;;;; This file contains the definitions of float-specific number ;;;; support (other than irrational stuff, which is in irrat.) There is ;;;; code in here that assumes there are only two float formats: IEEE ;;;; single and double. (LONG-FLOAT support has been added, but bugs ;;;; may still remain due to old code which assumes this dichotomy.) ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!KERNEL") ;;;; float predicates and environment query #!-sb-fluid (declaim (maybe-inline float-denormalized-p float-infinity-p float-nan-p float-trapping-nan-p)) (defun float-denormalized-p (x) #!+sb-doc "Return true if the float X is denormalized." (number-dispatch ((x float)) ((single-float) (and (zerop (ldb sb!vm:single-float-exponent-byte (single-float-bits x))) (not (zerop x)))) ((double-float) (and (zerop (ldb sb!vm:double-float-exponent-byte (double-float-high-bits x))) (not (zerop x)))) #!+(and long-float x86) ((long-float) (and (zerop (ldb sb!vm:long-float-exponent-byte (long-float-exp-bits x))) (not (zerop x)))))) (defmacro !define-float-dispatching-function (name doc single double #!+(and long-float x86) long) `(defun ,name (x) ,doc (number-dispatch ((x float)) ((single-float) (let ((bits (single-float-bits x))) (and (> (ldb sb!vm:single-float-exponent-byte bits) sb!vm:single-float-normal-exponent-max) ,single))) ((double-float) (let ((hi (double-float-high-bits x)) (lo (double-float-low-bits x))) (declare (ignorable lo)) (and (> (ldb sb!vm:double-float-exponent-byte hi) sb!vm:double-float-normal-exponent-max) ,double))) #!+(and long-float x86) ((long-float) (let ((exp (long-float-exp-bits x)) (hi (long-float-high-bits x)) (lo (long-float-low-bits x))) (declare (ignorable lo)) (and (> (ldb sb!vm:long-float-exponent-byte exp) sb!vm:long-float-normal-exponent-max) ,long)))))) (!define-float-dispatching-function float-infinity-p "Return true if the float X is an infinity (+ or -)." (zerop (ldb sb!vm:single-float-significand-byte bits)) (and (zerop (ldb sb!vm:double-float-significand-byte hi)) (zerop lo)) #!+(and long-float x86) (and (zerop (ldb sb!vm:long-float-significand-byte hi)) (zerop lo))) (!define-float-dispatching-function float-nan-p "Return true if the float X is a NaN (Not a Number)." #!-(or mips hppa) (not (zerop (ldb sb!vm:single-float-significand-byte bits))) #!+(or mips hppa) (zerop (logand (ldb sb!vm:single-float-significand-byte bits) sb!vm:single-float-trapping-nan-bit)) #!-(or mips hppa) (or (not (zerop (ldb sb!vm:double-float-significand-byte hi))) (not (zerop lo))) #!+(or mips hppa) (zerop (logand (ldb sb!vm:double-float-significand-byte hi) sb!vm:double-float-trapping-nan-bit)) #!+(and long-float x86) (or (not (zerop (ldb sb!vm:long-float-significand-byte hi))) (not (zerop lo)))) (!define-float-dispatching-function float-trapping-nan-p "Return true if the float X is a trapping NaN (Not a Number)." #!-(or mips hppa) (zerop (logand (ldb sb!vm:single-float-significand-byte bits) sb!vm:single-float-trapping-nan-bit)) #!+(or mips hppa) (not (zerop (ldb sb!vm:single-float-significand-byte bits))) #!-(or mips hppa) (zerop (logand (ldb sb!vm:double-float-significand-byte hi) sb!vm:double-float-trapping-nan-bit)) #!+(or mips hppa) (or (not (zerop (ldb sb!vm:double-float-significand-byte hi))) (not (zerop lo))) #!+(and long-float x86) (zerop (logand (ldb sb!vm:long-float-significand-byte hi) sb!vm:long-float-trapping-nan-bit))) ;;; If denormalized, use a subfunction from INTEGER-DECODE-FLOAT to find the ;;; actual exponent (and hence how denormalized it is), otherwise we just ;;; return the number of digits or 0. #!-sb-fluid (declaim (maybe-inline float-precision)) (defun float-precision (f) #!+sb-doc "Return a non-negative number of significant digits in its float argument. Will be less than FLOAT-DIGITS if denormalized or zero." (macrolet ((frob (digits bias decode) `(cond ((zerop f) 0) ((float-denormalized-p f) (multiple-value-bind (ignore exp) (,decode f) (declare (ignore ignore)) (truly-the fixnum (+ ,digits (1- ,digits) ,bias exp)))) (t ,digits)))) (number-dispatch ((f float)) ((single-float) (frob sb!vm:single-float-digits sb!vm:single-float-bias integer-decode-single-denorm)) ((double-float) (frob sb!vm:double-float-digits sb!vm:double-float-bias integer-decode-double-denorm)) #!