;;;; This file contains the virtual-machine-independent parts of the ;;;; code which does the actual translation of nodes to VOPs. ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!C") ;;;; moves and type checks ;;; Move X to Y unless they are EQ. (defun emit-move (node block x y) (declare (type node node) (type ir2-block block) (type tn x y)) (unless (eq x y) (vop move node block x y)) (values)) ;;; If there is any CHECK-xxx template for TYPE, then return it, ;;; otherwise return NIL. (defun type-check-template (type) (declare (type ctype type)) (multiple-value-bind (check-ptype exact) (primitive-type type) (if exact (primitive-type-check check-ptype) (let ((name (hairy-type-check-template-name type))) (if name (template-or-lose name) nil))))) ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE, ;;; yielding the checked result in RESULT. VALUE and result may be of ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any ;;; other type checks should have been converted to an explicit type ;;; test. (defun emit-type-check (node block value result type) (declare (type tn value result) (type node node) (type ir2-block block) (type ctype type)) (emit-move-template node block (type-check-template type) value result) (values)) ;;; Allocate an indirect value cell. Maybe do some clever stack ;;; allocation someday. (defevent make-value-cell "Allocate heap value cell for lexical var.") (defun do-make-value-cell (node block value res) (event make-value-cell node) (vop make-value-cell node block value res)) ;;;; leaf reference ;;; Return the TN that holds the value of THING in the environment ENV. (declaim (ftype (function ((or nlx-info lambda-var) physenv) tn) find-in-physenv)) (defun find-in-physenv (thing physenv) (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv)))) (etypecase thing (lambda-var ;; I think that a failure of this assertion means that we're ;; trying to access a variable which was improperly closed ;; over. The PHYSENV describes a physical environment. Every ;; variable that a form refers to should either be in its ;; physical environment directly, or grabbed from a ;; surrounding physical environment when it was closed over. ;; The ASSOC expression above finds closed-over variables, so ;; if we fell through the ASSOC expression, it wasn't closed ;; over. Therefore, it must be in our physical environment ;; directly. If instead it is in some other physical ;; environment, then it's bogus for us to reference it here ;; without it being closed over. -- WHN 2001-09-29 (aver (eq physenv (lambda-physenv (lambda-var-home thing)))) (leaf-info thing)) (nlx-info (aver (eq physenv (block-physenv (nlx-info-target thing)))) (ir2-nlx-info-home (nlx-info-info thing)))))) ;;; If LEAF already has a constant TN, return that, otherwise make a ;;; TN for it. (defun constant-tn (leaf) (declare (type constant leaf)) (or (leaf-info leaf) (setf (leaf-info leaf) (make-constant-tn leaf)))) ;;; Return a TN that represents the value of LEAF, or NIL if LEAF ;;; isn't directly represented by a TN. ENV is the environment that ;;; the reference is done in. (defun leaf-tn (leaf env) (declare (type leaf leaf) (type physenv env)) (typecase leaf (lambda-var (unless (lambda-var-indirect leaf) (find-in-physenv leaf env))) (constant (constant-tn leaf)) (t nil))) ;;; This is used to conveniently get a handle on a constant TN during ;;; IR2 conversion. It returns a constant TN representing the Lisp ;;; object VALUE. (defun emit-constant (value) (constant-tn (find-constant value))) ;;; Convert a REF node. The reference must not be delayed. (defun ir2-convert-ref (node block) (declare (type ref node) (type ir2-block block)) (let* ((cont (node-cont node)) (leaf (ref-leaf node)) (locs (continuation-result-tns cont (list (primitive-type (leaf-type leaf))))) (res (first locs))) (etypecase leaf (lambda-var (let ((tn (find-in-physenv leaf (node-physenv node)))) (if (lambda-var-indirect leaf) (vop value-cell-ref node block tn res) (emit-move node block tn res)))) (constant (if (legal-immediate-constant-p leaf) (emit-move node block (constant-tn leaf) res) (let* ((name (leaf-source-name leaf)) (name-tn (emit-constant name))) (if (policy node (zerop safety)) (vop fast-symbol-value node block name-tn res) (vop symbol-value node block name-tn res))))) (functional (ir2-convert-closure node block leaf res)) (global-var (let ((unsafe (policy node (zerop safety))) (name (leaf-source-name leaf))) (ecase (global-var-kind leaf) ((:special :global) (aver (symbolp name)) (let ((name-tn (emit-constant name))) (if unsafe (vop fast-symbol-value node block name-tn res) (vop symbol-value node block name-tn res)))) (:global-function (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name))) (if unsafe (vop fdefn-fun node block fdefn-tn res) (vop safe-fdefn-fun node block fdefn-tn res)))))))) (move-continuation-result node block locs cont)) (values)) ;;; Emit code to load a function object implementing FUN into ;;; RES. This gets interesting when the referenced function is a ;;; closure: we must make the closure and move the closed-over values ;;; into it. ;;; ;;; FUN is either a :TOPLEVEL-XEP functional or the XEP lambda for the ;;; called function, since local call analysis converts all closure ;;; references. If a :TOPLEVEL-XEP, we know it is not a closure. ;;; ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we ;;; don't initialize that slot. This can happen with closures over ;;; top level variables, where optimization of the closure deleted the ;;; variable. Since we committed to the closure format when we ;;; pre-analyzed the top level code, we just leave an empty slot. (defun ir2-convert-closure (ref ir2-block fun res) (declare (type ref ref) (type ir2-block ir2-block) (type functional fun) (type tn res)) (unless (leaf-info fun) (setf (leaf-info fun) (make-entry-info :name (functional-debug-name fun)))) (let ((entry (make-load-time-constant-tn :entry fun)) (closure (etypecase fun (clambda ;; This assertion was sort of an experiment. It ;; would be nice and sane and easier to understand ;; things if it were *always* true, but ;; experimentally I observe that it's only ;; *almost* always true. -- WHN 2001-01-02 #+nil (aver (eql (lambda-component fun) (block-component (ir2-block-block ir2-block)))) ;; Check for some weirdness which came up in bug ;; 138, 2002-01-02. ;; ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts ;; an :ENTRY record into the ;; IR2-COMPONENT-CONSTANTS table. The ;; dump-a-COMPONENT code ;; * treats every HANDLEless :ENTRY record into a ;; patch, and ;; * expects every patch to correspond to an ;; IR2-COMPONENT-ENTRIES record. ;; The IR2-COMPONENT-ENTRIES records are set by ;; ENTRY-ANALYZE walking over COMPONENT-LAMBDAS. ;; Bug 138b arose because there was a HANDLEless ;; :ENTRY record which didn't correspond to an ;; IR2-COMPONENT-ENTRIES record. That problem is ;; hard to debug when it's caught at dump time, so ;; this assertion tries to catch it here. (aver (member fun (component-lambdas (lambda-component fun)))) ;; another bug-138-related issue: COMPONENT-NEW-FUNS ;; is an IR1 temporary, and now that we're doing IR2 ;; it should've been completely flushed (but wasn't). (aver (null (component-new-funs (lambda-component fun)))) (physenv-closure (get-lambda-physenv fun))) (functional (aver (eq (functional-kind fun) :toplevel-xep)) nil)))) (cond (closure (let ((this-env (node-physenv ref))) (vop make-closure ref ir2-block entry (length closure) res) (loop for what in closure and n from 0 do (unless (and (lambda-var-p what) (null (leaf-refs what))) (vop closure-init ref ir2-block res (find-in-physenv what this-env) n))))) (t (emit-move ref ir2-block entry res)))) (values)) ;;; Convert a SET node. If the node's CONT is annotated, then we also ;;; deliver the value to that continuation. If the var is a lexical ;;; variable with no refs, then we don't actually set anything, since ;;; the variable has been deleted. (defun ir2-convert-set (node block) (declare (type cset node) (type ir2-block block)) (let* ((cont (node-cont node)) (leaf (set-var node)) (val (continuation-tn node block (set-value node))) (locs (if (continuation-info cont) (continuation-result-tns cont (list (primitive-type (leaf-type leaf)))) nil))) (etypecase leaf (lambda-var (when (leaf-refs leaf) (let ((tn (find-in-physenv leaf (node-physenv node)))) (if (lambda-var-indirect leaf) (vop value-cell-set node block tn val) (emit-move node block val tn))))) (global-var (ecase (global-var-kind leaf) ((:special :global) (aver (symbolp (leaf-source-name leaf))) (vop set node block (emit-constant (leaf-source-name leaf)) val))))) (when locs (emit-move node block val (first locs)) (move-continuation-result node block locs cont))) (values)) ;;;; utilities for receiving fixed values ;;; Return a TN that can be referenced to get the value of CONT. CONT ;;; must be LTN-Annotated either as a delayed leaf ref or as a fixed, ;;; single-value continuation. If a type check is called for, do it. ;;; ;;; The primitive-type of the result will always be the same as the ;;; IR2-CONTINUATION-PRIMITIVE-TYPE, ensuring that VOPs are always ;;; called with TNs that satisfy the operand primitive-type ;;; restriction. We may have to make a temporary of the desired type ;;; and move the actual continuation TN into it. This happens when we ;;; delete a type check in unsafe code or when we locally know ;;; something about the type of an argument variable. (defun continuation-tn (node block cont) (declare (type node node) (type ir2-block block) (type continuation cont)) (let* ((2cont (continuation-info cont)) (cont-tn (ecase (ir2-continuation-kind 2cont) (:delayed (let ((ref (continuation-use cont))) (leaf-tn (ref-leaf ref) (node-physenv ref)))) (:fixed (aver (= (length (ir2-continuation-locs 2cont)) 1)) (first (ir2-continuation-locs 2cont))))) (ptype (ir2-continuation-primitive-type 2cont))) (cond ((and (eq (continuation-type-check cont) t) (multiple-value-bind (check types) (continuation-check-types cont) (aver (eq check :simple)) ;; If the proven type is a subtype of the possibly ;; weakened type check then it's always true and is ;; flushed. (unless (values-subtypep (continuation-proven-type cont) (first types)) (let ((temp (make-normal-tn ptype))) (emit-type-check node block cont-tn temp (first types)) temp))))) ((eq (tn-primitive-type cont-tn) ptype) cont-tn) (t (let ((temp (make-normal-tn ptype))) (emit-move node block cont-tn temp) temp))))) ;;; This is similar to CONTINUATION-TN, but hacks multiple values. We ;;; return continuations holding the values of CONT with PTYPES as ;;; their primitive types. CONT must be annotated for the same number ;;; of fixed values are there are PTYPES. ;;; ;;; If the continuation has a type check, check the values into temps ;;; and return the temps. When we have more values than assertions, we ;;; move the extra values with no check. (defun continuation-tns (node block cont ptypes) (declare (type node node) (type ir2-block block) (type continuation cont) (list ptypes)) (let* ((locs (ir2-continuation-locs (continuation-info cont))) (nlocs (length locs))) (aver (= nlocs (length ptypes))) (if (eq (continuation-type-check cont) t) (multiple-value-bind (check types) (continuation-check-types cont) (aver (eq check :simple)) (let ((ntypes (length types))) (mapcar #'(lambda (from to-type assertion) (let ((temp (make-normal-tn to-type))) (if assertion (emit-type-check node block from temp assertion) (emit-move node block from temp)) temp)) locs ptypes (if (< ntypes nlocs) (append types (make-list (- nlocs ntypes) :initial-element nil)) types)))) (mapcar #'(lambda (from to-type) (if (eq (tn-primitive-type from) to-type) from (let ((temp (make-normal-tn to-type))) (emit-move node block from temp) temp))) locs ptypes)))) ;;;; utilities for delivering values to continuations ;;; Return a list of TNs with the specifier TYPES that can be used as ;;; result TNs to evaluate an expression into the continuation CONT. ;;; This is used together with MOVE-CONTINUATION-RESULT to deliver ;;; fixed values to a continuation. ;;; ;;; If the continuation isn't annotated (meaning the values are ;;; discarded) or is unknown-values, the then we make temporaries for ;;; each supplied value, providing a place to compute the result in ;;; until we decide what to do with it (if anything.) ;;; ;;; If the continuation is fixed-values, and wants the same number of ;;; values as the user wants to deliver, then we just return the ;;; IR2-CONTINUATION-LOCS. Otherwise we make a new list padded as ;;; necessary by discarded TNs. We always return a TN of the specified ;;; type, using the continuation locs only when they are of the ;;; correct type. (defun continuation-result-tns (cont types) (declare (type continuation cont) (type list types)) (let ((2cont (continuation-info cont))) (if (not 2cont) (mapcar #'make-normal-tn types) (ecase (ir2-continuation-kind 2cont) (:fixed (let* ((locs (ir2-continuation-locs 2cont)) (nlocs (length locs)) (ntypes (length types))) (if (and (= nlocs ntypes) (do ((loc locs (cdr loc)) (type types (cdr type))) ((null loc) t) (unless (eq (tn-primitive-type (car loc)) (car type)) (return nil)))) locs (mapcar #'(lambda (loc type) (if (eq (tn-primitive-type loc) type) loc (make-normal-tn type))) (if (< nlocs ntypes) (append locs (mapcar #'make-normal-tn (subseq types nlocs))) locs) types)))) (:unknown (mapcar #'make-normal-tn types)))))) ;;; Make the first N standard value TNs, returning them in a list. (defun make-standard-value-tns (n) (declare (type unsigned-byte n)) (collect ((res)) (dotimes (i n) (res (standard-argument-location i))) (res))) ;;; Return a list of TNs wired to the standard value passing ;;; conventions that can be used to receive values according to the ;;; unknown-values convention. This is used with together ;;; MOVE-CONTINUATION-RESULT for delivering unknown values to a fixed ;;; values continuation. ;;; ;;; If the continuation isn't annotated, then we treat as 0-values, ;;; returning an empty list of temporaries. ;;; ;;; If the continuation is annotated, then it must be :FIXED. (defun standard-result-tns (cont) (declare (type continuation cont)) (let ((2cont (continuation-info cont))) (if 2cont (ecase (ir2-continuation-kind 2cont) (:fixed (make-standard-value-tns (length (ir2-continuation-locs 2cont))))) ()))) ;;; Just move each SRC TN into the corresponding DEST TN, defaulting ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about ;;; doing the appropriate coercions. (defun move-results-coerced (node block src dest) (declare (type node node) (type ir2-block block) (list src dest)) (let ((nsrc (length src)) (ndest (length dest))) (mapc #'(lambda (from to) (unless (eq from to) (emit-move node block from to))) (if (> ndest nsrc) (append src (make-list (- ndest nsrc) :initial-element (emit-constant nil))) src) dest)) (values)) ;;; If necessary, emit coercion code needed to deliver the RESULTS to ;;; the specified continuation. NODE and BLOCK provide context for ;;; emitting code. Although usually obtained from STANDARD-RESULT-TNs ;;; or CONTINUATION-RESULT-TNs, RESULTS my be a list of any type or ;;; number of TNs. ;;; ;;; If the continuation is fixed values, then move the results into ;;; the continuation locations. If the continuation is unknown values, ;;; then do the moves into the standard value locations, and use ;;; PUSH-VALUES to put the values on the stack. (defun move-continuation-result (node block results cont) (declare (type node node) (type ir2-block block) (list results) (type continuation cont)) (let* ((2cont (continuation-info cont))) (when 2cont (ecase (ir2-continuation-kind 2cont) (:fixed (let ((locs (ir2-continuation-locs 2cont))) (unless (eq locs results) (move-results-coerced node block results locs)))) (:unknown (let* ((nvals (length results)) (locs (make-standard-value-tns nvals))) (move-results-coerced node block results locs) (vop* push-values node block ((reference-tn-list locs nil)) ((reference-tn-list (ir2-continuation-locs 2cont) t)) nvals)))))) (values)) ;;;; template conversion ;;; Build a TN-Refs list that represents access to the values of the ;;; specified list of continuations ARGS for TEMPLATE. Any :CONSTANT ;;; arguments are returned in the second value as a list rather than ;;; being accessed as a normal argument. NODE and BLOCK provide the ;;; context for emitting any necessary type-checking code. (defun reference-arguments (node block args template) (declare (type node node) (type ir2-block block) (list args) (type template template)) (collect ((info-args)) (let ((last nil) (first nil)) (do ((args args (cdr args)) (types (template-arg-types template) (cdr types))) ((null args)) (let ((type (first types)) (arg (first args))) (if (and (consp type) (eq (car type) ':constant)) (info-args (continuation-value arg)) (let ((ref (reference-tn (continuation-tn node block arg) nil))) (if last (setf (tn-ref-across last) ref) (setf first ref)) (setq last ref))))) (values (the (or tn-ref null) first) (info-args))))) ;;; Convert a conditional template. We try to exploit any ;;; drop-through, but emit an unconditional branch afterward if we ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be ;;; negated. (defun ir2-convert-conditional (node block template args info-args if not-p) (declare (type node node) (type ir2-block block) (type template template) (type (or tn-ref null) args) (list info-args) (type cif if) (type boolean not-p)) (aver (= (template-info-arg-count template) (+ (length info-args) 2))) (let ((consequent (if-consequent if)) (alternative (if-alternative if))) (cond ((drop-thru-p if consequent) (emit-template node block template args nil (list* (block-label alternative) (not not-p) info-args))) (t (emit-template node block template args nil (list* (block-label consequent) not-p info-args)) (unless (drop-thru-p if alternative) (vop branch node block (block-label alternative))))))) ;;; Convert an IF that isn't the DEST of a conditional template. (defun ir2-convert-if (node block) (declare (type ir2-block block) (type cif node)) (let* ((test (if-test node)) (test-ref (reference-tn (continuation-tn node block test) nil)) (nil-ref (reference-tn (emit-constant nil) nil))) (setf (tn-ref-across test-ref) nil-ref) (ir2-convert-conditional node block (template-or-lose 'if-eq) test-ref () node t))) ;;; Return a list of primitive-types that we can pass to ;;; CONTINUATION-RESULT-TNS describing the result types we want for a ;;; template call. We duplicate here the determination of output type ;;; that was done in initially selecting the template, so we know that ;;; the types we find are allowed by the template output type ;;; restrictions. (defun find-template-result-types (call cont template rtypes) (declare (type combination call) (type continuation cont) (type template template) (list rtypes)) (let* ((dtype (node-derived-type call)) (type (if (and (or (eq (template-ltn-policy template) :safe) (policy call (= safety 0))) (continuation-type-check cont)) (values-type-intersection dtype (continuation-asserted-type cont)) dtype)) (types (mapcar #'primitive-type (if (values-type-p type) (append (values-type-required type) (values-type-optional type)) (list type))))) (let ((nvals (length rtypes)) (ntypes (length types))) (cond ((< ntypes nvals) (append types (make-list (- nvals ntypes) :initial-element *backend-t-primitive-type*))) ((> ntypes nvals) (subseq types 0 nvals)) (t types))))) ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering ;;; values to CONT. As an efficiency hack, we pick off the common case ;;; where the continuation is fixed values and has locations that ;;; satisfy the result restrictions. This can fail when there is a ;;; type check or a values count mismatch. (defun make-template-result-tns (call cont template rtypes) (declare (type combination call) (type continuation cont) (type template template) (list rtypes)) (let ((2cont (continuation-info cont))) (if (and 2cont (eq (ir2-continuation-kind 2cont) :fixed)) (let ((locs (ir2-continuation-locs 2cont))) (if (and (= (length rtypes) (length locs)) (do ((loc locs (cdr loc)) (rtype rtypes (cdr rtype))) ((null loc) t) (unless (operand-restriction-ok (car rtype) (tn-primitive-type (car loc)) :t-ok nil) (return nil)))) locs (continuation-result-tns cont (find-template-result-types call cont template rtypes)))) (continuation-result-tns cont (find-template-result-types call cont template rtypes))))) ;;; Get the operands into TNs, make TN-Refs for them, and then call ;;; the template emit function. (defun ir2-convert-template (call block) (declare (type combination call) (type ir2-block block)) (let* ((template (combination-info call)) (cont (node-cont call)) (rtypes (template-result-types template))) (multiple-value-bind (args info-args) (reference-arguments call block (combination-args call) template) (aver (not (template-more-results-type template))) (if (eq rtypes :conditional) (ir2-convert-conditional call block template args info-args (continuation-dest cont) nil) (let* ((results (make-template-result-tns call cont template rtypes)) (r-refs (reference-tn-list results t))) (aver (= (length info-args) (template-info-arg-count template))) (if info-args (emit-template call block template args r-refs info-args) (emit-template call block template args r-refs)) (move-continuation-result call block results cont))))) (values)) ;;; We don't have to do much because operand count checking is done by ;;; IR1 conversion. The only difference between this and the function ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info ;;; arguments. (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block) (let* ((template (continuation-value template)) (info (continuation-value info)) (cont (node-cont call)) (rtypes (template-result-types template)) (results (make-template-result-tns call cont template rtypes)) (r-refs (reference-tn-list results t))) (multiple-value-bind (args