;;; compiler.lisp --- ;; copyright (C) 2012, 2013 David Vazquez ;; Copyright (C) 2012 Raimon Grau ;; JSCL is free software: you can redistribute it and/or ;; modify it under the terms of the GNU General Public License as ;; published by the Free Software Foundation, either version 3 of the ;; License, or (at your option) any later version. ;; ;; JSCL is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with JSCL. If not, see . ;;;; Compiler ;;; Translate the Lisp code to Javascript. It will compile the special ;;; forms. Some primitive functions are compiled as special forms ;;; too. The respective real functions are defined in the target (see ;;; the beginning of this file) as well as some primitive functions. (defun code (&rest args) (mapconcat (lambda (arg) (cond ((null arg) "") ((integerp arg) (integer-to-string arg)) ((floatp arg) (float-to-string arg)) ((stringp arg) arg) (t (error "Unknown argument `~S'." arg)))) args)) ;;; Wrap X with a Javascript code to convert the result from ;;; Javascript generalized booleans to T or NIL. (defun js!bool (x) (code "(" x "?" (ls-compile t) ": " (ls-compile nil) ")")) ;;; Concatenate the arguments and wrap them with a self-calling ;;; Javascript anonymous function. It is used to make some Javascript ;;; statements valid expressions and provide a private scope as well. ;;; It could be defined as function, but we could do some ;;; preprocessing in the future. (defmacro js!selfcall (&body body) `(code "(function(){" *newline* (indent ,@body) "})()")) ;;; Like CODE, but prefix each line with four spaces. Two versions ;;; of this function are available, because the Ecmalisp version is ;;; very slow and bootstraping was annoying. #+jscl (defun indent (&rest string) (let ((input (apply #'code string))) (let ((output "") (index 0) (size (length input))) (when (plusp (length input)) (concatf output " ")) (while (< index size) (let ((str (if (and (char= (char input index) #\newline) (< index (1- size)) (not (char= (char input (1+ index)) #\newline))) (concat (string #\newline) " ") (string (char input index))))) (concatf output str)) (incf index)) output))) #+common-lisp (defun indent (&rest string) (with-output-to-string (*standard-output*) (with-input-from-string (input (apply #'code string)) (loop for line = (read-line input nil) while line do (write-string " ") do (write-line line))))) ;;; A Form can return a multiple values object calling VALUES, like ;;; values(arg1, arg2, ...). It will work in any context, as well as ;;; returning an individual object. However, if the special variable ;;; `*multiple-value-p*' is NIL, is granted that only the primary ;;; value will be used, so we can optimize to avoid the VALUES ;;; function call. (defvar *multiple-value-p* nil) ;; A very simple defstruct built on lists. It supports just slot with ;; an optional default initform, and it will create a constructor, ;; predicate and accessors for you. (defmacro def!struct (name &rest slots) (unless (symbolp name) (error "It is not a full defstruct implementation.")) (let* ((name-string (symbol-name name)) (slot-descriptions (mapcar (lambda (sd) (cond ((symbolp sd) (list sd)) ((and (listp sd) (car sd) (cddr sd)) sd) (t (error "Bad slot description `~S'." sd)))) slots)) (predicate (intern (concat name-string "-P")))) `(progn ;; Constructor (defun ,(intern (concat "MAKE-" name-string)) (&key ,@slot-descriptions) (list ',name ,@(mapcar #'car slot-descriptions))) ;; Predicate (defun ,predicate (x) (and (consp x) (eq (car x) ',name))) ;; Copier (defun ,(intern (concat "COPY-" name-string)) (x) (copy-list x)) ;; Slot accessors ,@(with-collect (let ((index 1)) (dolist (slot