+long-float ((long-float) (frob sb!vm:long-float-digits sb!vm:long-float-bias integer-decode-long-denorm))))) (defun float-sign (float1 &optional (float2 (float 1 float1))) #!+sb-doc "Return a floating-point number that has the same sign as FLOAT1 and, if FLOAT2 is given, has the same absolute value as FLOAT2." (declare (float float1 float2)) (* (if (etypecase float1 (single-float (minusp (single-float-bits float1))) (double-float (minusp (double-float-high-bits float1))) #!+long-float (long-float (minusp (long-float-exp-bits float1)))) (float -1 float1) (float 1 float1)) (abs float2))) (defun float-format-digits (format) (ecase format ((short-float single-float) sb!vm:single-float-digits) ((double-float #!-long-float long-float) sb!vm:double-float-digits) #!+long-float (long-float sb!vm:long-float-digits))) #!-sb-fluid (declaim (inline float-digits float-radix)) (defun float-digits (f) (number-dispatch ((f float)) ((single-float) sb!vm:single-float-digits) ((double-float) sb!vm:double-float-digits) #!+long-float ((long-float) sb!vm:long-float-digits))) (defun float-radix (x) #!+sb-doc "Return (as an integer) the radix b of its floating-point argument." (declare (ignore x)) 2) ;;;; INTEGER-DECODE-FLOAT and DECODE-FLOAT #!-sb-fluid (declaim (maybe-inline integer-decode-single-float integer-decode-double-float)) ;;; Handle the denormalized case of INTEGER-DECODE-FLOAT for SINGLE-FLOAT. (defun integer-decode-single-denorm (x) (declare (type single-float x)) (let* ((bits (single-float-bits (abs x))) (sig (ash (ldb sb!vm:single-float-significand-byte bits) 1)) (extra-bias 0)) (declare (type (unsigned-byte 24) sig) (type (integer 0 23) extra-bias)) (loop (unless (zerop (logand sig sb!vm:single-float-hidden-bit)) (return)) (setq sig (ash sig 1)) (incf extra-bias)) (values sig (- (- sb!vm:single-float-bias) sb!vm:single-float-digits extra-bias) (if (minusp (float-sign x)) -1 1)))) ;;; Handle the single-float case of INTEGER-DECODE-FLOAT. If an infinity or ;;; NaN, error. If a denorm, call i-d-s-DENORM to handle it. (defun integer-decode-single-float (x) (declare (single-float x)) (let* ((bits (single-float-bits (abs x))) (exp (ldb sb!vm:single-float-exponent-byte bits)) (sig (ldb sb!vm:single-float-significand-byte bits)) (sign (if (minusp (float-sign x)) -1 1)) (biased (- exp sb!vm:single-float-bias sb!vm:single-float-digits))) (declare (fixnum biased)) (unless (<= exp sb!vm:single-float-normal-exponent-max) (error "can't decode NaN or infinity: ~S" x)) (cond ((and (zerop exp) (zerop sig)) (values 0 biased sign)) ((< exp sb!vm:single-float-normal-exponent-min) (integer-decode-single-denorm x)) (t (values (logior sig sb!vm:single-float-hidden-bit) biased sign))))) ;;; like INTEGER-DECODE-SINGLE-DENORM, only doubly so (defun integer-decode-double-denorm (x) (declare (type double-float x)) (let* ((high-bits (double-float-high-bits (abs x))) (sig-high (ldb sb!vm:double-float-significand-byte high-bits)) (low-bits (double-float-low-bits x)) (sign (if (minusp (float-sign x)) -1 1)) (biased (- (- sb!vm:double-float-bias) sb!vm:double-float-digits))) (if (zerop sig-high) (let ((sig low-bits) (extra-bias (- sb!vm:double-float-digits 33)) (bit (ash 1 31))) (declare (type (unsigned-byte 32) sig) (fixnum extra-bias)) (loop (unless (zerop (logand sig bit)) (return)) (setq sig (ash sig 1)) (incf extra-bias)) (values (ash sig (- sb!vm:double-float-digits 32)) (truly-the fixnum (- biased extra-bias)) sign)) (let ((sig (ash sig-high 1)) (extra-bias 0)) (declare (type (unsigned-byte 32) sig) (fixnum extra-bias)) (loop (unless (zerop (logand sig sb!vm:double-float-hidden-bit)) (return)) (setq sig (ash sig 1)) (incf extra-bias)) (values (logior (ash sig 32) (ash low-bits (1- extra-bias))) (truly-the fixnum (- biased extra-bias)) sign))))) ;;; like INTEGER-DECODE-SINGLE-FLOAT, only doubly so (defun integer-decode-double-float (x) (declare (double-float x)) (let* ((abs (abs x)) (hi (double-float-high-bits abs)) (lo (double-float-low-bits abs)) (exp (ldb sb!vm:double-float-exponent-byte hi)) (sig (ldb sb!vm:double-float-significand-byte hi)) (sign (if (minusp (float-sign x)) -1 1)) (biased (- exp sb!vm:double-float-bias sb!vm:double-float-digits))) (declare (fixnum biased)) (unless (<= exp sb!vm:double-float-normal-exponent-max) (error "Can't decode NaN or infinity: ~S." x)) (cond ((and (zerop exp) (zerop sig) (zerop lo)) (values 0 biased sign)) ((< exp sb!vm:double-float-normal-exponent-min) (integer-decode-double-denorm x)) (t (values (logior (ash (logior (ldb sb!vm:double-float-significand-byte hi) sb!vm:double-float-hidden-bit) 32) lo) biased sign))))) #!+(and long-float x86) (defun integer-decode-long-denorm (x) (declare (type long-float x)) (let* ((high-bits (long-float-high-bits (abs x))) (sig-high (ldb sb!vm:long-float-significand-byte high-bits)) (low-bits (long-float-low-bits x)) (sign (if (minusp (float-sign x)) -1 1)) (biased (- (- sb!vm:long-float-bias) sb!vm:long-float-digits))) (if (zerop sig-high) (let ((sig low-bits) (extra-bias (- sb!vm:long-float-digits 33)) (bit (ash 1 31))) (declare (type (unsigned-byte 32) sig) (fixnum extra-bias)) (loop (unless (zerop (logand sig bit)) (return)) (setq sig (ash sig 1)) (incf extra-bias)) (values (ash sig (- sb!vm:long-float-digits 32)) (truly-the fixnum (- biased extra-bias)) sign)) (let ((sig (ash sig-high 1)) (extra-bias 0)) (declare (type (unsigned-byte 32) sig) (fixnum extra-bias)) (loop (unless (zerop (logand sig sb!vm:long-float-hidden-bit)) (return)) (setq sig (ash sig 1)) (incf extra-bias)) (values (logior (ash sig 32) (ash low-bits (1- extra-bias))) (truly-the fixnum (- biased extra-bias)) sign))))) #!+(and long-float x86) (defun integer-decode-long-float (x) (declare (long-float x)) (let* ((hi (long-float-high-bits x)) (lo (long-float-low-bits x)) (exp-bits (long-float-exp-bits x)) (exp (ldb sb!vm:long-float-exponent-byte exp-bits)) (sign (if (minusp exp-bits) -1 1)) (biased (- exp sb!vm:long-float-bias sb!vm:long-float-digits))) (declare (fixnum biased)) (unless (<= exp sb!vm:long-float-normal-exponent-max) (error "can't decode NaN or infinity: ~S" x)) (cond ((and (zerop exp) (zerop hi) (zerop lo)) (values 0 biased sign)) ((< exp sb!vm:long-float-normal-exponent-min) (integer-decode-long-denorm x)) (t (values (logior (ash hi 32) lo) biased sign))))) ;;; Dispatch to the correct type-specific i-d-f function. (defun integer-decode-float (x) #!+sb-doc "Return three values: 1) an integer representation of the significand. 2) the exponent for the power of 2 that the significand must be multiplied by to get the actual value. This differs from the DECODE-FLOAT exponent by FLOAT-DIGITS, since the significand has been scaled to have all its digits before the radix point. 3) -1 or 1 (i.e. the sign of the argument.)" (number-dispatch ((x float)) ((single-float) (integer-decode-single-float x)) ((double-float) (integer-decode-double-float x)) #!+long-float ((long-float) (integer-decode-long-float x)))) #!-sb-fluid (declaim (maybe-inline decode-single-float decode-double-float)) ;;; Handle the denormalized case of DECODE-SINGLE-FLOAT. We call ;;; INTEGER-DECODE-SINGLE-DENORM and then make the result into a float. (defun decode-single-denorm (x) (declare (type single-float x)) (multiple-value-bind (sig exp sign) (integer-decode-single-denorm x) (values (make-single-float (dpb sig sb!vm:single-float-significand-byte (dpb sb!vm:single-float-bias sb!vm:single-float-exponent-byte 0))) (truly-the fixnum (+ exp sb!vm:single-float-digits)) (float sign x)))) ;;; Handle the single-float case of DECODE-FLOAT. If an infinity or NaN, ;;; error. If a denorm, call d-s-DENORM to handle it. (defun decode-single-float (x) (declare (single-float x)) (let* ((bits (single-float-bits (abs x))) (exp (ldb sb!vm:single-float-exponent-byte bits)) (sign (float-sign x)) (biased (truly-the single-float-exponent (- exp sb!vm:single-float-bias)))) (unless (<= exp sb!vm:single-float-normal-exponent-max) (error "can't decode NaN or infinity: ~S" x)) (cond ((zerop x) (values 0.0f0 biased sign)) ((< exp sb!vm:single-float-normal-exponent-min) (decode-single-denorm x)) (t (values (make-single-float (dpb sb!vm:single-float-bias sb!vm:single-float-exponent-byte bits)) biased sign))))) ;;; like DECODE-SINGLE-DENORM, only doubly so (defun decode-double-denorm (x) (declare (double-float x)) (multiple-value-bind (sig exp sign) (integer-decode-double-denorm x) (values (make-double-float (dpb (logand (ash sig -32) (lognot sb!vm:double-float-hidden-bit)) sb!vm:double-float-significand-byte (dpb sb!vm:double-float-bias sb!vm:double-float-exponent-byte 0)) (ldb (byte 32 0) sig)) (truly-the fixnum (+ exp sb!vm:double-float-digits)) (float sign x)))) ;;; like DECODE-SINGLE-FLOAT, only doubly so (defun decode-double-float (x) (declare (double-float x)) (let* ((abs (abs x)) (hi (double-float-high-bits abs)) (lo (double-float-low-bits abs)) (exp (ldb sb!vm:double-float-exponent-byte hi)) (sign (float-sign x)) (biased (truly-the double-float-exponent (- exp sb!vm:double-float-bias)))) (unless (<= exp sb!vm:double-float-normal-exponent-max) (error "can't decode NaN or infinity: ~S" x)) (cond ((zerop x) (values 0.0d0 biased sign)) ((< exp sb!vm:double-float-normal-exponent-min) (decode-double-denorm x)) (t (values (make-double-float (dpb sb!vm:double-float-bias sb!vm:double-float-exponent-byte hi) lo) biased sign))))) #!+(and long-float x86) (defun decode-long-denorm (x) (declare (long-float x)) (multiple-value-bind (sig exp sign) (integer-decode-long-denorm x) (values (make-long-float sb!vm:long-float-bias (ash sig -32) (ldb (byte 32 0) sig)) (truly-the fixnum (+ exp sb!vm:long-float-digits)) (float sign x)))) #!+(and long-float x86) (defun decode-long-float (x) (declare (long-float x)) (let* ((hi (long-float-high-bits x)) (lo (long-float-low-bits x)) (exp-bits (long-float-exp-bits x)) (exp (ldb sb!vm:long-float-exponent-byte exp-bits)) (sign (if (minusp exp-bits) -1l0 1l0)) (biased (truly-the long-float-exponent (- exp sb!vm:long-float-bias)))) (unless (<= exp sb!vm:long-float-normal-exponent-max) (error "can't decode NaN or infinity: ~S" x)) (cond ((zerop x) (values 0.0l0 biased sign)) ((< exp sb!vm:long-float-normal-exponent-min) (decode-long-denorm x)) (t (values (make-long-float (dpb sb!vm:long-float-bias sb!vm:long-float-exponent-byte exp-bits) hi lo) biased sign))))) ;;; Dispatch to the appropriate type-specific function. (defun decode-float (f) #!+sb-doc "Return three values: 1) a floating-point number representing the significand. This is always between 0.5 (inclusive) and 1.0 (exclusive). 2) an integer representing the exponent. 3) -1.0 or 1.0 (i.e. the sign of the argument.)" (number-dispatch ((f float)) ((single-float) (decode-single-float f)) ((double-float) (decode-double-float f)) #!+long-float ((long-float) (decode-long-float f)))) ;;;; SCALE-FLOAT #!-sb-fluid (declaim (maybe-inline scale-single-float scale-double-float)) ;;; Handle float scaling where the X is denormalized or the result is ;;; denormalized or underflows to 0. (defun scale-float-maybe-underflow (x exp) (multiple-value-bind (sig old-exp) (integer-decode-float x) (let* ((digits (float-digits x)) (new-exp (+ exp old-exp digits (etypecase x (single-float sb!vm:single-float-bias) (double-float sb!vm:double-float-bias)))) (sign (if (minusp (float-sign x)) 1 0))) (cond ((< new-exp (etypecase x (single-float sb!vm:single-float-normal-exponent-min) (double-float sb!vm:double-float-normal-exponent-min))) (when (sb!vm:current-float-trap :inexact) (error 'floating-point-inexact :operation 'scale-float :operands (list x exp))) (when (sb!vm:current-float-trap :underflow) (error 'floating-point-underflow :operation 'scale-float :operands (list