info-args) (reference-arguments call block (cddr (combination-args call)) template) (aver (not (template-more-results-type template))) (aver (not (eq rtypes :conditional))) (aver (null info-args)) (if info (emit-template call block template args r-refs info) (emit-template call block template args r-refs)) (move-continuation-result call block results cont))) (values)) ;;;; local call ;;; Convert a LET by moving the argument values into the variables. ;;; Since a LET doesn't have any passing locations, we move the ;;; arguments directly into the variables. We must also allocate any ;;; indirect value cells, since there is no function prologue to do ;;; this. (defun ir2-convert-let (node block fun) (declare (type combination node) (type ir2-block block) (type clambda fun)) (mapc #'(lambda (var arg) (when arg (let ((src (continuation-tn node block arg)) (dest (leaf-info var))) (if (lambda-var-indirect var) (do-make-value-cell node block src dest) (emit-move node block src dest))))) (lambda-vars fun) (basic-combination-args node)) (values)) ;;; Emit any necessary moves into assignment temps for a local call to ;;; FUN. We return two lists of TNs: TNs holding the actual argument ;;; values, and (possibly EQ) TNs that are the actual destination of ;;; the arguments. When necessary, we allocate temporaries for ;;; arguments to preserve parallel assignment semantics. These lists ;;; exclude unused arguments and include implicit environment ;;; arguments, i.e. they exactly correspond to the arguments passed. ;;; ;;; OLD-FP is the TN currently holding the value we want to pass as ;;; OLD-FP. If null, then the call is to the same environment (an ;;; :ASSIGNMENT), so we only move the arguments, and leave the ;;; environment alone. (defun emit-psetq-moves (node block fun old-fp) (declare (type combination node) (type ir2-block block) (type clambda fun) (type (or tn null) old-fp)) (let* ((called-env (physenv-info (lambda-physenv fun))) (this-1env (node-physenv node)) (actuals (mapcar #'(lambda (x) (when x (continuation-tn node block x))) (combination-args node)))) (collect ((temps) (locs)) (dolist (var (lambda-vars fun)) (let ((actual (pop actuals)) (loc (leaf-info var))) (when actual (cond ((lambda-var-indirect var) (let ((temp (make-normal-tn *backend-t-primitive-type*))) (do-make-value-cell node block actual temp) (temps temp))) ((member actual (locs)) (let ((temp (make-normal-tn (tn-primitive-type loc)))) (emit-move node block actual temp) (temps temp))) (t (temps actual))) (locs loc)))) (when old-fp (dolist (thing (ir2-physenv-closure called-env)) (temps (find-in-physenv (car thing) this-1env)) (locs (cdr thing))) (temps old-fp) (locs (ir2-physenv-old-fp called-env))) (values (temps) (locs))))) ;;; A tail-recursive local call is done by emitting moves of stuff ;;; into the appropriate passing locations. After setting up the args ;;; and environment, we just move our return-pc into the called ;;; function's passing location. (defun ir2-convert-tail-local-call (node block fun) (declare (type combination node) (type ir2-block block) (type clambda fun)) (let ((this-env (physenv-info (node-physenv node)))) (multiple-value-bind (temps locs) (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env)) (mapc #'(lambda (temp loc) (emit-move node block temp loc)) temps locs)) (emit-move node block (ir2-physenv-return-pc this-env) (ir2-physenv-return-pc-pass (physenv-info (lambda-physenv fun))))) (values)) ;;; Convert an :ASSIGNMENT call. This is just like a tail local call, ;;; except that the caller and callee environment are the same, so we ;;; don't need to mess with the environment locations, return PC, etc. (defun ir2-convert-assignment (node block fun) (declare (type combination node) (type ir2-block block) (type clambda fun)) (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil) (mapc #'(lambda (temp loc) (emit-move node block temp loc)) temps locs)) (values)) ;;; Do stuff to set up the arguments to a non-tail local call ;;; (including implicit environment args.) We allocate a frame ;;; (returning the FP and NFP), and also compute the TN-REFS list for ;;; the values to pass and the list of passing location TNs. (defun ir2-convert-local-call-args (node block fun) (declare (type combination node) (type ir2-block block) (type clambda fun)) (let ((fp (make-stack-pointer-tn)) (nfp (make-number-stack-pointer-tn)) (old-fp (make-stack-pointer-tn))) (multiple-value-bind (temps locs) (emit-psetq-moves node block fun old-fp) (vop current-fp node block old-fp) (vop allocate-frame node block (physenv-info (lambda-physenv fun)) fp nfp) (values fp nfp temps (mapcar #'make-alias-tn locs))))) ;;; Handle a non-TR known-values local call. We emit the call, then ;;; move the results to the continuation's destination. (defun ir2-convert-local-known-call (node block fun returns cont start) (declare (type node node) (type ir2-block block) (type clambda fun) (type return-info returns) (type continuation cont) (type label start)) (multiple-value-bind (fp nfp temps arg-locs) (ir2-convert-local-call-args node block fun) (let ((locs (return-info-locations returns))) (vop* known-call-local node block (fp nfp (reference-tn-list temps nil)) ((reference-tn-list locs t)) arg-locs (physenv-info (lambda-physenv fun)) start) (move-continuation-result node block locs cont))) (values)) ;;; Handle a non-TR unknown-values local call. We do different things ;;; depending on what kind of values the continuation wants. ;;; ;;; If CONT is :UNKNOWN, then we use the "multiple-" variant, directly ;;; specifying the continuation's LOCS as the VOP results so that we ;;; don't have to do anything after the call. ;;; ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and ;;; then call MOVE-CONTINUATION-RESULT to do any necessary type checks ;;; or coercions. (defun ir2-convert-local-unknown-call (node block fun cont start) (declare (type node node) (type ir2-block block) (type clambda fun) (type continuation cont) (type label start)) (multiple-value-bind (fp nfp temps arg-locs) (ir2-convert-local-call-args node block fun) (let ((2cont (continuation-info cont)) (env (physenv-info (lambda-physenv fun))) (temp-refs (reference-tn-list temps nil))) (if (and 2cont (eq (ir2-continuation-kind 2cont) :unknown)) (vop* multiple-call-local node block (fp nfp temp-refs) ((reference-tn-list (ir2-continuation-locs 2cont) t)) arg-locs env start) (let ((locs (standard-result-tns cont))) (vop* call-local node block (fp nfp temp-refs) ((reference-tn-list locs t)) arg-locs env start (length locs)) (move-continuation-result node block locs cont))))) (values)) ;;; Dispatch to the appropriate function, depending on whether we have ;;; a let, tail or normal call. If the function doesn't return, call ;;; it using the unknown-value convention. We could compile it as a ;;; tail call, but that might seem confusing in the debugger. (defun ir2-convert-local-call (node block) (declare (type combination node) (type ir2-block block)) (let* ((fun (ref-leaf (continuation-use (basic-combination-fun node)))) (kind (functional-kind fun))) (cond ((eq kind :let) (ir2-convert-let node block fun)) ((eq kind :assignment) (ir2-convert-assignment node block fun)) ((node-tail-p node) (ir2-convert-tail-local-call node block fun)) (t (let ((start (block-label (lambda-block fun))) (returns (tail-set-info (lambda-tail-set fun))) (cont (node-cont node))) (ecase (if returns (return-info-kind returns) :unknown) (:unknown (ir2-convert-local-unknown-call node block fun cont start)) (:fixed (ir2-convert-local-known-call node block fun returns cont start))))))) (values)) ;;;; full call ;;; Given a function continuation FUN, return as values a TN holding ;;; the thing that we call and true if the thing is named (false if it ;;; is a function). There are two interesting non-named cases: ;;; -- Known to be a function, no check needed: return the ;;; continuation loc. ;;; -- Not known what it is. (defun function-continuation-tn (node block cont) (declare (type continuation cont)) (let ((2cont (continuation-info cont))) (if (eq (ir2-continuation-kind 2cont) :delayed) (let ((name (continuation-fun-name cont t))) (aver name) (values (make-load-time-constant-tn :fdefinition name) t)) (let* ((locs (ir2-continuation-locs 2cont)) (loc (first locs)) (check (continuation-type-check cont)) (function-ptype (primitive-type-or-lose 'function))) (aver (and (eq (ir2-continuation-kind 2cont) :fixed) (= (length locs) 1))) (cond ((eq (tn-primitive-type loc) function-ptype) (aver (not (eq check t))) (values loc nil)) (t (let ((temp (make-normal-tn function-ptype))) (aver (and (eq (ir2-continuation-primitive-type 2cont) function-ptype) (eq check t))) (emit-type-check node block loc temp (specifier-type 'function)) (values temp nil)))))))) ;;; Set up the args to Node in the current frame, and return a tn-ref ;;; list for the passing locations. (defun move-tail-full-call-args (node block) (declare (type combination node) (type ir2-block block)) (let ((args (basic-combination-args node)) (last nil) (first nil)) (dotimes (num (length args)) (let ((loc (standard-argument-location num))) (emit-move node block (continuation-tn node block (elt args num)) loc) (let ((ref (reference-tn loc nil))) (if last (setf (tn-ref-across last) ref) (setf first ref)) (setq last ref)))) first)) ;;; Move the arguments into the passing locations and do a (possibly ;;; named) tail call. (defun ir2-convert-tail-full-call (node block) (declare (type combination node) (type ir2-block block)) (let* ((env (physenv-info (node-physenv node))) (args (basic-combination-args node)) (nargs (length args)) (pass-refs (move-tail-full-call-args node block)) (old-fp (ir2-physenv-old-fp env)) (return-pc (ir2-physenv-return-pc env))) (multiple-value-bind (fun-tn named) (function-continuation-tn node block (basic-combination-fun node)) (if named (vop* tail-call-named node block (fun-tn old-fp return-pc pass-refs) (nil) nargs) (vop* tail-call node block (fun-tn old-fp return-pc pass-refs) (nil) nargs)))) (values)) ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different (defun ir2-convert-full-call-args (node block) (declare (type combination node) (type ir2-block block)) (let* ((args (basic-combination-args node)) (fp (make-stack-pointer-tn)) (nargs (length args))) (vop allocate-full-call-frame node block nargs fp) (collect ((locs)) (let ((last nil) (first nil)) (dotimes (num nargs) (locs (standard-argument-location num)) (let ((ref (reference-tn (continuation-tn node block (elt args num)) nil))) (if last (setf (tn-ref-across last) ref) (setf first ref)) (setq last ref))) (values fp first (locs) nargs))))) ;;; Do full call when a fixed number of values are desired. We make ;;; STANDARD-RESULT-TNS for our continuation, then deliver the result ;;; using MOVE-CONTINUATION-RESULT. We do named or normal call, as ;;; appropriate. (defun ir2-convert-fixed-full-call (node block) (declare (type combination node) (type ir2-block block)) (multiple-value-bind (fp args arg-locs nargs) (ir2-convert-full-call-args node block) (let* ((cont (node-cont node)) (locs (standard-result-tns cont)) (loc-refs (reference-tn-list locs t)) (nvals (length locs))) (multiple-value-bind (fun-tn named) (function-continuation-tn node block (basic-combination-fun node)) (if named (vop* call-named node block (fp fun-tn args) (loc-refs) arg-locs nargs nvals) (vop* call node block (fp fun-tn args) (loc-refs) arg-locs nargs nvals)) (move-continuation-result node block locs cont)))) (values)) ;;; Do full call when unknown values are desired. (defun ir2-convert-multiple-full-call (node block) (declare (type combination node) (type ir2-block block)) (multiple-value-bind (fp args arg-locs nargs) (ir2-convert-full-call-args node block) (let* ((cont (node-cont node)) (locs (ir2-continuation-locs (continuation-info cont))) (loc-refs (reference-tn-list locs t))) (multiple-value-bind (fun-tn named) (function-continuation-tn node block (basic-combination-fun node)) (if named (vop* multiple-call-named node block (fp fun-tn args) (loc-refs) arg-locs nargs) (vop* multiple-call node block (fp fun-tn args) (loc-refs) arg-locs nargs))))) (values)) ;;; stuff to check in CHECK-FULL-CALL ;;; ;;; There are some things which are intended always to be optimized ;;; away by DEFTRANSFORMs and such, and so never compiled into full ;;; calls. This has been a source of bugs so many times that it seems ;;; worth listing some of them here so that we can check the list ;;; whenever we compile a full call. ;;; ;;; FIXME: It might be better to represent this property by setting a ;;; flag in DEFKNOWN, instead of representing it by membership in this ;;; list. (defvar *always-optimized-away* '(;; This should always be DEFTRANSFORMed away, but wasn't in a bug ;; reported to cmucl-imp@cons.org 2000-06-20. %instance-ref ;; These should always turn into VOPs, but wasn't in a bug which ;; appeared when LTN-POLICY stuff was being tweaked in ;; sbcl-0.6.9.16. in sbcl-0.6.0 data-vector-set data-vector-ref)) ;;; more stuff to check in CHECK-FULL-CALL ;;; ;;; These came in handy when troubleshooting cold boot after making ;;; major changes in the package structure: various transforms and ;;; VOPs and stuff got attached to the wrong symbol, so that ;;; references to the right symbol were bogusly translated as full ;;; calls instead of primitives, sending the system off into infinite ;;; space. Having a report on all full calls generated makes it easier ;;; to figure out what form caused the problem this time. #!+sb-show (defvar *show-full-called-fnames-p* nil) #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal)) ;;; Do some checks on a full call: ;;; * Is this a full call to something we have reason to know should ;;; never be full called? ;;; * Is this a full call to (SETF FOO) which might conflict with ;;; a DEFSETF or some such thing elsewhere in the program? (defun check-full-call (node) (let* ((cont (basic-combination-fun node)) (fname (continuation-fun-name cont t))) (declare (type (or symbol cons) fname)) #!+sb-show (unless (gethash fname *full-called-fnames*) (setf (gethash fname *full-called-fnames*) t)) #!