;;;; This file contains code which does the translation of lambda ;;;; forms from Lisp code to the first intermediate representation ;;;; (IR1). ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!C") ;;;; LAMBDA hackery ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy ;;;; function representation" before you seriously mess with this ;;;; stuff. ;;; Verify that the NAME is a legal name for a variable and return a ;;; VAR structure for it, filling in info if it is globally special. ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a ;;; list of names which have previously been bound. If the NAME is in ;;; this list, then we error out. (declaim (ftype (sfunction (t list) lambda-var) varify-lambda-arg)) (defun varify-lambda-arg (name names-so-far) (declare (inline member)) (unless (symbolp name) (compiler-error "The lambda variable ~S is not a symbol." name)) (when (member name names-so-far :test #'eq) (compiler-error "The variable ~S occurs more than once in the lambda list." name)) (let ((kind (info :variable :kind name))) (when (or (keywordp name) (eq kind :constant)) (compiler-error "The name of the lambda variable ~S is already in use to name a constant." name)) (cond ((eq kind :special) (let ((specvar (find-free-var name))) (make-lambda-var :%source-name name :type (leaf-type specvar) :where-from (leaf-where-from specvar) :specvar specvar))) (t (make-lambda-var :%source-name name))))) ;;; Make the default keyword for a &KEY arg, checking that the keyword ;;; isn't already used by one of the VARS. (declaim (ftype (sfunction (symbol list t) symbol) make-keyword-for-arg)) (defun make-keyword-for-arg (symbol vars keywordify) (let ((key (if (and keywordify (not (keywordp symbol))) (keywordicate symbol) symbol))) (dolist (var vars) (let ((info (lambda-var-arg-info var))) (when (and info (eq (arg-info-kind info) :keyword) (eq (arg-info-key info) key)) (compiler-error "The keyword ~S appears more than once in the lambda list." key)))) key)) ;;; Parse a lambda list into a list of VAR structures, stripping off ;;; any &AUX bindings. Each arg name is checked for legality, and ;;; duplicate names are checked for. If an arg is globally special, ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY, ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure ;;; which contains the extra information. If we hit something losing, ;;; we bug out with COMPILER-ERROR. These values are returned: ;;; 1. a list of the var structures for each top level argument; ;;; 2. a flag indicating whether &KEY was specified; ;;; 3. a flag indicating whether other &KEY args are allowed; ;;; 4. a list of the &AUX variables; and ;;; 5. a list of the &AUX values. (declaim (ftype (sfunction (list) (values list boolean boolean list list)) make-lambda-vars)) (defun make-lambda-vars (list) (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux morep more-context more-count) (parse-lambda-list list) (declare (ignore auxp)) ; since we just iterate over AUX regardless (collect ((vars) (names-so-far) (aux-vars) (aux-vals)) (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args ;; for optionals and keywords args. (parse-default (spec info) (when (consp (cdr spec)) (setf (arg-info-default info) (second spec)) (when (consp (cddr spec)) (let* ((supplied-p (third spec)) (supplied-var (varify-lambda-arg supplied-p (names-so-far)))) (setf (arg-info-supplied-p info) supplied-var) (names-so-far supplied-p) (when (> (length (the list spec)) 3) (compiler-error "The list ~S is too long to be an arg specifier." spec))))))) (dolist (name required) (let ((var (varify-lambda-arg name (names-so-far)))) (vars var) (names-so-far name))) (dolist (spec optional) (if (atom spec) (let ((var (varify-lambda-arg spec (names-so-far)))) (setf (lambda-var-arg-info var) (make-arg-info :kind :optional)) (vars var) (names-so-far spec)) (let* ((name (first spec)) (var (varify-lambda-arg name (names-so-far))) (info (make-arg-info :kind :optional))) (setf (lambda-var-arg-info var) info) (vars var) (names-so-far name) (parse-default spec info)))) (when restp (let ((var (varify-lambda-arg rest (names-so-far)))) (setf (lambda-var-arg-info var) (make-arg-info :kind :rest)) (vars var) (names-so-far rest))) (when morep (let ((var (varify-lambda-arg more-context (names-so-far)))) (setf (lambda-var-arg-info var) (make-arg-info :kind :more-context)) (vars var) (names-so-far more-context)) (let ((var (varify-lambda-arg more-count (names-so-far)))) (setf (lambda-var-arg-info var) (make-arg-info :kind :more-count)) (vars var) (names-so-far more-count))) (dolist (spec keys) (cond ((atom spec) (let ((var (varify-lambda-arg spec (names-so-far)))) (setf (lambda-var-arg-info var) (make-arg-info :kind :keyword :key (make-keyword-for-arg spec (vars) t))) (vars var) (names-so-far spec))) ((atom (first spec)) (let* ((name (first spec)) (var (varify-lambda-arg name (names-so-far))) (info (make-arg-info :kind :keyword :key (make-keyword-for-arg name (vars) t)))) (setf (lambda-var-arg-info var) info) (vars var) (names-so-far name) (parse-default spec info))) (t (let ((head (first spec))) (unless (proper-list-of-length-p head 2) (error "malformed &KEY argument specifier: ~S" spec)) (let* ((name (second head)) (var (varify-lambda-arg name (names-so-far))) (info (make-arg-info :kind :keyword :key (make-keyword-for-arg (first head) (vars) nil)))) (setf (lambda-var-arg-info var) info) (vars var) (names-so-far name) (parse-default spec info)))))) (dolist (spec aux) (cond ((atom spec) (let ((var (varify-lambda-arg spec nil))) (aux-vars var) (aux-vals nil) (names-so-far spec))) (t (unless (proper-list-of-length-p spec 1 2) (compiler-error "malformed &AUX binding specifier: ~S" spec)) (let* ((name (first spec)) (var (varify-lambda-arg name nil))) (aux-vars var) (aux-vals (second spec)) (names-so-far name))))) (values (vars) keyp allowp (aux-vars) (aux-vals)))))) ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before ;;; converting the body. If there are no bindings, just convert the ;;; body, otherwise do one binding and recurse on the rest. ;;; ;;; FIXME: This could and probably should be converted to use ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings, ;;; so I'm not motivated. Patches will be accepted... (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals) (declare (type ctran start next) (type (or lvar null) result) (list body aux-vars aux-vals)) (if (null aux-vars) (ir1-convert-progn-body start next result body) (let ((ctran (make-ctran)) (fun-lvar (make-lvar)) (fun (ir1-convert-lambda-body body (list (first aux-vars)) :aux-vars (rest aux-vars) :aux-vals (rest aux-vals) :debug-name (debug-namify "&AUX bindings " aux-vars)))) (reference-leaf start ctran fun-lvar fun) (ir1-convert-combination-args fun-lvar ctran next result (list (first aux-vals))))) (values)) ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind ;;; the SPECVAR for each SVAR to the value of the variable is wrapped ;;; around the body. If there are no special bindings, we just convert ;;; the body, otherwise we do one special binding and recurse on the ;;; rest. ;;; ;;; We make a cleanup and introduce it into the lexical ;;; environment. If there are multiple special bindings, the cleanup ;;; for the blocks will end up being the innermost one. We force NEXT ;;; to start a block outside of this cleanup, causing cleanup code to ;;; be emitted when the scope is exited. (defun ir1-convert-special-bindings (start next result body aux-vars aux-vals svars) (declare (type ctran start next) (type (or lvar null) result) (list body aux-vars aux-vals svars)) (cond ((null svars) (ir1-convert-aux-bindings start next result body aux-vars aux-vals)) (t (ctran-starts-block next) (let ((cleanup (make-cleanup :kind :special-bind)) (var (first svars)) (bind-ctran (make-ctran)) (cleanup-ctran (make-ctran))) (ir1-convert start bind-ctran nil `(%special-bind ',(lambda-var-specvar var) ,var)) (setf (cleanup-mess-up cleanup) (ctran-use bind-ctran)) (let ((*lexenv* (make-lexenv :cleanup cleanup))) (ir1-convert bind-ctran cleanup-ctran nil '(%cleanup-point)) (ir1-convert-special-bindings cleanup-ctran next result body aux-vars aux-vals (rest svars)))))) (values)) ;;; FIXME: this is the interface of the CMUCL WITH-DYNAMIC-EXTENT ;;; macro. It is slightly confusing, in that START and BODY-START are ;;; already-existing CTRANs (and FIXME: probably deserve a ONCE-ONLY), ;;; whereas NEXT is a variable naming a CTRAN in the body. -- CSR, ;;; 2004-03-30. (defmacro with-dynamic-extent ((start body-start next kind) &body body) (declare (ignore kind)) (with-unique-names (cleanup next-ctran) `(progn (ctran-starts-block ,body-start) (let ((,cleanup (make-cleanup :kind :dynamic-extent)) (,next-ctran (make-ctran)) (,next (make-ctran))) (ir1-convert ,start ,next-ctran nil '(%dynamic-extent-start)) (setf (cleanup-mess-up ,cleanup) (ctran-use ,next-ctran)) (let ((*lexenv* (make-lexenv :cleanup ,cleanup))) (ir1-convert ,next-ctran ,next nil '(%cleanup-point)) (locally ,@body)))))) ;;; Create a lambda node out of some code, returning the result. The ;;; bindings are specified by the list of VAR structures VARS. We deal ;;; with adding the names to the LEXENV-VARS for the conversion. The ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT* ;;; and linked to the component