x exp))) (let ((shift (1- new-exp))) (if (< shift (- (1- digits))) (float-sign x 0.0) (etypecase x (single-float (single-from-bits sign 0 (ash sig shift))) (double-float (double-from-bits sign 0 (ash sig shift))))))) (t (etypecase x (single-float (single-from-bits sign new-exp sig)) (double-float (double-from-bits sign new-exp sig)))))))) ;;; Called when scaling a float overflows, or the original float was a ;;; NaN or infinity. If overflow errors are trapped, then error, ;;; otherwise return the appropriate infinity. If a NaN, signal or not ;;; as appropriate. (defun scale-float-maybe-overflow (x exp) (cond ((float-infinity-p x) ;; Infinity is infinity, no matter how small... x) ((float-nan-p x) (when (and (float-trapping-nan-p x) (sb!vm:current-float-trap :invalid)) (error 'floating-point-invalid-operation :operation 'scale-float :operands (list x exp))) x) (t (when (sb!vm:current-float-trap :overflow) (error 'floating-point-overflow :operation 'scale-float :operands (list x exp))) (when (sb!vm:current-float-trap :inexact) (error 'floating-point-inexact :operation 'scale-float :operands (list x exp))) (* (float-sign x) (etypecase x (single-float ;; SINGLE-FLOAT-POSITIVE-INFINITY (single-from-bits 0 (1+ sb!vm:single-float-normal-exponent-max) 0)) (double-float ;; DOUBLE-FLOAT-POSITIVE-INFINITY (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0))))))) ;;; Scale a single or double float, calling the correct over/underflow ;;; functions. (defun scale-single-float (x exp) (declare (single-float x) (integer exp)) (etypecase exp (fixnum (let* ((bits (single-float-bits x)) (old-exp (ldb sb!vm:single-float-exponent-byte bits)) (new-exp (+ old-exp exp))) (cond ((zerop x) x) ((or (< old-exp sb!vm:single-float-normal-exponent-min) (< new-exp sb!vm:single-float-normal-exponent-min)) (scale-float-maybe-underflow x exp)) ((or (> old-exp sb!vm:single-float-normal-exponent-max) (> new-exp sb!vm:single-float-normal-exponent-max)) (scale-float-maybe-overflow x exp)) (t (make-single-float (dpb new-exp sb!vm:single-float-exponent-byte bits)))))) (unsigned-byte (scale-float-maybe-overflow x exp)) ((integer * 0) (scale-float-maybe-underflow x exp)))) (defun scale-double-float (x exp) (declare (double-float x) (integer exp)) (etypecase exp (fixnum (let* ((hi (double-float-high-bits x)) (lo (double-float-low-bits x)) (old-exp (ldb sb!vm:double-float-exponent-byte hi)) (new-exp (+ old-exp exp))) (cond ((zerop x) x) ((or (< old-exp sb!vm:double-float-normal-exponent-min) (< new-exp sb!vm:double-float-normal-exponent-min)) (scale-float-maybe-underflow x exp)) ((or (> old-exp sb!vm:double-float-normal-exponent-max) (> new-exp sb!vm:double-float-normal-exponent-max)) (scale-float-maybe-overflow x exp)) (t (make-double-float (dpb new-exp sb!vm:double-float-exponent-byte hi) lo))))) (unsigned-byte (scale-float-maybe-overflow x exp)) ((integer * 0) (scale-float-maybe-underflow x exp)))) #!+(and x86 long-float) (defun scale-long-float (x exp) (declare (long-float x) (integer exp)) (scale-float x exp)) ;;; Dispatch to the correct type-specific scale-float function. (defun scale-float (f ex) #!+sb-doc "Return the value (* f (expt (float 2 f) ex)), but with no unnecessary loss of precision or overflow." (number-dispatch ((f float)) ((single-float) (scale-single-float f ex)) ((double-float) (scale-double-float f ex)) #!+long-float ((long-float) (scale-long-float f ex)))) ;;;; converting to/from floats (defun float (number &optional (other () otherp)) #!+sb-doc "Converts any REAL to a float. If OTHER is not provided, it returns a SINGLE-FLOAT if NUMBER is not already a FLOAT. If OTHER is provided, the result is the same float format as OTHER." (if otherp (number-dispatch ((number real) (other float)) (((foreach rational single-float double-float #!+long-float long-float) (foreach single-float double-float #!+long-float long-float)) (coerce number '(dispatch-type other)))) (if (floatp number) number (coerce number 'single-float)))) (macrolet ((frob (name type) `(defun ,name (x) (number-dispatch ((x real)) (((foreach single-float double-float #!