;;;; implementation-dependent transforms ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!C") ;;; We need to define these predicates, since the TYPEP source ;;; transform picks whichever predicate was defined last when there ;;; are multiple predicates for equivalent types. (define-source-transform short-float-p (x) `(single-float-p ,x)) #!-long-float (define-source-transform long-float-p (x) `(double-float-p ,x)) (define-source-transform compiled-function-p (x) #!-sb-eval `(functionp ,x) #!+sb-eval (once-only ((x x)) `(and (functionp ,x) (not (sb!eval:interpreted-function-p ,x))))) (define-source-transform char-int (x) `(char-code ,x)) (deftransform abs ((x) (rational)) '(if (< x 0) (- x) x)) ;;; We don't want to clutter the bignum code. #!+(or x86 x86-64) (define-source-transform sb!bignum:%bignum-ref (bignum index) ;; KLUDGE: We use TRULY-THE here because even though the bignum code ;; is (currently) compiled with (SAFETY 0), the compiler insists on ;; inserting CAST nodes to ensure that INDEX is of the correct type. ;; These CAST nodes do not generate any type checks, but they do ;; interfere with the operation of FOLD-INDEX-ADDRESSING, below. ;; This scenario is a problem for the more user-visible case of ;; folding as well. --njf, 2006-12-01 `(sb!bignum:%bignum-ref-with-offset ,bignum (truly-the bignum-index ,index) 0)) #!+(or x86 x86-64) (defun fold-index-addressing (fun-name element-size lowtag data-offset index offset &optional setter-p) (multiple-value-bind (func index-args) (extract-fun-args index '(+ -) 2) (destructuring-bind (x constant) index-args (declare (ignorable x)) (unless (constant-lvar-p constant) (give-up-ir1-transform)) (let ((value (lvar-value constant))) (unless (and (integerp value) (sb!vm::foldable-constant-offset-p element-size lowtag data-offset (funcall func value (lvar-value offset)))) (give-up-ir1-transform "constant is too large for inlining")) (splice-fun-args index func 2) `(lambda (thing index off1 off2 ,@(when setter-p '(value))) (,fun-name thing index (,func off2 off1) ,@(when setter-p '(value)))))))) #!+(or x86 x86-64) (deftransform sb!bignum:%bignum-ref-with-offset ((bignum index offset) * * :node node) (fold-index-addressing 'sb!bignum:%bignum-ref-with-offset sb!vm:n-word-bits sb!vm:other-pointer-lowtag sb!vm:bignum-digits-offset index offset)) ;;; The layout is stored in slot 0. (define-source-transform %instance-layout (x) `(truly-the layout (%instance-ref ,x 0))) (define-source-transform %set-instance-layout (x val) `(%instance-set ,x 0 (the layout ,val))) (define-source-transform %funcallable-instance-layout (x) `(truly-the layout (%funcallable-instance-info ,x 0))) (define-source-transform %set-funcallable-instance-layout (x val) `(setf (%funcallable-instance-info ,x 0) (the layout ,val))) ;;;; character support ;;; In our implementation there are really only BASE-CHARs. #+nil (define-source-transform characterp (obj) `(base-char-p ,obj)) ;;;; simplifying HAIRY-DATA-VECTOR-REF and HAIRY-DATA-VECTOR-SET (deftransform hairy-data-vector-ref ((string index) (simple-string t)) (let ((ctype (lvar-type string))) (if (array-type-p ctype) ;; the other transform will kick in, so that's OK (give-up-ir1-transform) `(etypecase string ((simple-array character (*)) (data-vector-ref string index)) #!