;;;; that part of the description of the x86 instruction set (for ;;;; 80386 and above) which can live on the cross-compilation host ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; This software is derived from the CMU CL system, which was ;;;; written at Carnegie Mellon University and released into the ;;;; public domain. The software is in the public domain and is ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. (in-package "SB!VM") ;;; FIXME: SB!DISASSEM: prefixes are used so widely in this file that ;;; I wonder whether the separation of the disassembler from the ;;; virtual machine is valid or adds value. ;;; Note: In CMU CL, this used to be a call to SET-DISASSEM-PARAMS. (setf sb!disassem:*disassem-inst-alignment-bytes* 1) (deftype reg () '(unsigned-byte 3)) (def!constant +default-operand-size+ :dword) (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute) (defun offset-next (value dstate) (declare (type integer value) (type sb!disassem:disassem-state dstate)) (+ (sb!disassem:dstate-next-addr dstate) value)) (defparameter *default-address-size* ;; Actually, :DWORD is the only one really supported. :dword) (defparameter *byte-reg-names* #(al cl dl bl ah ch dh bh)) (defparameter *word-reg-names* #(ax cx dx bx sp bp si di)) (defparameter *dword-reg-names* #(eax ecx edx ebx esp ebp esi edi)) ;;; Disassembling x86 code needs to take into account little things ;;; like instructions that have a byte/word length bit in their ;;; encoding, prefixes to change the default word length for a single ;;; instruction, and so on. Unfortunately, there is no easy way with ;;; this disassembler framework to handle prefixes that will work ;;; correctly in all cases, so we copy the x86-64 version which at ;;; least can handle the code output by the compiler. ;;; ;;; Width information for an instruction and whether a segment ;;; override prefix was seen is stored as an inst-prop on the dstate. ;;; The inst-props are cleared automatically after each non-prefix ;;; instruction, must be set by prefilters, and contain a single bit of ;;; data each (presence/absence). ;;; Return the operand size based on the prefixes and width bit from ;;; the dstate. (defun inst-operand-size (dstate) (declare (type sb!disassem:disassem-state dstate)) (cond ((sb!disassem:dstate-get-inst-prop dstate 'operand-size-8) :byte) ((sb!disassem:dstate-get-inst-prop dstate 'operand-size-16) :word) (t +default-operand-size+))) ;;; Return the operand size for a "word-sized" operand based on the ;;; prefixes from the dstate. (defun inst-word-operand-size (dstate) (declare (type sb!disassem:disassem-state dstate)) (if (sb!disassem:dstate-get-inst-prop dstate 'operand-size-16) :word :dword)) (defun print-reg-with-width (value width stream dstate) (declare (ignore dstate)) (princ (aref (ecase width (:byte *byte-reg-names*) (:word *word-reg-names*) (:dword *dword-reg-names*)) value) stream) ;; XXX plus should do some source-var notes ) (defun print-reg (value stream dstate) (declare (type reg value) (type stream stream) (type sb!disassem:disassem-state dstate)) (print-reg-with-width value (inst-operand-size dstate) stream dstate)) (defun print-word-reg (value stream dstate) (declare (type reg value) (type stream stream) (type sb!disassem:disassem-state dstate)) (print-reg-with-width value (inst-word-operand-size dstate) stream dstate)) (defun print-byte-reg (value stream dstate) (declare (type reg value) (type stream stream) (type sb!disassem:disassem-state dstate)) (print-reg-with-width value :byte stream dstate)) (defun print-addr-reg (value stream dstate) (declare (type reg value) (type stream stream) (type sb!disassem:disassem-state dstate)) (print-reg-with-width value *default-address-size* stream dstate)) (defun print-reg/mem (value stream dstate) (declare (type (or list reg) value) (type stream stream) (type sb!disassem:disassem-state dstate)) (if (typep value 'reg) (print-reg value stream dstate) (print-mem-access value stream nil dstate))) ;; Same as print-reg/mem, but prints an explicit size indicator for ;; memory references. (defun print-sized-reg/mem (value stream dstate) (declare (type (or list reg) value) (type stream stream) (type sb!disassem:disassem-state dstate)) (if (typep value 'reg) (print-reg value stream dstate) (print-mem-access value stream t dstate))) (defun print-byte-reg/mem (value stream dstate) (declare (type (or list reg) value) (type stream stream) (type sb!disassem:disassem-state dstate)) (if (typep value 'reg) (print-byte-reg value stream dstate) (print-mem-access value stream t dstate))) (defun print-word-reg/mem (value stream dstate) (declare (type (or list reg) value) (type stream stream) (type sb!disassem:disassem-state dstate)) (if (typep value 'reg) (print-word-reg value stream dstate) (print-mem-access value stream nil dstate))) (defun print-label (value stream dstate) (declare (ignore dstate)) (sb!disassem:princ16 value stream)) (defun maybe-print-segment-override (stream dstate) (cond ((sb!disassem:dstate-get-inst-prop dstate 'fs-segment-prefix) (princ "FS:" stream)) ((sb!disassem:dstate-get-inst-prop dstate 'gs-segment-prefix) (princ "GS:" stream)))) ;;; Returns either an integer, meaning a register, or a list of ;;; (BASE-REG OFFSET INDEX-REG INDEX-SCALE), where any component ;;; may be missing or nil to indicate that it's not used or has the ;;; obvious default value (e.g., 1 for the index-scale). (defun prefilter-reg/mem (value dstate) (declare (type list value) (type sb!disassem:disassem-state dstate)) (let ((mod (car value)) (r/m (cadr value))) (declare (type (unsigned-byte 2) mod) (type (unsigned-byte 3) r/m)) (cond ((= mod #b11) ;; registers r/m) ((= r/m #b100) ;; sib byte (let ((sib (sb!disassem:read-suffix 8 dstate))) (declare (type (unsigned-byte 8) sib)) (let ((base-reg (ldb (byte 3 0) sib)) (index-reg (ldb (byte 3 3) sib)) (index-scale (ldb (byte 2 6) sib))) (declare (type (unsigned-byte 3) base-reg index-reg) (type (unsigned-byte 2) index-scale)) (let* ((offset (case mod (#b00 (if (= base-reg #b101) (sb!disassem:read-signed-suffix 32 dstate) nil)) (#b01 (sb!disassem:read-signed-suffix 8 dstate)) (#b10 (sb!disassem:read-signed-suffix 32 dstate))))) (list (if (and (= mod #b00) (= base-reg #b101)) nil base-reg) offset (if (= index-reg #b100) nil index-reg) (ash 1 index-scale)))))) ((and (= mod #b00) (= r/m #b101)) (list nil (sb!disassem:read-signed-suffix 32 dstate)) ) ((= mod #b00) (list r/m)) ((= mod #b01) (list r/m (sb!disassem:read-signed-suffix 8 dstate))) (t ; (= mod #b10) (list r/m (sb!disassem:read-signed-suffix 32 dstate)))))) ;;; This is a sort of bogus prefilter that just stores the info globally for ;;; other people to use; it probably never gets printed. (defun prefilter-width (value dstate) (declare (type bit value) (type sb!disassem:disassem-state dstate)) (when (zerop value) (sb!disassem:dstate-put-inst-prop dstate 'operand-size-8)) value) ;;; This prefilter is used solely for its side effect, namely to put ;;; the property OPERAND-SIZE-16 into the DSTATE. (defun prefilter-x66 (value dstate) (declare (type (eql #x66) value) (ignore value) (type sb!disassem:disassem-state dstate)) (sb!disassem:dstate-put-inst-prop dstate 'operand-size-16)) ;;; This prefilter is used solely for its side effect, namely to put ;;; one of the properties [FG]S-SEGMENT-PREFIX into the DSTATE. ;;; Unlike PREFILTER-X66, this prefilter only catches the low bit of ;;; the prefix byte. (defun prefilter-seg (value dstate) (declare (type bit value) (type sb!disassem:disassem-state dstate)) (sb!disassem:dstate-put-inst-prop dstate (elt '(fs-segment-prefix gs-segment-prefix) value))) (defun read-address (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-suffix (width-bits *default-address-size*) dstate)) (defun width-bits (width) (ecase width (:byte 8) (:word 16) (:dword 32) (:float 32) (:double 64))) ) ; EVAL-WHEN ;;;; disassembler argument types (sb!disassem:define-arg-type displacement :sign-extend t :use-label #'offset-next :printer (lambda (value stream dstate) (sb!disassem:maybe-note-assembler-routine value nil dstate) (print-label value stream dstate))) (sb!disassem:define-arg-type accum :printer (lambda (value stream dstate) (declare (ignore value) (type stream stream) (type sb!disassem:disassem-state dstate)) (print-reg 0 stream dstate))) (sb!disassem:define-arg-type word-accum :printer (lambda (value stream dstate) (declare (ignore value) (type stream stream) (type sb!disassem:disassem-state dstate)) (print-word-reg 0 stream dstate))) (sb!disassem:define-arg-type reg :printer #'print-reg) (sb!disassem:define-arg-type addr-reg :printer #'print-addr-reg) (sb!disassem:define-arg-type word-reg :printer #'print-word-reg) (sb!disassem:define-arg-type imm-addr :prefilter #'read-address :printer #'print-label) (sb!disassem:define-arg-type imm-data :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-suffix (width-bits (inst-operand-size dstate)) dstate))) (sb!disassem:define-arg-type signed-imm-data :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (let ((width (inst-operand-size dstate))) (sb!disassem:read-signed-suffix (width-bits width) dstate)))) (sb!disassem:define-arg-type imm-byte :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-suffix 8 dstate))) (sb!disassem:define-arg-type signed-imm-byte :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-signed-suffix 8 dstate))) (sb!disassem:define-arg-type signed-imm-dword :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-signed-suffix 32 dstate))) (sb!disassem:define-arg-type imm-word :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (let ((width (inst-word-operand-size dstate))) (sb!disassem:read-suffix (width-bits width) dstate)))) (sb!disassem:define-arg-type signed-imm-word :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (let ((width (inst-word-operand-size dstate))) (sb!disassem:read-signed-suffix (width-bits width) dstate)))) ;;; needed for the ret imm16 instruction (sb!disassem:define-arg-type imm-word-16 :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-suffix 16 dstate))) (sb!disassem:define-arg-type reg/mem :prefilter #'prefilter-reg/mem :printer #'print-reg/mem) (sb!disassem:define-arg-type sized-reg/mem ;; Same as reg/mem, but prints an explicit size indicator for ;; memory references. :prefilter #'prefilter-reg/mem :printer #'print-sized-reg/mem) (sb!disassem:define-arg-type byte-reg/mem :prefilter #'prefilter-reg/mem :printer #'print-byte-reg/mem) (sb!disassem:define-arg-type word-reg/mem :prefilter #'prefilter-reg/mem :printer #'print-word-reg/mem) ;;; added by jrd (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute) (defun print-fp-reg (value stream dstate) (declare (ignore dstate)) (format stream "FR~D" value)) (defun prefilter-fp-reg (value dstate) ;; just return it (declare (ignore dstate)) value) ) ; EVAL-WHEN (sb!disassem:define-arg-type fp-reg :prefilter #'prefilter-fp-reg :printer #'print-fp-reg) (sb!disassem:define-arg-type width :prefilter #'prefilter-width :printer (lambda (value stream dstate) (declare (ignore value)) (princ (schar (symbol-name (inst-operand-size dstate)) 0) stream))) ;;; Used to capture the effect of the #x66 operand size override prefix. (sb!disassem:define-arg-type x66 :prefilter #'prefilter-x66) ;;; Used to capture the effect of the #x64 and #x65 segment override ;;; prefixes. (sb!disassem:define-arg-type seg :prefilter #'prefilter-seg) (eval-when (:compile-toplevel :load-toplevel :execute) (defparameter *conditions* '((:o . 