;;;; array-specific optimizers and transforms ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!C") ;;;; utilities for optimizing array operations ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be ;;; determined. (defun upgraded-element-type-specifier-or-give-up (lvar) (let ((element-type-specifier (upgraded-element-type-specifier lvar))) (if (eq element-type-specifier '*) (give-up-ir1-transform "upgraded array element type not known at compile time") element-type-specifier))) (defun upgraded-element-type-specifier (lvar) (type-specifier (array-type-upgraded-element-type (lvar-type lvar)))) ;;; Array access functions return an object from the array, hence its type is ;;; going to be the array upgraded element type. Secondary return value is the ;;; known supertype of the upgraded-array-element-type, if if the exact ;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good ;;; as it gets.) (defun array-type-upgraded-element-type (type) (typecase type ;; Note that this IF mightn't be satisfied even if the runtime ;; value is known to be a subtype of some specialized ARRAY, because ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE), ;; which are represented in the compiler as INTERSECTION-TYPE, not ;; array type. (array-type (values (array-type-specialized-element-type type) nil)) ;; Deal with intersection types (bug #316078) (intersection-type (let ((intersection-types (intersection-type-types type)) (element-type *wild-type*) (element-supertypes nil)) (dolist (intersection-type intersection-types) (multiple-value-bind (cur-type cur-supertype) (array-type-upgraded-element-type intersection-type) ;; According to ANSI, an array may have only one specialized ;; element type - e.g. '(and (array foo) (array bar)) ;; is not a valid type unless foo and bar upgrade to the ;; same element type. (cond ((eq cur-type *wild-type*) nil) ((eq element-type *wild-type*) (setf element-type cur-type)) ((or (not (csubtypep cur-type element-type)) (not (csubtypep element-type cur-type))) ;; At least two different element types where given, the array ;; is valid iff they represent the same type. ;; ;; FIXME: TYPE-INTERSECTION already takes care of disjoint array ;; types, so I believe this code should be unreachable. Maybe ;; signal a warning / error instead? (setf element-type *empty-type*))) (push (or cur-supertype (type-*-to-t cur-type)) element-supertypes))) (values element-type (when (and (eq *wild-type* element-type) element-supertypes) (apply #'type-intersection element-supertypes))))) (union-type (let ((union-types (union-type-types type)) (element-type nil) (element-supertypes nil)) (dolist (union-type union-types) (multiple-value-bind (cur-type cur-supertype) (array-type-upgraded-element-type union-type) (cond ((eq element-type *wild-type*) nil) ((eq element-type nil) (setf element-type cur-type)) ((or (eq cur-type *wild-type*) ;; If each of the two following tests fail, it is not ;; possible to determine the element-type of the array ;; because more than one kind of element-type was provided ;; like in '(or (array foo) (array bar)) although a ;; supertype (or foo bar) may be provided as the second ;; returned value returned. See also the KLUDGE below. (not (csubtypep cur-type element-type)) (not (csubtypep element-type cur-type))) (setf element-type *wild-type*))) (push (or cur-supertype (type-*-to-t cur-type)) element-supertypes))) (values element-type (when (eq *wild-type* element-type) (apply #'type-union element-supertypes))))) (member-type ;; Convert member-type to an union-type. (array-type-upgraded-element-type (apply #'type-union (mapcar #'ctype-of (member-type-members type))))) (t ;; KLUDGE: there is no good answer here, but at least ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR, ;; 2002-08-21 (values *wild-type* nil)))) (defun array-type-declared-element-type (type) (if (array-type-p type) (array-type-element-type type) *wild-type*)) ;;; The ``new-value'' for array setters must fit in the array, and the ;;; return type is going to be the same as the new-value for SETF ;;; functions. (defun assert-new-value-type (new-value array) (let ((type (lvar-type array))) (when (array-type-p type) (assert-lvar-type new-value (array-type-specialized-element-type type) (lexenv-policy (node-lexenv (lvar-dest new-value)))))) (lvar-type new-value)) ;;; Return true if ARG is NIL, or is a constant-lvar whose ;;; value is NIL, false otherwise. (defun unsupplied-or-nil (arg) (declare (type (or lvar null) arg)) (or (not arg) (and (constant-lvar-p arg) (not (lvar-value arg))))) (defun supplied-and-true (arg) (and arg (constant-lvar-p arg) (lvar-value arg) t)) ;;;; DERIVE-TYPE optimizers ;;; Array operations that use a specific number of indices implicitly ;;; assert that the array is of that rank. (defun assert-array-rank (array rank) (assert-lvar-type array (specifier-type `(array * ,(make-list rank :initial-element '*))) (lexenv-policy (node-lexenv (lvar-dest array))))) (defun derive-aref-type (array) (multiple-value-bind (uaet other) (array-type-upgraded-element-type (lvar-type array)) (or other uaet))) (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices)) (assert-array-rank array (length indices)) *universal-type*) (deftransform array-in-bounds-p ((array &rest subscripts)) (flet ((give-up () (give-up-ir1-transform "~@")) (bound-known-p (x) (integerp x))) ; might be NIL or * (block nil (let ((dimensions (array-type-dimensions-or-give-up (lvar-conservative-type array)))) ;; Might be *. (Note: currently this is never true, because the type ;; derivation infers the rank from the call to ARRAY-IN-BOUNDS-P, but ;; let's keep this future proof.) (when (eq '* dimensions) (give-up-ir1-transform "array bounds unknown")) ;; shortcut for zero dimensions (when (some (lambda (dim) (and (bound-known-p dim) (zerop dim))) dimensions) (return nil)) ;; we first collect the subscripts LVARs' bounds and see whether ;; we can already decide on the result of the optimization without ;; even taking a look at the dimensions. (flet ((subscript-bounds (subscript) (let* ((type1 (lvar-type subscript)) (type2 (if (csubtypep type1 (specifier-type 'integer)) (weaken-integer-type type1 :range-only t) (give-up))) (low (if (integer-type-p type2) (numeric-type-low type2) (give-up))) (high (numeric-type-high type2))) (cond ((and (or (not (bound-known-p low)) (minusp low)) (or (not (bound-known-p high)) (not (minusp high)))) ;; can't be sure about the lower bound and the upper bound ;; does not give us a definite clue either. (give-up)) ((and (bound-known-p high) (minusp high)) (return nil)) ; definitely below lower bound (zero). (t (cons low high)))))) (let* ((subscripts-bounds (mapcar #'subscript-bounds subscripts)) (subscripts-lower-bound (mapcar #'car subscripts-bounds)) (subscripts-upper-bound (mapcar #'cdr subscripts-bounds)) (in-bounds 0)) (mapcar (lambda (low high dim) (cond ;; first deal with infinite bounds ((some (complement #'bound-known-p) (list low high dim)) (when (and (bound-known-p dim) (bound-known-p low) (<= dim low)) (return nil))) ;; now we know all bounds ((>= low dim) (return nil)) ((< high dim) (aver (not (minusp low))) (incf in-bounds)) (t (give-up)))) subscripts-lower-bound subscripts-upper-bound dimensions) (if (eql in-bounds (length dimensions)) t (give-up)))))))) (defoptimizer (aref derive-type) ((array &rest indices) node) (assert-array-rank array (length indices)) (derive-aref-type array)) (defoptimizer ((setf aref) derive-type) ((new-value array &rest subscripts)) (assert-array-rank array (length subscripts)) (assert-new-value-type new-value array)) (macrolet ((define (name) `(defoptimizer (,name derive-type) ((array index)) (derive-aref-type array)))) (define hairy-data-vector-ref) (define hairy-data-vector-ref/check-bounds) (define data-vector-ref)) #!+(or x86 x86-64) (defoptimizer (data-vector-ref-with-offset derive-type) ((array index offset)) (derive-aref-type array)) (macrolet ((define (name) `(defoptimizer (,name derive-type) ((array index new-value)) (assert-new-value-type new-value array)))) (define hairy-data-vector-set) (define hairy-data-vector-set/check-bounds) (define data-vector-set)) #!+(or x86 x86-64) (defoptimizer (data-vector-set-with-offset derive-type) ((array index offset new-value)) (assert-new-value-type new-value array)) ;;; Figure out the type of the data vector if we know the argument ;;; element type. (defun derive-%with-array-data/mumble-type (array) (let ((atype (lvar-type array))) (when (array-type-p atype) (specifier-type `(simple-array ,(type-specifier (array-type-specialized-element-type atype)) (*)))))) (defoptimizer (%with-array-data derive-type) ((array start end)) (derive-%with-array-data/mumble-type array)) (defoptimizer (%with-array-data/fp derive-type) ((array start end)) (derive-%with-array-data/mumble-type array)) (defoptimizer (array-row-major-index derive-type) ((array &rest indices)) (assert-array-rank array (length indices)) *universal-type*) (defoptimizer (row-major-aref derive-type) ((array index)) (derive-aref-type array)) (defoptimizer (%set-row-major-aref derive-type) ((array index new-value)) (assert-new-value-type new-value array)) (defoptimizer (make-array derive-type) ((dims &key initial-element element-type initial-contents adjustable fill-pointer displaced-index-offset displaced-to)) (let* ((simple (and (unsupplied-or-nil adjustable) (unsupplied-or-nil displaced-to) (unsupplied-or-nil fill-pointer))) (spec (or `(,(if simple 'simple-array 'array) ,(cond ((not element-type) t) ((constant-lvar-p element-type) (let ((ctype (careful-specifier-type (lvar-value element-type)))) (cond ((or (null ctype) (unknown-type-p ctype)) '*) (t (sb!xc:upgraded-array-element-type (lvar-value element-type)))))) (t '*)) ,(cond ((constant-lvar-p dims) (let* ((val (lvar-value dims)) (cdims (if (listp val) val (list val)))) (if simple cdims (length cdims)))) ((csubtypep (lvar-type dims) (specifier-type 'integer)) '(*)) (t '*))) 'array))) (if (and (not simple) (or (supplied-and-true adjustable) (supplied-and-true displaced-to) (supplied-and-true fill-pointer))) (careful-specifier-type `(and ,spec (not simple-array))) (careful-specifier-type spec)))) ;;;; constructors ;;; Convert VECTOR into a MAKE-ARRAY. (define-source-transform vector (&rest elements) `(make-array ,(length elements) :initial-contents (list ,@elements))) ;;; Just convert it into a MAKE-ARRAY. (deftransform make-string ((length &key (element-type 'character) (initial-element #.