+sb-unicode ((simple-array base-char (*)) (data-vector-ref string index)) ((simple-array nil (*)) (data-vector-ref string index)))))) ;;; This and the corresponding -SET transform work equally well on non-simple ;;; arrays, but after benchmarking (on x86), Nikodemus didn't find any cases ;;; where it actually helped with non-simple arrays -- to the contrary, it ;;; only made for bigger and up to 100% slower code. (deftransform hairy-data-vector-ref ((array index) (simple-array t) *) "avoid runtime dispatch on array element type" (let* ((type (lvar-type array)) (element-ctype (array-type-upgraded-element-type type)) (declared-element-ctype (array-type-declared-element-type type))) (declare (type ctype element-ctype)) (when (eq *wild-type* element-ctype) (give-up-ir1-transform "Upgraded element type of array is not known at compile time.")) ;; (The expansion here is basically a degenerate case of ;; WITH-ARRAY-DATA. Since WITH-ARRAY-DATA is implemented as a ;; macro, and macros aren't expanded in transform output, we have ;; to hand-expand it ourselves.) (let* ((element-type-specifier (type-specifier element-ctype))) `(multiple-value-bind (array index) (%data-vector-and-index array index) (declare (type (simple-array ,element-type-specifier 1) array)) ,(let ((bare-form '(data-vector-ref array index))) (if (type= element-ctype declared-element-ctype) bare-form `(the ,(type-specifier declared-element-ctype) ,bare-form))))))) ;;; Transform multi-dimensional array to one dimensional data vector ;;; access. (deftransform data-vector-ref ((array index) (simple-array t)) (let ((array-type (lvar-type array))) (unless (array-type-p array-type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions array-type))) (when (or (atom dims) (= (length dims) 1)) (give-up-ir1-transform)) (let ((el-type (array-type-specialized-element-type array-type)) (total-size (if (member '* dims) '* (reduce #'* dims)))) `(data-vector-ref (truly-the (simple-array ,(type-specifier el-type) (,total-size)) (%array-data-vector array)) index))))) ;;; Transform data vector access to a form that opens up optimization ;;; opportunities. On platforms that support DATA-VECTOR-REF-WITH-OFFSET ;;; DATA-VECTOR-REF is not supported at all. #!+(or x86 x86-64) (define-source-transform data-vector-ref (array index) `(data-vector-ref-with-offset ,array ,index 0)) #!+(or x86 x86-64) (deftransform data-vector-ref-with-offset ((array index offset)) (let ((array-type (lvar-type array))) (when (or (not (array-type-p array-type)) (eql (array-type-specialized-element-type array-type) *wild-type*)) (give-up-ir1-transform)) ;; It shouldn't be possible to get here with anything but a non-complex ;; vector. (aver (not (array-type-complexp array-type))) (let* ((element-type (type-specifier (array-type-specialized-element-type array-type))) (saetp (find-saetp element-type))) (when (< (sb!vm:saetp-n-bits saetp) sb!vm:n-byte-bits) (give-up-ir1-transform)) (fold-index-addressing 'data-vector-ref-with-offset (sb!vm:saetp-n-bits saetp) sb!vm:other-pointer-lowtag sb!vm:vector-data-offset index offset)))) (deftransform hairy-data-vector-set ((string index new-value) (simple-string t t)) (let ((ctype (lvar-type string))) (if (array-type-p ctype) ;; the other transform will kick in, so that's OK (give-up-ir1-transform) `(etypecase string ((simple-array character (*)) (data-vector-set string index new-value)) #!