+long-float long-float fixnum)) (coerce x ',type)) ((bignum) (bignum-to-float x ',type)) ((ratio) (float-ratio x ',type)))))) (frob %single-float single-float) (frob %double-float double-float) #!+long-float (frob %long-float long-float)) ;;; Convert a ratio to a float. We avoid any rounding error by doing an ;;; integer division. Accuracy is important to preserve read/print ;;; consistency, since this is ultimately how the reader reads a float. We ;;; scale the numerator by a power of two until the division results in the ;;; desired number of fraction bits, then do round-to-nearest. (defun float-ratio (x format) (let* ((signed-num (numerator x)) (plusp (plusp signed-num)) (num (if plusp signed-num (- signed-num))) (den (denominator x)) (digits (float-format-digits format)) (scale 0)) (declare (fixnum digits scale)) ;; Strip any trailing zeros from the denominator and move it into the scale ;; factor (to minimize the size of the operands.) (let ((den-twos (1- (integer-length (logxor den (1- den)))))) (declare (fixnum den-twos)) (decf scale den-twos) (setq den (ash den (- den-twos)))) ;; Guess how much we need to scale by from the magnitudes of the numerator ;; and denominator. We want one extra bit for a guard bit. (let* ((num-len (integer-length num)) (den-len (integer-length den)) (delta (- den-len num-len)) (shift (1+ (the fixnum (+ delta digits)))) (shifted-num (ash num shift))) (declare (fixnum delta shift)) (decf scale delta) (labels ((float-and-scale (bits) (let* ((bits (ash bits -1)) (len (integer-length bits))) (cond ((> len digits) (aver (= len (the fixnum (1+ digits)))) (scale-float (floatit (ash bits -1)) (1+ scale))) (t (scale-float (floatit bits) scale))))) (floatit (bits) (let ((sign (if plusp 0 1))) (case format (single-float (single-from-bits sign sb!vm:single-float-bias bits)) (double-float (double-from-bits sign sb!vm:double-float-bias bits)) #!+long-float (long-float (long-from-bits sign sb!vm:long-float-bias bits)))))) (loop (multiple-value-bind (fraction-and-guard rem) (truncate shifted-num den) (let ((extra (- (integer-length fraction-and-guard) digits))) (declare (fixnum extra)) (cond ((/= extra 1) (aver (> extra 1))) ((oddp fraction-and-guard) (return (if (zerop rem) (float-and-scale (if (zerop (logand fraction-and-guard 2)) fraction-and-guard (1+ fraction-and-guard))) (float-and-scale (1+ fraction-and-guard))))) (t (return (float-and-scale fraction-and-guard))))) (setq shifted-num (ash shifted-num -1)) (incf scale))))))) ;;; These might be useful if we ever have a machine without float/integer ;;; conversion hardware. For now, we'll use special ops that ;;; uninterruptibly frob the rounding modes & do ieee round-to-integer. #+nil (progn ;; The compiler compiles a call to this when we are doing %UNARY-TRUNCATE ;; and the result is known to be a fixnum. We can avoid some generic ;; arithmetic in this case. (defun %unary-truncate-single-float/fixnum (x) (declare (single-float x) (values fixnum)) (locally (declare (optimize (speed 3) (safety 0))) (let* ((bits (single-float-bits x)) (exp (ldb sb!vm:single-float-exponent-byte bits)) (frac (logior (ldb sb!vm:single-float-significand-byte bits) sb!vm:single-float-hidden-bit)) (shift (- exp sb!vm:single-float-digits sb!vm:single-float-bias))) (when (> exp sb!vm:single-float-normal-exponent-max) (error 'floating-point-invalid-operation :operator 'truncate :operands (list x))) (if (<= shift (- sb!vm:single-float-digits)) 0 (let ((res (ash frac shift))) (declare (type (unsigned-byte 31) res)) (if (minusp bits) (- res) res)))))) ;; Double-float version of this operation (see above single op). (defun %unary-truncate-double-float/fixnum (x) (declare (double-float x) (values fixnum)) (locally (declare (optimize (speed 3) (safety 0))) (let* ((hi-bits (double-float-high-bits x)) (exp (ldb sb!vm:double-float-exponent-byte hi-bits)) (frac (logior (ldb sb!vm:double-float-significand-byte