slot-descriptions) (let* ((name (car slot)) (accessor-name (intern (concat name-string "-" (string name))))) (collect `(defun ,accessor-name (x) (unless (,predicate x) (error "The object `~S' is not of type `~S'" x ,name-string)) (nth ,index x))) ;; TODO: Implement this with a higher level ;; abstraction like defsetf or (defun (setf ..)) (collect `(define-setf-expander ,accessor-name (x) (let ((object (gensym)) (new-value (gensym))) (values (list object) (list x) (list new-value) `(progn (rplaca (nthcdr ,',index ,object) ,new-value) ,new-value) `(,',accessor-name ,object))))) (incf index))))) ',name))) ;;; Environment (def!struct binding name type value declarations) (def!struct lexenv variable function block gotag) (defun lookup-in-lexenv (name lexenv namespace) (find name (ecase namespace (variable (lexenv-variable lexenv)) (function (lexenv-function lexenv)) (block (lexenv-block lexenv)) (gotag (lexenv-gotag lexenv))) :key #'binding-name)) (defun push-to-lexenv (binding lexenv namespace) (ecase namespace (variable (push binding (lexenv-variable lexenv))) (function (push binding (lexenv-function lexenv))) (block (push binding (lexenv-block lexenv))) (gotag (push binding (lexenv-gotag lexenv))))) (defun extend-lexenv (bindings lexenv namespace) (let ((env (copy-lexenv lexenv))) (dolist (binding (reverse bindings) env) (push-to-lexenv binding env namespace)))) (defvar *environment* (make-lexenv)) (defvar *variable-counter* 0) (defun gvarname (symbol) (declare (ignore symbol)) (code "v" (incf *variable-counter*))) (defun translate-variable (symbol) (awhen (lookup-in-lexenv symbol *environment* 'variable) (binding-value it))) (defun extend-local-env (args) (let ((new (copy-lexenv *environment*))) (dolist (symbol args new) (let ((b (make-binding :name symbol :type 'variable :value (gvarname symbol)))) (push-to-lexenv b new 'variable))))) ;;; Toplevel compilations (defvar *toplevel-compilations* nil) (defun toplevel-compilation (string) (push string *toplevel-compilations*)) (defun null-or-empty-p (x) (zerop (length x))) (defun get-toplevel-compilations () (reverse (remove-if #'null-or-empty-p *toplevel-compilations*))) (defun %compile-defmacro (name lambda) (toplevel-compilation (ls-compile `',name)) (let ((binding (make-binding :name name :type 'macro :value lambda))) (push-to-lexenv binding *environment* 'function)) name) (defun global-binding (name type namespace) (or (lookup-in-lexenv name *environment* namespace) (let ((b (make-binding :name name :type type :value nil))) (push-to-lexenv b *environment* namespace) b))) (defun claimp (symbol namespace claim) (let ((b (lookup-in-lexenv symbol *environment* namespace))) (and b (member claim (binding-declarations b))))) (defun !proclaim (decl) (case (car decl) (special (dolist (name (cdr decl)) (let ((b (global-binding name 'variable 'variable))) (push 'special (binding-declarations b))))) (notinline (dolist (name (cdr decl)) (let ((b (global-binding name 'function 'function))) (push 'notinline (binding-declarations b))))) (constant (dolist (name (cdr decl)) (let ((b (global-binding name 'variable 'variable))) (push 'constant (binding-declarations b))))))) #+jscl (fset 'proclaim #'!proclaim) (defun %define-symbol-macro (name expansion) (let ((b (make-binding :name name :type 'macro :value expansion))) (push-to-lexenv b *environment* 'variable) name)) #+jscl (defmacro define-symbol-macro (name expansion) `(%define-symbol-macro ',name ',expansion)) ;;; Special forms (defvar *compilations* nil) (defmacro define-compilation (name args &body body) ;; Creates a new primitive `name' with parameters args and ;; @body. The body can access to the local environment through the ;; variable *ENVIRONMENT*. `(push (list ',name (lambda ,args (block ,name ,@body))) *compilations*)) (define-compilation if (condition true false) (code "(" (ls-compile condition) " !