+sb-unicode ((simple-array base-char (*)) (data-vector-set string index new-value)) ((simple-array nil (*)) (data-vector-set string index new-value)))))) ;;; This and the corresponding -REF transform work equally well on non-simple ;;; arrays, but after benchmarking (on x86), Nikodemus didn't find any cases ;;; where it actually helped with non-simple arrays -- to the contrary, it ;;; only made for bigger and up 1o 100% slower code. (deftransform hairy-data-vector-set ((array index new-value) (simple-array t t) *) "avoid runtime dispatch on array element type" (let* ((type (lvar-type array)) (element-ctype (array-type-upgraded-element-type type)) (declared-element-ctype (array-type-declared-element-type type))) (declare (type ctype element-ctype)) (when (eq *wild-type* element-ctype) (give-up-ir1-transform "Upgraded element type of array is not known at compile time.")) (let ((element-type-specifier (type-specifier element-ctype))) `(multiple-value-bind (array index) (%data-vector-and-index array index) (declare (type (simple-array ,element-type-specifier 1) array) (type ,element-type-specifier new-value)) ,(if (type= element-ctype declared-element-ctype) '(data-vector-set array index new-value) `(truly-the ,(type-specifier declared-element-ctype) (data-vector-set array index (the ,(type-specifier declared-element-ctype) new-value)))))))) ;;; Transform multi-dimensional array to one dimensional data vector ;;; access. (deftransform data-vector-set ((array index new-value) (simple-array t t)) (let ((array-type (lvar-type array))) (unless (array-type-p array-type) (give-up-ir1-transform)) (let ((dims (array-type-dimensions array-type))) (when (or (atom dims) (= (length dims) 1)) (give-up-ir1-transform)) (let ((el-type (array-type-specialized-element-type array-type)) (total-size (if (member '* dims) '* (reduce #'* dims)))) `(data-vector-set (truly-the (simple-array ,(type-specifier el-type) (,total-size)) (%array-data-vector array)) index new-value))))) ;;; Transform data vector access to a form that opens up optimization ;;; opportunities. #!+(or x86 x86-64) (define-source-transform data-vector-set (array index new-value) `(data-vector-set-with-offset ,array ,index 0 ,new-value)) #!+(or x86 x86-64) (deftransform data-vector-set-with-offset ((array index offset new-value)) (let ((array-type (lvar-type array))) (when (or (not (array-type-p array-type)) (eql (array-type-specialized-element-type array-type) *wild-type*)) ;; We don't yet know the exact element type, but will get that ;; knowledge after some more type propagation. (give-up-ir1-transform)) (aver (not (array-type-complexp array-type))) (let* ((element-type (type-specifier (array-type-specialized-element-type array-type))) (saetp (find-saetp element-type))) (when (< (sb!vm:saetp-n-bits saetp) sb!vm:n-byte-bits) (give-up-ir1-transform)) (fold-index-addressing 'data-vector-set-with-offset (sb!vm:saetp-n-bits saetp) sb!vm:other-pointer-lowtag sb!vm:vector-data-offset index offset t)))) (defun maybe-array-data-vector-type-specifier (array-lvar) (let ((atype (lvar-type array-lvar))) (when (array-type-p atype) (let ((dims (array-type-dimensions atype))) (if (or (array-type-complexp atype) (eq '* dims) (notevery #'integerp dims)) `(simple-array ,(type-specifier (array-type-specialized-element-type atype)) (*)) `(simple-array ,(type-specifier (array-type-specialized-element-type atype)) (,(apply #'* dims)))))))) (macrolet ((def (name) `(defoptimizer (,name derive-type) ((array-lvar)) (let ((spec (maybe-array-data-vector-type-specifier array-lvar))) (when spec (specifier-type spec)))))) (def %array-data-vector) (def array-storage-vector)) (defoptimizer (%data-vector-and-index derive-type) ((array index)) (let ((spec (maybe-array-data-vector-type-specifier array))) (when spec (values-specifier-type `(values ,spec index))))) (deftransform %data-vector-and-index ((%array %index) (simple-array t) *) ;; KLUDGE: why the percent signs? Well, ARRAY and INDEX are ;; respectively exported from the CL and SB!INT packages, which ;; means that they're visible to all sorts of things. If the ;; compiler can prove that the call to ARRAY-HEADER-P, below, either ;; returns T or NIL, it will delete the irrelevant branch. However, ;; user code might have got here with a variable named CL:ARRAY, and ;; quite often compiler code with a variable named SB!INT:INDEX, so ;; this can generate code deletion notes for innocuous user code: ;; (DEFUN F (ARRAY I) (DECLARE (SIMPLE-VECTOR ARRAY)) (AREF ARRAY I)) ;; -- CSR, 2003-04-01 ;; We do this solely for the -OR-GIVE-UP side effect, since we want ;; to know that the type can be figured out in the end before we ;; proceed, but we don't care yet what the type will turn out to be. (upgraded-element-type-specifier-or-give-up %array) '(if (array-header-p %array) (values (%array-data-vector %array) %index) (values %array %index))) ;;;; BIT-VECTOR hackery ;;; SIMPLE-BIT-VECTOR bit-array operations are transformed to a word ;;; loop that does 32 bits at a time. ;;; ;;; FIXME: This is a lot of repeatedly macroexpanded code. It should ;;; be a function call instead. (macrolet ((def (bitfun wordfun) `(deftransform ,bitfun ((bit-array-1 bit-array-2 result-bit-array) (simple-bit-vector simple-bit-vector simple-bit-vector) * :node node :policy (>= speed space)) `(progn ,@(unless (policy node (zerop safety)) '((unless (= (length bit-array-1) (length bit-array-2) (length result-bit-array)) (error "Argument and/or result bit arrays are not the same length:~ ~% ~S~% ~S ~% ~S" bit-array-1 bit-array-2 result-bit-array)))) (let ((length (length result-bit-array))) (if (= length 0) ;; We avoid doing anything to 0-length ;; bit-vectors, or rather, the memory that ;; follows them. Other divisible-by-32 cases ;; are handled by the (1- length), below. ;; CSR, 2002-04-24 result-bit-array (do ((index 0 (1+ index)) ;; bit-vectors of length 1-32 need ;; precisely one (SETF %VECTOR-RAW-BITS), ;; done here in the epilogue. - CSR, ;; 2002-04-24 (end-1 (truncate (truly-the index (1- length)) sb!vm:n-word-bits))) ((>= index end-1) (setf (%vector-raw-bits result-bit-array index) (,',wordfun (%vector-raw-bits bit-array-1 index) (%vector-raw-bits bit-array-2 index))) result-bit-array) (declare (optimize (speed 3) (safety 0)) (type index index end-1)) (setf (%vector-raw-bits result-bit-array index) (,',wordfun (%vector-raw-bits bit-array-1 index) (%vector-raw-bits bit-array-2 index)))))))))) (def bit-and word-logical-and) (def bit-ior word-logical-or) (def bit-xor word-logical-xor) (def bit-eqv word-logical-eqv) (def bit-nand word-logical-nand) (def bit-nor word-logical-nor) (def bit-andc1 word-logical-andc1) (def bit-andc2 word-logical-andc2) (def bit-orc1 word-logical-orc1) (def bit-orc2 word-logical-orc2)) (deftransform bit-not ((bit-array result-bit-array) (simple-bit-vector simple-bit-vector) * :node node :policy (>= speed space)) `(progn ,@(unless (policy node (zerop safety)) '((unless (= (length bit-array) (length result-bit-array)) (error "Argument and result bit arrays are not the same length:~ ~% ~S~% ~S" bit-array result-bit-array)))) (let ((length (length result-bit-array))) (if (= length 0) ;; We avoid doing anything to 0-length bit-vectors, or rather, ;; the memory that follows them. Other divisible-by ;; n-word-bits cases are handled by the (1- length), below. ;; CSR, 2002-04-24 result-bit-array (do ((index 0 (1+ index)) ;; bit-vectors of length 1 to n-word-bits need precisely ;; one (SETF %VECTOR-RAW-BITS), done here in the ;; epilogue. - CSR, 2002-04-24 (end-1 (truncate (truly-the index (1- length)) sb!vm:n-word-bits))) ((>= index end-1) (setf (%vector-raw-bits result-bit-array index) (word-logical-not (%vector-raw-bits bit-array index))) result-bit-array) (declare (optimize (speed 3) (safety 0)) (type index index end-1)) (setf (%vector-raw-bits result-bit-array index) (word-logical-not (%vector-raw-bits bit-array index)))))))) (deftransform bit-vector-= ((x y) (simple-bit-vector simple-bit-vector)) `(and (= (length x) (length y)) (let ((length (length x))) (or (= length 0) (do* ((i 0 (+ i 1)) (end-1 (floor (1- length) sb!vm:n-word-bits))) ((>= i end-1) (let* ((extra (1+ (mod (1- length) sb!vm:n-word-bits))) (mask (ash #.