+sb-show (when *show-full-called-fnames-p* (/show "converting full call to named function" fname) (/show (basic-combination-args node)) (/show (policy node speed) (policy node safety)) (/show (policy node compilation-speed)) (let ((arg-types (mapcar (lambda (maybe-continuation) (when maybe-continuation (type-specifier (continuation-type maybe-continuation)))) (basic-combination-args node)))) (/show arg-types))) (when (memq fname *always-optimized-away*) (/show (policy node speed) (policy node safety)) (/show (policy node compilation-speed)) (error "internal error: full call to ~S" fname)) (when (consp fname) (destructuring-bind (setf stem) fname (aver (eq setf 'setf)) (setf (gethash stem *setf-assumed-fboundp*) t))))) ;;; If the call is in a tail recursive position and the return ;;; convention is standard, then do a tail full call. If one or fewer ;;; values are desired, then use a single-value call, otherwise use a ;;; multiple-values call. (defun ir2-convert-full-call (node block) (declare (type combination node) (type ir2-block block)) (check-full-call node) (let ((2cont (continuation-info (node-cont node)))) (cond ((node-tail-p node) (ir2-convert-tail-full-call node block)) ((and 2cont (eq (ir2-continuation-kind 2cont) :unknown)) (ir2-convert-multiple-full-call node block)) (t (ir2-convert-fixed-full-call node block)))) (values)) ;;;; entering functions ;;; Do all the stuff that needs to be done on XEP entry: ;;; -- Create frame. ;;; -- Copy any more arg. ;;; -- Set up the environment, accessing any closure variables. ;;; -- Move args from the standard passing locations to their internal ;;; locations. (defun init-xep-environment (node block fun) (declare (type bind node) (type ir2-block block) (type clambda fun)) (let ((start-label (entry-info-offset (leaf-info fun))) (env (physenv-info (node-physenv node)))) (let ((ef (functional-entry-fun fun))) (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef)) ;; Special case the xep-allocate-frame + copy-more-arg case. (vop xep-allocate-frame node block start-label t) (vop copy-more-arg node block (optional-dispatch-max-args ef))) (t ;; No more args, so normal entry. (vop xep-allocate-frame node block start-label nil))) (if (ir2-physenv-closure env) (let ((closure (make-normal-tn *backend-t-primitive-type*))) (vop setup-closure-environment node block start-label closure) (when (getf (functional-plist ef) :fin-function) (vop funcallable-instance-lexenv node block closure closure)) (let ((n -1)) (dolist (loc (ir2-physenv-closure env)) (vop closure-ref node block closure (incf n) (cdr loc))))) (vop setup-environment node block start-label))) (unless (eq (functional-kind fun) :toplevel) (let ((vars (lambda-vars fun)) (n 0)) (when (leaf-refs (first vars)) (emit-move node block (make-argument-count-location) (leaf-info (first vars)))) (dolist (arg (rest vars)) (when (leaf-refs arg) (let ((pass (standard-argument-location n)) (home (leaf-info arg))) (if (lambda-var-indirect arg) (do-make-value-cell node block pass home) (emit-move node block pass home)))) (incf n)))) (emit-move node block (make-old-fp-passing-location t) (ir2-physenv-old-fp env))) (values)) ;;; Emit function prolog code. This is only called on bind nodes for ;;; functions that allocate environments. All semantics of let calls ;;; are handled by IR2-CONVERT-LET. ;;; ;;; If not an XEP, all we do is move the return PC from its passing ;;; location, since in a local call, the caller allocates the frame ;;; and sets up the arguments. (defun ir2-convert-bind (node block) (declare (type bind node) (type ir2-block block)) (let* ((fun (bind-lambda node)) (env (physenv-info (lambda-physenv fun)))) (aver (member (functional-kind fun) '(nil :external :optional :toplevel :cleanup))) (when (xep-p fun) (init-xep-environment node block fun) #!+sb-dyncount (when *collect-dynamic-statistics* (vop count-me node block *dynamic-counts-tn* (block-number (ir2-block-block block))))) (emit-move node block (ir2-physenv-return-pc-pass env) (ir2-physenv-return-pc env)) (let ((lab (gen-label))) (setf (ir2-physenv-environment-start env) lab) (vop note-environment-start node block lab))) (values)) ;;;; function return ;;; Do stuff to return from a function with the specified values and ;;; convention. If the return convention is :FIXED and we aren't ;;; returning from an XEP, then we do a known return (letting ;;; representation selection insert the correct move-arg VOPs.) ;;; Otherwise, we use the unknown-values convention. If there is a ;;; fixed number of return values, then use RETURN, otherwise use ;;; RETURN-MULTIPLE. (defun ir2-convert-return (node block) (declare (type creturn node) (type ir2-block block)) (let* ((cont (return-result node)) (2cont (continuation-info cont)) (cont-kind (ir2-continuation-kind 2cont)) (fun (return-lambda node)) (env (physenv-info (lambda-physenv fun))) (old-fp (ir2-physenv-old-fp env)) (return-pc (ir2-physenv-return-pc env)) (returns (tail-set-info (lambda-tail-set fun)))) (cond ((and (eq (return-info-kind returns) :fixed) (not (xep-p fun))) (let ((locs (continuation-tns node block cont (return-info-types returns)))) (vop* known-return node block (old-fp return-pc (reference-tn-list locs nil)) (nil) (return-info-locations returns)))) ((eq cont-kind :fixed) (let* ((types (mapcar #'tn-primitive-type (ir2-continuation-locs 2cont))) (cont-locs (continuation-tns node block cont types)) (nvals (length cont-locs)) (locs (make-standard-value-tns nvals))) (mapc #'(lambda (val loc) (emit-move node block val loc)) cont-locs locs) (if (= nvals 1) (vop return-single node block old-fp return-pc (car locs)) (vop* return node block (old-fp return-pc (reference-tn-list locs nil)) (nil) nvals)))) (t (aver (eq cont-kind :unknown)) (vop* return-multiple node block (old-fp return-pc (reference-tn-list (ir2-continuation-locs 2cont) nil)) (nil))))) (values)) ;;;; debugger hooks ;;; This is used by the debugger to find the top function on the ;;; stack. It returns the OLD-FP and RETURN-PC for the current ;;; function as multiple values. (defoptimizer (sb!kernel:%caller-frame-and-pc ir2-convert) (() node block) (let ((ir2-physenv (physenv-info (node-physenv node)))) (move-continuation-result node block (list (ir2-physenv-old-fp ir2-physenv) (ir2-physenv-return-pc ir2-physenv)) (node-cont node)))) ;;;; multiple values ;;; This is almost identical to IR2-Convert-Let. Since LTN annotates ;;; the continuation for the correct number of values (with the ;;; continuation user responsible for defaulting), we can just pick ;;; them up from the continuation. (defun ir2-convert-mv-bind (node block) (declare (type mv-combination node) (type ir2-block block)) (let* ((cont (first (basic-combination-args node))) (fun (ref-leaf (continuation-use (basic-combination-fun node)))) (vars (lambda-vars fun))) (aver (eq (functional-kind fun) :mv-let)) (mapc #'(lambda (src var) (when (leaf-refs var) (let ((dest (leaf-info var))) (if (lambda-var-indirect var) (do-make-value-cell node block src dest) (emit-move node block src dest))))) (continuation-tns node block cont (mapcar #'(lambda (x) (primitive-type (leaf-type x))) vars)) vars)) (values)) ;;; Emit the appropriate fixed value, unknown value or tail variant of ;;; CALL-VARIABLE. Note that we only need to pass the values start for ;;; the first argument: all the other argument continuation TNs are ;;; ignored. This is because we require all of the values globs to be ;;; contiguous and on stack top. (defun ir2-convert-mv-call (node block) (declare (type mv-combination node) (type ir2-block block)) (aver (basic-combination-args node)) (let* ((start-cont (continuation-info (first (basic-combination-args node)))) (start (first (ir2-continuation-locs start-cont))) (tails (and (node-tail-p node) (lambda-tail-set (node-home-lambda node)))) (cont (node-cont node)) (2cont (continuation-info cont))) (multiple-value-bind (fun named) (function-continuation-tn node block (basic-combination-fun node)) (aver (and (not named) (eq (ir2-continuation-kind start-cont) :unknown))) (cond (tails (let ((env (physenv-info (node-physenv node)))) (vop tail-call-variable node block start fun (ir2-physenv-old-fp env) (ir2-physenv-return-pc env)))) ((and 2cont (eq (ir2-continuation-kind 2cont) :unknown)) (vop* multiple-call-variable node block (start fun nil) ((reference-tn-list (ir2-continuation-locs 2cont) t)))) (t (let ((locs (standard-result-tns cont))) (vop* call-variable node block (start fun nil) ((reference-tn-list locs t)) (length locs)) (move-continuation-result node block locs cont))))))) ;;; Reset the stack pointer to the start of the specified ;;; unknown-values continuation (discarding it and all values globs on ;;; top of it.) (defoptimizer (%pop-values ir2-convert) ((continuation) node block) (let ((2cont (continuation-info (continuation-value continuation)))) (aver (eq (ir2-continuation-kind 2cont) :unknown)) (vop reset-stack-pointer node block (first (ir2-continuation-locs 2cont))))) ;;; Deliver the values TNs to CONT using MOVE-CONTINUATION-RESULT. (defoptimizer (values ir2-convert) ((&rest values) node block) (let ((tns (mapcar #'(lambda (x) (continuation-tn node block x)) values))) (move-continuation-result node block tns (node-cont node)))) ;;; In the normal case where unknown values are desired, we use the ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST ;;; for a fixed number of values, we punt by doing a full call to the ;;; VALUES-LIST function. This gets the full call VOP to deal with ;;; defaulting any unsupplied values. It seems unworthwhile to ;;; optimize this case. (defoptimizer (values-list ir2-convert) ((list) node block) (let* ((cont (node-cont node)) (2cont (continuation-info cont))) (when 2cont (ecase (ir2-continuation-kind 2cont) (:fixed (ir2-convert-full-call node block)) (:unknown (let ((locs (ir2-continuation-locs 2cont))) (vop* values-list node block ((continuation-tn node block list) nil) ((reference-tn-list locs t))))))))) (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block) (let* ((cont (node-cont node)) (2cont (continuation-info cont))) (when 2cont (ecase (ir2-continuation-kind 2cont) (:fixed (ir2-convert-full-call node block)) (:unknown (let ((locs (ir2-continuation-locs 2cont))) (vop* %more-arg-values node block ((continuation-tn node block context) (continuation-tn node block start) (continuation-tn node block count) nil) ((reference-tn-list locs t))))))))) ;;;; special binding ;;; This is trivial, given our assumption of a shallow-binding ;;; implementation. (defoptimizer (%special-bind ir2-convert) ((var value) node block) (let ((name (leaf-source-name (continuation-value var)))) (vop bind node block (continuation-tn node block value) (emit-constant name)))) (defoptimizer (%special-unbind ir2-convert) ((var) node block) (vop unbind node block)) ;;; ### It's not clear that this really belongs in this file, or ;;; should really be done this way, but this is the least violation of ;;; abstraction in the current setup. We don't want to wire ;;; shallow-binding assumptions into IR1tran. (def-ir1-translator progv ((vars vals &body body) start cont) (ir1-convert start cont (once-only ((n-save-bs '(%primitive current-binding-pointer))) `(unwind-protect (progn (mapc #'(lambda (var val) (%primitive bind val var)) ,vars ,vals) ,@body) (%primitive unbind-to-here ,n-save-bs))))) ;;;; non-local exit ;;; Convert a non-local lexical exit. First find the NLX-Info in our ;;; environment. Note that this is never called on the escape exits ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't ;;; IR2 converted. (defun ir2-convert-exit (node block) (declare (type exit node) (type ir2-block block)) (let ((loc (find-in-physenv (find-nlx-info (exit-entry node) (node-cont node)) (node-physenv node))) (temp (make-stack-pointer-tn)) (value (exit-value node))) (vop value-cell-ref node block loc temp) (if value (let ((locs (ir2-continuation-locs (continuation-info value)))) (vop unwind node block temp (first locs) (second locs))) (let ((0-tn (emit-constant 0))) (vop unwind node block temp 0-tn 0-tn)))) (values)) ;;; %CLEANUP-POINT doesn't do anything except prevent the body from ;;; being entirely deleted. (defoptimizer (%cleanup-point ir2-convert) (() node block) node block) ;;; This function invalidates a lexical exit on exiting from the ;;; dynamic extent. This is done by storing 0 into the indirect value ;;; cell that holds the closed unwind block. (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block) (vop value-cell-set node block (find-in-physenv (continuation-value info) (node-physenv node)) (emit-constant 0))) ;;; We have to do a spurious move of no values to the result ;;; continuation so that lifetime analysis won't get confused. (defun ir2-convert-throw (node block) (declare (type mv-combination node) (type ir2-block block)) (let ((args (basic-combination-args node))) (vop* throw node block ((continuation-tn node block (first args)) (reference-tn-list (ir2-continuation-locs (continuation-info (second args))) nil)) (nil))) (move-continuation-result node block () (node-cont node)) (values)) ;;; Emit code to set up a non-local exit. INFO is the NLX-Info for the ;;; exit, and TAG is the continuation for the catch tag (if any.) We ;;; get at the target PC by passing in the label to the vop. The vop ;;; is responsible for building a return-PC object. (defun emit-nlx-start (node block info tag) (declare (type node node) (type ir2-block block) (type nlx-info info) (type (or continuation null) tag)) (let* ((2info (nlx-info-info info)) (kind (cleanup-kind (nlx-info-cleanup info))) (block-tn (physenv-live-tn (make-normal-tn (primitive-type-or-lose 'catch-block)) (node-physenv node))) (res (make-stack-pointer-tn)) (target-label (ir2-nlx-info-target 2info))) (vop current-binding-pointer node block (car (ir2-nlx-info-dynamic-state 2info))) (vop* save-dynamic-state node block (nil) ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t))) (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info)) (ecase kind (:catch (vop make-catch-block node block block-tn (continuation-tn node block tag) target-label res)) ((:unwind-protect :block :tagbody) (vop make-unwind-block node block block-tn target-label res))) (ecase kind ((:block :tagbody) (do-make-value-cell node block res (ir2-nlx-info-home 2info))) (:unwind-protect (vop set-unwind-protect node block block-tn)) (:catch))) (values)) ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit. (defun ir2-convert-entry (node block) (declare (type entry node) (type ir2-block block)) (dolist (exit (entry-exits node)) (let ((info (find-nlx-info node (node-cont exit)))) (when (and info (member (cleanup-kind (nlx-info-cleanup info)) '(:block :tagbody))) (emit-nlx-start node block info nil)))) (values)) ;;; Set up the unwind block for these guys. (defoptimizer (%catch ir2-convert) ((info-cont tag) node block) (emit-nlx-start node block (continuation-value info-cont) tag)) (defoptimizer (%unwind-protect ir2-convert) ((info-cont cleanup) node block) (emit-nlx-start node block (continuation-value info-cont) nil)) ;;; Emit the entry code for a non-local exit. We receive values and ;;; restore dynamic