0) (:no . 1) (:b . 2) (:nae . 2) (:c . 2) (:nb . 3) (:ae . 3) (:nc . 3) (:eq . 4) (:e . 4) (:z . 4) (:ne . 5) (:nz . 5) (:be . 6) (:na . 6) (:nbe . 7) (:a . 7) (:s . 8) (:ns . 9) (:p . 10) (:pe . 10) (:np . 11) (:po . 11) (:l . 12) (:nge . 12) (:nl . 13) (:ge . 13) (:le . 14) (:ng . 14) (:nle . 15) (:g . 15))) (defparameter *condition-name-vec* (let ((vec (make-array 16 :initial-element nil))) (dolist (cond *conditions*) (when (null (aref vec (cdr cond))) (setf (aref vec (cdr cond)) (car cond)))) vec)) ) ; EVAL-WHEN ;;; Set assembler parameters. (In CMU CL, this was done with ;;; a call to a macro DEF-ASSEMBLER-PARAMS.) (eval-when (:compile-toplevel :load-toplevel :execute) (setf sb!assem:*assem-scheduler-p* nil)) (sb!disassem:define-arg-type condition-code :printer *condition-name-vec*) (defun conditional-opcode (condition) (cdr (assoc condition *conditions* :test #'eq))) ;;;; disassembler instruction formats (eval-when (:compile-toplevel :execute) (defun swap-if (direction field1 separator field2) `(:if (,direction :constant 0) (,field1 ,separator ,field2) (,field2 ,separator ,field1)))) (sb!disassem:define-instruction-format (byte 8 :default-printer '(:name)) (op :field (byte 8 0)) ;; optional fields (accum :type 'accum) (imm)) ;;; Prefix instructions (sb!disassem:define-instruction-format (x66 8) (x66 :field (byte 8 0) :type 'x66 :value #x66)) (sb!disassem:define-instruction-format (seg 8) (seg :field (byte 7 1) :value #x32) (fsgs :field (byte 1 0) :type 'seg)) (sb!disassem:define-instruction-format (simple 8) (op :field (byte 7 1)) (width :field (byte 1 0) :type 'width) ;; optional fields (accum :type 'accum) (imm)) (sb!disassem:define-instruction-format (two-bytes 16 :default-printer '(:name)) (op :fields (list (byte 8 0) (byte 8 8)))) ;;; Same as simple, but with direction bit (sb!disassem:define-instruction-format (simple-dir 8 :include 'simple) (op :field (byte 6 2)) (dir :field (byte 1 1))) ;;; Same as simple, but with the immediate value occurring by default, ;;; and with an appropiate printer. (sb!disassem:define-instruction-format (accum-imm 8 :include 'simple :default-printer '(:name :tab accum ", " imm)) (imm :type 'imm-data)) (sb!disassem:define-instruction-format (reg-no-width 8 :default-printer '(:name :tab reg)) (op :field (byte 5 3)) (reg :field (byte 3 0) :type 'word-reg) ;; optional fields (accum :type 'word-accum) (imm)) ;;; adds a width field to reg-no-width (sb!disassem:define-instruction-format (reg 8 :default-printer '(:name :tab reg)) (op :field (byte 4 4)) (width :field (byte 1 3) :type 'width) (reg :field (byte 3 0) :type 'reg) ;; optional fields (accum :type 'accum) (imm) ) ;;; Same as reg, but with direction bit (sb!disassem:define-instruction-format (reg-dir 8 :include 'reg) (op :field (byte 3 5)) (dir :field (byte 1 4))) (sb!disassem:define-instruction-format (two-bytes 16 :default-printer '(:name)) (op :fields (list (byte 8 0) (byte 8 8)))) (sb!disassem:define-instruction-format (reg-reg/mem 16 :default-printer `(:name :tab reg ", " reg/mem)) (op :field (byte 7 1)) (width :field (byte 1 0) :type 'width) (reg/mem :fields (list (byte 2 14) (byte 3 8)) :type 'reg/mem) (reg :field (byte 3 11) :type 'reg) ;; optional fields (imm)) ;;; same as reg-reg/mem, but with direction bit (sb!disassem:define-instruction-format (reg-reg/mem-dir 16 :include 'reg-reg/mem :default-printer `(:name :tab ,(swap-if 'dir 'reg/mem ", " 'reg))) (op :field (byte 6 2)) (dir :field (byte 1 1))) ;;; Same as reg-rem/mem, but uses the reg field as a second op code. (sb!disassem:define-instruction-format (reg/mem 16 :default-printer '(:name :tab reg/mem)) (op :fields (list (byte 7 1) (byte 3 11))) (width :field (byte 1 0) :type 'width) (reg/mem :fields (list (byte 2 14) (byte 3 8)) :type 'sized-reg/mem) ;; optional fields (imm)) ;;; Same as reg/mem, but with the immediate value occurring by default, ;;; and with an appropiate printer. (sb!disassem:define-instruction-format (reg/mem-imm 16 :include 'reg/mem :default-printer '(:name :tab reg/mem ", " imm)) (reg/mem :type 'sized-reg/mem) (imm :type 'imm-data)) ;;; Same as reg/mem, but with using the accumulator in the default printer (sb!disassem:define-instruction-format (accum-reg/mem 16 :include 'reg/mem :default-printer '(:name :tab accum ", " reg/mem)) (reg/mem :type 'reg/mem) ; don't need a size (accum :type 'accum)) ;;; Same as reg-reg/mem, but with a prefix of #b00001111 (sb!disassem:define-instruction-format (ext-reg-reg/mem 24 :default-printer `(:name :tab reg ", " reg/mem)) (prefix :field (byte 8 0) :value #b00001111) (op :field (byte 7 9)) (width :field (byte 1 8) :type 'width) (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'reg/mem) (reg :field (byte 3 19) :type 'reg) ;; optional fields (imm)) (sb!disassem:define-instruction-format (ext-reg-reg/mem-no-width 24 :default-printer `(:name :tab reg ", " reg/mem)) (prefix :field (byte 8 0) :value #b00001111) (op :field (byte 8 8)) (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'reg/mem) (reg :field (byte 3 19) :type 'reg) ;; optional fields (imm)) (sb!disassem:define-instruction-format (ext-reg/mem-no-width 24 :default-printer `(:name :tab reg/mem)) (prefix :field (byte 8 0) :value #b00001111) (op :fields (list (byte 8 8) (byte 3 19))) (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'reg/mem)) ;;; reg-no-width with #x0f prefix (sb!disassem:define-instruction-format (ext-reg-no-width 16 :default-printer '(:name :tab reg)) (prefix :field (byte 8 0) :value #b00001111) (op :field (byte 5 11)) (reg :field (byte 3 8) :type 'reg)) ;;; Same as reg/mem, but with a prefix of #b00001111 (sb!disassem:define-instruction-format (ext-reg/mem 24 :default-printer '(:name :tab reg/mem)) (prefix :field (byte 8 0) :value #b00001111) (op :fields (list (byte 7 9) (byte 3 19))) (width :field (byte 1 8) :type 'width) (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'sized-reg/mem) ;; optional fields (imm)) (sb!disassem:define-instruction-format (ext-reg/mem-imm 24 :include 'ext-reg/mem :default-printer '(:name :tab reg/mem ", " imm)) (imm :type 'imm-data)) (sb!disassem:define-instruction-format (ext-reg/mem-no-width+imm8 24 :include 'ext-reg/mem-no-width :default-printer '(:name :tab reg/mem ", " imm)) (imm :type 'imm-byte)) ;;;; This section was added by jrd, for fp instructions. ;;; regular fp inst to/from registers/memory (sb!disassem:define-instruction-format (floating-point 16 :default-printer `(:name :tab reg/mem)) (prefix :field (byte 5 3) :value #b11011) (op :fields (list (byte 3 0) (byte 3 11))) (reg/mem :fields (list (byte 2 14) (byte 3 8)) :type 'reg/mem)) ;;; fp insn to/from fp reg (sb!disassem:define-instruction-format (floating-point-fp 16 :default-printer `(:name :tab fp-reg)) (prefix :field (byte 5 3) :value #b11011) (suffix :field (byte 2 14) :value #b11) (op :fields (list (byte 3 0) (byte 3 11))) (fp-reg :field (byte 3 8) :type 'fp-reg)) ;;; fp insn to/from fp reg, with the reversed source/destination flag. (sb!disassem:define-instruction-format (floating-point-fp-d 16 :default-printer `(:name :tab ,(swap-if 'd "ST0" ", " 'fp-reg))) (prefix :field (byte 5 3) :value #b11011) (suffix :field (byte 2 14) :value #b11) (op :fields (list (byte 2 0) (byte 3 11))) (d :field (byte 1 2)) (fp-reg :field (byte 3 8) :type 'fp-reg)) ;;; (added by (?) pfw) ;;; fp no operand isns (sb!disassem:define-instruction-format (floating-point-no 16 :default-printer '(:name)) (prefix :field (byte 8 0) :value #b11011001) (suffix :field (byte 3 13) :value #b111) (op :field (byte 5 8))) (sb!disassem:define-instruction-format (floating-point-3 16 :default-printer '(:name)) (prefix :field (byte 5 3) :value #b11011) (suffix :field (byte 2 14) :value #b11) (op :fields (list (byte 3 0) (byte 6 8)))) (sb!disassem:define-instruction-format (floating-point-5 16 :default-printer '(:name)) (prefix :field (byte 8 0) :value #b11011011) (suffix :field (byte 3 13) :value #b111) (op :field (byte 5 8))) (sb!disassem:define-instruction-format (floating-point-st 16 :default-printer '(:name)) (prefix :field (byte 8 0) :value #b11011111) (suffix :field (byte 3 13) :value #b111) (op :field (byte 5 8))) (sb!disassem:define-instruction-format (string-op 8 :include 'simple :default-printer '(:name width))) (sb!disassem:define-instruction-format (short-cond-jump 16) (op :field (byte 4 4)) (cc :field (byte 4 0) :type 'condition-code) (label :field (byte 8 8) :type 'displacement)) (sb!disassem:define-instruction-format (short-jump 16 :default-printer '(:name :tab label)) (const :field (byte 4 4) :value #b1110) (op :field (byte 4 0)) (label :field (byte 8 8) :type 'displacement)) (sb!disassem:define-instruction-format (near-cond-jump 16) (op :fields (list (byte 8 0) (byte 4 12)) :value '(#b00001111 #b1000)) (cc :field (byte 4 8) :type 'condition-code) ;; The disassembler currently doesn't let you have an instruction > 32 bits ;; long, so we fake it by using a prefilter to read the offset. (label :type 'displacement :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-signed-suffix 32 dstate)))) (sb!disassem:define-instruction-format (near-jump 8 :default-printer '(:name :tab label)) (op :field (byte 8 0)) ;; The disassembler currently doesn't let you have an instruction > 32 bits ;; long, so we fake it by using a prefilter to read the address. (label :type 'displacement :prefilter (lambda (value dstate) (declare (ignore value)) ; always nil anyway (sb!disassem:read-signed-suffix 32 dstate)))) (sb!disassem:define-instruction-format (cond-set 24 :default-printer '('set