== " (ls-compile nil) " ? " (ls-compile true *multiple-value-p*) " : " (ls-compile false *multiple-value-p*) ")")) (defvar *ll-keywords* '(&optional &rest &key)) (defun list-until-keyword (list) (if (or (null list) (member (car list) *ll-keywords*)) nil (cons (car list) (list-until-keyword (cdr list))))) (defun ll-section (keyword ll) (list-until-keyword (cdr (member keyword ll)))) (defun ll-required-arguments (ll) (list-until-keyword ll)) (defun ll-optional-arguments-canonical (ll) (mapcar #'ensure-list (ll-section '&optional ll))) (defun ll-optional-arguments (ll) (mapcar #'car (ll-optional-arguments-canonical ll))) (defun ll-rest-argument (ll) (let ((rest (ll-section '&rest ll))) (when (cdr rest) (error "Bad lambda-list `~S'." ll)) (car rest))) (defun ll-keyword-arguments-canonical (ll) (flet ((canonicalize (keyarg) ;; Build a canonical keyword argument descriptor, filling ;; the optional fields. The result is a list of the form ;; ((keyword-name var) init-form). (let ((arg (ensure-list keyarg))) (cons (if (listp (car arg)) (car arg) (list (intern (symbol-name (car arg)) "KEYWORD") (car arg))) (cdr arg))))) (mapcar #'canonicalize (ll-section '&key ll)))) (defun ll-keyword-arguments (ll) (mapcar (lambda (keyarg) (second (first keyarg))) (ll-keyword-arguments-canonical ll))) (defun ll-svars (lambda-list) (let ((args (append (ll-keyword-arguments-canonical lambda-list) (ll-optional-arguments-canonical lambda-list)))) (remove nil (mapcar #'third args)))) (defun lambda-name/docstring-wrapper (name docstring &rest strs) (if (or name docstring) (js!selfcall "var func = " (join strs) ";" *newline* (when name (code "func.fname = '" (escape-string name) "';" *newline*)) (when docstring (code "func.docstring = '" (escape-string docstring) "';" *newline*)) "return func;" *newline*) (apply #'code strs))) (defun lambda-check-argument-count (n-required-arguments n-optional-arguments rest-p) ;; Note: Remember that we assume that the number of arguments of a ;; call is at least 1 (the values argument). (let ((min n-required-arguments) (max (if rest-p 'n/a (+ n-required-arguments n-optional-arguments)))) (block nil ;; Special case: a positive exact number of arguments. (when (and (< 0 min) (eql min max)) (return (code "checkArgs(nargs, " min ");" *newline*))) ;; General case: (code (when (< 0 min) (code "checkArgsAtLeast(nargs, " min ");" *newline*)) (when (numberp max) (code "checkArgsAtMost(nargs, " max ");" *newline*)))))) (defun compile-lambda-optional (ll) (let* ((optional-arguments (ll-optional-arguments-canonical ll)) (n-required-arguments (length (ll-required-arguments ll))) (n-optional-arguments (length optional-arguments))) (when optional-arguments (code "switch(nargs){" *newline* (let ((cases nil) (idx 0)) (progn (while (< idx n-optional-arguments) (let ((arg (nth idx optional-arguments))) (push (code "case " (+ idx n-required-arguments) ":" *newline* (indent (translate-variable (car arg)) "=" (ls-compile (cadr arg)) ";" *newline*) (when (third arg) (indent (translate-variable (third arg)) "=" (ls-compile nil) ";" *newline*))) cases) (incf idx))) (push (code "default: break;" *newline*) cases) (join (reverse cases)))) "}" *newline*)))) (defun compile-lambda-rest (ll) (let ((n-required-arguments (length (ll-required-arguments ll))) (n-optional-arguments (length (ll-optional-arguments ll))) (rest-argument (ll-rest-argument ll))) (when rest-argument (let ((js!rest (translate-variable rest-argument))) (code "var " js!rest "= " (ls-compile nil) ";" *newline* "for (var i = nargs-1; i>=" (+ n-required-arguments n-optional-arguments) "; i--)" *newline* (indent js!rest " = {car: arguments[i+2], cdr: " js!rest "};" *newline*)))))) (defun compile-lambda-parse-keywords (ll) (let ((n-required-arguments (length (ll-required-arguments ll))) (n-optional-arguments (length (ll-optional-arguments ll))) (keyword-arguments (ll-keyword-arguments-canonical ll))) (code ;; Declare variables (mapconcat (lambda (arg) (let ((var (second (car arg)))) (code "var " (translate-variable var) "; " *newline* (when (third arg) (code "var " (translate-variable (third arg)) " = " (ls-compile nil) ";" *newline*))))) keyword-arguments) ;; Parse keywords (flet ((parse-keyword (keyarg) ;; ((keyword-name var) init-form) (code "for (i=" (+ n-required-arguments n-optional-arguments) "; i (LIST* a b c foo) ;;; provided a, b, c are not splicing frobs ;;; (APPEND (LIST* a b c) foo) => (LIST* a b (APPEND c foo)) ;;; provided a, b, c are not splicing frobs ;;; (APPEND (QUOTE (x)) foo) => (LIST* (QUOTE x) foo) ;;; (APPEND (CLOBBERABLE x) foo) => (NCONC x foo) (defun bq-simplify (x) (if (atom x) x (let ((x (if (eq (car x) *bq-quote*) x (maptree #'bq-simplify x)))) (if (not (eq (car x) *bq-append*)) x (bq-simplify-args x))))) (defun bq-simplify-args (x) (do ((args (reverse (cdr x)) (cdr args)) (result nil (cond ((atom (car args)) (bq-attach-append *bq-append* (car args) result)) ((and (eq (caar args) *bq-list*) (notany #'bq-splicing-frob (cdar args))) (bq-attach-conses (cdar args) result)) ((and (eq (caar args) *bq-list**) (notany #'bq-splicing-frob (cdar args))) (bq-attach-conses (reverse (cdr (reverse (cdar args)))) (bq-attach-append *bq-append* (car (last (car args))) result))) ((and (eq (caar args) *bq-quote*) (consp (cadar args)) (not (bq-frob (cadar args))) (null (cddar args))) (bq-attach-conses (list (list *bq-quote* (caadar args))) result)) ((eq (caar args) *bq-clobberable*) (bq-attach-append *bq-nconc* (cadar args) result)) (t (bq-attach-append *bq-append* (car args) result))))) ((null args) result))) (defun null-or-quoted (x) (or (null x) (and (consp x) (eq (car x) *bq-quote*)))) ;;; When BQ-ATTACH-APPEND is called, the OP should be #:BQ-APPEND ;;; or #:BQ-NCONC. This produces a form (op item result) but ;;; some simplifications are done on the fly: ;;; ;;; (op '(a b c) '(d e f g)) => '(a b c d e f g) ;;; (op item 'nil) => item, provided item is not a splicable frob ;;; (op item 'nil) => (op item), if item is a splicable frob ;;; (op item (op a b c)) => (op item a b c) (defun bq-attach-append (op item result) (cond ((and (null-or-quoted item) (null-or-quoted result)) (list *bq-quote* (append (cadr item) (cadr result)))) ((or (null result) (equal result *bq-quote-nil*)) (if (bq-splicing-frob item) (list op item) item)) ((and (consp result) (eq (car result) op)) (list* (car result) item (cdr result))) (t (list op item result)))) ;;; The effect of BQ-ATTACH-CONSES is to produce a form as if by ;;; `(LIST* ,@items ,result) but some simplifications are done ;;; on the fly. ;;; ;;; (LIST* 'a 'b 'c 'd) => '(a b c . d) ;;; (LIST* a b c 'nil) => (LIST a b c) ;;; (LIST* a b c (LIST* d e f g)) => (LIST* a b c d e f g) ;;; (LIST* a b c (LIST d e f g)) => (LIST a b c d e f g) (defun bq-attach-conses (items result) (cond ((and (every #'null-or-quoted items) (null-or-quoted result)) (list *bq-quote* (append (mapcar #'cadr items) (cadr result)))) ((or (null result) (equal result *bq-quote-nil*)) (cons *bq-list* items)) ((and (consp result) (or (eq (car result) *bq-list*) (eq (car result) *bq-list**))) (cons (car result) (append items (cdr result)))) (t (cons *bq-list** (append items (list result)))))) ;;; Removes funny tokens and changes (#:BQ-LIST* a b) into ;;; (CONS a b) instead of (LIST* a b), purely for readability. (defun bq-remove-tokens (x) (cond ((eq x *bq-list*) 'list) ((eq x *bq-append*) 'append) ((eq x *bq-nconc*) 'nconc) ((eq x *bq-list**) 'list*) ((eq x *bq-quote*) 'quote) ((atom x) x) ((eq (car x) *bq-clobberable*) (bq-remove-tokens (cadr x))) ((and (eq (car x) *bq-list**) (consp (cddr x)) (null (cdddr x))) (cons 'cons (maptree #'bq-remove-tokens (cdr x)))) (t (maptree #'bq-remove-tokens x)))) (define-transformation backquote (form) (bq-completely-process form)) ;;; Primitives (defvar *builtins* nil) (defmacro define-raw-builtin (name args &body body) ;; Creates a new primitive function `name' with parameters args and ;; @body. The body can access to the local environment through the ;; variable *ENVIRONMENT*. `(push (list ',name (lambda ,args (block ,name ,@body))) *builtins*)) (defmacro define-builtin (name args &body body) `(define-raw-builtin ,name ,args (let ,(mapcar (lambda (arg) `(,arg (ls-compile ,arg))) args) ,@body))) ;;; DECLS is a list of (JSVARNAME TYPE LISPFORM) declarations. (defmacro type-check (decls &body body) `(js!selfcall ,@(mapcar (lambda (decl) `(code "var " ,(first decl) " = " ,(third decl) ";" *newline*)) decls) ,@(mapcar (lambda (decl) `(code "if (typeof " ,(first decl) " != '" ,(second decl) "')" *newline* (indent "throw 'The value ' + " ,(first decl) " + ' is not a type " ,(second decl) ".';" *newline*))) decls) (code "return " (progn ,@body) ";" *newline*))) ;;; VARIABLE-ARITY compiles variable arity operations. ARGS stands for ;;; a variable which holds a list of forms. It will compile them and ;;; store the result in some Javascript variables. BODY is evaluated ;;; with ARGS bound to the list of these variables to generate the ;;; code which performs the transformation on these variables. (defun variable-arity-call (args function) (unless (consp args) (error "ARGS must be a non-empty list")) (let ((counter 0) (fargs '()) (prelude "")) (dolist (x args) (cond ((floatp x) (push (float-to-string x) fargs)) ((numberp x) (push (integer-to-string x) fargs)) (t (let ((v (code "x" (incf counter)))) (push v fargs) (concatf prelude (code "var " v " = " (ls-compile x) ";" *newline* "if (typeof " v " !== 'number') throw 'Not a number!';" *newline*)))))) (js!selfcall prelude (funcall function (reverse fargs))))) (defmacro variable-arity (args &body body) (unless (symbolp args) (error "`~S' is not a symbol." args)) `(variable-arity-call ,args (lambda (,args) (code "return " ,@body ";" *newline*)))) (defun num-op-num (x op y) (type-check (("x" "number" x) ("y" "number" y)) (code "x" op "y"))) (define-raw-builtin + (&rest numbers) (if (null numbers) "0" (variable-arity numbers (join numbers "+")))) (define-raw-builtin - (x &rest others) (let ((args (cons x others))) (variable-arity args (if (null others) (concat "-" (car args)) (join args "-"))))) (define-raw-builtin * (&rest numbers) (if (null numbers) "1" (variable-arity numbers (join numbers "*")))) (define-raw-builtin / (x &rest others) (let ((args (cons x others))) (variable-arity args (if (null others) (concat "1 /" (car args)) (join args "/"))))) (define-builtin mod (x y) (num-op-num x "%" y)) (defun comparison-conjuntion (vars op) (cond ((null (cdr vars)) "true") ((null (cddr vars)) (concat (car vars) op (cadr vars))) (t (concat (car vars) op (cadr vars) " && " (comparison-conjuntion (cdr vars) op))))) (defmacro define-builtin-comparison (op sym) `(define-raw-builtin ,op (x &rest args) (let ((args (cons x args))) (variable-arity args (js!bool (comparison-conjuntion