head and tail. ;;; ;;; We detect special bindings here, replacing the original VAR in the ;;; lambda list with a temporary variable. We then pass a list of the ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits ;;; the special binding code. ;;; ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT. ;;; ;;; AUX-VARS is a list of VAR structures for variables that are to be ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated ;;; to get the initial value for the corresponding AUX-VAR. (defun ir1-convert-lambda-body (body vars &key aux-vars aux-vals (source-name '.anonymous.) debug-name (note-lexical-bindings t)) (declare (list body vars aux-vars aux-vals)) ;; We're about to try to put new blocks into *CURRENT-COMPONENT*. (aver-live-component *current-component*) (let* ((bind (make-bind)) (lambda (make-lambda :vars vars :bind bind :%source-name source-name :%debug-name debug-name)) (result-ctran (make-ctran)) (result-lvar (make-lvar)) (dx-rest nil)) (awhen (lexenv-lambda *lexenv*) (push lambda (lambda-children it)) (setf (lambda-parent lambda) it)) ;; just to check: This function should fail internal assertions if ;; we didn't set up a valid debug name above. ;; ;; (In SBCL we try to make everything have a debug name, since we ;; lack the omniscient perspective the original implementors used ;; to decide which things didn't need one.) (functional-debug-name lambda) (setf (lambda-home lambda) lambda) (collect ((svars) (new-venv nil cons)) (dolist (var vars) ;; As far as I can see, LAMBDA-VAR-HOME should never have ;; been set before. Let's make sure. -- WHN 2001-09-29 (aver (not (lambda-var-home var))) (setf (lambda-var-home var) lambda) (let ((specvar (lambda-var-specvar var))) (cond (specvar (svars var) (new-venv (cons (leaf-source-name specvar) specvar))) (t (when note-lexical-bindings (note-lexical-binding (leaf-source-name var))) (new-venv (cons (leaf-source-name var) var))))) (let ((info (lambda-var-arg-info var))) (when (and info (eq (arg-info-kind info) :rest) (leaf-dynamic-extent var)) (setq dx-rest t)))) (let ((*lexenv* (make-lexenv :vars (new-venv) :lambda lambda :cleanup nil))) (setf (bind-lambda bind) lambda) (setf (node-lexenv bind) *lexenv*) (let ((block (ctran-starts-block result-ctran))) (let ((return (make-return :result result-lvar :lambda lambda)) (tail-set (make-tail-set :funs (list lambda)))) (setf (lambda-tail-set lambda) tail-set) (setf (lambda-return lambda) return) (setf (lvar-dest result-lvar) return) (link-node-to-previous-ctran return result-ctran) (setf (block-last block) return)) (link-blocks block (component-tail *current-component*))) (with-component-last-block (*current-component* (ctran-block result-ctran)) (let ((prebind-ctran (make-ctran)) (postbind-ctran (make-ctran))) (ctran-starts-block prebind-ctran) (link-node-to-previous-ctran bind prebind-ctran) (use-ctran bind postbind-ctran) (if dx-rest (with-dynamic-extent (postbind-ctran result-ctran dx :rest) (ir1-convert-special-bindings dx result-ctran result-lvar body aux-vars aux-vals (svars))) (ir1-convert-special-bindings postbind-ctran result-ctran result-lvar body aux-vars aux-vals (svars))))))) (link-blocks (component-head *current-component*) (node-block bind)) (push lambda (component-new-functionals *current-component*)) lambda)) ;;; Entry point CLAMBDAs have a special kind (defun register-entry-point (entry dispatcher) (declare (type clambda entry) (type optional-dispatch dispatcher)) (setf (functional-kind entry) :optional) (setf (leaf-ever-used entry) t) (setf (lambda-optional-dispatch entry) dispatcher) entry) ;;; Create the actual entry-point function for an optional entry ;;; point. The lambda binds copies of each of the VARS, then calls FUN ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer ;;; to the VARS by name. The VALS are passed in the reverse order. ;;; ;;; If any of the copies of the vars are referenced more than once, ;;; then we mark the corresponding var as EVER-USED to inhibit ;;; "defined but not read" warnings for arguments that are only used ;;; by default forms. (defun convert-optional-entry (fun vars vals defaults) (declare (type clambda fun) (list vars vals defaults)) (let* ((fvars (reverse vars)) (arg-vars (mapcar (lambda (var) (make-lambda-var :%source-name (leaf-source-name var) :type (leaf-type var) :where-from (leaf-where-from var) :specvar (lambda-var-specvar var))) fvars)) (fun (collect ((default-bindings) (default-vals)) (dolist (default defaults) (if (constantp default) (default-vals default) (let ((var (gensym))) (default-bindings `(,var ,default)) (default-vals var)))) (ir1-convert-lambda-body `((let (,@(default-bindings)) (%funcall ,fun ,@(reverse vals) ,@(default-vals)))) arg-vars :debug-name (debug-namify "&OPTIONAL processor " (gensym)) :note-lexical-bindings nil)))) (mapc (lambda (var arg-var) (when (cdr (leaf-refs arg-var)) (setf (leaf-ever-used var) t))) fvars arg-vars) fun)) ;;; This function deals with supplied-p vars in optional arguments. If ;;; the there is no supplied-p arg, then we just call ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a ;;; optional entry that calls the result. If there is a supplied-p ;;; var, then we add it into the default vars and throw a T into the ;;; entry values. The resulting entry point function is returned. (defun generate-optional-default-entry (res default-vars default-vals entry-vars entry-vals vars supplied-p-p body aux-vars aux-vals source-name debug-name force) (declare (type optional-dispatch res) (list default-vars default-vals entry-vars entry-vals vars body aux-vars aux-vals)) (let* ((arg (first vars)) (arg-name (leaf-source-name arg)) (info (lambda-var-arg-info arg)) (default (arg-info-default info)) (supplied-p (arg-info-supplied-p info)) (force (or force (not (sb!xc:constantp (arg-info-default info))))) (ep (if supplied-p (ir1-convert-hairy-args res (list* supplied-p arg default-vars) (list* (leaf-source-name supplied-p) arg-name default-vals) (cons arg entry-vars) (list* t arg-name entry-vals) (rest vars) t body aux-vars aux-vals source-name debug-name force) (ir1-convert-hairy-args res (cons arg default-vars) (cons arg-name default-vals) (cons arg entry-vars) (cons arg-name entry-vals) (rest vars) supplied-p-p body aux-vars aux-vals source-name debug-name force)))) ;; We want to delay converting the entry, but there exist ;; problems: hidden references should not be established to ;; lambdas of kind NIL should not have (otherwise the compiler ;; might let-convert or delete them) and to variables. (if (or force supplied-p-p ; this entry will be of kind NIL (and (lambda-p ep) (eq (lambda-kind ep) nil))) (convert-optional-entry ep default-vars default-vals (if supplied-p (list default nil) (list default))) (delay (register-entry-point (convert-optional-entry (force ep) default-vars default-vals (if supplied-p (list default nil) (list default))) res))))) ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES. ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars. ;;; ;;; The most interesting thing that we do is parse keywords. We create ;;; a bunch of temporary variables to hold the result of the parse, ;;; and then loop over the supplied arguments, setting the appropriate ;;; temps for the supplied keyword. Note that it is significant that ;;; we iterate over the keywords in reverse order --- this implements ;;; the CL requirement that (when a keyword appears more than once) ;;; the first value is used. ;;; ;;; If there is no supplied-p var, then we initialize the temp to the ;;; default and just pass the temp into the main entry. Since ;;; non-constant &KEY args are forcibly given a supplied-p var, we ;;; know that the default is constant, and thus safe to evaluate out ;;; of order. ;;; ;;; If there is a supplied-p var, then we create temps for both the ;;; value and the supplied-p, and pass them into the main entry, ;;; letting it worry about defaulting. ;;; ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors ;;; until we have scanned all the keywords. (defun convert-more-entry (res entry-vars entry-vals rest morep keys) (declare (type optional-dispatch res) (list entry-vars entry-vals keys)) (collect ((arg-vars) (arg-vals (reverse entry-vals)) (temps) (body)) (dolist (var (reverse entry-vars)) (arg-vars (make-lambda-var :%source-name (leaf-source-name var) :type (leaf-type var) :where-from (leaf-where-from var)))) (let* ((n-context (gensym "N-CONTEXT-")) (context-temp (make-lambda-var :%source-name n-context)) (n-count (gensym "N-COUNT-")) (count-temp (make-lambda-var :%source-name n-count :type (specifier-type 'index)))) (arg-vars context-temp count-temp) (when rest (arg-vals `(%listify-rest-args ,n-context ,n-count ,(leaf-dynamic-extent rest)))) (when morep (arg-vals n-context) (arg-vals n-count)) (when (optional-dispatch-keyp res) (let ((n-index (gensym "N-INDEX-")) (n-key (gensym "N-KEY-")) (n-value-temp (gensym "N-VALUE-TEMP-")) (n-allowp (gensym "N-ALLOWP-")) (n-losep (gensym "N-LOSEP-")) (allowp (or (optional-dispatch-allowp res) (policy *lexenv* (zerop safety)))) (found-allow-p nil)) (temps `(,n-index (1- ,n-count)) n-key n-value-temp) (body `(declare (fixnum ,n-index) (ignorable ,n-key ,n-value-temp))) (collect ((tests)) (dolist (key keys) (let* ((info (lambda-var-arg-info key)) (default (arg-info-default