*default-init-char-form*))) `(the simple-string (make-array (the index length) :element-type element-type ,@(when initial-element '(:initial-element initial-element))))) (defun rewrite-initial-contents (rank initial-contents env) (if (plusp rank) (if (and (consp initial-contents) (member (car initial-contents) '(list vector sb!impl::backq-list))) `(list ,@(mapcar (lambda (dim) (rewrite-initial-contents (1- rank) dim env)) (cdr initial-contents))) initial-contents) ;; This is the important bit: once we are past the level of ;; :INITIAL-CONTENTS that relates to the array structure, reinline LIST ;; and VECTOR so that nested DX isn't screwed up. `(locally (declare (inline list vector)) ,initial-contents))) ;;; Prevent open coding DIMENSION and :INITIAL-CONTENTS arguments, so that we ;;; can pick them apart in the DEFTRANSFORMS, and transform '(3) style ;;; dimensions to integer args directly. (define-source-transform make-array (dimensions &rest keyargs &environment env) (if (or (and (fun-lexically-notinline-p 'list) (fun-lexically-notinline-p 'vector)) (oddp (length keyargs))) (values nil t) (multiple-value-bind (new-dimensions rank) (flet ((constant-dims (dimensions) (let* ((dims (constant-form-value dimensions env)) (canon (if (listp dims) dims (list dims))) (rank (length canon))) (values (if (= rank 1) (list 'quote (car canon)) (list 'quote canon)) rank)))) (cond ((sb!xc:constantp dimensions env) (constant-dims dimensions)) ((and (consp dimensions) (eq 'list dimensions)) (values dimensions (length (cdr dimensions)))) (t (values dimensions nil)))) (let ((initial-contents (getf keyargs :initial-contents))) (when (and initial-contents rank) (setf keyargs (copy-list keyargs) (getf keyargs :initial-contents) (rewrite-initial-contents rank initial-contents env)))) `(locally (declare (notinline list vector)) (make-array ,new-dimensions ,@keyargs))))) ;;; This baby is a bit of a monster, but it takes care of any MAKE-ARRAY ;;; call which creates a vector with a known element type -- and tries ;;; to do a good job with all the different ways it can happen. (defun transform-make-array-vector (length element-type initial-element initial-contents call) (aver (or (not element-type) (constant-lvar-p element-type))) (let* ((c-length (when (constant-lvar-p length) (lvar-value length))) (elt-spec (if element-type (lvar-value element-type) t)) (elt-ctype (ir1-transform-specifier-type elt-spec)) (saetp (if (unknown-type-p elt-ctype) (give-up-ir1-transform "~S is an unknown type: ~S" :element-type elt-spec) (find-saetp-by-ctype elt-ctype))) (default-initial-element (sb!vm:saetp-initial-element-default saetp)) (n-bits (sb!vm:saetp-n-bits saetp)) (typecode (sb!vm:saetp-typecode saetp)) (n-pad-elements (sb!vm:saetp-n-pad-elements saetp)) (n-words-form (if c-length (ceiling (* (+ c-length n-pad-elements) n-bits) sb!vm:n-word-bits) (let ((padded-length-form (if (zerop n-pad-elements) 'length `(+ length ,n-pad-elements)))) (cond ((= n-bits 0) 0) ((>= n-bits sb!vm:n-word-bits) `(* ,padded-length-form ;; i.e., not RATIO ,(the fixnum (/ n-bits sb!vm:n-word-bits)))) (t (let ((n-elements-per-word (/ sb!vm:n-word-bits n-bits))) (declare (type index n-elements-per-word)) ; i.e., not RATIO `(ceiling ,padded-length-form ,n-elements-per-word))))))) (result-spec `(simple-array ,(sb!vm:saetp-specifier saetp) (,(or c-length '*)))) (alloc-form `(truly-the ,result-spec (allocate-vector ,typecode (the index length) ,n-words-form)))) (cond ((and initial-element initial-contents) (abort-ir1-transform "Both ~S and ~S specified." :initial-contents :initial-element)) ;; :INITIAL-CONTENTS (LIST ...), (VECTOR ...) and `(1 1 ,x) with a ;; constant LENGTH. ((and initial-contents c-length (lvar-matches initial-contents :fun-names '(list vector sb!impl::backq-list) :arg-count c-length)) (let ((parameters (eliminate-keyword-args call 1 '((:element-type element-type) (:initial-contents initial-contents)))) (elt-vars (make-gensym-list c-length)) (lambda-list '(length))) (splice-fun-args initial-contents :any c-length) (dolist (p parameters) (setf lambda-list (append lambda-list (if (eq p 'initial-contents) elt-vars (list p))))) `(lambda ,lambda-list (declare (type ,elt-spec ,@elt-vars) (ignorable ,@lambda-list)) (truly-the ,result-spec (initialize-vector ,alloc-form ,@elt-vars))))) ;; constant :INITIAL-CONTENTS and LENGTH ((and initial-contents c-length (constant-lvar-p initial-contents)) (let ((contents (lvar-value initial-contents))) (unless (= c-length (length contents)) (abort-ir1-transform "~S has ~S elements, vector length is ~S." :initial-contents (length contents) c-length)) (let ((parameters (eliminate-keyword-args call 1 '((:element-type element-type) (:initial-contents initial-contents))))) `(lambda (length ,@parameters) (declare (ignorable ,@parameters)) (truly-the ,result-spec (initialize-vector ,alloc-form ,@(map 'list (lambda (elt) `(the ,elt-spec ',elt)) contents))))))) ;; any other :INITIAL-CONTENTS (initial-contents (let ((parameters (eliminate-keyword-args call 1 '((:element-type element-type) (:initial-contents initial-contents))))) `(lambda (length ,@parameters) (declare (ignorable ,@parameters)) (unless (= length (length initial-contents)) (error "~S has ~S elements, vector length is ~S." :initial-contents (length initial-contents) length)) (truly-the ,result-spec (replace ,alloc-form initial-contents))))) ;; :INITIAL-ELEMENT, not EQL to the default ((and initial-element (or (not (constant-lvar-p initial-element)) (not (eql default-initial-element (lvar-value initial-element))))) (let ((parameters (eliminate-keyword-args call 1 '((:element-type element-type) (:initial-element initial-element)))) (init (if (constant-lvar-p initial-element) (list 'quote (lvar-value initial-element)) 'initial-element))) `(lambda (length ,@parameters) (declare (ignorable ,@parameters)) (truly-the ,result-spec (fill ,alloc-form (the ,elt-spec ,init)))))) ;; just :ELEMENT-TYPE, or maybe with :INITIAL-ELEMENT EQL to the ;; default (t #-sb-xc-host (unless (ctypep default-initial-element elt-ctype) ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If ;; INITIAL-ELEMENT is not supplied, the consequences of later ;; reading an uninitialized element of new-array are undefined," ;; so this could be legal code as long as the user plans to ;; write before he reads, and if he doesn't we're free to do ;; anything we like. But in case the user doesn't know to write ;; elements before he reads elements (or to read manuals before ;; he writes code:-), we'll signal a STYLE-WARNING in case he ;; didn't realize this. (if initial-element (compiler-warn "~S ~S is not a ~S" :initial-element default-initial-element elt-spec) (compiler-style-warn "The default initial element ~S is not a ~S." default-initial-element elt-spec))) (let ((parameters (eliminate-keyword-args call 1 '((:element-type element-type) (:initial-element initial-element))))) `(lambda (length ,@parameters) (declare (ignorable ,@parameters)) ,alloc-form)))))) ;;; IMPORTANT: The order of these three MAKE-ARRAY forms matters: the least ;;; specific must come first, otherwise suboptimal transforms will result for ;;; some forms. (deftransform make-array ((dims &key initial-element element-type adjustable fill-pointer) (t &rest *)) (when (null initial-element) (give-up-ir1-transform)) (let* ((eltype (cond ((not element-type) t) ((not (constant-lvar-p element-type)) (give-up-ir1-transform "ELEMENT-TYPE is not constant.")) (t (lvar-value element-type)))) (eltype-type (ir1-transform-specifier-type eltype)) (saetp (find-if (lambda (saetp) (csubtypep eltype-type (sb!vm:saetp-ctype saetp))) sb!vm:*specialized-array-element-type-properties*)) (creation-form `(make-array dims :element-type ',(type-specifier (sb!vm:saetp-ctype saetp)) ,@(when fill-pointer '(:fill-pointer fill-pointer)) ,@(when adjustable '(:adjustable adjustable))))) (unless saetp (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype)) (cond ((and (constant-lvar-p initial-element) (eql (lvar-value initial-element) (sb!vm:saetp-initial-element-default saetp))) creation-form) (t ;; error checking for target, disabled on the host because ;; (CTYPE-OF #\Null) is not possible. #-sb-xc-host (when (constant-lvar-p initial-element) (let ((value (lvar-value initial-element))) (cond ((not (ctypep value (sb!vm:saetp-ctype saetp))) ;; this case will cause an error at runtime, so we'd ;; better WARN about it now. (warn 'array-initial-element-mismatch :format-control "~@<~S is not a ~S (which is the ~ ~S of ~S).~@:>" :format-arguments (list value (type-specifier (sb!vm:saetp-ctype saetp)) 'upgraded-array-element-type eltype))) ((not (ctypep value eltype-type)) ;; this case will not cause an error at runtime, but ;; it's still worth STYLE-WARNing about. (compiler-style-warn "~S is not a ~S." value eltype))))) `(let ((array ,creation-form)) (multiple-value-bind (vector) (%data-vector-and-index array 0) (fill vector (the ,(sb!vm:saetp-specifier saetp) initial-element))) array))))) ;;; The list type restriction does not ensure that the result will be a ;;; multi-dimensional array. But the lack of adjustable, fill-pointer, ;;; and displaced-to keywords ensures that it will be simple. ;;; ;;; FIXME: should we generalize this transform to non-simple (though ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to ;;; deal with those? Maybe when the DEFTRANSFORM ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? -- ;;; CSR, 2002-07-01 (deftransform make-array ((dims &key element-type initial-element initial-contents) (list &key (:element-type (constant-arg *)) (:initial-element *) (:initial-contents *)) * :node call) (block make-array (when (lvar-matches dims :fun-names '(list) :arg-count 1) (let ((length (car (splice-fun-args dims :any 1)))) (return-from make-array (transform-make-array-vector length element-type initial-element initial-contents call)))) (unless (constant-lvar-p dims) (give-up-ir1-transform "The dimension list is not constant; cannot open code array creation.")) (let ((dims (lvar-value dims)) (element-type-ctype (and (constant-lvar-p element-type) (ir1-transform-specifier-type (lvar-value element-type))))) (when (unknown-type-p element-type-ctype) (give-up-ir1-transform)) (unless (every #'integerp dims) (give-up-ir1-transform "The dimension list contains something other than an integer: ~S" dims)) (if (= (length dims) 1) `(make-array ',(car dims) ,@(when element-type '(:element-type element-type)) ,@(when initial-element '(:initial-element initial-element)) ,@(when initial-contents '(:initial-contents