cc :tab reg/mem)) (prefix :field (byte 8 0) :value #b00001111) (op :field (byte 4 12) :value #b1001) (cc :field (byte 4 8) :type 'condition-code) (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'byte-reg/mem) (reg :field (byte 3 19) :value #b000)) (sb!disassem:define-instruction-format (cond-move 24 :default-printer '('cmov cc :tab reg ", " reg/mem)) (prefix :field (byte 8 0) :value #b00001111) (op :field (byte 4 12) :value #b0100) (cc :field (byte 4 8) :type 'condition-code) (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'reg/mem) (reg :field (byte 3 19) :type 'reg)) (sb!disassem:define-instruction-format (enter-format 32 :default-printer '(:name :tab disp (:unless (:constant 0) ", " level))) (op :field (byte 8 0)) (disp :field (byte 16 8)) (level :field (byte 8 24))) (sb!disassem:define-instruction-format (prefetch 24 :default-printer '(:name ", " reg/mem)) (prefix :field (byte 8 0) :value #b00001111) (op :field (byte 8 8) :value #b00011000) (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'byte-reg/mem) (reg :field (byte 3 19) :type 'reg)) ;;; Single byte instruction with an immediate byte argument. (sb!disassem:define-instruction-format (byte-imm 16 :default-printer '(:name :tab code)) (op :field (byte 8 0)) (code :field (byte 8 8))) ;;; Two byte instruction with an immediate byte argument. ;;; (sb!disassem:define-instruction-format (word-imm 24 :default-printer '(:name :tab code)) (op :field (byte 16 0)) (code :field (byte 8 16))) ;;;; primitive emitters (define-bitfield-emitter emit-word 16 (byte 16 0)) (define-bitfield-emitter emit-dword 32 (byte 32 0)) (define-bitfield-emitter emit-byte-with-reg 8 (byte 5 3) (byte 3 0)) (define-bitfield-emitter emit-mod-reg-r/m-byte 8 (byte 2 6) (byte 3 3) (byte 3 0)) (define-bitfield-emitter emit-sib-byte 8 (byte 2 6) (byte 3 3) (byte 3 0)) ;;;; fixup emitters (defun emit-absolute-fixup (segment fixup) (note-fixup segment :absolute fixup) (let ((offset (fixup-offset fixup))) (if (label-p offset) (emit-back-patch segment 4 ; FIXME: n-word-bytes (lambda (segment posn) (declare (ignore posn)) (emit-dword segment (- (+ (component-header-length) (or (label-position offset) 0)) other-pointer-lowtag)))) (emit-dword segment (or offset 0))))) (defun emit-relative-fixup (segment fixup) (note-fixup segment :relative fixup) (emit-dword segment (or (fixup-offset fixup) 0))) ;;;; the effective-address (ea) structure (defun reg-tn-encoding (tn) (declare (type tn tn)) (aver (eq (sb-name (sc-sb (tn-sc tn))) 'registers)) (let ((offset (tn-offset tn))) (logior (ash (logand offset 1) 2) (ash offset -1)))) (defstruct (ea (:constructor make-ea (size &key base index scale disp)) (:copier nil)) (size nil :type (member :byte :word :dword)) (base nil :type (or tn null)) (index nil :type (or tn null)) (scale 1 :type (member 1 2 4 8)) (disp 0 :type (or (unsigned-byte 32) (signed-byte 32) fixup))) (def!method print-object ((ea ea) stream) (cond ((or *print-escape* *print-readably*) (print-unreadable-object (ea stream :type t) (format stream "~S~@[ base=~S~]~@[ index=~S~]~@[ scale=~S~]~@[ disp=~S~]" (ea-size ea) (ea-base ea) (ea-index ea) (let ((scale (ea-scale ea))) (if (= scale 1) nil scale)) (ea-disp ea)))) (t (format stream "~A PTR [" (symbol-name (ea-size ea))) (when (ea-base ea) (write-string (sb!c::location-print-name (ea-base ea)) stream) (when (ea-index ea) (write-string "+" stream))) (when (ea-index ea) (write-string (sb!c::location-print-name (ea-index ea)) stream)) (unless (= (ea-scale ea) 1) (format stream "*~A" (ea-scale ea))) (typecase (ea-disp ea) (null) (integer (format stream "~@D" (ea-disp ea))) (t (format stream "+~A" (ea-disp ea)))) (write-char #\] stream)))) (defun emit-ea (segment thing reg &optional allow-constants) (etypecase thing (tn (ecase (sb-name (sc-sb (tn-sc thing))) (registers (emit-mod-reg-r/m-byte segment #b11 reg (reg-tn-encoding thing))) (stack ;; Convert stack tns into an index off of EBP. (let ((disp (frame-byte-offset (tn-offset thing)))) (cond ((<= -128 disp 127) (emit-mod-reg-r/m-byte segment #b01 reg #b101) (emit-byte segment disp)) (t (emit-mod-reg-r/m-byte segment #b10 reg #b101) (emit-dword segment disp))))) (constant (unless allow-constants (error "Constant TNs can only be directly used in MOV, PUSH, and CMP.")) (emit-mod-reg-r/m-byte segment #b00 reg #b101) (emit-absolute-fixup segment (make-fixup nil :code-object (- (* (tn-offset thing) n-word-bytes) other-pointer-lowtag)))))) (ea (let* ((base (ea-base thing)) (index (ea-index thing)) (scale (ea-scale thing)) (disp (ea-disp thing)) (mod (cond ((or (null base) (and (eql disp 0) (not (= (reg-tn-encoding base) #b101)))) #b00) ((and (fixnump disp) (<= -128 disp 127)) #b01) (t #b10))) (r/m (cond (index #b100) ((null base) #b101) (t (reg-tn-encoding base))))) (when (and (fixup-p disp) (label-p (fixup-offset disp))) (aver (null base)) (aver (null index)) (return-from emit-ea (emit-ea segment disp reg allow-constants))) (emit-mod-reg-r/m-byte segment mod reg r/m) (when (= r/m #b100) (let ((ss (1- (integer-length scale))) (index (if (null index) #b100 (let ((index (reg-tn-encoding index))) (if (= index #b100) (error "can't index off of ESP") index)))) (base (if (null base) #b101 (reg-tn-encoding base)))) (emit-sib-byte segment ss index base))) (cond ((= mod #b01) (emit-byte segment disp)) ((or (= mod #b10) (null base)) (if (fixup-p disp) (emit-absolute-fixup segment disp) (emit-dword segment disp)))))) (fixup (emit-mod-reg-r/m-byte segment #b00 reg #b101) (emit-absolute-fixup segment thing)))) (defun fp-reg-tn-p (thing) (and (tn-p thing) (eq (sb-name (sc-sb (tn-sc thing))) 'float-registers))) ;;; like the above, but for fp-instructions--jrd (defun emit-fp-op (segment thing op) (if (fp-reg-tn-p thing) (emit-byte segment (dpb op (byte 3 3) (dpb (tn-offset thing) (byte 3 0) #b11000000))) (emit-ea segment thing op))) (defun byte-reg-p (thing) (and (tn-p thing) (eq (sb-name (sc-sb (tn-sc thing))) 'registers) (member (sc-name (tn-sc thing)) *byte-sc-names*) t)) (defun byte-ea-p (thing) (typecase thing (ea (eq (ea-size thing) :byte)) (tn (and (member (sc-name (tn-sc thing)) *byte-sc-names*) t)) (t nil))) (defun word-reg-p (thing) (and (tn-p thing) (eq (sb-name (sc-sb (tn-sc thing))) 'registers) (member (sc-name (tn-sc thing)) *word-sc-names*) t)) (defun word-ea-p (thing) (typecase thing (ea (eq (ea-size thing) :word)) (tn (and (member (sc-name (tn-sc thing)) *word-sc-names*) t)) (t nil))) (defun dword-reg-p (thing) (and (tn-p thing) (eq (sb-name (sc-sb (tn-sc thing))) 'registers) (member (sc-name (tn-sc thing)) *dword-sc-names*) t)) (defun dword-ea-p (thing) (typecase thing (ea (eq (ea-size thing) :dword)) (tn (and (member (sc-name (tn-sc thing)) *dword-sc-names*) t)) (t nil))) (defun register-p (thing) (and (tn-p thing) (eq (sb-name (sc-sb (tn-sc thing))) 'registers))) (defun accumulator-p (thing) (and (register-p thing) (= (tn-offset thing) 0))) ;;;; utilities (def!constant +operand-size-prefix-byte+ #b01100110) (defun maybe-emit-operand-size-prefix (segment size) (unless (or (eq size :byte) (eq size +default-operand-size+)) (emit-byte segment +operand-size-prefix-byte+))) (defun operand-size (thing) (typecase thing (tn ;; FIXME: might as well be COND instead of having to use #. readmacro ;; to hack up the code (case (sc-name (tn-sc thing)) (#.*dword-sc-names* :dword) (#.*word-sc-names* :word) (#.*byte-sc-names* :byte) ;; added by jrd: float-registers is a separate size (?) (#.*float-sc-names* :float) (#.*double-sc-names* :double) (t (error "can't tell the size of ~S ~S" thing (sc-name (tn-sc thing)))))) (ea (ea-size thing)) (t nil))) (defun matching-operand-size (dst src) (let ((dst-size (operand-size dst)) (src-size (operand-size src))) (if dst-size (if src-size (if (eq dst-size src-size) dst-size (error "size mismatch: ~S is a ~S and ~S is a ~S." dst dst-size src src-size)) dst-size) (if src-size src-size (error "can't tell the size of either ~S or ~S" dst src))))) (defun emit-sized-immediate (segment size value) (ecase size (:byte (emit-byte segment value)) (:word (emit-word segment value)) (:dword (emit-dword segment value)))) ;;;; prefixes (define-instruction x66 (segment) (:printer x66 () nil :print-name nil) (:emitter (bug "#X66 prefix used as a standalone instruction"))) (defun emit-prefix (segment name) (ecase name ((nil)) (:lock #!+sb-thread (emit-byte segment #xf0)) (:fs (emit-byte segment #x64)) (:gs (emit-byte segment #x65)))) (define-instruction fs (segment) (:printer seg ((fsgs #b0)) nil :print-name nil) (:emitter (bug "FS prefix used as a standalone instruction"))) (define-instruction gs (segment) (:printer seg ((fsgs #b1)) nil :print-name nil) (:emitter (bug "GS prefix used as a standalone instruction"))) (define-instruction lock (segment) (:printer byte ((op #b11110000)) nil) (:emitter (bug "LOCK prefix used as a standalone instruction"))) (define-instruction rep (segment) (:emitter (emit-byte segment #b11110011))) (define-instruction repe (segment) (:printer byte ((op #b11110011)) nil) (:emitter (emit-byte segment #b11110011))) (define-instruction repne (segment) (:printer byte ((op #b11110010)) nil) (:emitter (emit-byte segment #b11110010))) ;;;; general data transfer (define-instruction mov (segment dst src &optional prefix) ;; immediate to register (:printer reg ((op #b1011) (imm nil :type 'imm-data)) '(:name :tab reg ", " imm)) ;; absolute mem to/from accumulator (:printer simple-dir ((op #b101000) (imm nil :type 'imm-addr)) `(:name :tab ,(swap-if 'dir 'accum ", " '("[" imm "]")))) ;; register to/from register/memory (:printer reg-reg/mem-dir ((op #b100010))) ;; immediate to register/memory (:printer reg/mem-imm ((op '(#b1100011 #b000)))) (:emitter (emit-prefix segment prefix) (let ((size (matching-operand-size dst src))) (maybe-emit-operand-size-prefix segment size) (cond ((register-p dst) (cond ((integerp src) (emit-byte-with-reg segment (if (eq size :byte) #b10110 #b10111) (reg-tn-encoding dst)) (emit-sized-immediate segment size src)) ((and (fixup-p src) (accumulator-p dst)) (emit-byte segment (if (eq size :byte) #b10100000 #b10100001)) (emit-absolute-fixup segment src)) (t (emit-byte segment (if (eq size :byte) #b10001010 #b10001011)) (emit-ea segment src (reg-tn-encoding dst) t)))) ((and (fixup-p dst) (accumulator-p src)) (emit-byte segment (if (eq size :byte) #b10100010 #b10100011)) (emit-absolute-fixup segment dst)) ((integerp src) (emit-byte segment (if (eq size :byte) #b11000110 #b11000111)) (emit-ea segment dst #b000) (emit-sized-immediate segment