;;;; This file contains floating-point-specific transforms, and may be ;;;; somewhat implementation-dependent in its assumptions of what the ;;;; formats are. ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!C") ;;;; coercions (defknown %single-float (real) single-float (movable foldable)) (defknown %double-float (real) double-float (movable foldable)) (deftransform float ((n f) (* single-float) *) '(%single-float n)) (deftransform float ((n f) (* double-float) *) '(%double-float n)) (deftransform float ((n) *) '(if (floatp n) n (%single-float n))) (deftransform %single-float ((n) (single-float) *) 'n) (deftransform %double-float ((n) (double-float) *) 'n) ;;; RANDOM (macrolet ((frob (fun type) `(deftransform random ((num &optional state) (,type &optional *) *) "Use inline float operations." '(,fun num (or state *random-state*))))) (frob %random-single-float single-float) (frob %random-double-float double-float)) ;;; Return an expression to generate an integer of N-BITS many random ;;; bits, using the minimal number of random chunks possible. (defun generate-random-expr-for-power-of-2 (n-bits state) (declare (type (integer 1 #.sb!vm:n-word-bits) n-bits)) (multiple-value-bind (n-chunk-bits chunk-expr) (cond ((<= n-bits n-random-chunk-bits) (values n-random-chunk-bits `(random-chunk ,state))) ((<= n-bits (* 2 n-random-chunk-bits)) (values (* 2 n-random-chunk-bits) `(big-random-chunk ,state))) (t (error "Unexpectedly small N-RANDOM-CHUNK-BITS"))) (if (< n-bits n-chunk-bits) `(logand ,(1- (ash 1 n-bits)) ,chunk-expr) chunk-expr))) ;;; This transform for compile-time constant word-sized integers ;;; generates an accept-reject loop to achieve equidistribution of the ;;; returned values. Several optimizations are done: If NUM is a power ;;; of two no loop is needed. If the random chunk size is half the word ;;; size only one chunk is used where sufficient. For values of NUM ;;; where it is possible and results in faster code, the rejection ;;; probability is reduced by accepting all values below the largest ;;; multiple of the limit that fits into one or two chunks and and doing ;;; a division to get the random value into the desired range. (deftransform random ((num &optional state) ((constant-arg (integer 1 #.(expt 2 sb!vm:n-word-bits))) &optional *) * :policy (and (> speed compilation-speed) (> speed space))) "optimize to inlined RANDOM-CHUNK operations" (let ((num (lvar-value num))) (if (= num 1) 0 (flet ((chunk-n-bits-and-expr (n-bits) (cond ((<= n-bits n-random-chunk-bits) (values n-random-chunk-bits '(random-chunk (or state *random-state*)))) ((<= n-bits (* 2 n-random-chunk-bits)) (values (* 2 n-random-chunk-bits) '(big-random-chunk (or state *random-state*)))) (t (error "Unexpectedly small N-RANDOM-CHUNK-BITS"))))) (if (zerop (logand num (1- num))) ;; NUM is a power of 2. (let ((n-bits (integer-length (1- num)))) (multiple-value-bind (n-chunk-bits chunk-expr) (chunk-n-bits-and-expr n-bits) (if (< n-bits n-chunk-bits) `(logand ,(1- (ash 1 n-bits)) ,chunk-expr) chunk-expr))) ;; Generate an accept-reject loop. (let ((n-bits (integer-length num))) (multiple-value-bind (n-chunk-bits chunk-expr) (chunk-n-bits-and-expr n-bits) (if (or (> (* num 3) (expt 2 n-chunk-bits)) (logbitp (- n-bits 2) num)) ;; Division can't help as the quotient is below 3, ;; or is too costly as the rejection probability ;; without it is already small (namely at most 1/4 ;; with the given test, which is experimentally a ;; reasonable threshold and cheap to test for). `(loop (let ((bits ,(generate-random-expr-for-power-of-2 n-bits '(or state *random-state*)))) (when (< bits num) (return bits)))) (let ((d (truncate (expt 2 n-chunk-bits) num))) `(loop (let ((bits ,chunk-expr)) (when (< bits ,(* num d)) (return (values (truncate bits ,d))))))))))))))) ;;;; float accessors (defknown make-single-float ((signed-byte 32)) single-float (movable flushable)) (defknown make-double-float ((signed-byte 32) (unsigned-byte 32)) double-float (movable flushable)) #-sb-xc-host (deftransform make-single-float ((bits) ((signed-byte 32))) "Conditional constant folding" (unless (constant-lvar-p bits) (give-up-ir1-transform)) (let* ((bits (lvar-value bits)) (float (make-single-float bits))) (when (float-nan-p float) (give-up-ir1-transform)) float)) #-sb-xc-host (deftransform make-double-float ((hi lo) ((signed-byte 32) (unsigned-byte 32))) "Conditional constant folding" (unless (and (constant-lvar-p hi) (constant-lvar-p lo)) (give-up-ir1-transform)) (let* ((hi (lvar-value hi)) (lo (lvar-value lo)) (float (make-double-float hi lo))) (when (float-nan-p float) (give-up-ir1-transform)) float)) (defknown single-float-bits (single-float) (signed-byte 32) (movable foldable flushable)) (defknown double-float-high-bits (double-float) (signed-byte 32) (movable foldable flushable)) (defknown double-float-low-bits (double-float) (unsigned-byte 32) (movable foldable flushable)) (deftransform float-sign ((float &optional float2) (single-float &optional single-float) *) (if float2 (let ((temp (gensym))) `(let ((,temp (abs float2))) (if (minusp (single-float-bits float)) (- ,temp) ,temp))) '(if (minusp (single-float-bits float)) -1f0 1f0))) (deftransform float-sign ((float &optional float2) (double-float &optional double-float) *) (if float2 (let ((temp (gensym))) `(let ((,temp (abs float2))) (if (minusp (double-float-high-bits float)) (- ,temp) ,temp))) '(if (minusp (double-float-high-bits float)) -1d0 1d0))) ;;;; DECODE-FLOAT, INTEGER-DECODE-FLOAT, and SCALE-FLOAT (defknown decode-single-float (single-float) (values single-float single-float-exponent (single-float -1f0 1f0)) (movable foldable flushable)) (defknown decode-double-float (double-float) (values double-float double-float-exponent (double-float -1d0 1d0)) (movable foldable flushable)) (defknown integer-decode-single-float (single-float) (values single-float-significand single-float-int-exponent (integer -1 1)) (movable foldable flushable)) (defknown integer-decode-double-float (double-float) (values double-float-significand double-float-int-exponent (integer -1 1)) (movable foldable flushable)) (defknown scale-single-float (single-float integer) single-float (movable foldable flushable)) (defknown scale-double-float (double-float integer) double-float (movable foldable flushable)) (deftransform decode-float ((x) (single-float) *) '(decode-single-float x)) (deftransform decode-float ((x) (double-float) *) '(decode-double-float x)) (deftransform integer-decode-float ((x) (single-float) *) '(integer-decode-single-float x)) (deftransform integer-decode-float ((x) (double-float) *) '(integer-decode-double-float x)) (deftransform scale-float ((f ex) (single-float *) *) (if (and #!+x86 t #!