initial-contents))) (let* ((total-size (reduce #'* dims)) (rank (length dims)) (spec `(simple-array ,(cond ((null element-type) t) (element-type-ctype (sb!xc:upgraded-array-element-type (lvar-value element-type))) (t '*)) ,(make-list rank :initial-element '*)))) `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank)) (data (make-array ,total-size ,@(when element-type '(:element-type element-type)) ,@(when initial-element '(:initial-element initial-element))))) ,@(when initial-contents ;; FIXME: This is could be open coded at least a bit too `((sb!impl::fill-data-vector data ',dims initial-contents))) (setf (%array-fill-pointer header) ,total-size) (setf (%array-fill-pointer-p header) nil) (setf (%array-available-elements header) ,total-size) (setf (%array-data-vector header) data) (setf (%array-displaced-p header) nil) (setf (%array-displaced-from header) nil) ,@(let ((axis -1)) (mapcar (lambda (dim) `(setf (%array-dimension header ,(incf axis)) ,dim)) dims)) (truly-the ,spec header))))))) (deftransform make-array ((dims &key element-type initial-element initial-contents) (integer &key (:element-type (constant-arg *)) (:initial-element *) (:initial-contents *)) * :node call) (transform-make-array-vector dims element-type initial-element initial-contents call)) ;;;; miscellaneous properties of arrays ;;; Transforms for various array properties. If the property is know ;;; at compile time because of a type spec, use that constant value. ;;; Most of this logic may end up belonging in code/late-type.lisp; ;;; however, here we also need the -OR-GIVE-UP for the transforms, and ;;; maybe this is just too sloppy for actual type logic. -- CSR, ;;; 2004-02-18 (defun array-type-dimensions-or-give-up (type) (labels ((maybe-array-type-dimensions (type) (typecase type (array-type (array-type-dimensions type)) (union-type (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions (union-type-types type)))) (result (car types))) (dolist (other (cdr types) result) (unless (equal result other) (give-up-ir1-transform "~@" (type-specifier type)))))) (intersection-type (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions (intersection-type-types type)))) (result (car types))) (dolist (other (cdr types) result) (unless (equal result other) (abort-ir1-transform "~@" (type-specifier type))))))))) (or (maybe-array-type-dimensions type) (give-up-ir1-transform "~@" (type-specifier type))))) (defun conservative-array-type-complexp (type) (typecase type (array-type (array-type-complexp type)) (union-type (let ((types (union-type-types type))) (aver (> (length types) 1)) (let ((result (conservative-array-type-complexp (car types)))) (dolist (type (cdr types) result) (unless (eq (conservative-array-type-complexp type) result) (return-from conservative-array-type-complexp :maybe)))))) ;; FIXME: intersection type (t :maybe))) ;;; If we can tell the rank from the type info, use it instead. (deftransform array-rank ((array)) (let ((array-type (lvar-type array))) (let ((dims (array-type-dimensions-or-give-up array-type))) (cond ((listp dims) (length dims)) ((eq t (array-type-complexp array-type)) '(%array-rank array)) (t `(if (array-header-p array) (%array-rank array) 1)))))) ;;; If we know the dimensions at compile time, just use it. Otherwise, ;;; if we can tell that the axis is in bounds, convert to ;;; %ARRAY-DIMENSION (which just indirects the array header) or length ;;; (if it's simple and a vector). (deftransform array-dimension ((array axis) (array index)) (unless (constant-lvar-p axis) (give-up-ir1-transform "The axis is not constant.")) ;; Dimensions may change thanks to ADJUST-ARRAY, so we need the ;; conservative type. (let ((array-type (lvar-conservative-type array)) (axis (lvar-value axis))) (let ((dims (array-type-dimensions-or-give-up array-type))) (unless (listp dims) (give-up-ir1-transform "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime.")) (unless (> (length dims) axis) (abort-ir1-transform "The array has dimensions ~S, ~W is too large." dims axis)) (let ((dim (nth axis dims))) (cond ((integerp dim) dim) ((= (length dims) 1) (ecase (conservative-array-type-complexp array-type) ((t) '(%array-dimension array 0)) ((nil) '(vector-length array)) ((:maybe) `(if (array-header-p array) (%array-dimension array axis) (vector-length array))))) (t '(%array-dimension array axis))))))) ;;; If the length has been declared and it's simple, just return it. (deftransform length ((vector) ((simple-array * (*)))) (let ((type (lvar-type vector))) (let ((dims (array-type-dimensions-or-give-up type))) (unless (and (listp dims) (integerp (car dims))) (give-up-ir1-transform "Vector length is unknown, must call LENGTH at runtime.")) (car dims)))) ;;; All vectors can get their length by using VECTOR-LENGTH. If it's ;;; simple, it will extract the length slot from the vector. It it's ;;; complex, it will extract the fill pointer slot from the array ;;; header. (deftransform length ((vector) (vector)) '(vector-length vector)) ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a ;;; compile-time constant. (deftransform vector-length ((vector)) (let ((vtype (lvar-type vector))) (let ((dim (first (array-type-dimensions-or-give-up vtype)))) (when (eq dim '*) (give-up-ir1-transform)) (when (conservative-array-type-complexp vtype) (give-up-ir1-transform)) dim))) ;;; Again, if we can tell the results from the type, just use it. ;;; Otherwise, if we know the rank, convert into a computation based ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the ;;; multiplications because we know that the total size must be an ;;; INDEX. (deftransform array-total-size ((array) (array)) (let ((array-type (lvar-type array))) (let ((dims (array-type-dimensions-or-give-up array-type))) (unless (listp dims) (give-up-ir1-transform "can't tell the rank at compile time")) (if (member '* dims) (do ((form 1 `(truly-the index (* (array-dimension array ,i) ,form))) (i 0 (1+ i))) ((= i (length dims)) form)) (reduce #'* dims))))) ;;; Only complex vectors have fill pointers. (deftransform array-has-fill-pointer-p ((array)) (let ((array-type (lvar-type array))) (let ((dims (array-type-dimensions-or-give-up array-type))) (if (and (listp dims) (not (= (length dims) 1))) nil (ecase (conservative-array-type-complexp array-type) ((t) t) ((nil) nil) ((:maybe) (give-up-ir1-transform "The array type is ambiguous; must call ~ ARRAY-HAS-FILL-POINTER-P at runtime."))))))) ;;; Primitive used to verify indices into arrays. If we can tell at ;;; compile-time or we are generating unsafe code, don't bother with ;;; the VOP. (deftransform %check-bound ((array dimension index) * * :node node) (cond ((policy node (= insert-array-bounds-checks 0)) 'index) ((not (constant-lvar-p dimension)) (give-up-ir1-transform)) (t (let ((dim (lvar-value dimension))) ;; FIXME: Can SPEED > SAFETY weaken this check to INTEGER? `(the (integer 0 (,dim)) index))))) ;;;; WITH-ARRAY-DATA ;;; This checks to see whether the array is simple and the start and ;;; end are in bounds. If so, it proceeds with those values. ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA ;;; may be further optimized. ;;; ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and ;;; START-VAR and END-VAR to the start and end of the designated ;;; portion of the data vector. SVALUE and EVALUE are any start and ;;; end specified to the original operation, and are factored into the ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative ;;; offset of all displacements encountered, and does not include ;;; SVALUE. ;;; ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is ;;; forced to be inline, overriding the ordinary judgment of the ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are ;;; fairly picky about their arguments, figuring that if you haven't ;;; bothered to get all your ducks in a row, you probably don't care ;;; that much about speed anyway! But in some cases it makes sense to ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and ;;; the DEFTRANSFORM can't tell that that's going on, so it can make ;;; sense to use FORCE-INLINE option in that case. (def!macro with-array-data (((data-var array &key offset-var) (start-var &optional (svalue 0)) (end-var &optional (evalue nil)) &key force-inline check-fill-pointer) &body forms &environment env) (once-only ((n-array array) (n-svalue `(the index ,svalue)) (n-evalue `(the (or index null) ,evalue))) (let ((check-bounds (policy env (plusp insert-array-bounds-checks)))) `(multiple-value-bind (,data-var ,start-var ,end-var ,@(when offset-var `(,offset-var))) (if (not (array-header-p ,n-array)) (let ((,n-array ,n-array)) (declare (type (simple-array * (*)) ,n-array)) ,(once-only ((n-len (if check-fill-pointer `(length ,n-array) `(array-total-size ,n-array))) (n-end `(or ,n-evalue ,n-len))) (if check-bounds `(if (<= 0 ,n-svalue ,n-end ,n-len) (values ,n-array ,n-svalue ,n-end 0) ,(if check-fill-pointer `(sequence-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue) `(array-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue))) `(values ,n-array ,n-svalue ,n-end 0)))) ,(if force-inline `(%with-array-data-macro ,n-array ,n-svalue ,n-evalue :check-bounds ,check-bounds :check-fill-pointer ,check-fill-pointer) (if check-fill-pointer `(%with-array-data/fp ,n-array ,n-svalue ,n-evalue) `(%with-array-data ,n-array ,n-svalue ,n-evalue)))) ,@forms)))) ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in ;;; DEFTRANSFORMs and DEFUNs. (def!macro %with-array-data-macro (array start end &key (element-type '*) check-bounds check-fill-pointer) (with-unique-names (size defaulted-end data cumulative-offset) `(let* ((,size ,(if check-fill-pointer `(length ,array) `(array-total-size ,array))) (,defaulted-end (or ,end ,size))) ,@(when check-bounds `((unless (<= ,start ,defaulted-end ,size) ,(if check-fill-pointer `(sequence-bounding-indices-bad-error ,array ,start ,end) `(array-bounding-indices-bad-error ,array ,start ,end))))) (do ((,data ,array (%array-data-vector ,data)) (,cumulative-offset 0 (+ ,cumulative-offset (%array-displacement ,data)))) ((not (array-header-p ,data)) (values (the (simple-array ,element-type 1) ,data) (the index (+ ,cumulative-offset ,start)) (the index (+ ,cumulative-offset ,defaulted-end)) (the index ,cumulative-offset))) (declare (type index ,cumulative-offset)))))) (defun transform-%with-array-data/muble (array node check-fill-pointer) (let ((element-type (upgraded-element-type-specifier-or-give-up array)) (type (lvar-type array)) (check-bounds (policy node (plusp