size src)) ((register-p src) (emit-byte segment (if (eq size :byte) #b10001000 #b10001001)) (emit-ea segment dst (reg-tn-encoding src))) ((fixup-p src) (aver (eq size :dword)) (emit-byte segment #b11000111) (emit-ea segment dst #b000) (emit-absolute-fixup segment src)) (t (error "bogus arguments to MOV: ~S ~S" dst src)))))) (defun emit-move-with-extension (segment dst src opcode) (aver (register-p dst)) (let ((dst-size (operand-size dst)) (src-size (operand-size src))) (ecase dst-size (:word (aver (eq src-size :byte)) (maybe-emit-operand-size-prefix segment :word) (emit-byte segment #b00001111) (emit-byte segment opcode) (emit-ea segment src (reg-tn-encoding dst))) (:dword (ecase src-size (:byte (maybe-emit-operand-size-prefix segment :dword) (emit-byte segment #b00001111) (emit-byte segment opcode) (emit-ea segment src (reg-tn-encoding dst))) (:word (emit-byte segment #b00001111) (emit-byte segment (logior opcode 1)) (emit-ea segment src (reg-tn-encoding dst)))))))) (define-instruction movsx (segment dst src) (:printer ext-reg-reg/mem ((op #b1011111) (reg nil :type 'word-reg) (reg/mem nil :type 'sized-reg/mem))) (:emitter (emit-move-with-extension segment dst src #b10111110))) (define-instruction movzx (segment dst src) (:printer ext-reg-reg/mem ((op #b1011011) (reg nil :type 'word-reg) (reg/mem nil :type 'sized-reg/mem))) (:emitter (emit-move-with-extension segment dst src #b10110110))) (define-instruction push (segment src &optional prefix) ;; register (:printer reg-no-width ((op #b01010))) ;; register/memory (:printer reg/mem ((op '(#b1111111 #b110)) (width 1))) ;; immediate (:printer byte ((op #b01101010) (imm nil :type 'signed-imm-byte)) '(:name :tab imm)) (:printer byte ((op #b01101000) (imm nil :type 'imm-word)) '(:name :tab imm)) ;; ### segment registers? (:emitter (emit-prefix segment prefix) (cond ((integerp src) (cond ((<= -128 src 127) (emit-byte segment #b01101010) (emit-byte segment src)) (t (emit-byte segment #b01101000) (emit-dword segment src)))) ((fixup-p src) ;; Interpret the fixup as an immediate dword to push. (emit-byte segment #b01101000) (emit-absolute-fixup segment src)) (t (let ((size (operand-size src))) (aver (not (eq size :byte))) (maybe-emit-operand-size-prefix segment size) (cond ((register-p src) (emit-byte-with-reg segment #b01010 (reg-tn-encoding src))) (t (emit-byte segment #b11111111) (emit-ea segment src #b110 t)))))))) (define-instruction pusha (segment) (:printer byte ((op #b01100000))) (:emitter (emit-byte segment #b01100000))) (define-instruction pop (segment dst) (:printer reg-no-width ((op #b01011))) (:printer reg/mem ((op '(#b1000111 #b000)) (width 1))) (:emitter (let ((size (operand-size dst))) (aver (not (eq size :byte))) (maybe-emit-operand-size-prefix segment size) (cond ((register-p dst) (emit-byte-with-reg segment #b01011 (reg-tn-encoding dst))) (t (emit-byte segment #b10001111) (emit-ea segment dst #b000)))))) (define-instruction popa (segment) (:printer byte ((op #b01100001))) (:emitter (emit-byte segment #b01100001))) (define-instruction xchg (segment operand1 operand2) ;; Register with accumulator. (:printer reg-no-width ((op #b10010)) '(:name :tab accum ", " reg)) ;; Register/Memory with Register. (:printer reg-reg/mem ((op #b1000011))) (:emitter (let ((size (matching-operand-size operand1 operand2))) (maybe-emit-operand-size-prefix segment size) (labels ((xchg-acc-with-something (acc something) (if (and (not (eq size :byte)) (register-p something)) (emit-byte-with-reg segment #b10010 (reg-tn-encoding something)) (xchg-reg-with-something acc something))) (xchg-reg-with-something (reg something) (emit-byte segment (if (eq size :byte) #b10000110 #b10000111)) (emit-ea segment something (reg-tn-encoding reg)))) (cond ((accumulator-p operand1) (xchg-acc-with-something operand1 operand2)) ((accumulator-p operand2) (xchg-acc-with-something operand2 operand1)) ((register-p operand1) (xchg-reg-with-something operand1 operand2)) ((register-p operand2) (xchg-reg-with-something operand2 operand1)) (t (error "bogus args to XCHG: ~S ~S" operand1 operand2))))))) (define-instruction lea (segment dst src) (:printer reg-reg/mem ((op #b1000110) (width 1))) (:emitter (aver (dword-reg-p dst)) (emit-byte segment #b10001101) (emit-ea segment src (reg-tn-encoding dst)))) (define-instruction cmpxchg (segment dst src &optional prefix) ;; Register/Memory with Register. (:printer ext-reg-reg/mem ((op #b1011000)) '(:name :tab reg/mem ", " reg)) (:emitter (aver (register-p src)) (emit-prefix segment prefix) (let ((size (matching-operand-size src dst))) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b00001111) (emit-byte segment (if (eq size :byte) #b10110000 #b10110001)) (emit-ea segment dst (reg-tn-encoding src))))) (define-instruction pause (segment) (:printer two-bytes ((op '(#xf3 #x90)))) (:emitter (emit-byte segment #xf3) (emit-byte segment #x90))) ;;;; flag control instructions ;;; CLC -- Clear Carry Flag. (define-instruction clc (segment) (:printer byte ((op #b11111000))) (:emitter (emit-byte segment #b11111000))) ;;; CLD -- Clear Direction Flag. (define-instruction cld (segment) (:printer byte ((op #b11111100))) (:emitter (emit-byte segment #b11111100))) ;;; CLI -- Clear Iterrupt Enable Flag. (define-instruction cli (segment) (:printer byte ((op #b11111010))) (:emitter (emit-byte segment #b11111010))) ;;; CMC -- Complement Carry Flag. (define-instruction cmc (segment) (:printer byte ((op #b11110101))) (:emitter (emit-byte segment #b11110101))) ;;; LAHF -- Load AH into flags. (define-instruction lahf (segment) (:printer byte ((op #b10011111))) (:emitter (emit-byte segment #b10011111))) ;;; POPF -- Pop flags. (define-instruction popf (segment) (:printer byte ((op #b10011101))) (:emitter (emit-byte segment #b10011101))) ;;; PUSHF -- push flags. (define-instruction pushf (segment) (:printer byte ((op #b10011100))) (:emitter (emit-byte segment #b10011100))) ;;; SAHF -- Store AH into flags. (define-instruction sahf (segment) (:printer byte ((op #b10011110))) (:emitter (emit-byte segment #b10011110))) ;;; STC -- Set Carry Flag. (define-instruction stc (segment) (:printer byte ((op #b11111001))) (:emitter (emit-byte segment #b11111001))) ;;; STD -- Set Direction Flag. (define-instruction std (segment) (:printer byte ((op #b11111101))) (:emitter (emit-byte segment #b11111101))) ;;; STI -- Set Interrupt Enable Flag. (define-instruction sti (segment) (:printer byte ((op #b11111011))) (:emitter (emit-byte segment #b11111011))) ;;;; arithmetic (defun emit-random-arith-inst (name segment dst src opcode &optional allow-constants) (let ((size (matching-operand-size dst src))) (maybe-emit-operand-size-prefix segment size) (cond ((integerp src) (cond ((and (not (eq size :byte)) (<= -128 src 127)) (emit-byte segment #b10000011) (emit-ea segment dst opcode allow-constants) (emit-byte segment src)) ((accumulator-p dst) (emit-byte segment (dpb opcode (byte 3 3) (if (eq size :byte) #b00000100 #b00000101))) (emit-sized-immediate segment size src)) (t (emit-byte segment (if (eq size :byte) #b10000000 #b10000001)) (emit-ea segment dst opcode allow-constants) (emit-sized-immediate segment size src)))) ((register-p src) (emit-byte segment (dpb opcode (byte 3 3) (if (eq size :byte) #b00000000 #b00000001))) (emit-ea segment dst (reg-tn-encoding src) allow-constants)) ((register-p dst) (emit-byte segment (dpb opcode (byte 3 3) (if (eq size :byte) #b00000010 #b00000011))) (emit-ea segment src (reg-tn-encoding dst) allow-constants)) (t (error "bogus operands to ~A" name))))) (eval-when (:compile-toplevel :execute) (defun arith-inst-printer-list (subop) `((accum-imm ((op ,(dpb subop (byte 3 2) #b0000010)))) (reg/mem-imm ((op (#b1000000 ,subop)))) (reg/mem-imm ((op (#b1000001 ,subop)) (imm nil :type signed-imm-byte))) (reg-reg/mem-dir ((op ,(dpb subop (byte 3 1) #b000000))))))) (define-instruction add (segment dst src &optional prefix) (:printer-list (arith-inst-printer-list #b000)) (:emitter (emit-prefix segment prefix) (emit-random-arith-inst "ADD" segment dst src #b000))) (define-instruction adc (segment dst src) (:printer-list (arith-inst-printer-list #b010)) (:emitter (emit-random-arith-inst "ADC" segment dst src #b010))) (define-instruction sub (segment dst src &optional prefix) (:printer-list (arith-inst-printer-list #b101)) (:emitter (emit-prefix segment prefix) (emit-random-arith-inst "SUB" segment dst src #b101))) (define-instruction sbb (segment dst src) (:printer-list (arith-inst-printer-list #b011)) (:emitter (emit-random-arith-inst "SBB" segment dst src #b011))) (define-instruction cmp (segment dst src &optional prefix) (:printer-list (arith-inst-printer-list #b111)) (:emitter (emit-prefix segment prefix) (emit-random-arith-inst "CMP" segment dst src #b111 t))) (define-instruction inc (segment dst) ;; Register. (:printer reg-no-width ((op #b01000))) ;; Register/Memory (:printer reg/mem ((op '(#b1111111 #b000)))) (:emitter (let ((size (operand-size dst))) (maybe-emit-operand-size-prefix segment size) (cond ((and (not (eq size :byte)) (register-p dst)) (emit-byte-with-reg segment #b01000 (reg-tn-encoding dst))) (t (emit-byte segment (if (eq size :byte) #b11111110 #b11111111)) (emit-ea segment dst #b000)))))) (define-instruction dec (segment dst) ;; Register. (:printer reg-no-width ((op #b01001))) ;; Register/Memory (:printer reg/mem ((op '(#b1111111 #b001)))) (:emitter (let ((size (operand-size dst))) (maybe-emit-operand-size-prefix segment size) (cond ((and (not (eq size :byte)) (register-p dst)) (emit-byte-with-reg segment #b01001 (reg-tn-encoding dst))) (t (emit-byte segment (if (eq size :byte) #b11111110 #b11111111)) (emit-ea segment dst #b001)))))) (define-instruction neg (segment dst) (:printer reg/mem ((op '(#b1111011 #b011)))) (:emitter (let ((size (operand-size dst))) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b11110110 #b11110111)) (emit-ea segment dst #b011)))) (define-instruction aaa (segment) (:printer byte ((op #b00110111))) (:emitter (emit-byte segment #b00110111))) (define-instruction aas (segment) (:printer byte ((op #b00111111))) (:emitter (emit-byte segment #b00111111))) (define-instruction daa (segment) (:printer byte ((op #b00100111))) (:emitter (emit-byte segment #b00100111))) (define-instruction das (segment) (:printer byte ((op #b00101111))) (:emitter (emit-byte segment #b00101111))) (define-instruction mul (segment dst src) (:printer accum-reg/mem ((op '(#b1111011 #b100)))) (:emitter (let ((size (matching-operand-size dst src))) (aver (accumulator-p