(1- (ash 1 sb!vm:n-word-bits)) (- extra sb!vm:n-word-bits))) (numx (logand (ash mask ,(ecase sb!c:*backend-byte-order* (:little-endian 0) (:big-endian '(- sb!vm:n-word-bits extra)))) (%vector-raw-bits x i))) (numy (logand (ash mask ,(ecase sb!c:*backend-byte-order* (:little-endian 0) (:big-endian '(- sb!vm:n-word-bits extra)))) (%vector-raw-bits y i)))) (declare (type (integer 1 #.sb!vm:n-word-bits) extra) (type sb!vm:word mask numx numy)) (= numx numy))) (declare (type index i end-1)) (let ((numx (%vector-raw-bits x i)) (numy (%vector-raw-bits y i))) (declare (type sb!vm:word numx numy)) (unless (= numx numy) (return nil)))))))) (deftransform count ((item sequence) (bit simple-bit-vector) * :policy (>= speed space)) `(let ((length (length sequence))) (if (zerop length) 0 (do ((index 0 (1+ index)) (count 0) (end-1 (truncate (truly-the index (1- length)) sb!vm:n-word-bits))) ((>= index end-1) (let* ((extra (1+ (mod (1- length) sb!vm:n-word-bits))) (mask (ash #.(1- (ash 1 sb!vm:n-word-bits)) (- extra sb!vm:n-word-bits))) (bits (logand (ash mask ,(ecase sb!c:*backend-byte-order* (:little-endian 0) (:big-endian '(- sb!vm:n-word-bits extra)))) (%vector-raw-bits sequence index)))) (declare (type (integer 1 #.sb!vm:n-word-bits) extra)) (declare (type sb!vm:word mask bits)) (incf count (logcount bits)) ,(if (constant-lvar-p item) (if (zerop (lvar-value item)) '(- length count) 'count) '(if (zerop item) (- length count) count)))) (declare (type index index count end-1) (optimize (speed 3) (safety 0))) (incf count (logcount (%vector-raw-bits sequence index))))))) (deftransform fill ((sequence item) (simple-bit-vector bit) * :policy (>= speed space)) (let ((value (if (constant-lvar-p item) (if (= (lvar-value item) 0) 0 #.(1- (ash 1 sb!vm:n-word-bits))) `(if (= item 0) 0 #.(1- (ash 1 sb!vm:n-word-bits)))))) `(let ((length (length sequence)) (value ,value)) (if (= length 0) sequence (do ((index 0 (1+ index)) ;; bit-vectors of length 1 to n-word-bits need precisely ;; one (SETF %VECTOR-RAW-BITS), done here in the ;; epilogue. - CSR, 2002-04-24 (end-1 (truncate (truly-the index (1- length)) sb!vm:n-word-bits))) ((>= index end-1) (setf (%vector-raw-bits sequence index) value) sequence) (declare (optimize (speed 3) (safety 0)) (type index index end-1)) (setf (%vector-raw-bits sequence index) value)))))) (deftransform fill ((sequence item) (simple-base-string base-char) * :policy (>= speed space)) (let ((value (if (constant-lvar-p item) (let* ((char (lvar-value item)) (code (sb!xc:char-code char)) (accum 0)) (dotimes (i sb!vm:n-word-bytes accum) (setf accum (logior accum (ash code (* 8 i)))))) `(let ((code (sb!xc:char-code item))) (logior ,@(loop for i from 0 below sb!vm:n-word-bytes collect `(ash code ,(* 8 i)))))))) `(let ((length (length sequence)) (value ,value)) (multiple-value-bind (times rem) (truncate length sb!vm:n-word-bytes) (do ((index 0 (1+ index)) (end times)) ((>= index end) (let ((place (* times sb!vm:n-word-bytes))) (declare (fixnum place)) (dotimes (j rem sequence) (declare (index j)) (setf (schar sequence (the index (+ place j))) item)))) (declare (optimize (speed 3) (safety 0)) (type index index)) (setf (%vector-raw-bits sequence index) value)))))) ;;;; %BYTE-BLT ;;; FIXME: The old CMU CL code used various COPY-TO/FROM-SYSTEM-AREA ;;; stuff (with all the associated bit-index cruft and overflow ;;; issues) even for byte moves. In SBCL, we're converting to byte ;;; moves as problems are discovered with the old code, and this is ;;; currently (ca. sbcl-0.6.12.30) the main interface for code in ;;; SB!KERNEL and SB!SYS (e.g. i/o code). It's not clear that it's the ;;; ideal interface, though, and it probably deserves some thought. (deftransform %byte-blt ((src src-start dst dst-start dst-end) ((or (simple-unboxed-array (*)) system-area-pointer) index (or (simple-unboxed-array (*)) system-area-pointer) index index)) ;; FIXME: CMU CL had a hairier implementation of this (back when it ;; was still called (%PRIMITIVE BYTE-BLT). It had the small problem ;; that it didn't work for large (>16M) values of SRC-START or ;; DST-START. However, it might have been more efficient. In ;; particular, I don't really know how much the foreign function ;; call costs us here. My guess is that if the overhead is ;; acceptable for SQRT and COS, it's acceptable here, but this ;; should probably be checked. -- WHN '(flet ((sapify (thing) (etypecase thing (system-area-pointer thing) ;; FIXME: The code here rather relies on the simple ;; unboxed array here having byte-sized entries. That ;; should be asserted explicitly, I just haven't found ;; a concise way of doing it. (It would be nice to ;; declare it in the DEFKNOWN too.) ((simple-unboxed-array (*)) (vector-sap thing))))) (declare (inline sapify)) (with-pinned-objects (dst src) (memmove (sap+ (sapify dst) dst-start) (sap+ (sapify src) src-start) (- dst-end dst-start))) (values))) ;;;; transforms for EQL of floating point values #!-float-eql-vops (deftransform eql ((x y) (single-float single-float)) '(= (single-float-bits x) (single-float-bits y))) #!-float-eql-vops (deftransform eql ((x y) (double-float double-float)) '(and (= (double-float-low-bits x) (double-float-low-bits y)) (= (double-float-high-bits x) (double-float-high-bits y)))) ;;;; modular functions ;;; ;;; FIXME: I think that the :GOODness of a modular function boils down ;;; to whether the normal definition can be used in the middle of a ;;; modular arrangement. LOGAND and LOGIOR can be for all unsigned ;;; modular implementations, I believe, because for all unsigned ;;; arguments of a given size the result of the ordinary definition is ;;; the right one. This should follow through to other logical ;;; functions, such as LOGXOR, should it not? -- CSR, 2007-12-29, ;;; trying to understand a comment he wrote over four years ;;; previously: "FIXME: XOR? ANDC1, ANDC2? -- CSR, 2003-09-16" (define-good-modular-fun logand :untagged nil) (define-good-modular-fun logior :untagged nil) (define-good-modular-fun logxor :untagged nil) (macrolet ((define-good-signed-modular-funs (&rest funs) (let (result) `(progn ,@(dolist (fun funs (nreverse result)) (push `(define-good-modular-fun ,fun :untagged t) result) (push `(define-good-modular-fun ,fun :tagged t) result)))))) (define-good-signed-modular-funs logand logandc1 logandc2 logeqv logior lognand lognor lognot logorc1 logorc2 logxor)) (macrolet ((def (name kind width signedp) (let ((type (ecase signedp ((nil) 'unsigned-byte) ((t) 'signed-byte)))) `(progn (defknown ,name (integer (integer 0)) (,type ,width) (foldable flushable movable)) (define-modular-fun-optimizer ash ((integer count) ,kind ,signedp :width width) (when (and (<= width ,width) (or (and (constant-lvar-p count) (plusp (lvar-value count))) (csubtypep (lvar-type count) (specifier-type '(and unsigned-byte fixnum))))) (cut-to-width integer ,kind width ,signedp) ',name)) (setf (gethash ',name (modular-class-versions (find-modular-class ',kind ',signedp))) `(ash ,',width)))))) ;; This should really be dependent on SB!VM:N-WORD-BITS, but since we ;; don't have a true Alpha64 port yet, we'll have to stick to ;; SB!VM:N-MACHINE-WORD-BITS for the time being. --njf, 2004-08-14 #.