insert-array-bounds-checks)))) (if (and (array-type-p type) (not (array-type-complexp type)) (listp (array-type-dimensions type)) (not (null (cdr (array-type-dimensions type))))) ;; If it's a simple multidimensional array, then just return ;; its data vector directly rather than going through ;; %WITH-ARRAY-DATA-MACRO. SBCL doesn't generally generate ;; code that would use this currently, but we have encouraged ;; users to use WITH-ARRAY-DATA and we may use it ourselves at ;; some point in the future for optimized libraries or ;; similar. (if check-bounds `(let* ((data (truly-the (simple-array ,element-type (*)) (%array-data-vector array))) (len (length data)) (real-end (or end len))) (unless (<= 0 start data-end lend) (sequence-bounding-indices-bad-error array start end)) (values data 0 real-end 0)) `(let ((data (truly-the (simple-array ,element-type (*)) (%array-data-vector array)))) (values data 0 (or end (length data)) 0))) `(%with-array-data-macro array start end :check-fill-pointer ,check-fill-pointer :check-bounds ,check-bounds :element-type ,element-type)))) ;; It might very well be reasonable to allow general ARRAY here, I ;; just haven't tried to understand the performance issues involved. ;; -- WHN, and also CSR 2002-05-26 (deftransform %with-array-data ((array start end) ((or vector simple-array) index (or index null) t) * :node node :policy (> speed space)) "inline non-SIMPLE-vector-handling logic" (transform-%with-array-data/muble array node nil)) (deftransform %with-array-data/fp ((array start end) ((or vector simple-array) index (or index null) t) * :node node :policy (> speed space)) "inline non-SIMPLE-vector-handling logic" (transform-%with-array-data/muble array node t)) ;;;; array accessors ;;; We convert all typed array accessors into AREF and (SETF AREF) with type ;;; assertions on the array. (macrolet ((define-bit-frob (reffer simplep) `(progn (define-source-transform ,reffer (a &rest i) `(aref (the (,',(if simplep 'simple-array 'array) bit ,(mapcar (constantly '*) i)) ,a) ,@i)) (define-source-transform (setf ,reffer) (value a &rest i) `(setf (aref (the (,',(if simplep 'simple-array 'array) bit ,(mapcar (constantly '*) i)) ,a) ,@i) ,value))))) (define-bit-frob sbit t) (define-bit-frob bit nil)) (macrolet ((define-frob (reffer setter type) `(progn (define-source-transform ,reffer (a i) `(aref (the ,',type ,a) ,i)) (define-source-transform ,setter (a i v) `(setf (aref (the ,',type ,a) ,i) ,v))))) (define-frob schar %scharset simple-string) (define-frob char %charset string)) ;;; We transform SVREF and %SVSET directly into DATA-VECTOR-REF/SET: this is ;;; around 100 times faster than going through the general-purpose AREF ;;; transform which ends up doing a lot of work -- and introducing many ;;; intermediate lambdas, each meaning a new trip through the compiler -- to ;;; get the same result. ;;; ;;; FIXME: [S]CHAR, and [S]BIT above would almost certainly benefit from a similar ;;; treatment. (define-source-transform svref (vector index) (let ((elt-type (or (when (symbolp vector) (let ((var (lexenv-find vector vars))) (when (lambda-var-p var) (type-specifier (array-type-declared-element-type (lambda-var-type var)))))) t))) (with-unique-names (n-vector) `(let ((,n-vector ,vector)) (the ,elt-type (data-vector-ref (the simple-vector ,n-vector) (%check-bound ,n-vector (length ,n-vector) ,index))))))) (define-source-transform %svset (vector index value) (let ((elt-type (or (when (symbolp vector) (let ((var (lexenv-find vector vars))) (when (lambda-var-p var) (type-specifier (array-type-declared-element-type (lambda-var-type var)))))) t))) (with-unique-names (n-vector) `(let ((,n-vector ,vector)) (truly-the ,elt-type (data-vector-set (the simple-vector ,n-vector) (%check-bound ,n-vector (length ,n-vector) ,index) (the ,elt-type ,value))))))) (macrolet (;; This is a handy macro for computing the row-major index ;; given a set of indices. We wrap each index with a call ;; to %CHECK-BOUND to ensure that everything works out ;; correctly. We can wrap all the interior arithmetic with ;; TRULY-THE INDEX because we know the resultant ;; row-major index must be an index. (with-row-major-index ((array indices index &optional new-value) &rest body) `(let (n-indices dims) (dotimes (i (length ,indices)) (push (make-symbol (format nil "INDEX-~D" i)) n-indices) (push (make-symbol (format nil "DIM-~D" i)) dims)) (setf n-indices (nreverse n-indices)) (setf dims (nreverse dims)) `(lambda (,@',(when new-value (list new-value)) ,',array ,@n-indices) (declare (ignorable ,',array)) (let* (,@(let ((,index -1)) (mapcar (lambda (name) `(,name (array-dimension ,',array ,(incf ,index)))) dims)) (,',index ,(if (null dims) 0 (do* ((dims dims (cdr dims)) (indices n-indices (cdr indices)) (last-dim nil (car dims)) (form `(%check-bound ,',array ,(car dims) ,(car indices)) `(truly-the index (+ (truly-the index (* ,form ,last-dim)) (%check-bound ,',array ,(car dims) ,(car indices)))))) ((null (cdr dims)) form))))) ,',@body))))) ;; Just return the index after computing it. (deftransform array-row-major-index ((array &rest indices)) (with-row-major-index (array indices index) index)) ;; Convert AREF and (SETF AREF) into a HAIRY-DATA-VECTOR-REF (or ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an ;; expression for the row major index. (deftransform aref ((array &rest indices)) (with-row-major-index (array indices index) (hairy-data-vector-ref array index))) (deftransform (setf aref) ((new-value array &rest subscripts)) (with-row-major-index (array subscripts index new-value) (hairy-data-vector-set array index new-value)))) ;; For AREF of vectors we do the bounds checking in the callee. This ;; lets us do a significantly more efficient check for simple-arrays ;; without bloating the code. If we already know the type of the array ;; with sufficient precision, skip directly to DATA-VECTOR-REF. (deftransform aref ((array index) (t t) * :node node) (let* ((type (lvar-type array)) (element-ctype (array-type-upgraded-element-type type))) (cond ((and (array-type-p type) (null (array-type-complexp type)) (not (eql element-ctype *wild-type*)) (eql (length (array-type-dimensions type)) 1)) (let* ((declared-element-ctype (array-type-declared-element-type type)) (bare-form `(data-vector-ref array (%check-bound array (array-dimension array 0) index)))) (if (type= declared-element-ctype element-ctype) bare-form `(the ,(type-specifier declared-element-ctype) ,bare-form)))) ((policy node (zerop insert-array-bounds-checks)) `(hairy-data-vector-ref array index)) (t `(hairy-data-vector-ref/check-bounds array index))))) (deftransform (setf aref) ((new-value array index) (t t t) * :node node) (if (policy node (zerop insert-array-bounds-checks)) `(hairy-data-vector-set array index new-value) `(hairy-data-vector-set/check-bounds array index new-value))) ;;; But if we find out later that there's some useful type information ;;; available, switch back to the normal one to give other transforms ;;; a stab at it. (macrolet ((define (name transform-to extra extra-type) (declare (ignore extra-type)) `(deftransform ,name ((array index ,@extra)) (let* ((type (lvar-type array)) (element-type (array-type-upgraded-element-type type)) (declared-type (type-specifier (array-type-declared-element-type type)))) ;; If an element type has been declared, we want to ;; use that information it for type checking (even ;; if the access can't be optimized due to the array ;; not being simple). (when (and (eql element-type *wild-type*) ;; This type logic corresponds to the special ;; case for strings in HAIRY-DATA-VECTOR-REF ;; (generic/vm-tran.lisp) (not (csubtypep type (specifier-type 'simple-string)))) (when (or (not (array-type-p type)) ;; If it's a simple array, we might be able ;; to inline the access completely. (not (null (array-type-complexp type)))) (give-up-ir1-transform "Upgraded element type of array is not known at compile time."))) ,(if extra ``(truly-the ,declared-type (,',transform-to array (%check-bound array (array-dimension array 0) index) (the ,declared-type ,@',extra))) ``(the ,declared-type (,',transform-to array (%check-bound array (array-dimension array 0) index)))))))) (define hairy-data-vector-ref/check-bounds hairy-data-vector-ref nil nil) (define hairy-data-vector-set/check-bounds hairy-data-vector-set (new-value) (*))) ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the ;;; array total size. (deftransform row-major-aref ((array index)) `(hairy-data-vector-ref array (%check-bound array (array-total-size array) index))) (deftransform %set-row-major-aref ((array index new-value)) `(hairy-data-vector-set array (%check-bound array (array-total-size array) index) new-value)) ;;;; bit-vector array operation canonicalization ;;;; ;;;; We convert all bit-vector operations to have the result array ;;;; specified. This allows any result allocation to be open-coded, ;;;; and eliminates the need for any VM-dependent transforms to handle ;;;; these cases. (macrolet ((def (fun) `(progn (deftransform ,fun ((bit-array-1 bit-array-2 &optional result-bit-array) (bit-vector bit-vector &optional null) * :policy (>= speed space)) `(,',fun bit-array-1 bit-array-2 (make-array (array-dimension bit-array-1 0) :element-type 'bit))) ;; If result is T, make it the first arg. (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array) (bit-vector bit-vector (eql t)) *) `(,',fun bit-array-1 bit-array-2 bit-array-1))))) (def bit-and) (def bit-ior) (def bit-xor) (def bit-eqv) (def bit-nand) (def bit-nor) (def bit-andc1) (def bit-andc2) (def bit-orc1) (def bit-orc2)) ;;; Similar for BIT-NOT, but there is only one arg... (deftransform bit-not ((bit-array-1 &optional result-bit-array) (bit-vector &optional null) * :policy (>= speed space)) '(bit-not bit-array-1 (make-array (array-dimension bit-array-1 0) :element-type 'bit))) (deftransform bit-not ((bit-array-1 result-bit-array) (bit-vector (eql t))) '(bit-not bit-array-1 bit-array-1)) ;;; Pick off some constant cases. (defoptimizer (array-header-p derive-type) ((array)) (let ((type (lvar-type array))) (cond ((not (array-type-p type)) ;; FIXME: use analogue of ARRAY-TYPE-DIMENSIONS-OR-GIVE-UP nil) (t (let ((dims (array-type-dimensions type))) (cond ((csubtypep type (specifier-type '(simple-array * (*)))) ;; no array header (specifier-type 'null)) ((and (listp dims) (/= (length dims) 1)) ;; multi-dimensional array, will have a header (specifier-type '(eql t))) ((eql (array-type-complexp type) t) (specifier-type '(eql t))) (t nil)))))))