dst)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b11110110 #b11110111)) (emit-ea segment src #b100)))) (define-instruction imul (segment dst &optional src1 src2) (:printer accum-reg/mem ((op '(#b1111011 #b101)))) (:printer ext-reg-reg/mem ((op #b1010111))) (:printer reg-reg/mem ((op #b0110100) (width 1) (imm nil :type 'signed-imm-word)) '(:name :tab reg ", " reg/mem ", " imm)) (:printer reg-reg/mem ((op #b0110101) (width 1) (imm nil :type 'signed-imm-byte)) '(:name :tab reg ", " reg/mem ", " imm)) (:emitter (flet ((r/m-with-immed-to-reg (reg r/m immed) (let* ((size (matching-operand-size reg r/m)) (sx (and (not (eq size :byte)) (<= -128 immed 127)))) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if sx #b01101011 #b01101001)) (emit-ea segment r/m (reg-tn-encoding reg)) (if sx (emit-byte segment immed) (emit-sized-immediate segment size immed))))) (cond (src2 (r/m-with-immed-to-reg dst src1 src2)) (src1 (if (integerp src1) (r/m-with-immed-to-reg dst dst src1) (let ((size (matching-operand-size dst src1))) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b00001111) (emit-byte segment #b10101111) (emit-ea segment src1 (reg-tn-encoding dst))))) (t (let ((size (operand-size dst))) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b11110110 #b11110111)) (emit-ea segment dst #b101))))))) (define-instruction div (segment dst src) (:printer accum-reg/mem ((op '(#b1111011 #b110)))) (:emitter (let ((size (matching-operand-size dst src))) (aver (accumulator-p dst)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b11110110 #b11110111)) (emit-ea segment src #b110)))) (define-instruction idiv (segment dst src) (:printer accum-reg/mem ((op '(#b1111011 #b111)))) (:emitter (let ((size (matching-operand-size dst src))) (aver (accumulator-p dst)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b11110110 #b11110111)) (emit-ea segment src #b111)))) (define-instruction aad (segment) (:printer two-bytes ((op '(#b11010101 #b00001010)))) (:emitter (emit-byte segment #b11010101) (emit-byte segment #b00001010))) (define-instruction aam (segment) (:printer two-bytes ((op '(#b11010100 #b00001010)))) (:emitter (emit-byte segment #b11010100) (emit-byte segment #b00001010))) (define-instruction bswap (segment dst) (:printer ext-reg-no-width ((op #b11001))) (:emitter (emit-byte segment #x0f) (emit-byte-with-reg segment #b11001 (reg-tn-encoding dst)))) ;;; CBW -- Convert Byte to Word. AX <- sign_xtnd(AL) (define-instruction cbw (segment) (:printer two-bytes ((op '(#b01100110 #b10011000)))) (:emitter (maybe-emit-operand-size-prefix segment :word) (emit-byte segment #b10011000))) ;;; CWDE -- Convert Word To Double Word Extened. EAX <- sign_xtnd(AX) (define-instruction cwde (segment) (:printer byte ((op #b10011000))) (:emitter (maybe-emit-operand-size-prefix segment :dword) (emit-byte segment #b10011000))) ;;; CWD -- Convert Word to Double Word. DX:AX <- sign_xtnd(AX) (define-instruction cwd (segment) (:printer two-bytes ((op '(#b01100110 #b10011001)))) (:emitter (maybe-emit-operand-size-prefix segment :word) (emit-byte segment #b10011001))) ;;; CDQ -- Convert Double Word to Quad Word. EDX:EAX <- sign_xtnd(EAX) (define-instruction cdq (segment) (:printer byte ((op #b10011001))) (:emitter (maybe-emit-operand-size-prefix segment :dword) (emit-byte segment #b10011001))) (define-instruction xadd (segment dst src &optional prefix) ;; Register/Memory with Register. (:printer ext-reg-reg/mem ((op #b1100000)) '(:name :tab reg/mem ", " reg)) (:emitter (aver (register-p src)) (emit-prefix segment prefix) (let ((size (matching-operand-size src dst))) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b00001111) (emit-byte segment (if (eq size :byte) #b11000000 #b11000001)) (emit-ea segment dst (reg-tn-encoding src))))) ;;;; logic (defun emit-shift-inst (segment dst amount opcode) (let ((size (operand-size dst))) (maybe-emit-operand-size-prefix segment size) (multiple-value-bind (major-opcode immed) (case amount (:cl (values #b11010010 nil)) (1 (values #b11010000 nil)) (t (values #b11000000 t))) (emit-byte segment (if (eq size :byte) major-opcode (logior major-opcode 1))) (emit-ea segment dst opcode) (when immed (emit-byte segment amount))))) (eval-when (:compile-toplevel :execute) (defun shift-inst-printer-list (subop) `((reg/mem ((op (#b1101000 ,subop))) (:name :tab reg/mem ", 1")) (reg/mem ((op (#b1101001 ,subop))) (:name :tab reg/mem ", " 'cl)) (reg/mem-imm ((op (#b1100000 ,subop)) (imm nil :type signed-imm-byte)))))) (define-instruction rol (segment dst amount) (:printer-list (shift-inst-printer-list #b000)) (:emitter (emit-shift-inst segment dst amount #b000))) (define-instruction ror (segment dst amount) (:printer-list (shift-inst-printer-list #b001)) (:emitter (emit-shift-inst segment dst amount #b001))) (define-instruction rcl (segment dst amount) (:printer-list (shift-inst-printer-list #b010)) (:emitter (emit-shift-inst segment dst amount #b010))) (define-instruction rcr (segment dst amount) (:printer-list (shift-inst-printer-list #b011)) (:emitter (emit-shift-inst segment dst amount #b011))) (define-instruction shl (segment dst amount) (:printer-list (shift-inst-printer-list #b100)) (:emitter (emit-shift-inst segment dst amount #b100))) (define-instruction shr (segment dst amount) (:printer-list (shift-inst-printer-list #b101)) (:emitter (emit-shift-inst segment dst amount #b101))) (define-instruction sar (segment dst amount) (:printer-list (shift-inst-printer-list #b111)) (:emitter (emit-shift-inst segment dst amount #b111))) (defun emit-double-shift (segment opcode dst src amt) (let ((size (matching-operand-size dst src))) (when (eq size :byte) (error "Double shifts can only be used with words.")) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b00001111) (emit-byte segment (dpb opcode (byte 1 3) (if (eq amt :cl) #b10100101 #b10100100))) #+nil (emit-ea segment dst src) (emit-ea segment dst (reg-tn-encoding src)) ; pw tries this (unless (eq amt :cl) (emit-byte segment amt)))) (eval-when (:compile-toplevel :execute) (defun double-shift-inst-printer-list (op) `((ext-reg-reg/mem ((op ,(logior op #b10)) (width 0) (imm nil :type signed-imm-byte)) (:name :tab reg/mem ", " reg ", " imm)) (ext-reg-reg/mem ((op ,(logior op #b10)) (width 1)) (:name :tab reg/mem ", " reg ", " 'cl))))) (define-instruction shld (segment dst src amt) (:declare (type (or (member :cl) (mod 32)) amt)) (:printer-list (double-shift-inst-printer-list #b1010000)) (:emitter (emit-double-shift segment #b0 dst src amt))) (define-instruction shrd (segment dst src amt) (:declare (type (or (member :cl) (mod 32)) amt)) (:printer-list (double-shift-inst-printer-list #b1010100)) (:emitter (emit-double-shift segment #b1 dst src amt))) (define-instruction and (segment dst src) (:printer-list (arith-inst-printer-list #b100)) (:emitter (emit-random-arith-inst "AND" segment dst src #b100))) (define-instruction test (segment this that) (:printer accum-imm ((op #b1010100))) (:printer reg/mem-imm ((op '(#b1111011 #b000)))) (:printer reg-reg/mem ((op #b1000010))) (:emitter (let ((size (matching-operand-size this that))) (maybe-emit-operand-size-prefix segment size) (flet ((test-immed-and-something (immed something) (cond ((accumulator-p something) (emit-byte segment (if (eq size :byte) #b10101000 #b10101001)) (emit-sized-immediate segment size immed)) (t (emit-byte segment (if (eq size :byte) #b11110110 #b11110111)) (emit-ea segment something #b000) (emit-sized-immediate segment size immed)))) (test-reg-and-something (reg something) (emit-byte segment (if (eq size :byte) #b10000100 #b10000101)) (emit-ea segment something (reg-tn-encoding reg)))) (cond ((integerp that) (test-immed-and-something that this)) ((integerp this) (test-immed-and-something this that)) ((register-p this) (test-reg-and-something this that)) ((register-p that) (test-reg-and-something that this)) (t (error "bogus operands for TEST: ~S and ~S" this that))))))) ;;; Emit the most compact form of the test immediate instruction, ;;; using an 8 bit test when the immediate is only 8 bits and the ;;; value is one of the four low registers (eax, ebx, ecx, edx) or the ;;; control stack. (defun emit-optimized-test-inst (x y) (typecase y ((unsigned-byte 7) (let ((offset (tn-offset x))) (cond ((and (sc-is x any-reg descriptor-reg) (or (= offset eax-offset) (= offset ebx-offset) (= offset ecx-offset) (= offset edx-offset))) (inst test (make-random-tn :kind :normal :sc (sc-or-lose 'byte-reg) :offset offset) y)) ((sc-is x control-stack) (inst test (make-ea :byte :base ebp-tn :disp (frame-byte-offset offset)) y)) (t (inst test x y))))) (t (inst test x y)))) (define-instruction or (segment dst src &optional prefix) (:printer-list (arith-inst-printer-list #b001)) (:emitter (emit-prefix segment prefix) (emit-random-arith-inst "OR" segment dst src #b001))) (define-instruction xor (segment dst src &optional prefix) (:printer-list (arith-inst-printer-list #b110)) (:emitter (emit-prefix segment prefix) (emit-random-arith-inst "XOR" segment dst src #b110))) (define-instruction not (segment dst) (:printer reg/mem ((op '(#b1111011 #b010)))) (:emitter (let ((size (operand-size dst))) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b11110110 #b11110111)) (emit-ea segment dst #b010)))) ;;;; string manipulation (define-instruction cmps (segment size) (:printer string-op ((op #b1010011))) (:emitter (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b10100110 #b10100111)))) (define-instruction ins (segment acc) (:printer string-op ((op #b0110110))) (:emitter (let ((size (operand-size acc))) (aver (accumulator-p acc)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b01101100 #b01101101))))) (define-instruction lods (segment acc) (:printer string-op ((op #b1010110))) (:emitter (let ((size (operand-size acc))) (aver (accumulator-p acc)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b10101100 #b10101101))))) (define-instruction movs (segment size) (:printer string-op ((op #b1010010))) (:emitter (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b10100100 #b10100101)))) (define-instruction outs (segment acc) (:printer string-op ((op #b0110111))) (:emitter (let ((size (operand-size acc))) (aver (accumulator-p acc)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b01101110 #b01101111))))) (define-instruction scas (segment acc) (:printer string-op ((op #b1010111))) (:emitter (let ((size (operand-size acc))) (aver (accumulator-p acc)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b10101110 #b10101111))))) (define-instruction