info)) (keyword (arg-info-key info)) (supplied-p (arg-info-supplied-p info)) (n-value (gensym "N-VALUE-")) (clause (cond (supplied-p (let ((n-supplied (gensym "N-SUPPLIED-"))) (temps n-supplied) (arg-vals n-value n-supplied) `((eq ,n-key ',keyword) (setq ,n-supplied t) (setq ,n-value ,n-value-temp)))) (t (arg-vals n-value) `((eq ,n-key ',keyword) (setq ,n-value ,n-value-temp)))))) (when (and (not allowp) (eq keyword :allow-other-keys)) (setq found-allow-p t) (setq clause (append clause `((setq ,n-allowp ,n-value-temp))))) (temps `(,n-value ,default)) (tests clause))) (unless allowp (temps n-allowp n-losep) (unless found-allow-p (tests `((eq ,n-key :allow-other-keys) (setq ,n-allowp ,n-value-temp)))) (tests `(t (setq ,n-losep (list ,n-key))))) (body `(when (oddp ,n-count) (%odd-key-args-error))) (body `(locally (declare (optimize (safety 0))) (loop (when (minusp ,n-index) (return)) (setf ,n-value-temp (%more-arg ,n-context ,n-index)) (decf ,n-index) (setq ,n-key (%more-arg ,n-context ,n-index)) (decf ,n-index) (cond ,@(tests))))) (unless allowp (body `(when (and ,n-losep (not ,n-allowp)) (%unknown-key-arg-error (car ,n-losep)))))))) (let ((ep (ir1-convert-lambda-body `((let ,(temps) ,@(body) (%funcall ,(optional-dispatch-main-entry res) ,@(arg-vals)))) (arg-vars) :debug-name "&MORE processing" :note-lexical-bindings nil))) (setf (optional-dispatch-more-entry res) (register-entry-point ep res))))) (values)) ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST ;;; or &KEY arg. The arguments are similar to that function, but we ;;; split off any &REST arg and pass it in separately. REST is the ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of ;;; the &KEY argument vars. ;;; ;;; When there are &KEY arguments, we introduce temporary gensym ;;; variables to hold the values while keyword defaulting is in ;;; progress to get the required sequential binding semantics. ;;; ;;; This gets interesting mainly when there are &KEY arguments with ;;; supplied-p vars or non-constant defaults. In either case, pass in ;;; a supplied-p var. If the default is non-constant, we introduce an ;;; IF in the main entry that tests the supplied-p var and decides ;;; whether to evaluate the default or not. In this case, the real ;;; incoming value is NIL, so we must union NULL with the declared ;;; type when computing the type for the main entry's argument. (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals rest more-context more-count keys supplied-p-p body aux-vars aux-vals source-name debug-name) (declare (type optional-dispatch res) (list default-vars default-vals entry-vars entry-vals keys body aux-vars aux-vals)) (collect ((main-vars (reverse default-vars)) (main-vals default-vals cons) (bind-vars) (bind-vals)) (when rest (main-vars rest) (main-vals '())) (when more-context (main-vars more-context) (main-vals nil) (main-vars more-count) (main-vals 0)) (dolist (key keys) (let* ((info (lambda-var-arg-info key)) (default (arg-info-default info)) (hairy-default (not (sb!xc:constantp default))) (supplied-p (arg-info-supplied-p info)) (n-val (make-symbol (format nil "~A-DEFAULTING-TEMP" (leaf-source-name key)))) (key-type (leaf-type key)) (val-temp (make-lambda-var :%source-name n-val :type (if hairy-default (type-union key-type (specifier-type 'null)) key-type)))) (main-vars val-temp) (bind-vars key) (cond ((or hairy-default supplied-p) (let* ((n-supplied (gensym "N-SUPPLIED-")) (supplied-temp (make-lambda-var :%source-name n-supplied))) (unless supplied-p (setf (arg-info-supplied-p info) supplied-temp)) (when hairy-default (setf (arg-info-default info) nil)) (main-vars supplied-temp) (cond (hairy-default (main-vals nil nil) (bind-vals `(if ,n-supplied ,n-val ,default))) (t (main-vals default nil) (bind-vals n-val))) (when supplied-p (bind-vars supplied-p) (bind-vals n-supplied)))) (t (main-vals (arg-info-default info)) (bind-vals n-val))))) (let* ((main-entry (ir1-convert-lambda-body body (main-vars) :aux-vars (append (bind-vars) aux-vars) :aux-vals (append (bind-vals) aux-vals) :debug-name (debug-namify "varargs entry for " source-name debug-name))) (last-entry (convert-optional-entry main-entry default-vars (main-vals) ()))) (setf (optional-dispatch-main-entry res) (register-entry-point main-entry res)) (convert-more-entry res entry-vars entry-vals rest more-context keys) (push (register-entry-point (if supplied-p-p (convert-optional-entry last-entry entry-vars entry-vals ()) last-entry) res) (optional-dispatch-entry-points res)) last-entry))) ;;; This function generates the entry point functions for the ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list ;;; of