args ,sym)))))) (define-builtin-comparison > ">") (define-builtin-comparison < "<") (define-builtin-comparison >= ">=") (define-builtin-comparison <= "<=") (define-builtin-comparison = "==") (define-builtin numberp (x) (js!bool (code "(typeof (" x ") == \"number\")"))) (define-builtin floor (x) (type-check (("x" "number" x)) "Math.floor(x)")) (define-builtin expt (x y) (type-check (("x" "number" x) ("y" "number" y)) "Math.pow(x, y)")) (define-builtin float-to-string (x) (type-check (("x" "number" x)) "x.toString()")) (define-builtin cons (x y) (code "({car: " x ", cdr: " y "})")) (define-builtin consp (x) (js!bool (js!selfcall "var tmp = " x ";" *newline* "return (typeof tmp == 'object' && 'car' in tmp);" *newline*))) (define-builtin car (x) (js!selfcall "var tmp = " x ";" *newline* "return tmp === " (ls-compile nil) "? " (ls-compile nil) ": tmp.car;" *newline*)) (define-builtin cdr (x) (js!selfcall "var tmp = " x ";" *newline* "return tmp === " (ls-compile nil) "? " (ls-compile nil) ": tmp.cdr;" *newline*)) (define-builtin rplaca (x new) (type-check (("x" "object" x)) (code "(x.car = " new ", x)"))) (define-builtin rplacd (x new) (type-check (("x" "object" x)) (code "(x.cdr = " new ", x)"))) (define-builtin symbolp (x) (js!bool (js!selfcall "var tmp = " x ";" *newline* "return (typeof tmp == 'object' && 'name' in tmp);" *newline*))) (define-builtin make-symbol (name) (type-check (("name" "string" name)) "({name: name})")) (define-builtin symbol-name (x) (code "(" x ").name")) (define-builtin set (symbol value) (code "(" symbol ").value = " value)) (define-builtin fset (symbol value) (code "(" symbol ").fvalue = " value)) (define-builtin boundp (x) (js!bool (code "(" x ".value !== undefined)"))) (define-builtin symbol-value (x) (js!selfcall "var symbol = " x ";" *newline* "var value = symbol.value;" *newline* "if (value === undefined) throw \"Variable `\" + symbol.name + \"' is unbound.\";" *newline* "return value;" *newline*)) (define-builtin symbol-function (x) (js!selfcall "var symbol = " x ";" *newline* "var func = symbol.fvalue;" *newline* "if (func === undefined) throw \"Function `\" + symbol.name + \"' is undefined.\";" *newline* "return func;" *newline*)) (define-builtin symbol-plist (x) (code "((" x ").plist || " (ls-compile nil) ")")) (define-builtin lambda-code (x) (code "(" x ").toString()")) (define-builtin eq (x y) (js!bool (code "(" x " === " y ")"))) (define-builtin char-code (x) (type-check (("x" "string" x)) "x.charCodeAt(0)")) (define-builtin code-char (x) (type-check (("x" "number" x)) "String.fromCharCode(x)")) (define-builtin characterp (x) (js!bool (js!selfcall "var x = " x ";" *newline* "return (typeof(" x ") == \"string\") && x.length == 1;"))) (define-builtin char-to-string (x) (type-check (("x" "string" x)) "(x)")) (define-builtin stringp (x) (js!bool (code "(typeof(" x ") == \"string\")"))) (define-builtin string-upcase (x) (type-check (("x" "string" x)) "x.toUpperCase()")) (define-builtin string-length (x) (type-check (("x" "string" x)) "x.length")) (define-raw-builtin slice (string a &optional b) (js!selfcall "var str = " (ls-compile string) ";" *newline* "var a = " (ls-compile a) ";" *newline* "var b;" *newline* (when b (code "b = " (ls-compile b) ";" *newline*)) "return str.slice(a,b);" *newline*)) (define-builtin char (string index) (type-check (("string" "string" string) ("index" "number" index)) "string.charAt(index)")) (define-builtin concat-two (string1 string2) (type-check (("string1" "string" string1) ("string2" "string" string2)) "string1.concat(string2)")) (define-raw-builtin funcall (func &rest args) (js!selfcall "var f = " (ls-compile func) ";" *newline* "return (typeof f === 'function'? f: f.fvalue)(" (join (list* (if *multiple-value-p* "values" "pv") (integer-to-string (length args)) (mapcar #'ls-compile args)) ", ") ")")) (define-raw-builtin apply (func &rest args) (if (null args) (code "(" (ls-compile func) ")()") (let ((args (butlast args)) (last (car (last args)))) (js!selfcall "var f = " (ls-compile func) ";" *newline* "var args = [" (join (list* (if *multiple-value-p* "values" "pv") (integer-to-string (length args)) (mapcar #'ls-compile args)) ", ") "];" *newline* "var tail = (" (ls-compile last) ");" *newline* "while (tail != " (ls-compile nil) "){" *newline* " args.push(tail.car);" *newline* " args[1] += 1;" *newline* " tail = tail.cdr;" *newline* "}" *newline* "return (typeof f === 'function'? f : f.fvalue).apply(this, args);" *newline*)))) (define-builtin js-eval (string) (type-check (("string" "string" string)) (if *multiple-value-p* (js!selfcall "var v = globalEval(string);" *newline* "return values.apply(this, forcemv(v));" *newline*) "globalEval(string)"))) (define-builtin %throw (string) (js!selfcall "throw " string ";" *newline*)) (define-builtin new () "{}") (define-builtin objectp (x) (js!bool (code "(typeof (" x ") === 'object')"))) (define-builtin oget (object key) (js!selfcall "var tmp = " "(" object ")[" key "];" *newline* "return tmp == undefined? " (ls-compile nil) ": tmp ;" *newline*)) (define-builtin oset (object key value) (code "((" object ")[" key "] = " value ")")) (define-builtin in (key object) (js!bool (code "((" key ") in (" object "))"))) (define-builtin functionp (x) (js!bool (code "(typeof " x " == 'function')"))) (define-builtin write-string (x) (type-check (("x" "string" x)) "lisp.write(x)")) (define-builtin make-array (n) (js!selfcall "var r = [];" *newline* "for (var i = 0; i < " n "; i++)" *newline* (indent "r.push(" (ls-compile nil) ");" *newline*) "return r;" *newline*)) (define-builtin arrayp (x) (js!bool (js!selfcall "var x = " x ";" *newline* "return typeof x === 'object' && 'length' in x;"))) (define-builtin aref (array n) (js!selfcall "var x = " "(" array ")[" n "];" *newline* "if (x === undefined) throw 'Out of range';" *newline* "return x;" *newline*)) (define-builtin aset (array n value) (js!selfcall "var x = " array ";" *newline* "var i = " n ";" *newline* "if (i < 0 || i >= x.length) throw 'Out of range';" *newline* "return x[i] = " value ";" *newline*)) (define-builtin get-internal-real-time () "(new Date()).getTime()") (define-builtin values-array (array) (if *multiple-value-p* (code "values.apply(this, " array ")") (code "pv.apply(this, " array ")"))) (define-raw-builtin values (&rest args) (if *multiple-value-p* (code "values(" (join (mapcar #'ls-compile args) ", ") ")") (code "pv(" (join (mapcar #'ls-compile args) ", ") ")"))) ;; Receives the JS function as first argument as a literal string. The ;; second argument is compiled and should evaluate to a vector of ;; values to apply to the the function. The result returned. (define-builtin %js-call (fun args) (code fun ".apply(this, " args ")")) #+common-lisp (defvar *macroexpander-cache* (make-hash-table :test #'eq)) (defun !macro-function (symbol) (unless (symbolp symbol) (error "`~S' is not a symbol." symbol)) (let ((b (lookup-in-lexenv symbol *environment* 'function))) (if (and b (eq (binding-type b) 'macro)) (let ((expander (binding-value b))) (cond #+common-lisp ((gethash b *macroexpander-cache*) (setq expander (gethash b *macroexpander-cache*))) ((listp expander) (let ((compiled (eval expander))) ;; The list representation are useful while ;; bootstrapping, as we can dump the definition of the ;; macros easily, but they are