-x86 nil (csubtypep (lvar-type ex) (specifier-type '(signed-byte 32)))) '(coerce (%scalbn (coerce f 'double-float) ex) 'single-float) '(scale-single-float f ex))) (deftransform scale-float ((f ex) (double-float *) *) (if (and #!+x86 t #!-x86 nil (csubtypep (lvar-type ex) (specifier-type '(signed-byte 32)))) '(%scalbn f ex) '(scale-double-float f ex))) ;;; What is the CROSS-FLOAT-INFINITY-KLUDGE? ;;; ;;; SBCL's own implementation of floating point supports floating ;;; point infinities. Some of the old CMU CL :PROPAGATE-FLOAT-TYPE and ;;; :PROPAGATE-FUN-TYPE code, like the DEFOPTIMIZERs below, uses this ;;; floating point support. Thus, we have to avoid running it on the ;;; cross-compilation host, since we're not guaranteed that the ;;; cross-compilation host will support floating point infinities. ;;; ;;; If we wanted to live dangerously, we could conditionalize the code ;;; with #+(OR SBCL SB-XC) instead. That way, if the cross-compilation ;;; host happened to be SBCL, we'd be able to run the infinity-using ;;; code. Pro: ;;; * SBCL itself gets built with more complete optimization. ;;; Con: ;;; * You get a different SBCL depending on what your cross-compilation ;;; host is. ;;; So far the pros and cons seem seem to be mostly academic, since ;;; AFAIK (WHN 2001-08-28) the propagate-foo-type optimizations aren't ;;; actually important in compiling SBCL itself. If this changes, then ;;; we have to decide: ;;; * Go for simplicity, leaving things as they are. ;;; * Go for performance at the expense of conceptual clarity, ;;; using #+(OR SBCL SB-XC) and otherwise leaving the build ;;; process as is. ;;; * Go for performance at the expense of build time, using ;;; #+(OR SBCL SB-XC) and also making SBCL do not just ;;; make-host-1.sh and make-host-2.sh, but a third step ;;; make-host-3.sh where it builds itself under itself. (Such a ;;; 3-step build process could also help with other things, e.g. ;;; using specialized arrays to represent debug information.) ;;; * Rewrite the code so that it doesn't depend on unportable ;;; floating point infinities. ;;; optimizers for SCALE-FLOAT. If the float has bounds, new bounds ;;; are computed for the result, if possible. #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn (defun scale-float-derive-type-aux (f ex same-arg) (declare (ignore same-arg)) (flet ((scale-bound (x n) ;; We need to be a bit careful here and catch any overflows ;; that might occur. We can ignore underflows which become ;; zeros. (set-bound (handler-case (scale-float (type-bound-number x) n) (floating-point-overflow () nil)) (consp x)))) (when (and (numeric-type-p f) (numeric-type-p ex)) (let ((f-lo (numeric-type-low f)) (f-hi (numeric-type-high f)) (ex-lo (numeric-type-low ex)) (ex-hi (numeric-type-high ex)) (new-lo nil) (new-hi nil)) (when f-hi (if (< (float-sign (type-bound-number f-hi)) 0.0) (when ex-lo (setf new-hi (scale-bound f-hi ex-lo))) (when ex-hi (setf new-hi (scale-bound f-hi ex-hi))))) (when f-lo (if (< (float-sign (type-bound-number f-lo)) 0.0) (when ex-hi (setf new-lo (scale-bound f-lo ex-hi))) (when ex-lo (setf new-lo (scale-bound f-lo ex-lo))))) (make-numeric-type :class (numeric-type-class f) :format (numeric-type-format f) :complexp :real :low new-lo :high new-hi))))) (defoptimizer (scale-single-float derive-type) ((f ex)) (two-arg-derive-type f ex #'scale-float-derive-type-aux #'scale-single-float t)) (defoptimizer (scale-double-float derive-type) ((f ex)) (two-arg-derive-type f ex #'scale-float-derive-type-aux #'scale-double-float t)) ;;; DEFOPTIMIZERs for %SINGLE-FLOAT and %DOUBLE-FLOAT. This makes the ;;; FLOAT function return the correct ranges if the input has some ;;; defined range. Quite useful if we want to convert some type of ;;; bounded integer into a float. (macrolet ((frob (fun type most-negative most-positive) (let ((aux-name (symbolicate fun "-DERIVE-TYPE-AUX"))) `(progn (defun ,aux-name (num) ;; When converting a number to a float, the limits are ;; the same. (let* ((lo (bound-func (lambda (x) (if (< x ,most-negative) ,most-negative (coerce x ',type))) (numeric-type-low num) nil)) (hi (bound-func (lambda (x) (if (< ,most-positive x ) ,most-positive (coerce x ',type))) (numeric-type-high num) nil))) (specifier-type `(,',type ,(or lo '*) ,(or hi '*))))) (defoptimizer (,fun derive-type) ((num)) (handler-case (one-arg-derive-type num #',aux-name #',fun) (type-error () nil))))))) (frob %single-float single-float most-negative-single-float most-positive-single-float) (frob %double-float double-float most-negative-double-float most-positive-double-float)) ) ; PROGN ;;;; float contagion (defun safe-ctype-for-single-coercion-p (x) ;; See comment in SAFE-SINGLE-COERCION-P -- this deals with the same ;; problem, but in the context of evaluated and compiled (+ ) ;; giving different result if we fail to check for this. (or (not (csubtypep x (specifier-type 'integer))) #!+x86 (csubtypep x (specifier-type `(integer ,most-negative-exactly-single-float-fixnum ,most-positive-exactly-single-float-fixnum))) #!-x86 (csubtypep x (specifier-type 'fixnum)))) ;;; Do some stuff to recognize when the loser is doing mixed float and ;;; rational arithmetic, or different float types, and fix it up. If ;;; we don't, he won't even get so much as an efficiency note. (deftransform float-contagion-arg1 ((x y) * * :defun-only t :node node) (if (or (not (types-equal-or-intersect (lvar-type y) (specifier-type 'single-float))) (safe-ctype-for-single-coercion-p (lvar-type x))) `(,(lvar-fun-name (basic-combination-fun node)) (float x y) y) (give-up-ir1-transform))) (deftransform float-contagion-arg2 ((x y) * * :defun-only t :node node) (if (or (not (types-equal-or-intersect (lvar-type x) (specifier-type 'single-float))) (safe-ctype-for-single-coercion-p (lvar-type y))) `(,(lvar-fun-name (basic-combination-fun node)) x (float y x)) (give-up-ir1-transform))) (dolist (x '(+ * / -)) (%deftransform x '(function (rational float) *) #'float-contagion-arg1) (%deftransform x '(function (float rational) *) #'float-contagion-arg2)) (dolist (x '(= < > + * / -)) (%deftransform x '(function (single-float double-float) *) #'float-contagion-arg1) (%deftransform x '(function (double-float single-float) *) #'float-contagion-arg2)) (macrolet ((def (type &rest args) `(deftransform * ((x y) (,type (constant-arg (member ,@args))) * ;; Beware the SNaN! :policy (zerop float-accuracy)) "optimize multiplication by one" (let ((y (lvar-value y))) (if (minusp y) '(%negate x) 'x))))) (def single-float 1.0 -1.0) (def double-float 1.0d0 -1.0d0)) ;;; Return the reciprocal of X if it can be represented exactly, NIL otherwise. (defun maybe-exact-reciprocal (x) (unless (zerop x) (handler-case (multiple-value-bind (significand exponent sign) (integer-decode-float x) ;; only powers of 2 can be inverted exactly (unless (zerop (logand