arguments, analyzing the arglist on the way down and generating ;;; entry points on the way up. ;;; ;;; DEFAULT-VARS is a reversed list of all the argument vars processed ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the ;;; names of the DEFAULT-VARS. ;;; ;;; ENTRY-VARS is a reversed list of processed argument vars, ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be ;;; evaluated to get the values for all the vars from the ENTRY-VARS. ;;; It has the var name for each required or optional arg, and has T ;;; for each supplied-p arg. ;;; ;;; VARS is a list of the LAMBDA-VAR structures for arguments that ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p ;;; argument has already been processed; only in this case are the ;;; DEFAULT-XXX and ENTRY-XXX different. ;;; ;;; The result at each point is a lambda which should be called by the ;;; above level to default the remaining arguments and evaluate the ;;; body. We cause the body to be evaluated by converting it and ;;; returning it as the result when the recursion bottoms out. ;;; ;;; Each level in the recursion also adds its entry point function to ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting ;;; function and the entry point function will be the same, but when ;;; SUPPLIED-P args are present they may be different. ;;; ;;; When we run into a &REST or &KEY arg, we punt out to ;;; IR1-CONVERT-MORE, which finishes for us in this case. (defun ir1-convert-hairy-args (res default-vars default-vals entry-vars entry-vals vars supplied-p-p body aux-vars aux-vals source-name debug-name force) (declare (type optional-dispatch res) (list default-vars default-vals entry-vars entry-vals vars body aux-vars aux-vals)) (cond ((not vars) (if (optional-dispatch-keyp res) ;; Handle &KEY with no keys... (ir1-convert-more res default-vars default-vals entry-vars entry-vals nil nil nil vars supplied-p-p body aux-vars aux-vals source-name debug-name) (let ((fun (ir1-convert-lambda-body body (reverse default-vars) :aux-vars aux-vars :aux-vals aux-vals :debug-name (debug-namify "hairy arg processor for " source-name debug-name)))) (setf (optional-dispatch-main-entry res) fun) (register-entry-point fun res) (push (if supplied-p-p (register-entry-point (convert-optional-entry fun entry-vars entry-vals ()) res) fun) (optional-dispatch-entry-points res)) fun))) ((not (lambda-var-arg-info (first vars))) (let* ((arg (first vars)) (nvars (cons arg default-vars)) (nvals (cons (leaf-source-name arg) default-vals))) (ir1-convert-hairy-args res nvars nvals nvars nvals (rest vars) nil body aux-vars aux-vals source-name debug-name nil))) (t (let* ((arg (first vars)) (info (lambda-var-arg-info arg)) (kind (arg-info-kind info))) (ecase kind (:optional (let ((ep (generate-optional-default-entry res default-vars default-vals entry-vars entry-vals vars supplied-p-p body aux-vars aux-vals source-name debug-name force))) ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY. (push (if (lambda-p ep) (register-entry-point (if supplied-p-p (convert-optional-entry ep entry-vars entry-vals ()) ep) res) (progn (aver (not supplied-p-p)) ep)) (optional-dispatch-entry-points res)) ep)) (:rest (ir1-convert-more res default-vars default-vals entry-vars entry-vals arg nil nil (rest vars) supplied-p-p body aux-vars aux-vals source-name debug-name)) (:more-context (ir1-convert-more res default-vars default-vals entry-vars entry-vals nil arg (second vars) (cddr vars) supplied-p-p body aux-vars aux-vals source-name debug-name)) (:keyword (ir1-convert-more res default-vars default-vals entry-vars entry-vals nil nil nil vars supplied-p-p body aux-vars aux-vals source-name debug-name))))))) ;;; This function deals with the case where we have to make an ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we ;;; figure out the MIN-ARGS and MAX-ARGS. (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals &key (source-name '.anonymous.) (debug-name (debug-namify "OPTIONAL-DISPATCH " vars))) (declare (list body vars aux-vars aux-vals)) (let ((res (make-optional-dispatch :arglist vars :allowp allowp :keyp keyp :%source-name source-name :%debug-name debug-name :plist `(:ir1-environment (,*lexenv* ,*current-path*)))) (min (or (position-if #'lambda-var-arg-info vars) (length vars)))) (aver-live-component *current-component*) (push res (component-new-functionals *current-component*)) (ir1-convert-hairy-args res () () () () vars nil body aux-vars aux-vals source-name debug-name nil) (setf (optional-dispatch-min-args res) min) (setf (optional-dispatch-max-args res) (+ (1- (length (optional-dispatch-entry-points res))) min)) res)) ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf. (defun ir1-convert-lambda (form &key (source-name '.anonymous.) debug-name allow-debug-catch-tag) (unless (consp form) (compiler-error "A ~S was found when expecting a lambda expression:~% ~S" (type-of form) form)) (unless (eq (car form) 'lambda) (compiler-error "~S was expected but ~S was found:~% ~S" 'lambda (car form) form)) (unless (and (consp (cdr form)) (listp (cadr form))) (compiler-error "The lambda expression has a missing or non-list lambda list:~% ~S" form)) (let ((*allow-debug-catch-tag* (and *allow-debug-catch-tag* allow-debug-catch-tag))) (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals) (make-lambda-vars (cadr form)) (multiple-value-bind (forms decls) (parse-body (cddr form)) (binding* (((*lexenv* result-type) (process-decls decls (append aux-vars vars) nil)) (forms (if (and *allow-debug-catch-tag* (policy *lexenv* (>= insert-debug-catch 2))) `((catch (make-symbol "SB-DEBUG-CATCH-TAG") ,@forms)) forms)) (forms (if (eq result-type *wild-type*) forms `((the ,result-type (progn ,@forms))))) (res (if (or (find-if #'lambda-var-arg-info vars) keyp) (ir1-convert-hairy-lambda forms vars keyp allow-other-keys aux-vars aux-vals :source-name source-name :debug-name debug-name) (ir1-convert-lambda-body forms vars :aux-vars aux-vars :aux-vals aux-vals :source-name source-name :debug-name debug-name)))) (setf (functional-inline-expansion res) form) (setf (functional-arg-documentation res) (cadr form)) res))))) ;;; helper for LAMBDA-like things, to massage them into a form ;;; suitable for IR1-CONVERT-LAMBDA. ;;; ;;; KLUDGE: We cons up a &REST list here, maybe for no particularly ;;; good reason. It's probably lost in the noise of all the other ;;; consing, but it's still inelegant. And we force our called ;;; functions to do full runtime keyword parsing, ugh. -- CSR, ;;; 2003-01-25 (defun ir1-convert-lambdalike (thing &rest args &key (source-name '.anonymous.) debug-name allow-debug-catch-tag) (declare (ignorable source-name debug-name allow-debug-catch-tag)) (ecase (car thing) ((lambda) (apply #'ir1-convert-lambda thing args)) ((instance-lambda) (let ((res (apply #'ir1-convert-lambda `(lambda ,@(cdr thing)) args))) (setf (getf (functional-plist res) :fin-function) t) res)) ((named-lambda) (let ((name (cadr thing))) (if (legal-fun-name-p name) (let ((defined-fun-res (get-defined-fun name)) (res (apply #'ir1-convert-lambda `(lambda ,@(cddr thing)) :source-name name :debug-name nil args))) (assert-global-function-definition-type name res) (setf (defined-fun-functional defined-fun-res) res) (unless (eq (defined-fun-inlinep defined-fun-res) :notinline) (substitute-leaf-if (lambda (ref) (policy ref (> recognize-self-calls 0))) res defined-fun-res)) res) (apply #'ir1-convert-lambda `(lambda ,@(cddr thing)) :debug-name name args)))) ((lambda-with-lexenv) (apply #'ir1-convert-inline-lambda thing args)))) ;;;; defining global functions ;;; Convert FUN as a lambda in the null environment, but use the ;;; current compilation policy. Note that FUN may be a ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to ;;; reflect the state at the definition site. (defun ir1-convert-inline-lambda (fun &key (source-name '.anonymous.) debug-name allow-debug-catch-tag) (declare (ignore allow-debug-catch-tag)) (destructuring-bind (decls macros symbol-macros &rest body) (if (eq (car fun) 'lambda-with-lexenv) (cdr fun) `(() () () . ,(cdr fun))) (let ((*lexenv* (make-lexenv :default (process-decls decls nil nil (make-null-lexenv)) :vars (copy-list symbol-macros) :funs (mapcar (lambda (x) `(,(car x) . (macro . ,(coerce (cdr x) 'function)))) macros) :policy (lexenv-policy *lexenv*)))) (ir1-convert-lambda `(lambda ,@body) :source-name source-name :debug-name debug-name :allow-debug-catch-tag nil)))) ;;; Get a DEFINED-FUN object for a function we are about to define. If ;;; the function has been forward referenced, then substitute for the ;;; previous references. (defun get-defined-fun (name) (proclaim-as-fun-name name) (let ((found (find-free-fun name "shouldn't happen! (defined-fun)"))) (note-name-defined name :function) (cond ((not (defined-fun-p found)) (aver (not (info :function :inlinep name))) (let* ((where-from (leaf-where-from found)) (res (make-defined-fun :%source-name name :where-from (if (eq where-from :declared) :declared :defined) :type (leaf-type found)))) (substitute-leaf res found) (setf (gethash name *free-funs*) res))) ;; If *FREE-FUNS* has a previously converted definition ;; for this name, then blow it away and try again. ((defined-fun-functional found) (remhash name *free-funs*) (get-defined-fun name)) (t found)))) ;;; Check a new global