stos (segment acc) (:printer string-op ((op #b1010101))) (:emitter (let ((size (operand-size acc))) (aver (accumulator-p acc)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment (if (eq size :byte) #b10101010 #b10101011))))) (define-instruction xlat (segment) (:printer byte ((op #b11010111))) (:emitter (emit-byte segment #b11010111))) ;;;; bit manipulation (define-instruction bsf (segment dst src) (:printer ext-reg-reg/mem ((op #b1011110) (width 0))) (:emitter (let ((size (matching-operand-size dst src))) (when (eq size :byte) (error "can't scan bytes: ~S" src)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b00001111) (emit-byte segment #b10111100) (emit-ea segment src (reg-tn-encoding dst))))) (define-instruction bsr (segment dst src) (:printer ext-reg-reg/mem ((op #b1011110) (width 1))) (:emitter (let ((size (matching-operand-size dst src))) (when (eq size :byte) (error "can't scan bytes: ~S" src)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b00001111) (emit-byte segment #b10111101) (emit-ea segment src (reg-tn-encoding dst))))) (defun emit-bit-test-and-mumble (segment src index opcode) (let ((size (operand-size src))) (when (eq size :byte) (error "can't scan bytes: ~S" src)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b00001111) (cond ((integerp index) (emit-byte segment #b10111010) (emit-ea segment src opcode) (emit-byte segment index)) (t (emit-byte segment (dpb opcode (byte 3 3) #b10000011)) (emit-ea segment src (reg-tn-encoding index)))))) (eval-when (:compile-toplevel :execute) (defun bit-test-inst-printer-list (subop) `((ext-reg/mem-no-width+imm8 ((op (#xBA ,subop)))) (ext-reg-reg/mem-no-width ((op ,(dpb subop (byte 3 3) #b10000011)) (reg/mem nil :type sized-reg/mem)) (:name :tab reg/mem ", " reg))))) (macrolet ((define (inst opcode-extension) `(define-instruction ,inst (segment src index) (:printer-list (bit-test-inst-printer-list ,opcode-extension)) (:emitter (emit-bit-test-and-mumble segment src index ,opcode-extension))))) (define bt 4) (define bts 5) (define btr 6) (define btc 7)) ;;;; control transfer (define-instruction call (segment where) (:printer near-jump ((op #b11101000))) (:printer reg/mem ((op '(#b1111111 #b010)) (width 1))) (:emitter (typecase where (label (emit-byte segment #b11101000) (emit-back-patch segment 4 (lambda (segment posn) (emit-dword segment (- (label-position where) (+ posn 4)))))) (fixup (emit-byte segment #b11101000) (emit-relative-fixup segment where)) (t (emit-byte segment #b11111111) (emit-ea segment where #b010))))) (defun emit-byte-displacement-backpatch (segment target) (emit-back-patch segment 1 (lambda (segment posn) (let ((disp (- (label-position target) (1+ posn)))) (aver (<= -128 disp 127)) (emit-byte segment disp))))) (define-instruction jmp (segment cond &optional where) ;; conditional jumps (:printer short-cond-jump ((op #b0111)) '('j cc :tab label)) (:printer near-cond-jump () '('j cc :tab label)) ;; unconditional jumps (:printer short-jump ((op #b1011))) (:printer near-jump ((op #b11101001)) ) (:printer reg/mem ((op '(#b1111111 #b100)) (width 1))) (:emitter (cond (where (emit-chooser segment 6 2 (lambda (segment posn delta-if-after) (let ((disp (- (label-position where posn delta-if-after) (+ posn 2)))) (when (<= -128 disp 127) (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b01110000)) (emit-byte-displacement-backpatch segment where) t))) (lambda (segment posn) (let ((disp (- (label-position where) (+ posn 6)))) (emit-byte segment #b00001111) (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b10000000)) (emit-dword segment disp))))) ((label-p (setq where cond)) (emit-chooser segment 5 0 (lambda (segment posn delta-if-after) (let ((disp (- (label-position where posn delta-if-after) (+ posn 2)))) (when (<= -128 disp 127) (emit-byte segment #b11101011) (emit-byte-displacement-backpatch segment where) t))) (lambda (segment posn) (let ((disp (- (label-position where) (+ posn 5)))) (emit-byte segment #b11101001) (emit-dword segment disp))))) ((fixup-p where) (emit-byte segment #b11101001) (emit-relative-fixup segment where)) (t (unless (or (ea-p where) (tn-p where)) (error "don't know what to do with ~A" where)) (emit-byte segment #b11111111) (emit-ea segment where #b100))))) (define-instruction jmp-short (segment label) (:emitter (emit-byte segment #b11101011) (emit-byte-displacement-backpatch segment label))) (define-instruction ret (segment &optional stack-delta) (:printer byte ((op #b11000011))) (:printer byte ((op #b11000010) (imm nil :type 'imm-word-16)) '(:name :tab imm)) (:emitter (cond ((and stack-delta (not (zerop stack-delta))) (emit-byte segment #b11000010) (emit-word segment stack-delta)) (t (emit-byte segment #b11000011))))) (define-instruction jecxz (segment target) (:printer short-jump ((op #b0011))) (:emitter (emit-byte segment #b11100011) (emit-byte-displacement-backpatch segment target))) (define-instruction loop (segment target) (:printer short-jump ((op #b0010))) (:emitter (emit-byte segment #b11100010) ; pfw this was 11100011, or jecxz!!!! (emit-byte-displacement-backpatch segment target))) (define-instruction loopz (segment target) (:printer short-jump ((op #b0001))) (:emitter (emit-byte segment #b11100001) (emit-byte-displacement-backpatch segment target))) (define-instruction loopnz (segment target) (:printer short-jump ((op #b0000))) (:emitter (emit-byte segment #b11100000) (emit-byte-displacement-backpatch segment target))) ;;;; conditional move (define-instruction cmov (segment cond dst src) (:printer cond-move ()) (:emitter (aver (register-p dst)) (let ((size (matching-operand-size dst src))) (aver (or (eq size :word) (eq size :dword))) (maybe-emit-operand-size-prefix segment size)) (emit-byte segment #b00001111) (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b01000000)) (emit-ea segment src (reg-tn-encoding dst)))) ;;;; conditional byte set (define-instruction set (segment dst cond) (:printer cond-set ()) (:emitter (emit-byte segment #b00001111) (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b10010000)) (emit-ea segment dst #b000))) ;;;; enter/leave (define-instruction enter (segment disp &optional (level 0)) (:declare (type (unsigned-byte 16) disp) (type (unsigned-byte 8) level)) (:printer enter-format ((op #b11001000))) (:emitter (emit-byte segment #b11001000) (emit-word segment disp) (emit-byte segment level))) (define-instruction leave (segment) (:printer byte ((op #b11001001))) (:emitter (emit-byte segment #b11001001))) ;;;; prefetch (define-instruction prefetchnta (segment ea) (:printer prefetch ((op #b00011000) (reg #b000))) (:emitter (aver (typep ea 'ea)) (aver (eq :byte (ea-size ea))) (emit-byte segment #b00001111) (emit-byte segment #b00011000) (emit-ea segment ea #b000))) (define-instruction prefetcht0 (segment ea) (:printer prefetch ((op #b00011000) (reg #b001))) (:emitter (aver (typep ea 'ea)) (aver (eq :byte (ea-size ea))) (emit-byte segment #b00001111) (emit-byte segment #b00011000) (emit-ea segment ea #b001))) (define-instruction prefetcht1 (segment ea) (:printer prefetch ((op #b00011000) (reg #b010))) (:emitter (aver (typep ea 'ea)) (aver (eq :byte (ea-size ea))) (emit-byte segment #b00001111) (emit-byte segment #b00011000) (emit-ea segment ea #b010))) (define-instruction prefetcht2 (segment ea) (:printer prefetch ((op #b00011000) (reg #b011))) (:emitter (aver (typep ea 'ea)) (aver (eq :byte (ea-size ea))) (emit-byte segment #b00001111) (emit-byte segment #b00011000) (emit-ea segment ea #b011))) ;;;; interrupt instructions (defun snarf-error-junk (sap offset &optional length-only) (let* ((length (sb!sys:sap-ref-8 sap offset)) (vector (make-array length :element-type '(unsigned-byte 8)))) (declare (type sb!sys:system-area-pointer sap) (type (unsigned-byte 8) length) (type (simple-array (unsigned-byte 8) (*)) vector)) (cond (length-only (values 0 (1+ length) nil nil)) (t (sb!kernel:copy-ub8-from-system-area sap (1+ offset) vector 0 length) (collect ((sc-offsets) (lengths)) (lengths 1) ; the length byte (let* ((index 0) (error-number (sb!c:read-var-integer vector index))) (lengths index) (loop (when (>= index length) (return)) (let ((old-index index)) (sc-offsets (sb!c:read-var-integer vector index)) (lengths (- index old-index)))) (values error-number (1+ length) (sc-offsets) (lengths)))))))) #| (defmacro break-cases (breaknum &body cases) (let ((bn-temp (gensym))) (collect ((clauses)) (dolist (case cases) (clauses `((= ,bn-temp ,(car case)) ,@(cdr case)))) `(let ((,bn-temp ,breaknum)) (cond ,@(clauses)))))) |# (defun break-control (chunk inst stream dstate) (declare (ignore inst)) (flet ((nt (x) (if stream (sb!disassem:note x dstate)))) ;; FIXME: Make sure that BYTE-IMM-CODE is defined. The genesis ;; map has it undefined; and it should be easier to look in the target ;; Lisp (with (DESCRIBE 'BYTE-IMM-CODE)) than to definitively deduce ;; from first principles whether it's defined in some way that genesis ;; can't grok. (case #!-ud2-breakpoints (byte-imm-code chunk dstate) #!+ud2-breakpoints (word-imm-code chunk dstate) (#.error-trap (nt "error trap") (sb!disassem:handle-break-args #'snarf-error-junk stream dstate)) (#.cerror-trap (nt "cerror trap") (sb!disassem:handle-break-args #'snarf-error-junk stream dstate)) (#.breakpoint-trap (nt "breakpoint trap")) (#.pending-interrupt-trap (nt "pending interrupt trap")) (#.halt-trap (nt "halt trap")) (#.fun-end-breakpoint-trap (nt "function end breakpoint trap"))))) (define-instruction break (segment code) (:declare (type (unsigned-byte 8) code)) #!-ud2-breakpoints (:printer byte-imm ((op #b11001100)) '(:name :tab code) :control #'break-control) #!+ud2-breakpoints (:printer word-imm ((op #b0000101100001111)) '(:name :tab code) :control #'break-control) (:emitter #!-ud2-breakpoints (emit-byte segment #b11001100) ;; On darwin, trap handling via SIGTRAP is unreliable, therefore we ;; throw a sigill with 0x0b0f instead and check for this in the ;; SIGILL handler and pass it on to the sigtrap handler if ;; appropriate #!