;;;; character functions ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!IMPL") ;;; We compile some trivial character operations via inline expansion. #!-sb-fluid (declaim (inline standard-char-p graphic-char-p alpha-char-p upper-case-p lower-case-p both-case-p alphanumericp char-int)) (declaim (maybe-inline digit-char-p digit-weight)) (deftype char-code () `(integer 0 (,sb!xc:char-code-limit))) #!+sb-unicode (progn (defvar *unicode-character-name-database*) (defvar *unicode-character-name-huffman-tree*)) (macrolet ((frob () (flet ((file (name type) (merge-pathnames (make-pathname :directory '(:relative :up :up "output") :name name :type type) sb!xc:*compile-file-truename*)) (read-ub8-vector (pathname) (with-open-file (stream pathname :direction :input :element-type '(unsigned-byte 8)) (let* ((length (file-length stream)) (array (make-array length :element-type '(unsigned-byte 8)))) (read-sequence array stream) array)))) (let ((character-database (read-ub8-vector (file "ucd" "dat"))) (decompositions (read-ub8-vector (file "decomp" "dat"))) (long-decompositions (read-ub8-vector (file "ldecomp" "dat"))) (primary-compositions (read-ub8-vector (file "comp" "dat")))) `(progn (declaim (type (simple-array (unsigned-byte 8) (*)) **character-database** **character-decompositions** **character-long-decompositions**)) (defglobal **character-database** ,character-database) (defglobal **character-decompositions** ,decompositions) (defglobal **character-long-decompositions** ,long-decompositions) ;; KLUDGE: temporary value, fixed up in cold-load (defglobal **character-primary-compositions** ,primary-compositions) (defun !character-database-cold-init () (setf **character-database** ,character-database) (setf **character-primary-compositions** (let ((table (make-hash-table)) (info ,primary-compositions)) (flet ((code (j) (dpb (aref info (* 4 j)) (byte 8 24) (dpb (aref info (+ (* 4 j) 1)) (byte 8 16) (dpb (aref info (+ (* 4 j) 2)) (byte 8 8) (aref info (+ (* 4 j) 3))))))) #!+sb-unicode (dotimes (i (/ (length info) 12)) (setf (gethash (dpb (code (* 3 i)) (byte 21 21) (code (1+ (* 3 i)))) table) (code-char (code (+ (* 3 i) 2))))) table)))) ,(with-open-file (stream (file "ucd-names" "lisp-expr") :direction :input :element-type 'character) (let ((names (make-hash-table))) #!+sb-unicode (loop for code-point = (read stream nil nil) for char-name = (string-upcase (read stream nil nil)) while code-point do (setf (gethash code-point names) char-name)) (let ((tree #!+sb-unicode (make-huffman-tree (let (list) (maphash (lambda (code name) (declare (ignore code)) (push name list)) names) list))) (code->name (make-array (hash-table-count names) :fill-pointer 0)) (name->code nil)) (maphash (lambda (code name) (vector-push (cons code (huffman-encode name tree)) code->name)) names) (setf name->code (sort (copy-seq code->name) #'< :key #'cdr)) (setf code->name (sort (copy-seq name->code) #'< :key #'car)) (setf names nil) `(defun !character-name-database-cold-init () #!+sb-unicode (setq *unicode-character-name-database* (cons ',code->name ',name->code) *unicode-character-name-huffman-tree* ',tree)))))))))) (frob)) #+sb-xc-host (!character-name-database-cold-init) (defparameter *base-char-name-alist* ;; Note: The *** markers here indicate character names which are ;; required by the ANSI specification of #'CHAR-NAME. For the others, ;; we prefer the ASCII standard name. '((#x00 "Nul" "Null" "^@") (#x01 "Soh" "^a") (#x02 "Stx" "^b") (#x03 "Etx" "^c") (#x04 "Eot" "^d") (#x05 "Enq" "^e") (#x06 "Ack" "^f") (#x07 "Bel" "Bell" "^g") (#x08 "Backspace" "^h" "Bs") ; *** See Note above (#x09 "Tab" "^i" "Ht") ; *** See Note above (#x0A "Newline" "Linefeed" "^j" "Lf" "Nl") ; *** See Note above (#x0B "Vt" "^k") (#x0C "Page" "^l" "Form" "Formfeed" "Ff" "Np") ; *** See Note above (#x0D "Return" "^m" "Cr") ; *** See Note above (#x0E "So" "^n") (#x0F "Si" "^o") (#x10 "Dle" "^p") (#x11 "Dc1" "^q") (#x12 "Dc2" "^r") (#x13 "Dc3" "^s") (#x14 "Dc4" "^t") (#x15 "Nak" "^u") (#x16 "Syn" "^v") (#x17 "Etb" "^w") (#x18 "Can" "^x") (#x19 "Em" "^y") (#x1A "Sub" "^z") (#x1B "Esc" "Escape" "^[" "Altmode" "Alt") (#x1C "Fs" "^\\") (#x1D "Gs" "^]") (#x1E "Rs" "^^") (#x1F "Us" "^_") (#x20 "Space" "Sp") ; *** See Note above (#x7f "Rubout" "Delete" "Del") (#x80 "C80") (#x81 "C81") (#x82 "Break-Permitted") (#x83 "No-Break-Permitted") (#x84 "C84") (#x85 "Next-Line") (#x86 "Start-Selected-Area") (#x87 "End-Selected-Area") (#x88 "Character-Tabulation-Set") (#x89 "Character-Tabulation-With-Justification") (#x8A "Line-Tabulation-Set") (#x8B "Partial-Line-Forward") (#x8C "Partial-Line-Backward") (#x8D "Reverse-Linefeed") (#x8E "Single-Shift-Two") (#x8F "Single-Shift-Three") (#x90 "Device-Control-String") (#x91 "Private-Use-One") (#x92 "Private-Use-Two") (#x93 "Set-Transmit-State") (#x94 "Cancel-Character") (#x95 "Message-Waiting") (#x96 "Start-Guarded-Area") (#x97 "End-Guarded-Area") (#x98 "Start-String") (#x99 "C99") (#x9A "Single-Character-Introducer") (#x9B "Control-Sequence-Introducer") (#x9C "String-Terminator") (#x9D "Operating-System-Command") (#x9E "Privacy-Message") (#x9F "Application-Program-Command"))) ; *** See Note above ;;;; UCD accessor functions ;;; The first (* 8 396) => 3168 entries in **CHARACTER-DATABASE** ;;; contain entries for the distinct character attributes: ;;; specifically, indexes into the GC kinds, Bidi kinds, CCC kinds, ;;; the decimal digit property, the digit property and the ;;; bidi-mirrored boolean property. (There are two spare bytes for ;;; other information, should that become necessary) ;;; ;;; the next (ash #x110000 -8) entries contain single-byte indexes ;;; into a table of 256-element 4-byte-sized entries. These entries ;;; follow directly on, and are of the form ;;; {attribute-index[11b],transformed-code-point[21b]}x256, where the ;;; attribute index is an index into the miscellaneous information ;;; table, and the transformed code point is the code point of the ;;; simple mapping of the character to its lowercase or uppercase ;;; equivalent, as appropriate and if any. ;;; ;;; I feel the opacity of the above suggests the need for a diagram: ;;; ;;; C _______________________________________ ;;; / \ ;;; L \ ;;; [***************|=============================|--------...] ;;; (a) \ _ ;;; A \______________________/| B ;;; ;;; To look up information about a character, take the high 13 bits of ;;; its code point, and index the character database with that and a ;;; base of 3168 (going past the miscellaneous information[*], so ;;; treating (a) as the start of the array). This, labelled A, gives ;;; us another index into the detailed pages[-], which we can use to ;;; look up the details for the character in question: we add the low ;;; 8 bits of the character, shifted twice (because we have four-byte ;;; table entries) to 1024 times the `page' index, with a base of 7520 ;;; to skip over everything else. This gets us to point B. If we're ;;; after a transformed code point (i.e. an upcase or downcase ;;; operation), we can simply read it off now, beginning with an ;;; offset of 11 bits from point B in some endianness; if we're ;;; looking for miscellaneous information, we take the 11-bit value at ;;; B, and index the character database once more to get to the ;;; relevant miscellaneous information. ;;; ;;; As an optimization to the common case (pun intended) of looking up ;;; case information for a character, the entries in C above are ;;; sorted such that the characters which are UPPER-CASE-P in CL terms ;;; have index values lower than all others, followed by those which ;;; are LOWER-CASE-P in CL terms; this permits implementation of ;;; character case tests without actually going to the trouble of ;;; looking up the value associated