`(progn #!+(or x86 x86-64) (def sb!vm::ash-left-modfx :tagged ,(- sb!vm:n-word-bits sb!vm:n-fixnum-tag-bits) t) (def ,(intern (format nil "ASH-LEFT-MOD~D" sb!vm:n-machine-word-bits) "SB!VM") :untagged ,sb!vm:n-machine-word-bits nil))) ;;;; word-wise logical operations ;;; These transforms assume the presence of modular arithmetic to ;;; generate efficient code. (define-source-transform word-logical-not (x) `(logand (lognot (the sb!vm:word ,x)) #.(1- (ash 1 sb!vm:n-word-bits)))) (deftransform word-logical-and ((x y)) '(logand x y)) (deftransform word-logical-nand ((x y)) '(logand (lognand x y) #.(1- (ash 1 sb!vm:n-word-bits)))) (deftransform word-logical-or ((x y)) '(logior x y)) (deftransform word-logical-nor ((x y)) '(logand (lognor x y) #.(1- (ash 1 sb!vm:n-word-bits)))) (deftransform word-logical-xor ((x y)) '(logxor x y)) (deftransform word-logical-eqv ((x y)) '(logand (logeqv x y) #.(1- (ash 1 sb!vm:n-word-bits)))) (deftransform word-logical-orc1 ((x y)) '(logand (logorc1 x y) #.(1- (ash 1 sb!vm:n-word-bits)))) (deftransform word-logical-orc2 ((x y)) '(logand (logorc2 x y) #.(1- (ash 1 sb!vm:n-word-bits)))) (deftransform word-logical-andc1 ((x y)) '(logand (logandc1 x y) #.(1- (ash 1 sb!vm:n-word-bits)))) (deftransform word-logical-andc2 ((x y)) '(logand (logandc2 x y) #.(1- (ash 1 sb!vm:n-word-bits)))) ;;; There are two different ways the multiplier can be recoded. The ;;; more obvious is to shift X by the correct amount for each bit set ;;; in Y and to sum the results. But if there is a string of bits that ;;; are all set, you can add X shifted by one more then the bit ;;; position of the first set bit and subtract X shifted by the bit ;;; position of the last set bit. We can't use this second method when ;;; the high order bit is bit 31 because shifting by 32 doesn't work ;;; too well. (defun ub32-strength-reduce-constant-multiply (arg num) (declare (type (unsigned-byte 32) num)) (let ((adds 0) (shifts 0) (result nil) first-one) (labels ((add (next-factor) (setf result (if result (progn (incf adds) `(+ ,result ,next-factor)) next-factor)))) (declare (inline add)) (dotimes (bitpos 32) (if first-one (when (not (logbitp bitpos num)) (add (if (= (1+ first-one) bitpos) ;; There is only a single bit in the string. (progn (incf shifts) `(ash ,arg ,first-one)) ;; There are at least two. (progn (incf adds) (incf shifts 2) `(- (ash ,arg ,bitpos) (ash ,arg ,first-one))))) (setf first-one nil)) (when (logbitp bitpos num) (setf first-one bitpos)))) (when first-one (cond ((= first-one 31)) ((= first-one 30) (incf shifts) (add `(ash ,arg 30))) (t (incf shifts 2) (incf adds) (add `(- (ash ,arg 31) (ash ,arg ,first-one))))) (incf shifts) (add `(ash ,arg 31)))) (values (if (plusp adds) `(logand ,result #.(1- (ash 1 32))) ; using modular arithmetic result) adds shifts))) ;;; Transform GET-LISP-OBJ-ADDRESS for constant immediates, since the normal ;;; VOP can't handle them. (deftransform sb!vm::get-lisp-obj-address ((obj) ((constant-arg fixnum))) (ash (lvar-value obj) sb!vm::n-fixnum-tag-bits)) (deftransform sb!vm::get-lisp-obj-address ((obj) ((constant-arg character))) (logior sb!vm::character-widetag (ash (char-code (lvar-value obj)) sb!vm::n-widetag-bits)))