significand (1- significand))) (return-from maybe-exact-reciprocal nil)) (let ((expected (/ sign significand (expt 2 exponent))) (reciprocal (/ x))) (multiple-value-bind (significand exponent sign) (integer-decode-float reciprocal) ;; Denorms can't be inverted safely. (and (eql expected (* sign significand (expt 2 exponent))) reciprocal)))) (error () (return-from maybe-exact-reciprocal nil))))) ;;; Replace constant division by multiplication with exact reciprocal, ;;; if one exists. (macrolet ((def (type) `(deftransform / ((x y) (,type (constant-arg ,type)) * :node node) "convert to multiplication by reciprocal" (let ((n (lvar-value y))) (if (policy node (zerop float-accuracy)) `(* x ,(/ n)) (let ((r (maybe-exact-reciprocal n))) (if r `(* x ,r) (give-up-ir1-transform "~S does not have an exact reciprocal" n)))))))) (def single-float) (def double-float)) ;;; Optimize addition and subtraction of zero (macrolet ((def (op type &rest args) `(deftransform ,op ((x y) (,type (constant-arg (member ,@args))) * ;; Beware the SNaN! :policy (zerop float-accuracy)) 'x))) ;; No signed zeros, thanks. (def + single-float 0 0.0) (def - single-float 0 0.0) (def + double-float 0 0.0 0.0d0) (def - double-float 0 0.0 0.0d0)) ;;; On most platforms (+ x x) is faster than (* x 2) (macrolet ((def (type &rest args) `(deftransform * ((x y) (,type (constant-arg (member ,@args)))) '(+ x x)))) (def single-float 2 2.0) (def double-float 2 2.0 2.0d0)) ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in ;;; general float rational args to comparison, since Common Lisp ;;; semantics says we are supposed to compare as rationals, but we can ;;; do it for any rational that has a precise representation as a ;;; float (such as 0). (macrolet ((frob (op) `(deftransform ,op ((x y) (float rational) *) "open-code FLOAT to RATIONAL comparison" (unless (constant-lvar-p y) (give-up-ir1-transform "The RATIONAL value isn't known at compile time.")) (let ((val (lvar-value y))) (unless (eql (rational (float val)) val) (give-up-ir1-transform "~S doesn't have a precise float representation." val))) `(,',op x (float y x))))) (frob <) (frob >) (frob =)) ;;;; irrational derive-type methods ;;; Derive the result to be float for argument types in the ;;; appropriate domain. #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (dolist (stuff '((asin (real -1.0 1.0)) (acos (real -1.0 1.0)) (acosh (real 1.0)) (atanh (real -1.0 1.0)) (sqrt (real 0.0)))) (destructuring-bind (name type) stuff (let ((type (specifier-type type))) (setf (fun-info-derive-type (fun-info-or-lose name)) (lambda (call) (declare (type combination call)) (when (csubtypep (lvar-type (first (combination-args call))) type) (specifier-type 'float))))))) #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (log derive-type) ((x &optional y)) (when (and (csubtypep (lvar-type x) (specifier-type '(real 0.0))) (or (null y) (csubtypep (lvar-type y) (specifier-type '(real 0.0))))) (specifier-type 'float))) ;;;; irrational transforms (defknown (%tan %sinh %asinh %atanh %log %logb %log10 %tan-quick) (double-float) double-float (movable foldable flushable)) (defknown (%sin %cos %tanh %sin-quick %cos-quick) (double-float) (double-float -1.0d0 1.0d0) (movable foldable flushable)) (defknown (%asin %atan) (double-float) (double-float #.(coerce (- (/ pi 2)) 'double-float) #.(coerce (/ pi 2) 'double-float)) (movable foldable flushable)) (defknown (%acos) (double-float) (double-float 0.0d0 #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%cosh) (double-float) (double-float 1.0d0) (movable foldable flushable)) (defknown (%acosh %exp %sqrt) (double-float) (double-float 0.0d0) (movable foldable flushable)) (defknown %expm1 (double-float) (double-float -1d0) (movable foldable flushable)) (defknown (%hypot) (double-float double-float) (double-float 0d0) (movable foldable flushable)) (defknown (%pow) (double-float double-float) double-float (movable foldable flushable)) (defknown (%atan2) (double-float double-float) (double-float #.(coerce (- pi) 'double-float) #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%scalb) (double-float double-float) double-float (movable foldable flushable)) (defknown (%scalbn) (double-float (signed-byte 32)) double-float (movable foldable flushable)) (defknown (%log1p) (double-float) double-float (movable foldable flushable)) (macrolet ((def (name prim rtype) `(progn (deftransform ,name ((x) (single-float) ,rtype) `(coerce (,',prim (coerce x 'double-float)) 'single-float)) (deftransform ,name ((x) (double-float) ,rtype) `(,',prim x))))) (def exp %exp *) (def log %log float) (def sqrt %sqrt float) (def asin %asin float) (def acos %acos float) (def atan %atan *) (def sinh %sinh *) (def cosh %cosh *) (def tanh %tanh *) (def asinh %asinh *) (def acosh %acosh float) (def atanh %atanh float)) ;;; The argument range is limited on the x86 FP trig. functions. A ;;; post-test can detect a failure (and load a suitable result), but ;;; this test is avoided if possible. (macrolet ((def (name prim prim-quick) (declare (ignorable prim-quick)) `(progn (deftransform ,name ((x) (single-float) *) #!+x86 (cond ((csubtypep (lvar-type x) (specifier-type '(single-float (#.(- (expt 2f0 63))) (#.(expt 2f0 63))))) `(coerce (,',prim-quick (coerce x 'double-float)) 'single-float)) (t (compiler-notify "unable to avoid inline argument range check~@ because the argument range (~S) was not within 2^63" (type-specifier (lvar-type x))) `(coerce (,',prim (coerce x 'double-float)) 'single-float))) #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float)) (deftransform ,name ((x) (double-float) *) #!+x86 (cond ((csubtypep (lvar-type x) (specifier-type '(double-float (#.(- (expt 2d0 63))) (#.(expt 2d0 63))))) `(,',prim-quick x)) (t (compiler-notify "unable to avoid inline argument range check~@ because the argument range (~S) was not within 2^63" (type-specifier (lvar-type x))) `(,',prim x))) #!