with the index. (Actually, this ;;; isn't just a speed optimization; the information about whether a ;;; character is BOTH-CASE-P is used just in the ordering and not ;;; explicitly recorded in the database). ;;; ;;; The moral of all this? Next time, don't just say "FIXME: document ;;; this" (defun ucd-index (char) (let* ((cp (char-code char)) (cp-high (ash cp -8)) (page (aref **character-database** (+ 3168 cp-high)))) (+ 7520 (ash page 10) (ash (ldb (byte 8 0) cp) 2)))) (declaim (ftype (sfunction (t) (unsigned-byte 11)) ucd-value-0)) (defun ucd-value-0 (char) (let ((index (ucd-index char)) (character-database **character-database**)) (dpb (aref character-database index) (byte 8 3) (ldb (byte 3 5) (aref character-database (+ index 1)))))) (declaim (ftype (sfunction (t) (unsigned-byte 21)) ucd-value-1)) (defun ucd-value-1 (char) (let ((index (ucd-index char)) (character-database **character-database**)) (dpb (aref character-database (+ index 1)) (byte 5 16) (dpb (aref character-database (+ index 2)) (byte 8 8) (aref character-database (+ index 3)))))) (declaim (ftype (sfunction (t) (unsigned-byte 8)) ucd-general-category)) (defun ucd-general-category (char) (aref **character-database** (* 8 (ucd-value-0 char)))) (defun ucd-decimal-digit (char) (let ((decimal-digit (aref **character-database** (+ 3 (* 8 (ucd-value-0 char)))))) (when (< decimal-digit 10) decimal-digit))) (declaim (ftype (sfunction (t) (unsigned-byte 8)) ucd-ccc)) (defun ucd-ccc (char) (aref **character-database** (+ 2 (* 8 (ucd-value-0 char))))) (defun char-code (char) #!+sb-doc "Return the integer code of CHAR." (char-code char)) (defun char-int (char) #!+sb-doc "Return the integer code of CHAR. (In SBCL this is the same as CHAR-CODE, as there are no character bits or fonts.)" (char-code char)) (defun code-char (code) #!+sb-doc "Return the character with the code CODE." (code-char code)) (defun character (object) #!+sb-doc "Coerce OBJECT into a CHARACTER if possible. Legal inputs are characters, strings and symbols of length 1." (flet ((do-error (control args) (error 'simple-type-error :datum object ;;?? how to express "symbol with name of length 1"? :expected-type '(or character (string 1)) :format-control control :format-arguments args))) (typecase object (character object) (string (if (= 1 (length (the string object))) (char object 0) (do-error "String is not of length one: ~S" (list object)))) (symbol (if (= 1 (length (symbol-name object))) (schar (symbol-name object) 0) (do-error "Symbol name is not of length one: ~S" (list object)))) (t (do-error "~S cannot be coerced to a character." (list object)))))) (defun char-name (char) #!+sb-doc "Return the name (a STRING) for a CHARACTER object." (let ((char-code (char-code char))) (or (second (assoc char-code *base-char-name-alist*)) #!+sb-unicode (let ((h-code (cdr (binary-search char-code (car *unicode-character-name-database*) :key #'car)))) (cond (h-code (huffman-decode h-code *unicode-character-name-huffman-tree*)) ((< char-code #x10000) (format nil "U~4,'0X" char-code)) (t (format nil "U~8,'0X" char-code))))))) (defun name-char (name) #!+sb-doc "Given an argument acceptable to STRING, NAME-CHAR returns a character whose name is that string, if one exists. Otherwise, NIL is returned." (or (let ((char-code (car (rassoc-if (lambda (names) (member name names :test #'string-equal)) *base-char-name-alist*)))) (when char-code (code-char char-code))) #!+sb-unicode (let ((encoding (huffman-encode (string-upcase name) *unicode-character-name-huffman-tree*))) (when encoding (let* ((char-code (car (binary-search encoding (cdr *unicode-character-name-database*) :key #'cdr))) (name-string (string name)) (name-length (length name-string))) (cond (char-code (code-char char-code)) ((and (or (= name-length 9) (= name-length 5)) (char-equal (char name-string 0) #\U) (loop for i from 1 below name-length always (digit-char-p (char name-string i) 16))) (code-char (parse-integer name-string :start 1 :radix 16))) (t nil))))))) ;;;; predicates (defun standard-char-p (char) #!