;;;; array-specific optimizers and transforms ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!C") ;;;; utilities for optimizing array operations ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for CONTINUATION, or do ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be ;;; determined. (defun upgraded-element-type-specifier-or-give-up (continuation) (let* ((element-ctype (extract-upgraded-element-type continuation)) (element-type-specifier (type-specifier element-ctype))) (if (eq element-type-specifier '*) (give-up-ir1-transform "upgraded array element type not known at compile time") element-type-specifier))) ;;; Array access functions return an object from the array, hence its ;;; type will be asserted to be array element type. (defun extract-element-type (array) (let ((type (continuation-type array))) (if (array-type-p type) (array-type-element-type type) *universal-type*))) ;;; Array access functions return an object from the array, hence its ;;; type is going to be the array upgraded element type. (defun extract-upgraded-element-type (array) (let ((type (continuation-type array))) (if (array-type-p type) (array-type-specialized-element-type type) *universal-type*))) ;;; The ``new-value'' for array setters must fit in the array, and the ;;; return type is going to be the same as the new-value for SETF ;;; functions. (defun assert-new-value-type (new-value array) (let ((type (continuation-type array))) (when (array-type-p type) (assert-continuation-type new-value (array-type-element-type type)))) (continuation-type new-value)) ;;; Return true if Arg is NIL, or is a constant-continuation whose ;;; value is NIL, false otherwise. (defun unsupplied-or-nil (arg) (declare (type (or continuation null) arg)) (or (not arg) (and (constant-continuation-p arg) (not (continuation-value arg))))) ;;;; DERIVE-TYPE optimizers ;;; Array operations that use a specific number of indices implicitly ;;; assert that the array is of that rank. (defun assert-array-rank (array rank) (assert-continuation-type array (specifier-type `(array * ,(make-list rank :initial-element '*))))) (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices)) (assert-array-rank array (length indices)) *universal-type*) (defoptimizer (aref derive-type) ((array &rest indices) node) (assert-array-rank array (length indices)) ;; If the node continuation has a single use then assert its type. (let ((cont (node-cont node))) (when (= (length (find-uses cont)) 1) (assert-continuation-type cont (extract-element-type array)))) (extract-upgraded-element-type array)) (defoptimizer (%aset derive-type) ((array &rest stuff)) (assert-array-rank array (1- (length stuff))) (assert-new-value-type (car (last stuff)) array)) (defoptimizer (hairy-data-vector-ref derive-type) ((array index)) (extract-upgraded-element-type array)) (defoptimizer (data-vector-ref derive-type) ((array index)) (extract-upgraded-element-type array)) (defoptimizer (data-vector-set derive-type) ((array index new-value)) (assert-new-value-type new-value array)) (defoptimizer (hairy-data-vector-set derive-type) ((array index new-value)) (assert-new-value-type new-value array)) ;;; Figure out the type of the data vector if we know the argument ;;; element type. (defoptimizer (%with-array-data derive-type) ((array start end)) (let ((atype (continuation-type array))) (when (array-type-p atype) (values-specifier-type `(values (simple-array ,(type-specifier (array-type-element-type atype)) (*)) index index index))))) (defoptimizer (array-row-major-index derive-type) ((array &rest indices)) (assert-array-rank array (length indices)) *universal-type*) (defoptimizer (row-major-aref derive-type) ((array index)) (extract-upgraded-element-type array)) (defoptimizer (%set-row-major-aref derive-type) ((array index new-value)) (assert-new-value-type new-value array)) (defoptimizer (make-array derive-type) ((dims &key initial-element element-type initial-contents adjustable fill-pointer displaced-index-offset displaced-to)) (let ((simple (and (unsupplied-or-nil adjustable) (unsupplied-or-nil displaced-to) (unsupplied-or-nil fill-pointer)))) (specifier-type `(,(if simple 'simple-array 'array) ,(cond ((not element-type) t) ((constant-continuation-p element-type) (continuation-value element-type)) (t '*)) ,(cond ((not simple) '*) ((constant-continuation-p dims) (let ((val (continuation-value dims))) (if (listp val) val (list val)))) ((csubtypep (continuation-type dims) (specifier-type 'integer)) '(*)) (t '*)))))) ;;;; constructors ;;; Convert VECTOR into a MAKE-ARRAY followed by SETFs of all the ;;; elements. (define-source-transform vector (&rest elements) (let ((len (length elements)) (n -1)) (once-only ((n-vec `(make-array ,len))) `(progn ,@(mapcar (lambda (el) (once-only ((n-val el)) `(locally (declare (optimize (safety 0))) (setf (svref ,n-vec ,(incf n)) ,n-val)))) elements) ,n-vec)))) ;;; Just convert it into a MAKE-ARRAY. (define-source-transform make-string (length &key (element-type ''base-char) (initial-element '#.*default-init-char-form*)) `(make-array (the index ,length) :element-type ,element-type :initial-element ,initial-element)) (defstruct (specialized-array-element-type-properties (:conc-name saetp-) (:constructor !make-saetp (ctype initial-element-default n-bits typecode &key (n-pad-elements 0))) (:copier nil)) ;; the element type, e.g. # or ;; # (ctype (missing-arg) :type ctype :read-only t) ;; what we get when the low-level vector-creation logic zeroes all ;; the bits (which also serves as the default value of MAKE-ARRAY's ;; :INITIAL-ELEMENT keyword) (initial-element-default (missing-arg) :read-only t) ;; how many bits per element (n-bits (missing-arg) :type index :read-only t) ;; the low-level type code (typecode (missing-arg) :type index :read-only t) ;; the number of extra elements we use at the end of the array for ;; low level hackery (e.g., one element for arrays of BASE-CHAR, ;; which is used for a fixed #\NULL so that when we call out to C ;; we don't need to cons a new copy) (n-pad-elements (missing-arg) :type index :read-only t)) (defparameter *specialized-array-element-type-properties* (map 'simple-vector (lambda (args) (destructuring-bind (type-spec &rest rest) args (let ((ctype (specifier-type type-spec))) (apply #'!make-saetp ctype rest)))) `((base-char ,(code-char 0) 8 ,sb!vm:simple-string-widetag ;; (SIMPLE-STRINGs are stored with an extra trailing ;; #\NULL for convenience in calling out to C.) :n-pad-elements 1) (single-float 0.0s0 32 ,sb!vm:simple-array-single-float-widetag) (double-float 0.0d0 64 ,sb!vm:simple-array-double-float-widetag) #!+long-float (long-float 0.0L0 #!+x86 96 #!+sparc 128 ,sb!vm:simple-array-long-float-widetag) (bit 0 1 ,sb!vm:simple-bit-vector-widetag) ((unsigned-byte 2) 0 2 ,sb!vm:simple-array-unsigned-byte-2-widetag) ((unsigned-byte 4) 0 4 ,sb!vm:simple-array-unsigned-byte-4-widetag) ((unsigned-byte 8) 0 8 ,sb!vm:simple-array-unsigned-byte-8-widetag) ((unsigned-byte 16) 0 16 ,sb!vm:simple-array-unsigned-byte-16-widetag) ((unsigned-byte 32) 0 32 ,sb!vm:simple-array-unsigned-byte-32-widetag) ((signed-byte 8) 0 8 ,sb!vm:simple-array-signed-byte-8-widetag) ((signed-byte 16) 0 16 ,sb!vm:simple-array-signed-byte-16-widetag) ((signed-byte 30) 0 32 ,sb!vm:simple-array-signed-byte-30-widetag) ((signed-byte 32) 0 32 ,sb!vm:simple-array-signed-byte-32-widetag) ((complex single-float) #C(0.0s0 0.0s0) 64 ,sb!vm:simple-array-complex-single-float-widetag) ((complex double-float) #C(0.0d0 0.0d0) 128 ,sb!vm:simple-array-complex-double-float-widetag) #!+long-float ((complex long-float) #C(0.0L0 0.0L0) #!+x86 192 #!+sparc 256 ,sb!vm:simple-array-complex-long-float-widetag) (t 0 32 ,sb!vm:simple-vector-widetag)))) ;;; The integer type restriction on the length ensures that it will be ;;; a vector. The lack of :ADJUSTABLE, :FILL-POINTER, and ;;; :DISPLACED-TO keywords ensures that it will be simple. (deftransform make-array ((length &key initial-element element-type) (integer &rest *)) (let* ((eltype (cond ((not element-type) t) ((not (constant-continuation-p element-type)) (give-up-ir1-transform "ELEMENT-TYPE is not constant.")) (t (continuation-value element-type)))) (len (if (constant-continuation-p length) (continuation-value length) '*)) (result-type-spec `(simple-array ,eltype (,len))) (eltype-type (specifier-type eltype)) (saetp (find-if (lambda (saetp) (csubtypep eltype-type (saetp-ctype saetp))) *specialized-array-element-type-properties*))) (unless saetp (give-up-ir1-transform "cannot open-code creation of ~S" spec)) (let* ((initial-element-default (saetp-initial-element-default saetp)) (n-bits-per-element (saetp-n-bits saetp)) (typecode (saetp-typecode saetp)) (n-pad-elements (saetp-n-pad-elements saetp)) (padded-length-form (if (zerop n-pad-elements) 'length `(+ length ,n-pad-elements))) (n-words-form (if (>= n-bits-per-element sb!vm:n-word-bits) `(* ,padded-length-form (the fixnum ; i.e., not RATIO ,(/ n-bits-per-element sb!vm:n-word-bits))) (let ((n-elements-per-word (/ sb!vm:n-word-bits n-bits-per-element))) (declare (type index n-elements-per-word)) ; i.e., not RATIO `(ceiling ,padded-length-form ,n-elements-per-word)))) (bare-constructor-form `(truly-the ,result-type-spec (allocate-vector ,typecode length ,n-words-form))) (initial-element-form (if initial-element 'initial-element initial-element-default))) (values (cond (;; Can we skip the FILL step? (or (null initial-element) (and (constant-continuation-p initial-element) (eql (continuation-value initial-element) initial-element-default))) (unless (csubtypep (ctype-of initial-element-default) eltype-type) ;; This situation arises e.g. in ;; (MAKE-ARRAY 4 :ELEMENT-TYPE '(INTEGER 1 5)) ;; ANSI's definition of MAKE-ARRAY says "If ;; INITIAL-ELEMENT is not supplied, the consequences ;; of later reading an uninitialized element of ;; new-array are undefined," so this could be legal ;; code as long as the user plans to write before he ;; reads, and if he doesn't we're free to do anything ;; we like. But in case the user doesn't know to write ;; elements before he reads elements (or to read ;; manuals before he writes code:-), we'll signal a ;; STYLE-WARNING in case he didn't realize this. (compiler-note "The default initial element ~S is not a ~S." initial-element-default eltype)) bare-constructor-form) (t `(truly-the ,result-type-spec (fill ,bare-constructor-form ,initial-element-form)))) '((declare (type index length))))))) ;;; The list type restriction does not ensure that the result will be a ;;; multi-dimensional array. But the lack of adjustable, fill-pointer, ;;; and displaced-to keywords ensures that it will be simple. (deftransform make-array ((dims &key initial-element element-type) (list &rest *)) (unless (or (null element-type) (constant-continuation-p element-type)) (give-up-ir1-transform "The element-type is not constant; cannot open code array creation.")) (unless (constant-continuation-p dims) (give-up-ir1-transform "The dimension list is not constant; cannot open code array creation.")) (let ((dims (continuation-value dims))) (unless (every #'integerp dims) (give-up-ir1-transform "The dimension list contains something other than an integer: ~S" dims)) (if (= (length dims) 1) `(make-array ',(car dims) ,@(when initial-element '(:initial-element initial-element)) ,@(when element-type '(:element-type element-type))) (let* ((total-size (reduce #'* dims)) (rank (length dims)) (spec `(simple-array ,(cond ((null element-type) t) ((constant-continuation-p element-type) (continuation-value element-type)) (t '*)) ,(make-list rank :initial-element '*)))) `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank))) (setf (%array-fill-pointer header) ,total-size) (setf (%array-fill-pointer-p header) nil) (setf (%array-available-elements header) ,total-size) (setf (%array-data-vector header) (make-array ,total-size ,@(when element-type '(:element-type element-type)) ,@(when initial-element '(:initial-element initial-element)))) (setf (%array-displaced-p header) nil) ,@(let ((axis -1)) (mapcar (lambda (dim) `(setf (%array-dimension header ,(incf axis)) ,dim)) dims)) (truly-the ,spec header)))))) ;;;; miscellaneous properties of arrays ;;; Transforms for various array properties. If the property is know ;;; at compile time because of a type spec, use that constant value. ;;; If we can tell the rank from the type info, use it instead. (deftransform array-rank ((array)) (let ((array-type (continuation-type array))) (unless (array-type-p array-type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions array-type))) (if (not (listp dims)) (give-up-ir1-transform "The array rank is not known at compile time: ~S" dims) (length dims))))) ;;; If we know the dimensions at compile time, just use it. Otherwise, ;;; if we can tell that the axis is in bounds, convert to ;;; %ARRAY-DIMENSION (which just indirects the array header) or length ;;; (if it's simple and a vector). (deftransform array-dimension ((array axis) (array index)) (unless (constant-continuation-p axis) (give-up-ir1-transform "The axis is not constant.")) (let ((array-type (continuation-type array)) (axis (continuation-value axis))) (unless (array-type-p array-type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions array-type))) (unless (listp dims) (give-up-ir1-transform "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime.")) (unless (> (length dims) axis) (abort-ir1-transform "The array has dimensions ~S, ~W is too large." dims axis)) (let ((dim (nth axis dims))) (cond ((integerp dim) dim) ((= (length dims) 1) (ecase (array-type-complexp array-type) ((t) '(%array-dimension array 0)) ((nil) '(length array)) ((:maybe) (give-up-ir1-transform "can't tell whether array is simple")))) (t '(%array-dimension array axis))))))) ;;; If the length has been declared and it's simple, just return it. (deftransform length ((vector) ((simple-array * (*)))) (let ((type (continuation-type vector))) (unless (array-type-p type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions type))) (unless (and (listp dims) (integerp (car dims))) (give-up-ir1-transform "Vector length is unknown, must call LENGTH at runtime.")) (car dims)))) ;;; All vectors can get their length by using VECTOR-LENGTH. If it's ;;; simple, it will extract the length slot from the vector. It it's ;;; complex, it will extract the fill pointer slot from the array ;;; header. (deftransform length ((vector) (vector)) '(vector-length vector)) ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a ;;; compile-time constant. (deftransform vector-length ((vector) ((simple-array * (*)))) (let ((vtype (continuation-type vector))) (if (array-type-p vtype) (let ((dim (first (array-type-dimensions vtype)))) (when (eq dim '*) (give-up-ir1-transform)) dim) (give-up-ir1-transform)))) ;;; Again, if we can tell the results from the type, just use it. ;;; Otherwise, if we know the rank, convert into a computation based ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the ;;; multiplications because we know that the total size must be an ;;; INDEX. (deftransform array-total-size ((array) (array)) (let ((array-type (continuation-type array))) (unless (array-type-p array-type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions array-type))) (unless (listp dims) (give-up-ir1-transform "can't tell the rank at compile time")) (if (member '* dims) (do ((form 1 `(truly-the index (* (array-dimension array ,i) ,form))) (i 0 (1+ i))) ((= i (length dims)) form)) (reduce #'* dims))))) ;;; Only complex vectors have fill pointers. (deftransform array-has-fill-pointer-p ((array)) (let ((array-type (continuation-type array))) (unless (array-type-p array-type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions array-type))) (if (and (listp dims) (not (= (length dims) 1))) nil (ecase (array-type-complexp array-type) ((t) t) ((nil) nil) ((:maybe) (give-up-ir1-transform "The array type is ambiguous; must call ~ ARRAY-HAS-FILL-POINTER-P at runtime."))))))) ;;; Primitive used to verify indices into arrays. If we can tell at ;;; compile-time or we are generating unsafe code, don't bother with ;;; the VOP. (deftransform %check-bound ((array dimension index)) (unless (constant-continuation-p dimension) (give-up-ir1-transform)) (let ((dim (continuation-value dimension))) `(the (integer 0 ,dim) index))) (deftransform %check-bound ((array dimension index) * * :policy (and (> speed safety) (= safety 0))) 'index) ;;;; WITH-ARRAY-DATA ;;; This checks to see whether the array is simple and the start and ;;; end are in bounds. If so, it proceeds with those values. ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA ;;; may be further optimized. ;;; ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and ;;; START-VAR and END-VAR to the start and end of the designated ;;; portion of the data vector. SVALUE and EVALUE are any start and ;;; end specified to the original operation, and are factored into the ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative ;;; offset of all displacements encountered, and does not include ;;; SVALUE. ;;; ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is ;;; forced to be inline, overriding the ordinary judgment of the ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are ;;; fairly picky about their arguments, figuring that if you haven't ;;; bothered to get all your ducks in a row, you probably don't care ;;; that much about speed anyway! But in some cases it makes sense to ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and ;;; the DEFTRANSFORM can't tell that that's going on, so it can make ;;; sense to use FORCE-INLINE option in that case. (def!macro with-array-data (((data-var array &key offset-var) (start-var &optional (svalue 0)) (end-var &optional (evalue nil)) &key force-inline) &body forms) (once-only ((n-array array) (n-svalue `(the index ,svalue)) (n-evalue `(the (or index null) ,evalue))) `(multiple-value-bind (,data-var ,start-var ,end-var ,@(when offset-var `(,offset-var))) (if (not (array-header-p ,n-array)) (let ((,n-array ,n-array)) (declare (type (simple-array * (*)) ,n-array)) ,(once-only ((n-len `(length ,n-array)) (n-end `(or ,n-evalue ,n-len))) `(if (<= ,n-svalue ,n-end ,n-len) ;; success (values ,n-array ,n-svalue ,n-end 0) ;; failure: Make a NOTINLINE call to ;; %WITH-ARRAY-DATA with our bad data ;; to cause the error to be signalled. (locally (declare (notinline %with-array-data)) (%with-array-data ,n-array ,n-svalue ,n-evalue))))) (,(if force-inline '%with-array-data-macro '%with-array-data) ,n-array ,n-svalue ,n-evalue)) ,@forms))) ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in ;;; DEFTRANSFORMs and DEFUNs. (def!macro %with-array-data-macro (array start end &key (element-type '*) unsafe? fail-inline?) (let ((size (gensym "SIZE-")) (defaulted-end (gensym "DEFAULTED-END-")) (data (gensym "DATA-")) (cumulative-offset (gensym "CUMULATIVE-OFFSET-"))) `(let* ((,size (array-total-size ,array)) (,defaulted-end (cond (,end (unless (or ,unsafe? (<= ,end ,size)) ,(if fail-inline? `(error "End ~W is greater than total size ~W." ,end ,size) `(failed-%with-array-data ,array ,start ,end))) ,end) (t ,size)))) (unless (or ,unsafe? (<= ,start ,defaulted-end)) ,(if fail-inline? `(error "Start ~W is greater than end ~W." ,start ,defaulted-end) `(failed-%with-array-data ,array ,start ,end))) (do ((,data ,array (%array-data-vector ,data)) (,cumulative-offset 0 (+ ,cumulative-offset (%array-displacement ,data)))) ((not (array-header-p ,data)) (values (the (simple-array ,element-type 1) ,data) (the index (+ ,cumulative-offset ,start)) (the index (+ ,cumulative-offset ,defaulted-end)) (the index ,cumulative-offset))) (declare (type index ,cumulative-offset)))))) (deftransform %with-array-data ((array start end) ;; Note: This transform is limited to ;; VECTOR only because I happened to ;; create it in order to get sequence ;; function operations to be more ;; efficient. It might very well be ;; reasonable to allow general ARRAY ;; here, I just haven't tried to ;; understand the performance issues ;; involved. -- WHN (vector index (or index null)) * :important t :node node :policy (> speed space)) "inline non-SIMPLE-vector-handling logic" (let ((element-type (upgraded-element-type-specifier-or-give-up array))) `(%with-array-data-macro array start end :unsafe? ,(policy node (= safety 0)) :element-type ,element-type))) ;;;; array accessors ;;; We convert all typed array accessors into AREF and %ASET with type ;;; assertions on the array. (macrolet ((define-frob (reffer setter type) `(progn (define-source-transform ,reffer (a &rest i) `(aref (the ,',type ,a) ,@i)) (define-source-transform ,setter (a &rest i) `(%aset (the ,',type ,a) ,@i))))) (define-frob svref %svset simple-vector) (define-frob schar %scharset simple-string) (define-frob char %charset string) (define-frob sbit %sbitset (simple-array bit)) (define-frob bit %bitset (array bit))) (macrolet (;; This is a handy macro for computing the row-major index ;; given a set of indices. We wrap each index with a call ;; to %CHECK-BOUND to ensure that everything works out ;; correctly. We can wrap all the interior arithmetic with ;; TRULY-THE INDEX because we know the the resultant ;; row-major index must be an index. (with-row-major-index ((array indices index &optional new-value) &rest body) `(let (n-indices dims) (dotimes (i (length ,indices)) (push (make-symbol (format nil "INDEX-~D" i)) n-indices) (push (make-symbol (format nil "DIM-~D" i)) dims)) (setf n-indices (nreverse n-indices)) (setf dims (nreverse dims)) `(lambda (,',array ,@n-indices ,@',(when new-value (list new-value))) (let* (,@(let ((,index -1)) (mapcar (lambda (name) `(,name (array-dimension ,',array ,(incf ,index)))) dims)) (,',index ,(if (null dims) 0 (do* ((dims dims (cdr dims)) (indices n-indices (cdr indices)) (last-dim nil (car dims)) (form `(%check-bound ,',array ,(car dims) ,(car indices)) `(truly-the index (+ (truly-the index (* ,form ,last-dim)) (%check-bound ,',array ,(car dims) ,(car indices)))))) ((null (cdr dims)) form))))) ,',@body))))) ;; Just return the index after computing it. (deftransform array-row-major-index ((array &rest indices)) (with-row-major-index (array indices index) index)) ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an ;; expression for the row major index. (deftransform aref ((array &rest indices)) (with-row-major-index (array indices index) (hairy-data-vector-ref array index))) (deftransform %aset ((array &rest stuff)) (let ((indices (butlast stuff))) (with-row-major-index (array indices index new-value) (hairy-data-vector-set array index new-value))))) ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the ;;; array total size. (deftransform row-major-aref ((array index)) `(hairy-data-vector-ref array (%check-bound array (array-total-size array) index))) (deftransform %set-row-major-aref ((array index new-value)) `(hairy-data-vector-set array (%check-bound array (array-total-size array) index) new-value)) ;;;; bit-vector array operation canonicalization ;;;; ;;;; We convert all bit-vector operations to have the result array ;;;; specified. This allows any result allocation to be open-coded, ;;;; and eliminates the need for any VM-dependent transforms to handle ;;;; these cases. (macrolet ((def (fun) `(progn (deftransform ,fun ((bit-array-1 bit-array-2 &optional result-bit-array) (bit-vector bit-vector &optional null) * :policy (>= speed space)) `(,',fun bit-array-1 bit-array-2 (make-array (length bit-array-1) :element-type 'bit))) ;; If result is T, make it the first arg. (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array) (bit-vector bit-vector (member t)) *) `(,',fun bit-array-1 bit-array-2 bit-array-1))))) (def bit-and) (def bit-ior) (def bit-xor) (def bit-eqv) (def bit-nand) (def bit-nor) (def bit-andc1) (def bit-andc2) (def bit-orc1) (def bit-orc2)) ;;; Similar for BIT-NOT, but there is only one arg... (deftransform bit-not ((bit-array-1 &optional result-bit-array) (bit-vector &optional null) * :policy (>= speed space)) '(bit-not bit-array-1 (make-array (length bit-array-1) :element-type 'bit))) (deftransform bit-not ((bit-array-1 result-bit-array) (bit-vector (constant-arg t))) '(bit-not bit-array-1 bit-array-1)) ;;; FIXME: What does (CONSTANT-ARG T) mean? Is it the same thing ;;; as (CONSTANT-ARG (MEMBER T)), or does it mean any constant ;;; value? ;;; Pick off some constant cases. (deftransform array-header-p ((array) (array)) (let ((type (continuation-type array))) (declare (optimize (safety 3))) (unless (array-type-p type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions type))) (cond ((csubtypep type (specifier-type '(simple-array * (*)))) ;; No array header. nil) ((and (listp dims) (> (length dims) 1)) ;; Multi-dimensional array, will have a header. t) (t (give-up-ir1-transform))))))