-x86 `(,',prim x))))) (def sin %sin %sin-quick) (def cos %cos %cos-quick) (def tan %tan %tan-quick)) (deftransform atan ((x y) (single-float single-float) *) `(coerce (%atan2 (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) (deftransform atan ((x y) (double-float double-float) *) `(%atan2 x y)) (deftransform expt ((x y) ((single-float 0f0) single-float) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) (deftransform expt ((x y) ((double-float 0d0) double-float) *) `(%pow x y)) (deftransform expt ((x y) ((single-float 0f0) (signed-byte 32)) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) (deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *) `(%pow x (coerce y 'double-float))) ;;; ANSI says log with base zero returns zero. (deftransform log ((x y) (float float) float) '(if (zerop y) y (/ (log x) (log y)))) ;;; Handle some simple transformations. (deftransform abs ((x) ((complex double-float)) double-float) '(%hypot (realpart x) (imagpart x))) (deftransform abs ((x) ((complex single-float)) single-float) '(coerce (%hypot (coerce (realpart x) 'double-float) (coerce (imagpart x) 'double-float)) 'single-float)) (deftransform phase ((x) ((complex double-float)) double-float) '(%atan2 (imagpart x) (realpart x))) (deftransform phase ((x) ((complex single-float)) single-float) '(coerce (%atan2 (coerce (imagpart x) 'double-float) (coerce (realpart x) 'double-float)) 'single-float)) (deftransform phase ((x) ((float)) float) '(if (minusp (float-sign x)) (float pi x) (float 0 x))) ;;; The number is of type REAL. (defun numeric-type-real-p (type) (and (numeric-type-p type) (eq (numeric-type-complexp type) :real))) ;;; Coerce a numeric type bound to the given type while handling ;;; exclusive bounds. (defun coerce-numeric-bound (bound type) (when bound (if (consp bound) (list (coerce (car bound) type)) (coerce bound type)))) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn ;;;; optimizers for elementary functions ;;;; ;;;; These optimizers compute the output range of the elementary ;;;; function, based on the domain of the input. ;;; Generate a specifier for a complex type specialized to the same ;;; type as the argument. (defun complex-float-type (arg) (declare (type numeric-type arg)) (let* ((format (case (numeric-type-class arg) ((integer rational) 'single-float) (t (numeric-type-format arg)))) (float-type (or format 'float))) (specifier-type `(complex ,float-type)))) ;;; Compute a specifier like '(OR FLOAT (COMPLEX FLOAT)), except float ;;; should be the right kind of float. Allow bounds for the float ;;; part too. (defun float-or-complex-float-type (arg &optional lo hi) (declare (type numeric-type arg)) (let* ((format (case (numeric-type-class arg) ((integer rational) 'single-float) (t (numeric-type-format arg)))) (float-type (or format 'float)) (lo (coerce-numeric-bound lo float-type)) (hi (coerce-numeric-bound hi float-type))) (specifier-type `(or (,float-type ,(or lo '*) ,(or hi '*)) (complex ,float-type))))) ) ; PROGN (eval-when (:compile-toplevel :execute) ;; So the problem with this hack is that it's actually broken. If ;; the host does not have long floats, then setting *R-D-F-F* to ;; LONG-FLOAT doesn't actually buy us anything. FIXME. (setf *read-default-float-format* #!+long-float 'long-float #!-long-float 'double-float)) ;;; Test whether the numeric-type ARG is within the domain specified by ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to ;;; be distinct. #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defun domain-subtypep (arg domain-low domain-high) (declare (type numeric-type arg) (type (or real null) domain-low domain-high)) (let* ((arg-lo (numeric-type-low arg)) (arg-lo-val (type-bound-number arg-lo)) (arg-hi (numeric-type-high arg)) (arg-hi-val (type-bound-number arg-hi))) ;; Check that the ARG bounds are correctly canonicalized. (when (and arg-lo (floatp arg-lo-val) (zerop arg-lo-val) (consp arg-lo) (minusp (float-sign arg-lo-val))) (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-lo) (setq arg-lo 0e0 arg-lo-val arg-lo)) (when (and arg-hi (zerop arg-hi-val) (floatp arg-hi-val) (consp arg-hi) (plusp (float-sign arg-hi-val))) (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-hi) (setq arg-hi (ecase *read-default-float-format* (double-float (load-time-value (make-unportable-float :double-float-negative-zero))) #!+long-float (long-float (load-time-value (make-unportable-float :long-float-negative-zero)))) arg-hi-val arg-hi)) (flet ((fp-neg-zero-p (f) ; Is F -0.0? (and (floatp f) (zerop f) (minusp (float-sign f)))) (fp-pos-zero-p (f) ; Is F +0.0? (and (floatp f) (zerop f) (plusp (float-sign f))))) (and (or (null domain-low) (and arg-lo (>= arg-lo-val domain-low) (not (and (fp-pos-zero-p domain-low) (fp-neg-zero-p arg-lo))))) (or (null domain-high) (and arg-hi (<= arg-hi-val domain-high) (not (and (fp-neg-zero-p domain-high) (fp-pos-zero-p arg-hi))))))))) (eval-when (:compile-toplevel :execute) (setf *read-default-float-format* 'single-float)) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn ;;; Handle monotonic functions of a single variable whose domain is ;;; possibly part of the real line. ARG is the variable, FUN is the ;;; function, and DOMAIN is a specifier that gives the (real) domain ;;; of the function. If ARG is a subset of the DOMAIN, we compute the ;;; bounds directly. Otherwise, we compute the bounds for the ;;; intersection between ARG and DOMAIN, and then append a complex ;;; result, which occurs for the parts of ARG not in the DOMAIN. ;;; ;;; Negative and positive zero are considered distinct within ;;; DOMAIN-LOW and DOMAIN-HIGH. ;;; ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we ;;; can't compute the bounds using FUN. (defun elfun-derive-type-simple (arg fun domain-low domain-high default-low default-high &optional (increasingp t)) (declare (type (or null real) domain-low domain-high)) (etypecase arg (numeric-type (cond ((eq (numeric-type-complexp arg) :complex) (complex-float-type arg)) ((numeric-type-real-p arg) ;; The argument is real, so let's find the intersection ;; between the argument and the domain of the function. ;; We compute the bounds on the intersection, and for ;; everything else, we return a complex number of the ;; appropriate type. (multiple-value-bind (intersection difference) (interval-intersection/difference (numeric-type->interval arg) (make-interval :low domain-low :high domain-high)) (cond (intersection ;; Process the intersection. (let* ((low (interval-low intersection)) (high (interval-high intersection)) (res-lo (or (bound-func fun (if increasingp low high) nil) default-low)) (res-hi (or (bound-func fun (if increasingp high low) nil) default-high)) (format (case (numeric-type-class arg) ((integer rational) 'single-float) (t (numeric-type-format arg)))) (bound-type (or format 'float)) (result-type (make-numeric-type :class 'float :format format :low (coerce-numeric-bound res-lo bound-type) :high (coerce-numeric-bound res-hi bound-type)))) ;; If the ARG is a subset of the domain, we don't ;; have to worry about the difference, because that ;; can't occur. (if (or (null difference) ;; Check whether the arg is within the domain. (domain-subtypep arg domain-low domain-high)) result-type (list result-type (specifier-type `(complex ,bound-type)))))) (t ;; No intersection so the result must be purely complex. (complex-float-type arg))))) (t (float-or-complex-float-type arg default-low default-high)))))) (macrolet ((frob (name domain-low domain-high def-low-bnd def-high-bnd &key (increasingp t)) (let ((num (gensym))) `(defoptimizer (,name derive-type) ((,num)) (one-arg-derive-type ,num (lambda (arg) (elfun-derive-type-simple arg #',name ,domain-low ,domain-high ,def-low-bnd ,def-high-bnd ,increasingp)) #',name))))) ;; These functions are easy because they are defined for the whole ;; real line. (frob exp nil nil 0 nil) (frob sinh nil nil nil nil) (frob tanh nil nil -1 1) (frob asinh nil nil nil nil) ;; These functions are only defined for part of the real line. The ;; condition selects the desired part of the line. (frob asin -1d0 1d0 (- (/ pi 2)) (/ pi 2)) ;; Acos is monotonic decreasing, so we need to swap the function ;; values at the lower and upper bounds of the input domain. (frob acos -1d0 1d0 0 pi :increasingp nil) (frob acosh 1d0 nil nil nil) (frob atanh -1d0 1d0 -1 1) ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that ;; includes -0.0. (frob sqrt (load-time-value (make-unportable-float :double-float-negative-zero)) nil 0 nil)) ;;; Compute bounds for (expt x y). This should be easy since (expt x ;;; y) = (exp (* y (log x))). However, computations done this way ;;; have too much roundoff. Thus we have to do it the hard way. (defun safe-expt (x y) (handler-case (when (< (abs y) 10000) (expt x y)) (error () nil))) ;;; Handle the case when x >= 1. (defun interval-expt-> (x y) (case (sb!c::interval-range-info y 0d0) (+ ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is ;; obviously non-negative. We just have to be careful for ;; infinite bounds (given by nil). (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x)) (type-bound-number (sb!c::interval-low y)))) (hi (safe-expt (type-bound-number (sb!c::interval-high x)) (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 1) :high hi)))) (- ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is ;; obviously [0, 1]. However, underflow (nil) means 0 is the ;; result. (let ((lo (safe-expt (type-bound-number (sb!c::interval-high x)) (type-bound-number (sb!c::interval-low y)))) (hi (safe-expt (type-bound-number (sb!c::interval-low x)) (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) (t ;; Split the interval in half. (destructuring-bind (y- y+) (sb!c::interval-split 0 y t) (list (interval-expt-> x y-) (interval-expt-> x y+)))))) ;;; Handle the case when x <= 1 (defun interval-expt-< (x y) (case (sb!c::interval-range-info x 0d0) (+ ;; The case of 0 <= x <= 1 is easy (case (sb!c::interval-range-info y) (+ ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is ;; obviously [0, 1]. We just have to be careful for infinite bounds ;; (given by nil). (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x)) (type-bound-number (sb!c::interval-high y)))) (hi (safe-expt (type-bound-number (sb!c::interval-high x)) (type-bound-number (sb!c::interval-low y))))) (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) (- ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is ;; obviously [1, inf]. (let ((hi (safe-expt (type-bound-number (sb!c::interval-low x)) (type-bound-number (sb!c::interval-low y)))) (lo (safe-expt (type-bound-number (sb!c::interval-high x)) (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 1) :high hi)))) (t ;; Split the interval in half (destructuring-bind (y- y+) (sb!c::interval-split 0 y t) (list (interval-expt-< x y-) (interval-expt-< x y+)))))) (- ;; The case where x <= 0. Y MUST be an INTEGER for this to work! ;; The calling function must insure this! For now we'll just ;; return the appropriate unbounded float type. (list (sb!c::make-interval :low nil :high nil))) (t (destructuring-bind (neg pos) (interval-split 0 x t t) (list (interval-expt-< neg y) (interval-expt-< pos y)))))) ;;; Compute bounds for (expt x y). (defun interval-expt (x y) (case (interval-range-info x 1) (+ ;; X >= 1 (interval-expt-> x y)) (- ;; X <= 1 (interval-expt-< x y)) (t (destructuring-bind (left right) (interval-split 1 x t t) (list (interval-expt left y) (interval-expt right y)))))) (defun fixup-interval-expt (bnd x-int y-int x-type y-type) (declare (ignore x-int)) ;; Figure out what the return type should be, given the argument ;; types and bounds and the result type and bounds. (cond ((csubtypep x-type (specifier-type 'integer)) ;; an integer to some power (case (numeric-type-class y-type) (integer ;; Positive integer to an integer power is either an ;; integer or a rational. (let ((lo (or (interval-low bnd) '*)) (hi (or (interval-high bnd) '*))) (if (and (interval-low y-int) (>= (type-bound-number (interval-low y-int)) 0)) (specifier-type `(integer ,lo ,hi)) (specifier-type `(rational ,lo ,hi))))) (rational ;; Positive integer to rational power is either a rational ;; or a single-float. (let* ((lo (interval-low bnd)) (hi (interval-high bnd)) (int-lo (if lo (floor (type-bound-number lo)) '*)) (int-hi (if hi (ceiling (type-bound-number hi)) '*)) (f-lo (or (bound-func #'float lo nil) '*)) (f-hi (or (bound-func #'float hi nil) '*))) (specifier-type `(or (rational ,int-lo ,int-hi) (single-float ,f-lo, f-hi))))) (float ;; A positive integer to a float power is a float. (let ((format (numeric-type-format y-type))) (aver format) (modified-numeric-type y-type :low (coerce-numeric-bound (interval-low bnd) format) :high (coerce-numeric-bound (interval-high bnd) format)))) (t ;; A positive integer to a number is a number (for now). (specifier-type 'number)))) ((csubtypep x-type (specifier-type 'rational)) ;; a rational to some power (case (numeric-type-class y-type) (integer ;; A positive rational to an integer power is always a rational. (specifier-type `(rational ,(or (interval-low bnd) '*) ,(or (interval-high bnd) '*)))) (rational ;; A positive rational to rational power is either a rational ;; or a single-float. (let* ((lo (interval-low bnd)) (hi (interval-high bnd)) (int-lo (if lo (floor (type-bound-number lo)) '*)) (int-hi (if hi (ceiling (type-bound-number hi)) '*)) (f-lo (or (bound-func #'float lo nil) '*)) (f-hi (or (bound-func #'float hi nil) '*))) (specifier-type `(or (rational ,int-lo ,int-hi) (single-float ,f-lo, f-hi))))) (float ;; A positive rational to a float power is a float. (let ((format (numeric-type-format y-type))) (aver format) (modified-numeric-type y-type :low (coerce-numeric-bound (interval-low bnd) format) :high (coerce-numeric-bound (interval-high bnd) format)))) (t ;; A positive rational to a number is a number (for now). (specifier-type 'number)))) ((csubtypep x-type (specifier-type 'float)) ;; a float to some power (case (numeric-type-class y-type) ((or integer rational) ;; A positive float to an integer or rational power is ;; always a float. (let ((format (numeric-type-format x-type))) (aver format) (make-numeric-type :class 'float :format format :low (coerce-numeric-bound (interval-low bnd) format) :high (coerce-numeric-bound (interval-high bnd) format)))) (float ;; A positive float to a float power is a float of the ;; higher type. (let ((format (float-format-max (numeric-type-format x-type) (numeric-type-format y-type)))) (aver format) (make-numeric-type :class 'float :format format :low (coerce-numeric-bound (interval-low bnd) format) :high (coerce-numeric-bound (interval-high bnd) format)))) (t ;; A positive float to a number is a number (for now) (specifier-type 'number)))) (t ;; A number to some power is a number. (specifier-type 'number)))) (defun merged-interval-expt (x y) (let* ((x-int (numeric-type->interval x)) (y-int (numeric-type->interval y))) (mapcar (lambda (type) (fixup-interval-expt type x-int y-int x y)) (flatten-list (interval-expt x-int y-int))))) (defun expt-derive-type-aux (x y same-arg) (declare (ignore same-arg)) (cond ((or (not (numeric-type-real-p x)) (not (numeric-type-real-p y))) ;; Use numeric contagion if either is not real. (numeric-contagion x y)) ((csubtypep y (specifier-type 'integer)) ;; A real raised to an integer power is well-defined. (merged-interval-expt x y)) ;; A real raised to a non-integral power can be a float or a ;; complex number. ((or (csubtypep x (specifier-type '(rational 0))) (csubtypep x (specifier-type '(float (0d0))))) ;; But a positive real to any power is well-defined. (merged-interval-expt x y)) ((and (csubtypep x (specifier-type 'rational)) (csubtypep y (specifier-type 'rational))) ;; A rational to the power of a rational could be a rational ;; or a possibly-complex single float (specifier-type '(or rational single-float (complex single-float)))) (t ;; a real to some power. The result could be a real or a ;; complex. (float-or-complex-float-type (numeric-contagion x y))))) (defoptimizer (expt derive-type) ((x y)) (two-arg-derive-type x y #'expt-derive-type-aux #'expt)) ;;; Note we must assume that a type including 0.0 may also include ;;; -0.0 and thus the result may be complex -infinity + i*pi. (defun log-derive-type-aux-1 (x) (elfun-derive-type-simple x #'log 0d0 nil nil nil)) (defun log-derive-type-aux-2 (x y same-arg) (let ((log-x (log-derive-type-aux-1 x)) (log-y (log-derive-type-aux-1 y)) (accumulated-list nil)) ;; LOG-X or LOG-Y might be union types. We need to run through ;; the union types ourselves because /-DERIVE-TYPE-AUX doesn't. (dolist (x-type (prepare-arg-for-derive-type log-x)) (dolist (y-type (prepare-arg-for-derive-type log-y)) (push (/-derive-type-aux x-type y-type same-arg) accumulated-list))) (apply #'type-union (flatten-list accumulated-list)))) (defoptimizer (log derive-type) ((x &optional y)) (if y (two-arg-derive-type x y #'log-derive-type-aux-2 #'log) (one-arg-derive-type x #'log-derive-type-aux-1 #'log))) (defun atan-derive-type-aux-1 (y) (elfun-derive-type-simple y #'atan nil nil (- (/ pi 2)) (/ pi 2))) (defun atan-derive-type-aux-2 (y x same-arg) (declare (ignore same-arg)) ;; The hard case with two args. We just return the max bounds. (let ((result-type (numeric-contagion y x))) (cond ((and (numeric-type-real-p x) (numeric-type-real-p y)) (let* (;; FIXME: This expression for FORMAT seems to ;; appear multiple times, and should be factored out. (format (case (numeric-type-class result-type) ((integer rational) 'single-float) (t (numeric-type-format result-type)))) (bound-format (or format 'float))) (make-numeric-type :class 'float :format format :complexp :real :low (coerce (- pi) bound-format) :high (coerce pi bound-format)))) (t ;; The result is a float or a complex number (float-or-complex-float-type result-type))))) (defoptimizer (atan derive-type) ((y &optional x)) (if x (two-arg-derive-type y x #'atan-derive-type-aux-2 #'atan) (one-arg-derive-type y #'atan-derive-type-aux-1 #'atan))) (defun cosh-derive-type-aux (x) ;; We note that cosh x = cosh |x| for all real x. (elfun-derive-type-simple (if (numeric-type-real-p x) (abs-derive-type-aux x) x) #'cosh nil nil 0 nil)) (defoptimizer (cosh derive-type) ((num)) (one-arg-derive-type num #'cosh-derive-type-aux #'cosh)) (defun phase-derive-type-aux (arg) (let* ((format (case (numeric-type-class arg) ((integer rational) 'single-float) (t (numeric-type-format arg)))) (bound-type (or format 'float))) (cond ((numeric-type-real-p arg) (case (interval-range-info (numeric-type->interval arg) 0.0) (+ ;; The number is positive, so the phase is 0. (make-numeric-type :class 'float :format format :complexp :real :low (coerce 0 bound-type) :high (coerce 0 bound-type))) (- ;; The number is always negative, so the phase is pi. (make-numeric-type :class 'float :format format :complexp :real :low (coerce pi bound-type) :high (coerce pi bound-type))) (t ;; We can't tell. The result is 0 or pi. Use a union ;; type for this. (list (make-numeric-type :class 'float :format format :complexp :real :low (coerce 0 bound-type) :high (coerce 0 bound-type)) (make-numeric-type :class 'float :format format :complexp :real :low (coerce pi bound-type) :high (coerce pi bound-type)))))) (t ;; We have a complex number. The answer is the range -pi ;; to pi. (-pi is included because we have -0.) (make-numeric-type :class 'float :format format :complexp :real :low (coerce (- pi) bound-type) :high (coerce pi bound-type)))))) (defoptimizer (phase derive-type) ((num)) (one-arg-derive-type num #'phase-derive-type-aux #'phase)) ) ; PROGN (deftransform realpart ((x) ((complex rational)) *) '(sb!kernel:%realpart x)) (deftransform imagpart ((x) ((complex rational)) *) '(sb!kernel:%imagpart x)) ;;; Make REALPART and IMAGPART return the appropriate types. This ;;; should help a lot in optimized code. (defun realpart-derive-type-aux (type) (let ((class (numeric-type-class type)) (format (numeric-type-format type))) (cond ((numeric-type-real-p type) ;; The realpart of a real has the same type and range as ;; the input. (make-numeric-type :class class :format format :complexp :real :low (numeric-type-low type) :high (numeric-type-high type))) (t ;; We have a complex number. The result has the same type ;; as the real part, except that it's real, not complex, ;; obviously. (make-numeric-type :class class :format format :complexp :real :low (numeric-type-low type) :high (numeric-type-high type)))))) (defoptimizer (realpart derive-type) ((num)) (one-arg-derive-type num #'realpart-derive-type-aux #'realpart)) (defun imagpart-derive-type-aux (type) (let ((class (numeric-type-class type)) (format (numeric-type-format type))) (cond ((numeric-type-real-p type) ;; The imagpart of a real has the same type as the input, ;; except that it's zero. (let ((bound-format (or format class 'real))) (make-numeric-type :class class :format format :complexp :real :low (coerce 0 bound-format) :high (coerce 0 bound-format)))) (t ;; We have a complex number. The result has the same type as ;; the imaginary part, except that it's real, not complex, ;; obviously. (make-numeric-type :class class :format format :complexp :real :low (numeric-type-low type) :high (numeric-type-high type)))))) (defoptimizer (imagpart derive-type) ((num)) (one-arg-derive-type num #'imagpart-derive-type-aux #'imagpart)) (defun complex-derive-type-aux-1 (re-type) (if (numeric-type-p re-type) (make-numeric-type :class (numeric-type-class re-type) :format (numeric-type-format re-type) :complexp (if (csubtypep re-type (specifier-type 'rational)) :real :complex) :low (numeric-type-low re-type) :high (numeric-type-high re-type)) (specifier-type 'complex))) (defun complex-derive-type-aux-2 (re-type im-type same-arg) (declare (ignore same-arg)) (if (and (numeric-type-p re-type) (numeric-type-p im-type)) ;; Need to check to make sure numeric-contagion returns the ;; right type for what we want here. ;; Also, what about rational canonicalization, like (complex 5 0) ;; is 5? So, if the result must be complex, we make it so. ;; If the result might be complex, which happens only if the ;; arguments are rational, we make it a union type of (or ;; rational (complex rational)). (let* ((element-type (numeric-contagion re-type im-type)) (rat-result-p (csubtypep element-type (specifier-type 'rational)))) (if rat-result-p (type-union element-type (specifier-type `(complex ,(numeric-type-class element-type)))) (make-numeric-type :class (numeric-type-class element-type) :format (numeric-type-format element-type) :complexp (if rat-result-p :real :complex)))) (specifier-type 'complex))) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (complex derive-type) ((re &optional im)) (if im (two-arg-derive-type re im #'complex-derive-type-aux-2 #'complex) (one-arg-derive-type re #'complex-derive-type-aux-1 #'complex))) ;;; Define some transforms for complex operations. We do this in lieu ;;; of complex operation VOPs. (macrolet ((frob (type) `(progn (deftransform complex ((r) (,type)) '(complex r ,(coerce 0 type))) (deftransform complex ((r i) (,type (and real (not ,type)))) '(complex r (truly-the ,type (coerce i ',type)))) (deftransform complex ((r i) ((and real (not ,type)) ,type)) '(complex (truly-the ,type (coerce r ',type)) i)) ;; negation #!-complex-float-vops (deftransform %negate ((z) ((complex ,type)) *) '(complex (%negate (realpart z)) (%negate (imagpart z)))) ;; complex addition and subtraction #!-complex-float-vops (deftransform + ((w z) ((complex ,type) (complex ,type)) *) '(complex (+ (realpart w) (realpart z)) (+ (imagpart w) (imagpart z)))) #!-complex-float-vops (deftransform - ((w z) ((complex ,type) (complex ,type)) *) '(complex (- (realpart w) (realpart z)) (- (imagpart w) (imagpart z)))) ;; Add and subtract a complex and a real. #!-complex-float-vops (deftransform + ((w z) ((complex ,type) real) *) `(complex (+ (realpart w) z) (+ (imagpart w) ,(coerce 0 ',type)))) #!-complex-float-vops (deftransform + ((z w) (real (complex ,type)) *) `(complex (+ (realpart w) z) (+ (imagpart w) ,(coerce 0 ',type)))) ;; Add and subtract a real and a complex number. #!-complex-float-vops (deftransform - ((w z) ((complex ,type) real) *) `(complex (- (realpart w) z) (- (imagpart w) ,(coerce 0 ',type)))) #!-complex-float-vops (deftransform - ((z w) (real (complex ,type)) *) `(complex (- z (realpart w)) (- ,(coerce 0 ',type) (imagpart w)))) ;; Multiply and divide two complex numbers. #!-complex-float-vops (deftransform * ((x y) ((complex ,type) (complex ,type)) *) '(let* ((rx (realpart x)) (ix (imagpart x)) (ry (realpart y)) (iy (imagpart y))) (complex (- (* rx ry) (* ix iy)) (+ (* rx iy) (* ix ry))))) (deftransform / ((x y) ((complex ,type) (complex ,type)) *) #!-complex-float-vops '(let* ((rx (realpart x)) (ix (imagpart x)) (ry (realpart y)) (iy (imagpart y))) (if (> (abs ry) (abs iy)) (let* ((r (/ iy ry)) (dn (+ ry (* r iy)))) (complex (/ (+ rx (* ix r)) dn) (/ (- ix (* rx r)) dn))) (let* ((r (/ ry iy)) (dn (+ iy (* r ry)))) (complex (/ (+ (* rx r) ix) dn) (/ (- (* ix r) rx) dn))))) #!+complex-float-vops `(let* ((cs (conjugate (sb!vm::swap-complex x))) (ry (realpart y)) (iy (imagpart y))) (if (> (abs ry) (abs iy)) (let* ((r (/ iy ry)) (dn (+ ry (* r iy)))) (/ (+ x (* cs r)) dn)) (let* ((r (/ ry iy)) (dn (+ iy (* r ry)))) (/ (+ (* x r) cs) dn))))) ;; Multiply a complex by a real or vice versa. #!-complex-float-vops (deftransform * ((w z) ((complex ,type) real) *) '(complex (* (realpart w) z) (* (imagpart w) z))) #!-complex-float-vops (deftransform * ((z w) (real (complex ,type)) *) '(complex (* (realpart w) z) (* (imagpart w) z))) ;; Divide a complex by a real or vice versa. #!-complex-float-vops (deftransform / ((w z) ((complex ,type) real) *) '(complex (/ (realpart w) z) (/ (imagpart w) z))) (deftransform / ((x y) (,type (complex ,type)) *) #!-complex-float-vops '(let* ((ry (realpart y)) (iy (imagpart y))) (if (> (abs ry) (abs iy)) (let* ((r (/ iy ry)) (dn (+ ry (* r iy)))) (complex (/ x dn) (/ (- (* x r)) dn))) (let* ((r (/ ry iy)) (dn (+ iy (* r ry)))) (complex (/ (* x r) dn) (/ (- x) dn))))) #!+complex-float-vops '(let* ((ry (realpart y)) (iy (imagpart y))) (if (> (abs ry) (abs iy)) (let* ((r (/ iy ry)) (dn (+ ry (* r iy)))) (/ (complex x (- (* x r))) dn)) (let* ((r (/ ry iy)) (dn (+ iy (* r ry)))) (/ (complex (* x r) (- x)) dn))))) ;; conjugate of complex number #!-complex-float-vops (deftransform conjugate ((z) ((complex ,type)) *) '(complex (realpart z) (- (imagpart z)))) ;; CIS (deftransform cis ((z) ((,type)) *) '(complex (cos z) (sin z))) ;; comparison #!-complex-float-vops (deftransform = ((w z) ((complex ,type) (complex ,type)) *) '(and (= (realpart w) (realpart z)) (= (imagpart w) (imagpart z)))) #!-complex-float-vops (deftransform = ((w z) ((complex ,type) real) *) '(and (= (realpart w) z) (zerop (imagpart w)))) #!-complex-float-vops (deftransform = ((w z) (real (complex ,type)) *) '(and (= (realpart z) w) (zerop (imagpart z))))))) (frob single-float) (frob double-float)) ;;; Here are simple optimizers for SIN, COS, and TAN. They do not ;;; produce a minimal range for the result; the result is the widest ;;; possible answer. This gets around the problem of doing range ;;; reduction correctly but still provides useful results when the ;;; inputs are union types. #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn (defun trig-derive-type-aux (arg domain fun &optional def-lo def-hi (increasingp t)) (etypecase arg (numeric-type (cond ((eq (numeric-type-complexp arg) :complex) (make-numeric-type :class (numeric-type-class arg) :format (numeric-type-format arg) :complexp :complex)) ((numeric-type-real-p arg) (let* ((format (case (numeric-type-class arg) ((integer rational) 'single-float) (t (numeric-type-format arg)))) (bound-type (or format 'float))) ;; If the argument is a subset of the "principal" domain ;; of the function, we can compute the bounds because ;; the function is monotonic. We can't