slow because we have to ;; evaluate them and compile them now and again. So, let ;; us replace the list representation version of the ;; function with the compiled one. ;; #+jscl (setf (binding-value b) compiled) #+common-lisp (setf (gethash b *macroexpander-cache*) compiled) (setq expander compiled)))) expander) nil))) (defun !macroexpand-1 (form) (cond ((symbolp form) (let ((b (lookup-in-lexenv form *environment* 'variable))) (if (and b (eq (binding-type b) 'macro)) (values (binding-value b) t) (values form nil)))) ((consp form) (let ((macrofun (!macro-function (car form)))) (if macrofun (values (apply macrofun (cdr form)) t) (values form nil)))) (t (values form nil)))) (defun compile-funcall (function args) (let* ((values-funcs (if *multiple-value-p* "values" "pv")) (arglist (concat "(" (join (list* values-funcs (integer-to-string (length args)) (mapcar #'ls-compile args)) ", ") ")"))) (unless (or (symbolp function) (and (consp function) (eq (car function) 'lambda))) (error "Bad function designator `~S'" function)) (cond ((translate-function function) (concat (translate-function function) arglist)) ((and (symbolp function) #+jscl (eq (symbol-package function) (find-package "COMMON-LISP")) #+common-lisp t) (code (ls-compile `',function) ".fvalue" arglist)) (t (code (ls-compile `#',function) arglist))))) (defun ls-compile-block (sexps &optional return-last-p) (if return-last-p (code (ls-compile-block (butlast sexps)) "return " (ls-compile (car (last sexps)) *multiple-value-p*) ";") (join-trailing (remove-if #'null-or-empty-p (mapcar #'ls-compile sexps)) (concat ";" *newline*)))) (defun ls-compile (sexp &optional multiple-value-p) (multiple-value-bind (sexp expandedp) (!macroexpand-1 sexp) (when expandedp (return-from ls-compile (ls-compile sexp multiple-value-p))) ;; The expression has been macroexpanded. Now compile it! (let ((*multiple-value-p* multiple-value-p)) (cond ((symbolp sexp) (let ((b (lookup-in-lexenv sexp *environment* 'variable))) (cond ((and b (not (member 'special (binding-declarations b)))) (binding-value b)) ((or (keywordp sexp) (and b (member 'constant (binding-declarations b)))) (code (ls-compile `',sexp) ".value")) (t (ls-compile `(symbol-value ',sexp)))))) ((integerp sexp) (integer-to-string sexp)) ((floatp sexp) (float-to-string sexp)) ((characterp sexp) (code "\"" (escape-string (string sexp)) "\"")) ((stringp sexp) (code "\"" (escape-string sexp) "\"")) ((arrayp sexp) (literal sexp)) ((listp sexp) (let ((name (car sexp)) (args (cdr sexp))) (cond ;; Special forms ((assoc name *compilations*) (let ((comp (second (assoc name *compilations*)))) (apply comp args))) ;; Built-in functions ((and (assoc name *builtins*) (not (claimp name 'function 'notinline))) (let ((comp (second (assoc name *builtins*)))) (apply comp args))) (t (compile-funcall name args))))) (t (error "How should I compile `~S'?" sexp)))))) (defvar *compile-print-toplevels* nil) (defun truncate-string (string &optional (width 60)) (let ((n (or (position #\newline string) (min width (length string))))) (subseq string 0 n))) (defun ls-compile-toplevel (sexp &optional multiple-value-p) (let ((*toplevel-compilations* nil)) (cond ((and (consp sexp) (eq (car sexp) 'progn)) (let ((subs (mapcar (lambda (s) (ls-compile-toplevel s t)) (cdr sexp)))) (join (remove-if #'null-or-empty-p subs)))) (t (when *compile-print-toplevels* (let ((form-string (prin1-to-string sexp))) (write-string "Compiling ") (write-string (truncate-string form-string)) (write-line "..."))) (let ((code (ls-compile sexp multiple-value-p))) (code (join-trailing (get-toplevel-compilations) (code ";" *newline*)) (when code (code code ";" *newline*))))))))