+sb-doc "The argument must be a character object. STANDARD-CHAR-P returns T if the argument is a standard character -- one of the 95 ASCII printing characters or ." (and (typep char 'base-char) (let ((n (char-code (the base-char char)))) (or (< 31 n 127) (= n 10))))) (defun %standard-char-p (thing) #!+sb-doc "Return T if and only if THING is a standard-char. Differs from STANDARD-CHAR-P in that THING doesn't have to be a character." (and (characterp thing) (standard-char-p thing))) (defun graphic-char-p (char) #!+sb-doc "The argument must be a character object. GRAPHIC-CHAR-P returns T if the argument is a printing character (space through ~ in ASCII), otherwise returns NIL." (let ((n (char-code char))) (or (< 31 n 127) (< 159 n)))) (defun alpha-char-p (char) #!+sb-doc "The argument must be a character object. ALPHA-CHAR-P returns T if the argument is an alphabetic character, A-Z or a-z; otherwise NIL." (< (ucd-general-category char) 5)) (defun upper-case-p (char) #!+sb-doc "The argument must be a character object; UPPER-CASE-P returns T if the argument is an upper-case character, NIL otherwise." (< (ucd-value-0 char) 5)) (defun lower-case-p (char) #!+sb-doc "The argument must be a character object; LOWER-CASE-P returns T if the argument is a lower-case character, NIL otherwise." (< 4 (ucd-value-0 char) 9)) (defun both-case-p (char) #!+sb-doc "The argument must be a character object. BOTH-CASE-P returns T if the argument is an alphabetic character and if the character exists in both upper and lower case. For ASCII, this is the same as ALPHA-CHAR-P." (< (ucd-value-0 char) 9)) (defun digit-char-p (char &optional (radix 10.)) #!+sb-doc "If char is a digit in the specified radix, returns the fixnum for which that digit stands, else returns NIL." (let ((m (- (char-code char) 48))) (declare (fixnum m)) (cond ((<= radix 10.) ;; Special-case decimal and smaller radices. (if (and (>= m 0) (< m radix)) m nil)) ;; Digits 0 - 9 are used as is, since radix is larger. ((and (>= m 0) (< m 10)) m) ;; Check for upper case A - Z. ((and (>= (setq m (- m 7)) 10) (< m radix)) m) ;; Also check lower case a - z. ((and (>= (setq m (- m 32)) 10) (< m radix)) m) ;; Else, fail. (t (let ((number (ucd-decimal-digit char))) (when (and number (< number radix)) number)))))) (defun alphanumericp (char) #!+sb-doc "Given a character-object argument, ALPHANUMERICP returns T if the argument is either numeric or alphabetic." (let ((gc (ucd-general-category char))) (or (< gc 5) (= gc 12)))) (defun char= (character &rest more-characters) #!+sb-doc "Return T if all of the arguments are the same character." (declare (truly-dynamic-extent more-characters)) (dolist (c more-characters t) (declare (type character c)) (unless (eq c character) (return nil)))) (defun char/= (character &rest more-characters) #!+sb-doc "Return T if no two of the arguments are the same character." (declare (truly-dynamic-extent more-characters)) (do* ((head character (car list)) (list more-characters (cdr list))) ((null list) t) (declare (type character head)) (dolist (c list) (declare (type character c)) (when (eq head c) (return-from char/= nil))))) (defun char< (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly increasing alphabetic order." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (< (char-int c) (char-int (car list))) (return nil)))) (defun char> (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly decreasing alphabetic order." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (> (char-int c) (char-int (car list))) (return nil)))) (defun char<= (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly non-decreasing alphabetic order." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (<= (char-int c) (char-int (car list))) (return nil)))) (defun char>= (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly non-increasing alphabetic order." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (>= (char-int c) (char-int (car list))) (return nil)))) ;;; EQUAL-CHAR-CODE is used by the following functions as a version of CHAR-INT ;;; which loses font, bits, and case info. (defmacro equal-char-code (character) (let ((ch (gensym))) `(let ((,ch ,character)) (if (< (ucd-value-0 ,ch) 5) (ucd-value-1 ,ch) (char-code ,ch))))) (defun two-arg-char-equal (c1 c2) (flet ((base-char-equal-p () (let* ((code1 (char-code c1)) (code2 (char-code c2)) (sum (logxor code1 code2))) (when (eql sum #x20) (let ((sum (+ code1 code2))) (or (and (> sum 161) (< sum 213)) (and (> sum 415) (< sum 461)) (and (> sum 463) (< sum 477)))))))) (declare (inline base-char-equal-p)) (or (eq c1 c2) #!-sb-unicode (base-char-equal-p) #!+sb-unicode (typecase c1 (base-char (and (base-char-p c2) (base-char-equal-p))) (t (= (equal-char-code c1) (equal-char-code c2))))))) (defun char-equal-constant (x char reverse-case-char) (declare (type character x)) (or (eq char x) (eq reverse-case-char x))) (defun char-equal (character &rest more-characters) #!+sb-doc "Return T if all of the arguments are the same character. Case is ignored." (declare (truly-dynamic-extent more-characters)) (do ((clist more-characters (cdr clist))) ((null clist) t) (unless (two-arg-char-equal (car clist) character) (return nil)))) (defun two-arg-char-not-equal (c1 c2) (/= (equal-char-code c1) (equal-char-code c2))) (defun char-not-equal (character &rest more-characters) #!+sb-doc "Return T if no two of the arguments are the same character. Case is ignored." (declare (truly-dynamic-extent more-characters)) (do* ((head character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (do* ((l list (cdr l))) ((null l) t) (if (two-arg-char-equal head (car l)) (return nil))) (return nil)))) (defun two-arg-char-lessp (c1 c2) (< (equal-char-code c1) (equal-char-code c2))) (defun char-lessp (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly increasing alphabetic order. Case is ignored." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (two-arg-char-lessp c (car list)) (return nil)))) (defun two-arg-char-greaterp (c1 c2) (> (equal-char-code c1) (equal-char-code c2))) (defun char-greaterp (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly decreasing alphabetic order. Case is ignored." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (two-arg-char-greaterp c (car list)) (return nil)))) (defun two-arg-char-not-greaterp (c1 c2) (<= (equal-char-code c1) (equal-char-code c2))) (defun char-not-greaterp (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly non-decreasing alphabetic order. Case is ignored." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (two-arg-char-not-greaterp c (car list)) (return nil)))) (defun two-arg-char-not-lessp (c1 c2) (>= (equal-char-code c1) (equal-char-code c2))) (defun char-not-lessp (character &rest more-characters) #!+sb-doc "Return T if the arguments are in strictly non-increasing alphabetic order. Case is ignored." (declare (truly-dynamic-extent more-characters)) (do* ((c character (car list)) (list more-characters (cdr list))) ((null list) t) (unless (two-arg-char-not-lessp c (car list)) (return nil)))) ;;;; miscellaneous functions (defun char-upcase (char) #!+sb-doc "Return CHAR converted to upper-case if that is possible. Don't convert lowercase eszet (U+DF)." (if (< 4 (ucd-value-0 char) 9) (code-char (ucd-value-1 char)) char)) (defun char-downcase (char) #!+sb-doc "Return CHAR converted to lower-case if that is possible." (if (< (ucd-value-0 char) 5) (code-char (ucd-value-1 char)) char)) (defun digit-char (weight &optional (radix 10)) #!