+ud2-breakpoints (emit-word segment #b0000101100001111) (emit-byte segment code))) (define-instruction int (segment number) (:declare (type (unsigned-byte 8) number)) (:printer byte-imm ((op #b11001101))) (:emitter (etypecase number ((member 3) (emit-byte segment #b11001100)) ((unsigned-byte 8) (emit-byte segment #b11001101) (emit-byte segment number))))) (define-instruction into (segment) (:printer byte ((op #b11001110))) (:emitter (emit-byte segment #b11001110))) (define-instruction bound (segment reg bounds) (:emitter (let ((size (matching-operand-size reg bounds))) (when (eq size :byte) (error "can't bounds-test bytes: ~S" reg)) (maybe-emit-operand-size-prefix segment size) (emit-byte segment #b01100010) (emit-ea segment bounds (reg-tn-encoding reg))))) (define-instruction iret (segment) (:printer byte ((op #b11001111))) (:emitter (emit-byte segment #b11001111))) ;;;; processor control (define-instruction hlt (segment) (:printer byte ((op #b11110100))) (:emitter (emit-byte segment #b11110100))) (define-instruction nop (segment) (:printer byte ((op #b10010000))) (:emitter (emit-byte segment #b10010000))) (define-instruction wait (segment) (:printer byte ((op #b10011011))) (:emitter (emit-byte segment #b10011011))) ;;;; miscellaneous hackery (define-instruction byte (segment byte) (:emitter (emit-byte segment byte))) (define-instruction word (segment word) (:emitter (emit-word segment word))) (define-instruction dword (segment dword) (:emitter (emit-dword segment dword))) (defun emit-header-data (segment type) (emit-back-patch segment 4 (lambda (segment posn) (emit-dword segment (logior type (ash (+ posn (component-header-length)) (- n-widetag-bits word-shift))))))) (define-instruction simple-fun-header-word (segment) (:emitter (emit-header-data segment simple-fun-header-widetag))) (define-instruction lra-header-word (segment) (:emitter (emit-header-data segment return-pc-header-widetag))) ;;;; fp instructions ;;;; ;;;; FIXME: This section said "added by jrd", which should end up in CREDITS. ;;;; ;;;; Note: We treat the single-precision and double-precision variants ;;;; as separate instructions. ;;; Load single to st(0). (define-instruction fld (segment source) (:printer floating-point ((op '(#b001 #b000)))) (:emitter (emit-byte segment #b11011001) (emit-fp-op segment source #b000))) ;;; Load double to st(0). (define-instruction fldd (segment source) (:printer floating-point ((op '(#b101 #b000)))) (:printer floating-point-fp ((op '(#b001 #b000)))) (:emitter (if (fp-reg-tn-p source) (emit-byte segment #b11011001) (emit-byte segment #b11011101)) (emit-fp-op segment source #b000))) ;;; Load long to st(0). (define-instruction fldl (segment source) (:printer floating-point ((op '(#b011 #b101)))) (:emitter (emit-byte segment #b11011011) (emit-fp-op segment source #b101))) ;;; Store single from st(0). (define-instruction fst (segment dest) (:printer floating-point ((op '(#b001 #b010)))) (:emitter (cond ((fp-reg-tn-p dest) (emit-byte segment #b11011101) (emit-fp-op segment dest #b010)) (t (emit-byte segment #b11011001) (emit-fp-op segment dest #b010))))) ;;; Store double from st(0). (define-instruction fstd (segment dest) (:printer floating-point ((op '(#b101 #b010)))) (:printer floating-point-fp ((op '(#b101 #b010)))) (:emitter (cond ((fp-reg-tn-p dest) (emit-byte segment #b11011101) (emit-fp-op segment dest #b010)) (t (emit-byte segment #b11011101) (emit-fp-op segment dest #b010))))) ;;; Arithmetic ops are all done with at least one operand at top of ;;; stack. The other operand is is another register or a 32/64 bit ;;; memory loc. ;;; dtc: I've tried to follow the Intel ASM386 conventions, but note ;;; that these conflict with the Gdb conventions for binops. To reduce ;;; the confusion I've added comments showing the mathamatical ;;; operation and the two syntaxes. By the ASM386 convention the ;;; instruction syntax is: ;;; ;;; Fop Source ;;; or Fop Destination, Source ;;; ;;; If only one operand is given then it is the source and the ;;; destination is ST(0). There are reversed forms of the fsub and ;;; fdiv instructions inducated by an 'R' suffix. ;;; ;;; The mathematical operation for the non-reverse form is always: ;;; destination = destination op source ;;; ;;; For the reversed form it is: ;;; destination = source op destination ;;; ;;; The instructions below only accept one operand at present which is ;;; usually the source. I've hack in extra instructions to implement ;;; the fops with a ST(i) destination, these have a -sti suffix and ;;; the operand is the destination with the source being ST(0). ;;; Add single: ;;; st(0) = st(0) + memory or st(i). (define-instruction fadd (segment source) (:printer floating-point ((op '(#b000 #b000)))) (:emitter (emit-byte segment #b11011000) (emit-fp-op segment source #b000))) ;;; Add double: ;;; st(0) = st(0) + memory or st(i). (define-instruction faddd (segment source) (:printer floating-point ((op '(#b100 #b000)))) (:printer floating-point-fp ((op '(#b000 #b000)))) (:emitter (if (fp-reg-tn-p source) (emit-byte segment #b11011000) (emit-byte segment #b11011100)) (emit-fp-op segment source #b000))) ;;; Add double destination st(i): ;;; st(i) = st(0) + st(i). (define-instruction fadd-sti (segment destination) (:printer floating-point-fp ((op '(#b100 #b000)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011100) (emit-fp-op segment destination #b000))) ;;; with pop (define-instruction faddp-sti (segment destination) (:printer floating-point-fp ((op '(#b110 #b000)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011110) (emit-fp-op segment destination #b000))) ;;; Subtract single: ;;; st(0) = st(0) - memory or st(i). (define-instruction fsub (segment source) (:printer floating-point ((op '(#b000 #b100)))) (:emitter (emit-byte segment #b11011000) (emit-fp-op segment source #b100))) ;;; Subtract single, reverse: ;;; st(0) = memory or st(i) - st(0). (define-instruction fsubr (segment source) (:printer floating-point ((op '(#b000 #b101)))) (:emitter (emit-byte segment #b11011000) (emit-fp-op segment source #b101))) ;;; Subtract double: ;;; st(0) = st(0) - memory or st(i). (define-instruction fsubd (segment source) (:printer floating-point ((op '(#b100 #b100)))) (:printer floating-point-fp ((op '(#b000 #b100)))) (:emitter (if (fp-reg-tn-p source) (emit-byte segment #b11011000) (emit-byte segment #b11011100)) (emit-fp-op segment source #b100))) ;;; Subtract double, reverse: ;;; st(0) = memory or st(i) - st(0). (define-instruction fsubrd (segment source) (:printer floating-point ((op '(#b100 #b101)))) (:printer floating-point-fp ((op '(#b000 #b101)))) (:emitter (if (fp-reg-tn-p source) (emit-byte segment #b11011000) (emit-byte segment #b11011100)) (emit-fp-op segment source #b101))) ;;; Subtract double, destination st(i): ;;; st(i) = st(i) - st(0). ;;; ;;; ASM386 syntax: FSUB ST(i), ST ;;; Gdb syntax: fsubr %st,%st(i) (define-instruction fsub-sti (segment destination) (:printer floating-point-fp ((op '(#b100 #b101)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011100) (emit-fp-op segment destination #b101))) ;;; with a pop (define-instruction fsubp-sti (segment destination) (:printer floating-point-fp ((op '(#b110 #b101)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011110) (emit-fp-op segment destination #b101))) ;;; Subtract double, reverse, destination st(i): ;;; st(i) = st(0) - st(i). ;;; ;;; ASM386 syntax: FSUBR ST(i), ST ;;; Gdb syntax: fsub %st,%st(i) (define-instruction fsubr-sti (segment destination) (:printer floating-point-fp ((op '(#b100 #b100)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011100) (emit-fp-op segment destination #b100))) ;;; with a pop (define-instruction fsubrp-sti (segment destination) (:printer floating-point-fp ((op '(#b110 #b100)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011110) (emit-fp-op segment destination #b100))) ;;; Multiply single: ;;; st(0) = st(0) * memory or st(i). (define-instruction fmul (segment source) (:printer floating-point ((op '(#b000 #b001)))) (:emitter (emit-byte segment #b11011000) (emit-fp-op segment source #b001))) ;;; Multiply double: ;;; st(0) = st(0) * memory or st(i). (define-instruction fmuld (segment source) (:printer floating-point ((op '(#b100 #b001)))) (:printer floating-point-fp ((op '(#b000 #b001)))) (:emitter (if (fp-reg-tn-p source) (emit-byte segment #b11011000) (emit-byte segment #b11011100)) (emit-fp-op segment source #b001))) ;;; Multiply double, destination st(i): ;;; st(i) = st(i) * st(0). (define-instruction fmul-sti (segment destination) (:printer floating-point-fp ((op '(#b100 #b001)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011100) (emit-fp-op segment destination #b001))) ;;; Divide single: ;;; st(0) = st(0) / memory or st(i). (define-instruction fdiv (segment source) (:printer floating-point ((op '(#b000 #b110)))) (:emitter (emit-byte segment #b11011000) (emit-fp-op segment source #b110))) ;;; Divide single, reverse: ;;; st(0) = memory or st(i) / st(0). (define-instruction fdivr (segment source) (:printer floating-point ((op '(#b000 #b111)))) (:emitter (emit-byte segment #b11011000) (emit-fp-op segment source #b111))) ;;; Divide double: ;;; st(0) = st(0) / memory or st(i). (define-instruction fdivd (segment source) (:printer floating-point ((op '(#b100 #b110)))) (:printer floating-point-fp ((op '(#b000 #b110)))) (:emitter (if (fp-reg-tn-p source) (emit-byte segment #b11011000) (emit-byte segment #b11011100)) (emit-fp-op segment source #b110))) ;;; Divide double, reverse: ;;; st(0) = memory or st(i) / st(0). (define-instruction fdivrd (segment source) (:printer floating-point ((op '(#b100 #b111)))) (:printer floating-point-fp ((op '(#b000 #b111)))) (:emitter (if (fp-reg-tn-p source) (emit-byte segment #b11011000) (emit-byte segment #b11011100)) (emit-fp-op segment source #b111))) ;;; Divide double, destination st(i): ;;; st(i) = st(i) / st(0). ;;; ;;; ASM386 syntax: FDIV ST(i), ST ;;; Gdb syntax: fdivr %st,%st(i) (define-instruction fdiv-sti (segment destination) (:printer floating-point-fp ((op '(#b100 #b111)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011100) (emit-fp-op segment destination #b111))) ;;; Divide double, reverse, destination st(i): ;;; st(i) = st(0) / st(i). ;;; ;;; ASM386 syntax: FDIVR ST(i), ST ;;; Gdb syntax: fdiv %st,%st(i) (define-instruction fdivr-sti (segment destination) (:printer floating-point-fp ((op '(#b100 #b110)))) (:emitter (aver (fp-reg-tn-p destination)) (emit-byte segment #b11011100) (emit-fp-op segment destination #b110))) ;;; Exchange fr0 with fr(n). (There is no double precision variant.) (define-instruction fxch (segment source) (:printer floating-point-fp ((op '(#b001 #b001)))) (:emitter (aver (and (tn-p source) (eq (sb-name (sc-sb (tn-sc source))) 'float-registers))) (emit-byte segment #b11011001) (emit-fp-op segment source #b001))) ;;; Push 32-bit integer to st0. (define-instruction fild (segment source) (:printer floating-point ((op '(#b011 #b000)))) (:emitter (emit-byte segment #b11011011) (emit-fp-op segment source #b000))) ;;; Push 64-bit integer to st0. (define-instruction fildl (segment source) (:printer floating-point ((op '(#b111 #b101)))) (:emitter (emit-byte segment #b11011111) (emit-fp-op segment source #b101))) ;;; Store 32-bit integer. (define-instruction fist (segment dest) (:printer floating-point ((op '(#b011 #b010)))) (:emitter (emit-byte segment #b11011011) (emit-fp-op segment dest #b010))) ;;; Store and pop 32-bit integer. (define-instruction fistp (segment dest) (:printer floating-point ((op '(#b011 #b011)))) (:emitter (emit-byte segment #b11011011) (emit-fp-op segment dest #b011))) ;;; Store and pop 64-bit integer. (define-instruction fistpl (segment dest) (:printer floating-point ((op '(#b111 #b111)))) (:emitter (emit-byte segment #b11011111) (emit-fp-op segment dest #b111))) ;;; Store single from st(0) and pop. (define-instruction fstp (segment dest) (:printer floating-point ((op '(#b001 #b011)))) (:emitter (cond ((fp-reg-tn-p dest) (emit-byte segment #b11011101) (emit-fp-op segment dest #b011)) (t (emit-byte segment #b11011001) (emit-fp-op segment dest #b011))))) ;;; Store double from st(0) and pop. (define-instruction fstpd (segment dest) (:printer floating-point ((op '(#b101 #b011)))) (:printer floating-point-fp ((op '(#b101 #b011)))) (:emitter (cond ((fp-reg-tn-p dest) (emit-byte segment #b11011101) (emit-fp-op segment dest #b011)) (t (emit-byte segment #b11011101) (emit-fp-op segment dest #b011))))) ;;; Store long from st(0) and pop. (define-instruction fstpl (segment dest) (:printer floating-point ((op '(#b011 #b111)))) (:emitter (emit-byte segment #b11011011) (emit-fp-op segment dest #b111))) ;;; Decrement stack-top pointer. (define-instruction fdecstp (segment) (:printer floating-point-no ((op #b10110))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110110))) ;;; Increment stack-top pointer. (define-instruction fincstp (segment) (:printer floating-point-no ((op #b10111))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110111))) ;;; Free fp register. (define-instruction ffree (segment dest) (:printer floating-point-fp ((op '(#b101 #b000)))) (:emitter (emit-byte segment #b11011101) (emit-fp-op segment dest #b000))) (define-instruction fabs (segment) (:printer floating-point-no ((op #b00001))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11100001))) (define-instruction fchs (segment) (:printer floating-point-no ((op #b00000))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11100000))) (define-instruction frndint(segment) (:printer floating-point-no ((op #b11100))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11111100))) ;;; Initialize NPX. (define-instruction fninit(segment) (:printer floating-point-5 ((op #b00011))) (:emitter (emit-byte segment #b11011011) (emit-byte segment #b11100011))) ;;; Store Status Word to AX. (define-instruction fnstsw(segment) (:printer floating-point-st ((op #b00000))) (:emitter (emit-byte segment #b11011111) (emit-byte segment #b11100000))) ;;; Load Control Word. ;;; ;;; src must be a memory location (define-instruction fldcw(segment src) (:printer floating-point ((op '(#b001 #b101)))) (:emitter (emit-byte segment #b11011001) (emit-fp-op segment src #b101))) ;;; Store Control Word. (define-instruction fnstcw(segment dst) (:printer floating-point ((op '(#b001 #b111)))) (:emitter (emit-byte segment #b11011001) (emit-fp-op segment dst #b111))) ;;; Store FP Environment. (define-instruction fstenv(segment dst) (:printer floating-point ((op '(#b001 #b110)))) (:emitter (emit-byte segment #b11011001) (emit-fp-op segment dst #b110))) ;;; Restore FP Environment. (define-instruction fldenv(segment src) (:printer floating-point ((op '(#b001 #b100)))) (:emitter (emit-byte segment #b11011001) (emit-fp-op segment src #b100))) ;;; Save FP State. (define-instruction fsave(segment dst) (:printer floating-point ((op '(#b101 #b110)))) (:emitter (emit-byte segment #b11011101) (emit-fp-op segment dst #b110))) ;;; Restore FP State. (define-instruction frstor(segment src) (:printer floating-point ((op '(#b101 #b100)))) (:emitter (emit-byte segment #b11011101) (emit-fp-op segment src #b100))) ;;; Clear exceptions. (define-instruction fnclex(segment) (:printer floating-point-5 ((op #b00010))) (:emitter (emit-byte segment #b11011011) (emit-byte segment #b11100010))) ;;; comparison (define-instruction fcom (segment src) (:printer floating-point ((op '(#b000 #b010)))) (:emitter (emit-byte segment #b11011000) (emit-fp-op segment src #b010))) (define-instruction fcomd (segment src) (:printer floating-point ((op '(#b100 #b010)))) (:printer floating-point-fp ((op '(#b000 #b010)))) (:emitter (if (fp-reg-tn-p src) (emit-byte segment #b11011000) (emit-byte segment #b11011100)) (emit-fp-op segment src #b010))) ;;; Compare ST1 to ST0, popping the stack twice. (define-instruction fcompp (segment) (:printer floating-point-3 ((op '(#b110 #b011001)))) (:emitter (emit-byte segment #b11011110) (emit-byte segment #b11011001))) ;;; unordered comparison (define-instruction fucom (segment src) (:printer floating-point-fp ((op '(#b101 #b100)))) (:emitter (aver (fp-reg-tn-p src)) (emit-byte segment #b11011101) (emit-fp-op segment src #b100))) (define-instruction ftst (segment) (:printer floating-point-no ((op #b00100))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11100100))) ;;;; 80387 specials (define-instruction fsqrt(segment) (:printer floating-point-no ((op #b11010))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11111010))) (define-instruction fscale(segment) (:printer floating-point-no ((op #b11101))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11111101))) (define-instruction fxtract(segment) (:printer floating-point-no ((op #b10100))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110100))) (define-instruction fsin(segment) (:printer floating-point-no ((op #b11110))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11111110))) (define-instruction fcos(segment) (:printer floating-point-no ((op #b11111))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11111111))) (define-instruction fprem1(segment) (:printer floating-point-no ((op #b10101))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110101))) (define-instruction fprem(segment) (:printer floating-point-no ((op #b11000))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11111000))) (define-instruction fxam (segment) (:printer floating-point-no ((op #b00101))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11100101))) ;;; These do push/pop to stack and need special handling ;;; in any VOPs that use them. See the book. ;;; st0 <- st1*log2(st0) (define-instruction fyl2x(segment) ; pops stack (:printer floating-point-no ((op #b10001))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110001))) (define-instruction fyl2xp1(segment) (:printer floating-point-no ((op #b11001))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11111001))) (define-instruction f2xm1(segment) (:printer floating-point-no ((op #b10000))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110000))) (define-instruction fptan(segment) ; st(0) <- 1; st(1) <- tan (:printer floating-point-no ((op #b10010))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110010))) (define-instruction fpatan(segment) ; POPS STACK (:printer floating-point-no ((op #b10011))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11110011))) ;;;; loading constants (define-instruction fldz(segment) (:printer floating-point-no ((op #b01110))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11101110))) (define-instruction fld1(segment) (:printer floating-point-no ((op #b01000))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11101000))) (define-instruction fldpi(segment) (:printer floating-point-no ((op #b01011))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11101011))) (define-instruction fldl2t(segment) (:printer floating-point-no ((op #b01001))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11101001))) (define-instruction fldl2e(segment) (:printer floating-point-no ((op #b01010))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11101010))) (define-instruction fldlg2(segment) (:printer floating-point-no ((op #b01100))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11101100))) (define-instruction fldln2(segment) (:printer floating-point-no ((op #b01101))) (:emitter (emit-byte segment #b11011001) (emit-byte segment #b11101101))) ;;;; Miscellany (define-instruction cpuid (segment) (:printer two-bytes ((op '(#b00001111 #b10100010)))) (:emitter (emit-byte segment #b00001111) (emit-byte segment #b10100010))) (define-instruction rdtsc (segment) (:printer two-bytes ((op '(#b00001111 #b00110001)))) (:emitter (emit-byte segment #b00001111) (emit-byte segment #b00110001))) ;;;; Late VM definitions (defun canonicalize-inline-constant (constant) (let ((first (car constant))) (typecase first (single-float (setf constant (list :single-float first))) (double-float (setf constant (list :double-float first))))) (destructuring-bind (type value) constant (ecase type ((:byte :word :dword) (aver (integerp value)) (cons type value)) ((:base-char) #!+sb-unicode (aver (base-char-p value)) (cons :byte (char-code value))) ((:character) (aver (characterp value)) (cons :dword (char-code value))) ((:single-float) (aver (typep value 'single-float)) (cons :dword (ldb (byte 32 0) (single-float-bits value)))) ((:double-float-bits) (aver (integerp value)) (cons :double-float (ldb (byte 64 0) value))) ((:double-float) (aver (typep value 'double-float)) (cons :double-float (ldb (byte 64 0) (logior (ash (double-float-high-bits value) 32) (double-float-low-bits value)))))))) (defun inline-constant-value (constant) (let ((label (gen-label)) (size (ecase (car constant) ((:byte :word :dword) (car constant)) (:double-float :dword)))) (values label (make-ea size :disp (make-fixup nil :code-object label))))) (defun emit-constant-segment-header (segment constants optimize) (declare (ignore segment constants)) (loop repeat (if optimize 64 16) do (inst byte #x90))) (defun size-nbyte (size) (ecase size (:byte 1) (:word 2) (:dword 4) (:double-float 8))) (defun sort-inline-constants (constants) (stable-sort constants #'> :key (lambda (constant) (size-nbyte (caar constant))))) (defun emit-inline-constant (constant label) (let ((size (size-nbyte (car constant)))) (emit-alignment (integer-length (1- size))) (emit-label label) (let ((val (cdr constant))) (loop repeat size do (inst byte (ldb (byte 8 0) val)) (setf val (ash val -8))))))