-compile-toplevel s t))) (%js-vset "lisp.evalString" (lambda (str) (eval (ls-read-from-string str)))) (%js-vset "lisp.evalInput" (lambda (str) (eval-interactive (ls-read-from-string str)))) (%js-vset "lisp.compileString" (lambda (str) (ls-compile-toplevel (ls-read-from-string str) t))) ;; Set the initial global environment to be equal to the host global ;; environment at this point of the compilation. (eval-when-compile (toplevel-compilation (ls-compile `(setq *environment* ',*environment*)))) (eval-when-compile (toplevel-compilation (ls-compile `(progn ,@(mapcar (lambda (s) `(%intern-symbol (%js-vref ,(cdr s)))) *literal-symbols*) (setq *literal-symbols* ',*literal-symbols*) (setq *variable-counter* ,*variable-counter*) (setq *gensym-counter* ,*gensym-counter*) (setq *block-counter* ,*block-counter*))))) (eval-when-compile (toplevel-compilation (ls-compile `(setq *literal-counter* ,*literal-counter*))))) ;;; Finally, we provide a couple of functions to easily bootstrap ;;; this. It just calls the compiler with this file as input. #+common-lisp (progn (defun read-whole-file (filename) (with-open-file (in filename) (let ((seq (make-array (file-length in) :element-type 'character))) (read-sequence seq in) seq))) (defun ls-compile-file (filename out &key print) (let ((*compiling-file* t) (*compile-print-toplevels* print)) (let* ((source (read-whole-file filename)) (in (make-string-stream source))) (format t "Compiling ~a...~%" filename) (loop for x = (ls-read in) until (eq x *eof*) for compilation = (ls-compile-toplevel x) when (plusp (length compilation)) do (write-string compilation out))))) (defun bootstrap () (setq *environment* (make-lexenv)) (setq *literal-symbols* nil) (setq *variable-counter* 0 *gensym-counter* 0 *literal-counter* 0 *block-counter* 0) (with-open-file (out "ecmalisp.js" :direction :output :if-exists :supersede) (write-string (read-whole-file "prelude.js") out) (ls-compile-file "boot.lisp" out :print t) (ls-compile-file "ecmalisp.lisp" out :print t))))