hi-bits) sb!vm:double-float-hidden-bit)) (shift (- exp (- sb!vm:double-float-digits sb!vm:n-word-bits) sb!vm:double-float-bias))) (when (> exp sb!vm:double-float-normal-exponent-max) (error 'floating-point-invalid-operation :operator 'truncate :operands (list x))) (if (<= shift (- sb!vm:n-word-bits sb!vm:double-float-digits)) 0 (let* ((res-hi (ash frac shift)) (res (if (plusp shift) (logior res-hi (the fixnum (ash (double-float-low-bits x) (- shift sb!vm:n-word-bits)))) res-hi))) (declare (type (unsigned-byte 31) res-hi res)) (if (minusp hi-bits) (- res) res))))))) ;;; This function is called when we are doing a truncate without any funky ;;; divisor, i.e. converting a float or ratio to an integer. Note that we do ;;; *not* return the second value of truncate, so it must be computed by the ;;; caller if needed. ;;; ;;; In the float case, we pick off small arguments so that compiler ;;; can use special-case operations. We use an exclusive test, since ;;; (due to round-off error), (float most-positive-fixnum) is likely ;;; to be equal to (1+ most-positive-fixnum). An exclusive test is ;;; good enough, because most-positive-fixnum will be one less than a ;;; power of two, and that power of two will be exactly representable ;;; as a float (at least until we get 128-bit fixnums). (defun %unary-truncate (number) (number-dispatch ((number real)) ((integer) number) ((ratio) (values (truncate (numerator number) (denominator number)))) (((foreach single-float double-float #!+long-float long-float)) (if (< (float most-negative-fixnum number) number (float most-positive-fixnum number)) (truly-the fixnum (%unary-truncate number)) (multiple-value-bind (bits exp) (integer-decode-float number) (let ((res (ash bits exp))) (if (minusp number) (- res) res))))))) ;;; Specialized versions for floats. (macrolet ((def (type name) `(defun ,name (number) (if (< ,(coerce sb!xc:most-negative-fixnum type) number ,(coerce sb!xc:most-positive-fixnum type)) (truly-the fixnum (,name number)) ;; General -- slow -- case. (multiple-value-bind (bits exp) (integer-decode-float number) (let ((res (ash bits exp))) (if (minusp number) (- res) res))))))) (def single-float %unary-truncate/single-float) (def double-float %unary-truncate/double-float) #!+long-float (def double-float %unary-truncate/long-float)) ;;; Similar to %UNARY-TRUNCATE, but rounds to the nearest integer. If we ;;; can't use the round primitive, then we do our own round-to-nearest on the ;;; result of i-d-f. [Note that this rounding will really only happen with ;;; double floats, since the whole single-float fraction will fit in a fixnum, ;;; so all single-floats larger than most-positive-fixnum can be precisely ;;; represented by an integer.] (defun %unary-round (number) (number-dispatch ((number real)) ((integer) number) ((ratio) (values (round (numerator number) (denominator number)))) (((foreach single-float double-float #!+long-float long-float)) (if (< (float most-negative-fixnum number) number (float most-positive-fixnum number)) (truly-the fixnum (%unary-round number)) (multiple-value-bind (bits exp) (integer-decode-float number) (let* ((shifted (ash bits exp)) (rounded (if (minusp exp) (let ((fractional-bits (logand bits (lognot (ash -1 (- exp))))) (0.5bits (ash 1 (- -1 exp)))) (cond ((> fractional-bits 0.5bits) (1+ shifted)) ((< fractional-bits 0.5bits) shifted) (t (if (oddp shifted) (1+ shifted) shifted))))) )) (if (minusp number) (- rounded) rounded))))))) (defun %unary-ftruncate (number) (number-dispatch ((number real)) ((integer) (float number)) ((ratio) (float (truncate (numerator number) (denominator number)))) (((foreach single-float double-float #!+long-float long-float)) (%unary-ftruncate number)))) (defun rational (x) #!+sb-doc "RATIONAL produces a rational number for any real numeric argument. This is more efficient than RATIONALIZE, but it assumes that floating-point is completely accurate, giving a result that isn't as pretty." (number-dispatch ((x real)) (((foreach single-float double-float #!