+sb-doc "All arguments must be integers. Returns a character object that represents a digit of the given weight in the specified radix. Returns NIL if no such character exists." (and (typep weight 'fixnum) (>= weight 0) (< weight radix) (< weight 36) (code-char (if (< weight 10) (+ 48 weight) (+ 55 weight))))) (defun char-decomposition-info (char) (aref **character-database** (+ 6 (* 8 (ucd-value-0 char))))) (defun char-decomposition (char) (let* ((cp (char-code char)) (cp-high (ash cp -8)) (decompositions **character-decompositions**) (long-decompositions **character-long-decompositions**) (index (+ #x1100 (ash (aref decompositions cp-high) 10) (ash (ldb (byte 8 0) cp) 2))) (v0 (aref decompositions index)) (v1 (aref decompositions (+ index 1))) (v2 (aref decompositions (+ index 2))) (v3 (aref decompositions (+ index 3))) (length (dpb v0 (byte 8 3) (ldb (byte 3 5) v1))) (entry (dpb (ldb (byte 5 0) v1) (byte 5 16) (dpb v2 (byte 8 8) v3)))) (if (= length 1) (string (code-char entry)) (if (<= #xac00 cp #xd7a3) ;; see Unicode 6.2, section 3-12 (let* ((sbase #xac00) (lbase #x1100) (vbase #x1161) (tbase #x11a7) (lcount 19) (vcount 21) (tcount 28) (ncount (* vcount tcount)) (scount (* lcount ncount)) (sindex (- cp sbase)) (lindex (floor sindex ncount)) (vindex (floor (mod sindex ncount) tcount)) (tindex (mod sindex tcount)) (result (make-string length))) (declare (ignore scount)) (setf (char result 0) (code-char (+ lbase lindex))) (setf (char result 1) (code-char (+ vbase vindex))) (when (> tindex 0) (setf (char result 2) (code-char (+ tbase tindex)))) result) (let ((result (make-string length)) (e (* 4 entry))) (dotimes (i length result) (let ((code (dpb (aref long-decompositions (+ e 1)) (byte 8 16) (dpb (aref long-decompositions (+ e 2)) (byte 8 8) (aref long-decompositions (+ e 3)))))) (setf (char result i) (code-char code))) (incf e 4))))))) (defun decompose-char (char) (if (= (char-decomposition-info char) 0) (string char) (char-decomposition char))) (defun decompose-string (string &optional (kind :canonical)) (declare (type (member :canonical :compatibility) kind)) (flet ((canonical (char) (= 1 (char-decomposition-info char))) (compat (char) (/= 0 (char-decomposition-info char)))) (let (result (fun (ecase kind (:canonical #'canonical) (:compatibility #'compat)))) (do* ((start 0 (1+ end)) (end (position-if fun string :start start) (position-if fun string :start start))) ((null end) (push (subseq string start end) result)) (unless (= start end) (push (subseq string start end) result)) ;; FIXME: this recursive call to DECOMPOSE-STRING is necessary ;; for correctness given our direct encoding of the ;; decomposition data in UnicodeData.txt. It would, however, ;; be straightforward enough to perform the recursion in table ;; construction, and then have this simply revert to a single ;; lookup. (Wait for tests to be hooked in, then implement). (push (decompose-string (decompose-char (char string end)) kind) result)) (apply 'concatenate 'string (nreverse result))))) (defun sort-combiners (string) (let (result (start 0) first-cc first-non-cc) (tagbody again (setf first-cc (position 0 string :key #'ucd-ccc :test #'/= :start start)) (when first-cc (setf first-non-cc (position 0 string :key #'ucd-ccc :test #'= :start first-cc))) (push (subseq string start first-cc) result) (when first-cc (push (stable-sort (subseq string first-cc first-non-cc) #'< :key #'ucd-ccc) result)) (when first-non-cc (setf start first-non-cc first-cc nil first-non-cc nil) (go again))) (apply 'concatenate 'string (nreverse result)))) (defun primary-composition (char1 char2) (let ((c1 (char-code char1)) (c2 (char-code char2))) (cond ((gethash (dpb (char-code char1) (byte 21 21) (char-code char2)) **character-primary-compositions**)) ((and (<= #x1100 c1) (<= c1 #x1112) (<= #x1161 c2) (<= c2 #x1175)) (let ((lindex (- c1 #x1100)) (vindex (- c2 #x1161))) (code-char (+ #xac00 (* lindex 588) (* vindex 28))))) ((and (<= #xac00 c1) (<= c1 #.