state. ;;; ;;; In the case of a lexical exit or CATCH, we look at the exit ;;; continuation's kind to determine which flavor of entry VOP to ;;; emit. If unknown values, emit the xxx-MULTIPLE variant to the ;;; continuation locs. If fixed values, make the appropriate number of ;;; temps in the standard values locations and use the other variant, ;;; delivering the temps to the continuation using ;;; MOVE-CONTINUATION-RESULT. ;;; ;;; In the UNWIND-PROTECT case, we deliver the first register ;;; argument, the argument count and the argument pointer to our ;;; continuation as multiple values. These values are the block exited ;;; to and the values start and count. ;;; ;;; After receiving values, we restore dynamic state. Except in the ;;; UNWIND-PROTECT case, the values receiving restores the stack ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack ;;; pointer alone, since the thrown values are still out there. (defoptimizer (%nlx-entry ir2-convert) ((info-cont) node block) (let* ((info (continuation-value info-cont)) (cont (nlx-info-continuation info)) (2cont (continuation-info cont)) (2info (nlx-info-info info)) (top-loc (ir2-nlx-info-save-sp 2info)) (start-loc (make-nlx-entry-argument-start-location)) (count-loc (make-argument-count-location)) (target (ir2-nlx-info-target 2info))) (ecase (cleanup-kind (nlx-info-cleanup info)) ((:catch :block :tagbody) (if (and 2cont (eq (ir2-continuation-kind 2cont) :unknown)) (vop* nlx-entry-multiple node block (top-loc start-loc count-loc nil) ((reference-tn-list (ir2-continuation-locs 2cont) t)) target) (let ((locs (standard-result-tns cont))) (vop* nlx-entry node block (top-loc start-loc count-loc nil) ((reference-tn-list locs t)) target (length locs)) (move-continuation-result node block locs cont)))) (:unwind-protect (let ((block-loc (standard-argument-location 0))) (vop uwp-entry node block target block-loc start-loc count-loc) (move-continuation-result node block (list block-loc start-loc count-loc) cont)))) #!+sb-dyncount (when *collect-dynamic-statistics* (vop count-me node block *dynamic-counts-tn* (block-number (ir2-block-block block)))) (vop* restore-dynamic-state node block ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil)) (nil)) (vop unbind-to-here node block (car (ir2-nlx-info-dynamic-state 2info))))) ;;;; n-argument functions (macrolet ((def-frob (name) `(defoptimizer (,name ir2-convert) ((&rest args) node block) (let* ((refs (move-tail-full-call-args node block)) (cont (node-cont node)) (res (continuation-result-tns cont (list (primitive-type (specifier-type 'list)))))) (vop* ,name node block (refs) ((first res) nil) (length args)) (move-continuation-result node block res cont))))) (def-frob list) (def-frob list*)) ;;;; structure accessors ;;;; ;;;; These guys have to bizarrely determine the slot offset by looking ;;;; at the called function. (defoptimizer (%slot-accessor ir2-convert) ((str) node block) (let* ((cont (node-cont node)) (res (continuation-result-tns cont (list *backend-t-primitive-type*)))) (vop instance-ref node block (continuation-tn node block str) (dsd-index (slot-accessor-slot (ref-leaf (continuation-use (combination-fun node))))) (first res)) (move-continuation-result node block res cont))) (defoptimizer (%slot-setter ir2-convert) ((value str) node block) (let ((val (continuation-tn node block value))) (vop instance-set node block (continuation-tn node block str) val (dsd-index (slot-accessor-slot (ref-leaf (continuation-use (combination-fun node)))))) (move-continuation-result node block (list val) (node-cont node)))) ;;; Convert the code in a component into VOPs. (defun ir2-convert (component) (declare (type component component)) (let (#!+sb-dyncount (*dynamic-counts-tn* (when *collect-dynamic-statistics* (let* ((blocks (block-number (block-next (component-head component)))) (counts (make-array blocks :element-type '(unsigned-byte 32) :initial-element 0)) (info (make-dyncount-info :for (component-name component) :costs (make-array blocks :element-type '(unsigned-byte 32) :initial-element 0) :counts counts))) (setf (ir2-component-dyncount-info (component-info component)) info) (emit-constant info) (emit-constant counts))))) (let ((num 0)) (declare (type index num)) (do-ir2-blocks (2block component) (let ((block (ir2-block-block 2block))) (when (block-start block) (setf (block-number block) num) #!+sb-dyncount (when *collect-dynamic-statistics* (let ((first-node (continuation-next (block-start block)))) (unless (or (and (bind-p first-node) (xep-p (bind-lambda first-node))) (eq (continuation-fun-name (node-cont first-node)) '%nlx-entry)) (vop count-me first-node 2block #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil num)))) (ir2-convert-block block) (incf num)))))) (values)) ;;; If necessary, emit a terminal unconditional branch to go to the ;;; successor block. If the successor is the component tail, then ;;; there isn't really any successor, but if the end is an unknown, ;;; non-tail call, then we emit an error trap just in case the ;;; function really does return. (defun finish-ir2-block (block) (declare (type cblock block)) (let* ((2block (block-info block)) (last (block-last block)) (succ (block-succ block))) (unless (if-p last) (aver (and succ (null (rest succ)))) (let ((target (first succ))) (cond ((eq target (component-tail (block-component block))) (when (and (basic-combination-p last) (eq (basic-combination-kind last) :full)) (let* ((fun (basic-combination-fun last)) (use (continuation-use fun)) (name (and (ref-p use) (leaf-has-source-name-p (ref-leaf use)) (leaf-source-name (ref-leaf use))))) (unless (or (node-tail-p last) (info :function :info name) (policy last (zerop safety))) (vop nil-function-returned-error last 2block (if name (emit-constant name) (multiple-value-bind (tn named) (function-continuation-tn last 2block fun) (aver (not named)) tn))))))) ((not (eq (ir2-block-next 2block) (block-info target))) (vop branch last 2block (block-label target))))))) (values)) ;;; Convert the code in a block into VOPs. (defun ir2-convert-block (block) (declare (type cblock block)) (let ((2block (block-info block))) (do-nodes (node cont block) (etypecase node (ref (let ((2cont (continuation-info cont))) (when (and 2cont (not (eq (ir2-continuation-kind 2cont) :delayed))) (ir2-convert-ref node 2block)))) (combination (let ((kind (basic-combination-kind node))) (case kind (:local (ir2-convert-local-call node 2block)) (:full (ir2-convert-full-call node 2block)) (t (let ((fun (function-info-ir2-convert kind))) (cond (fun (funcall fun node 2block)) ((eq (basic-combination-info node) :full) (ir2-convert-full-call node 2block)) (t (ir2-convert-template node 2block)))))))) (cif (when (continuation-info (if-test node)) (ir2-convert-if node 2block))) (bind (let ((fun (bind-lambda node))) (when (eq (lambda-home fun) fun) (ir2-convert-bind node 2block)))) (creturn (ir2-convert-return node 2block)) (cset (ir2-convert-set node 2block)) (mv-combination (cond ((eq (basic-combination-kind node) :local) (ir2-convert-mv-bind node 2block)) ((eq (continuation-fun-name (basic-combination-fun node)) '%throw) (ir2-convert-throw node 2block)) (t (ir2-convert-mv-call node 2block)))) (exit (when (exit-entry node) (ir2-convert-exit node 2block))) (entry (ir2-convert-entry node 2block))))) (finish-ir2-block block) (values))