function definition for consistency with ;;; previous declaration or definition, and assert argument/result ;;; types if appropriate. This assertion is suppressed by the ;;; EXPLICIT-CHECK attribute, which is specified on functions that ;;; check their argument types as a consequence of type dispatching. ;;; This avoids redundant checks such as NUMBERP on the args to +, etc. (defun assert-new-definition (var fun) (let ((type (leaf-type var)) (for-real (eq (leaf-where-from var) :declared)) (info (info :function :info (leaf-source-name var)))) (assert-definition-type fun type ;; KLUDGE: Common Lisp is such a dynamic language that in general ;; all we can do here in general is issue a STYLE-WARNING. It ;; would be nice to issue a full WARNING in the special case of ;; of type mismatches within a compilation unit (as in section ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't ;; keep track of whether the mismatched data came from the same ;; compilation unit, so we can't do that. -- WHN 2001-02-11 :lossage-fun #'compiler-style-warn :unwinnage-fun (cond (info #'compiler-style-warn) (for-real #'compiler-notify) (t nil)) :really-assert (and for-real (not (and info (ir1-attributep (fun-info-attributes info) explicit-check)))) :where (if for-real "previous declaration" "previous definition")))) ;;; Convert a lambda doing all the basic stuff we would do if we were ;;; converting a DEFUN. In the old CMU CL system, this was used both ;;; by the %DEFUN translator and for global inline expansion, but ;;; since sbcl-0.pre7.something %DEFUN does things differently. ;;; FIXME: And now it's probably worth rethinking whether this ;;; function is a good idea. ;;; ;;; Unless a :INLINE function, we temporarily clobber the inline ;;; expansion. This prevents recursive inline expansion of ;;; opportunistic pseudo-inlines. (defun ir1-convert-lambda-for-defun (lambda var expansion converter) (declare (cons lambda) (function converter) (type defined-fun var)) (let ((var-expansion (defined-fun-inline-expansion var))) (unless (eq (defined-fun-inlinep var) :inline) (setf (defined-fun-inline-expansion var) nil)) (let* ((name (leaf-source-name var)) (fun (funcall converter lambda :source-name name)) (fun-info (info :function :info name))) (setf (functional-inlinep fun) (defined-fun-inlinep var)) (assert-new-definition var fun) (setf (defined-fun-inline-expansion var) var-expansion) ;; If definitely not an interpreter stub, then substitute for ;; any old references. (unless (or (eq (defined-fun-inlinep var) :notinline) (not *block-compile*) (and fun-info (or (fun-info-transforms fun-info) (fun-info-templates fun-info) (fun-info-ir2-convert fun-info)))) (substitute-leaf fun var) ;; If in a simple environment, then we can allow backward ;; references to this function from following top level forms. (when expansion (setf (defined-fun-functional var) fun))) fun))) ;;; the even-at-compile-time part of DEFUN ;;; ;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is ;;; no inline expansion. (defun %compiler-defun (name lambda-with-lexenv compile-toplevel) (let ((defined-fun nil)) ; will be set below if we're in the compiler (when compile-toplevel ;; better be in the compiler (aver (boundp '*lexenv*)) (when sb!xc:*compile-print* (compiler-mumble "~&; recognizing DEFUN ~S~%" name)) (remhash name *free-funs*) (setf defined-fun (get-defined-fun name)) (aver (fasl-output-p *compile-object*)) (if (member name *fun-names-in-this-file* :test #'equal) (warn 'duplicate-definition :name name) (push name *fun-names-in-this-file*))) (become-defined-fun-name name) (cond (lambda-with-lexenv (setf (info :function :inline-expansion-designator name) lambda-with-lexenv) (when defined-fun (setf (defined-fun-inline-expansion defined-fun) lambda-with-lexenv))) (t (clear-info :function :inline-expansion-designator name))) ;; old CMU CL comment: ;; If there is a type from a previous definition, blast it, ;; since it is obsolete. (when (and defined-fun (eq (leaf-where-from defined-fun) :defined)) (setf (leaf-type defined-fun) ;; FIXME: If this is a block compilation thing, shouldn't ;; we be setting the type to the full derived type for the ;; definition, instead of this most general function type? (specifier-type 'function)))) (values)) ;;; Entry point utilities ;;; Return a function for the Nth entry point. (defun optional-dispatch-entry-point-fun (dispatcher n) (declare (type optional-dispatch dispatcher) (type unsigned-byte n)) (let* ((env (getf (optional-dispatch-plist dispatcher) :ir1-environment)) (*lexenv* (first env)) (*current-path* (second env))) (force (nth n (optional-dispatch-entry-points dispatcher)))))