+long-float long-float)) (multiple-value-bind (bits exp) (integer-decode-float x) (if (eql bits 0) 0 (let* ((int (if (minusp x) (- bits) bits)) (digits (float-digits x)) (ex (+ exp digits))) (if (minusp ex) (integer-/-integer int (ash 1 (+ digits (- ex)))) (integer-/-integer (ash int ex) (ash 1 digits))))))) ((rational) x))) ;;; This algorithm for RATIONALIZE, due to Bruno Haible, is included ;;; with permission. ;;; ;;; Algorithm (recursively presented): ;;; If x is a rational number, return x. ;;; If x = 0.0, return 0. ;;; If x < 0.0, return (- (rationalize (- x))). ;;; If x > 0.0: ;;; Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, ;;; exponent, sign). ;;; If m = 0 or e >= 0: return x = m*2^e. ;;; Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e ;;; with smallest possible numerator and denominator. ;;; Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. ;;; But in this case the result will be x itself anyway, regardless of ;;; the choice of a. Therefore we can simply ignore this case. ;;; Note 2: At first, we need to consider the closed interval [a,b]. ;;; but since a and b have the denominator 2^(|e|+1) whereas x itself ;;; has a denominator <= 2^|e|, we can restrict the seach to the open ;;; interval (a,b). ;;; So, for given a and b (0 < a < b) we are searching a rational number ;;; y with a <= y <= b. ;;; Recursive algorithm fraction_between(a,b): ;;; c := (ceiling a) ;;; if c < b ;;; then return c ; because a <= c < b, c integer ;;; else ;;; ; a is not integer (otherwise we would have had c = a < b) ;;; k := c-1 ; k = floor(a), k < a < b <= k+1 ;;; return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) ;;; ; note 1 <= 1/(b-k) < 1/(a-k) ;;; ;;; You can see that we are actually computing a continued fraction expansion. ;;; ;;; Algorithm (iterative): ;;; If x is rational, return x. ;;; Call (integer-decode-float x). It returns a m,e,s (mantissa, ;;; exponent, sign). ;;; If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) ;;; Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) ;;; (positive and already in lowest terms because the denominator is a ;;; power of two and the numerator is odd). ;;; Start a continued fraction expansion ;;; p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. ;;; Loop ;;; c := (ceiling a) ;;; if c >= b ;;; then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), ;;; goto Loop ;;; finally partial_quotient(c). ;;; Here partial_quotient(c) denotes the iteration ;;; i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. ;;; At the end, return s * (p[i]/q[i]). ;;; This rational number is already in lowest terms because ;;; p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. ;;; ;;; See also ;;; Hardy, Wright: An introduction to number theory ;;; and/or ;;; ;;; (defun rationalize (x) "Converts any REAL to a RATIONAL. Floats are converted to a simple rational representation exploiting the assumption that floats are only accurate to their precision. RATIONALIZE (and also RATIONAL) preserve the invariant: (= x (float (rationalize x) x))" (number-dispatch ((x real)) (((foreach single-float double-float #!+long-float long-float)) ;; This is a fairly straigtforward implementation of the ;; iterative algorithm above. (multiple-value-bind (frac expo sign) (integer-decode-float x) (cond ((or (zerop frac) (>= expo 0)) (if (minusp sign) (- (ash frac expo)) (ash frac expo))) (t ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e), ;; so build the fraction up immediately, without having to do ;; a gcd. (let ((a (build-ratio (- (* 2 frac) 1) (ash 1 (- 1 expo)))) (b (build-ratio (+ (* 2 frac) 1) (ash 1 (- 1 expo)))) (p0 0) (q0 1) (p1 1) (q1 0)) (do ((c (ceiling a) (ceiling a))) ((< c b) (let ((top (+ (* c p1) p0)) (bot (+ (* c q1) q0))) (build-ratio (if (minusp sign) (- top) top) bot))) (let* ((k (- c 1)) (p2 (+ (* k p1) p0)) (q2 (+ (* k q1) q0))) (psetf a (/ (- b k)) b (/ (- a k))) (setf p0 p1 q0 q1 p1 p2 q1 q2)))))))) ((rational) x)))