do this in ;; general for these periodic functions because we can't ;; (and don't want to) do the argument reduction in ;; exactly the same way as the functions themselves do ;; it. (if (csubtypep arg domain) (let ((res-lo (bound-func fun (numeric-type-low arg) nil)) (res-hi (bound-func fun (numeric-type-high arg) nil))) (unless increasingp (rotatef res-lo res-hi)) (make-numeric-type :class 'float :format format :low (coerce-numeric-bound res-lo bound-type) :high (coerce-numeric-bound res-hi bound-type))) (make-numeric-type :class 'float :format format :low (and def-lo (coerce def-lo bound-type)) :high (and def-hi (coerce def-hi bound-type)))))) (t (float-or-complex-float-type arg def-lo def-hi)))))) (defoptimizer (sin derive-type) ((num)) (one-arg-derive-type num (lambda (arg) ;; Derive the bounds if the arg is in [-pi/2, pi/2]. (trig-derive-type-aux arg (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2))) #'sin -1 1)) #'sin)) (defoptimizer (cos derive-type) ((num)) (one-arg-derive-type num (lambda (arg) ;; Derive the bounds if the arg is in [0, pi]. (trig-derive-type-aux arg (specifier-type `(float 0d0 ,pi)) #'cos -1 1 nil)) #'cos)) (defoptimizer (tan derive-type) ((num)) (one-arg-derive-type num (lambda (arg) ;; Derive the bounds if the arg is in [-pi/2, pi/2]. (trig-derive-type-aux arg (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2))) #'tan nil nil)) #'tan)) (defoptimizer (conjugate derive-type) ((num)) (one-arg-derive-type num (lambda (arg) (flet ((most-negative-bound (l h) (and l h (if (< (type-bound-number l) (- (type-bound-number h))) l (set-bound (- (type-bound-number h)) (consp h))))) (most-positive-bound (l h) (and l h (if (> (type-bound-number h) (- (type-bound-number l))) h (set-bound (- (type-bound-number l)) (consp l)))))) (if (numeric-type-real-p arg) (lvar-type num) (let ((low (numeric-type-low arg)) (high (numeric-type-high arg))) (let ((new-low (most-negative-bound low high)) (new-high (most-positive-bound low high))) (modified-numeric-type arg :low new-low :high new-high)))))) #'conjugate)) (defoptimizer (cis derive-type) ((num)) (one-arg-derive-type num (lambda (arg) (sb!c::specifier-type `(complex ,(or (numeric-type-format arg) 'float)))) #'cis)) ) ; PROGN ;;;; TRUNCATE, FLOOR, CEILING, and ROUND (macrolet ((define-frobs (fun ufun) `(progn (defknown ,ufun (real) integer (movable foldable flushable)) (deftransform ,fun ((x &optional by) (* &optional (constant-arg (member 1)))) '(let ((res (,ufun x))) (values res (- x res))))))) (define-frobs truncate %unary-truncate) (define-frobs round %unary-round)) (deftransform %unary-truncate ((x) (single-float)) `(%unary-truncate/single-float x)) (deftransform %unary-truncate ((x) (double-float)) `(%unary-truncate/double-float x)) ;;; Convert (TRUNCATE x y) to the obvious implementation. ;;; ;;; ...plus hair: Insert explicit coercions to appropriate float types: Python ;;; is reluctant it generate explicit integer->float coercions due to ;;; precision issues (see SAFE-SINGLE-COERCION-P &co), but this is not an ;;; issue here as there is no DERIVE-TYPE optimizer on specialized versions of ;;; %UNARY-TRUNCATE, so the derived type of TRUNCATE remains the best we can ;;; do here -- which is fine. Also take care not to add unnecassary division ;;; or multiplication by 1, since we are not able to always eliminate them, ;;; depending on FLOAT-ACCURACY. Finally, leave out the secondary value when ;;; we know it is unused: COERCE is not flushable. (macrolet ((def (type other-float-arg-types) (let ((unary (symbolicate "%UNARY-TRUNCATE/" type)) (coerce (symbolicate "%" type))) `(deftransform truncate ((x &optional y) (,type &optional (or ,type ,@other-float-arg-types integer)) * :result result) (let* ((result-type (and result (lvar-derived-type result))) (compute-all (and (values-type-p result-type) (not (type-single-value-p result-type))))) (if (or (not y) (and (constant-lvar-p y) (= 1 (lvar-value y)))) (if compute-all `(let ((res (,',unary x))) (values res (- x (,',coerce res)))) `(let ((res (,',unary x))) ;; Dummy secondary value! (values res x))) (if compute-all `(let* ((f (,',coerce y)) (res (,',unary (/ x f)))) (values res (- x (* f (,',coerce res))))) `(let* ((f (,',coerce y)) (res (,',unary (/ x f)))) ;; Dummy secondary value! (values res x))))))))) (def single-float ()) (def double-float (single-float))) (deftransform floor ((number &optional divisor) (float &optional (or integer float))) (let ((defaulted-divisor (if divisor 'divisor 1))) `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor) (if (and (not (zerop rem)) (if (minusp ,defaulted-divisor) (plusp number) (minusp number))) (values (1- tru) (+ rem ,defaulted-divisor)) (values tru rem))))) (deftransform ceiling ((number &optional divisor) (float &optional (or integer float))) (let ((defaulted-divisor (if divisor 'divisor 1))) `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor) (if (and (not (zerop rem)) (if (minusp ,defaulted-divisor) (minusp number) (plusp number))) (values (1+ tru) (- rem ,defaulted-divisor)) (values tru rem))))) (defknown %unary-ftruncate (real) float (movable foldable flushable)) (defknown %unary-ftruncate/single (single-float) single-float (movable foldable flushable)) (defknown %unary-ftruncate/double (double-float) double-float (movable foldable flushable)) (defun %unary-ftruncate/single (x) (declare (type single-float x)) (declare (optimize speed (safety 0))) (let* ((bits (single-float-bits x)) (exp (ldb sb!vm:single-float-exponent-byte bits)) (biased (the single-float-exponent (- exp sb!vm:single-float-bias)))) (declare (type (signed-byte 32) bits)) (cond ((= exp sb!vm:single-float-normal-exponent-max) x) ((<= biased 0) (* x 0f0)) ((>= biased (float-digits x)) x) (t (let ((frac-bits (- (float-digits x) biased))) (setf bits (logandc2 bits (- (ash 1 frac-bits) 1))) (make-single-float bits)))))) (defun %unary-ftruncate/double (x) (declare (type double-float x)) (declare (optimize speed (safety 0))) (let* ((high (double-float-high-bits x)) (low (double-float-low-bits x)) (exp (ldb sb!vm:double-float-exponent-byte high)) (biased (the double-float-exponent (- exp sb!vm:double-float-bias)))) (declare (type (signed-byte 32) high) (type (unsigned-byte 32) low)) (cond ((= exp sb!vm:double-float-normal-exponent-max) x) ((<= biased 0) (* x 0d0)) ((>= biased (float-digits x)) x) (t (let ((frac-bits (- (float-digits x) biased))) (cond ((< frac-bits 32) (setf low (logandc2 low (- (ash 1 frac-bits) 1)))) (t (setf low 0) (setf high (logandc2 high (- (ash 1 (- frac-bits 32)) 1))))) (make-double-float high low)))))) (macrolet ((def (float-type fun) `(deftransform %unary-ftruncate ((x) (,float-type)) '(,fun x)))) (def single-float %unary-ftruncate/single) (def double-float %unary-ftruncate/double))