(+ #xac00 11171)) (<= #x11a8 c2) (<= c2 #x11c2) (= 0 (rem (- c1 #xac00) 28))) (code-char (+ c1 (- c2 #x11a7))))))) ;;; This implements a sequence data structure, specialized for ;;; efficient deletion of characters at an index, along with tolerable ;;; random access. The purpose is to support the canonical ;;; composition algorithm from Unicode, which involves replacing (not ;;; necessarily consecutive) pairs of code points with a single code ;;; point (e.g. [#\e #\combining_acute_accent] with ;;; #\latin_small_letter_e_with_acute). The data structure is a list ;;; of three-element lists, each denoting a chunk of string data ;;; starting at the first index and ending at the second. ;;; ;;; Actually, the implementation isn't particularly efficient, and ;;; would probably benefit from being rewritten in terms of displaced ;;; arrays, which would substantially reduce copying. ;;; ;;; (also, generic sequences. *sigh*.) (defun lref (lstring index) (dolist (l lstring) (when (and (<= (first l) index) (< index (second l))) (return (aref (third l) (- index (first l))))))) (defun (setf lref) (newchar lstring index) (dolist (l lstring) (when (and (<= (first l) index) (< index (second l))) (return (setf (aref (third l) (- index (first l))) newchar))))) (defun llength (lstring) (second (first (last lstring)))) (defun lstring (lstring) (let ((result (make-string (llength lstring)))) (dolist (l lstring result) (replace result (third l) :start1 (first l) :end1 (second l))))) (defun ldelete (lstring index) (do* ((ls lstring (cdr ls)) (l (car ls) (car ls)) so-fars) ((and (<= (first l) index) (< index (second l))) (append (nreverse so-fars) (cond ((= (first l) index) (list (list (first l) (1- (second l)) (subseq (third l) 1)))) ((= index (1- (second l))) (list (list (first l) (1- (second l)) (subseq (third l) 0 (1- (length (third l))))))) (t (list (list (first l) index (subseq (third l) 0 (- index (first l)))) (list index (1- (second l)) (subseq (third l) (1+ (- index (first l)))))))) (mapcar (lambda (x) (list (1- (first x)) (1- (second x)) (third x))) (cdr ls)))) (push l so-fars))) (defun canonically-compose (string) (labels () (let* ((result (list (list 0 (length string) string))) (previous-starter-index (position 0 string :key #'ucd-ccc)) (i (and previous-starter-index (1+ previous-starter-index)))) (when (or (not i) (= i (length string))) (return-from canonically-compose string)) (tagbody again (when (and (>= (- i previous-starter-index) 2) ;; test for Blocked (Unicode 3.11 para. D115) ;; ;; (assumes here that string has sorted combiners, ;; so can look back just one step) (>= (ucd-ccc (lref result (1- i))) (ucd-ccc (lref result i)))) (when (= (ucd-ccc (lref result i)) 0) (setf previous-starter-index i)) (incf i) (go next)) (let ((comp (primary-composition (lref result previous-starter-index) (lref result i)))) (cond (comp (setf (lref result previous-starter-index) comp) (setf result (ldelete result i))) (t (when (= (ucd-ccc (lref result i)) 0) (setf previous-starter-index i)) (incf i)))) next (unless (= i (llength result)) (go again))) (if (= i (length string)) string (lstring result))))) (defun normalize-string (string &optional (form :nfd)) (declare (type (member :nfd :nfkd :nfc :nfkc) form)) #!-sb-unicode (etypecase string ((array nil (*)) string) (string (ecase form ((:nfc :nfkc) string) ((:nfd :nfkd) (error "Cannot normalize to ~A form in #-SB-UNICODE builds" form))))) #!+sb-unicode (etypecase string (base-string string) ((array character (*)) (ecase form ((:nfc) (canonically-compose (sort-combiners (decompose-string string)))) ((:nfd) (sort-combiners (decompose-string string))) ((:nfkc) (canonically-compose (sort-combiners (decompose-string string :compatibility)))) ((:nfkd) (sort-combiners (decompose-string string :compatibility))))) ((array nil (*)) string)))