;;;; This file is for testing debugging functionality, using ;;;; test machinery which might have side effects (e.g. ;;;; executing DEFUN). ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. ;;;; ;;;; While most of SBCL is derived from the CMU CL system, the test ;;;; files (like this one) were written from scratch after the fork ;;;; from CMU CL. ;;;; ;;;; This software is in the public domain and is provided with ;;;; absolutely no warranty. See the COPYING and CREDITS files for ;;;; more information. (cl:in-package :cl-user) ;;;; Check that we get debug arglists right. ;;; FIXME: This should use some get-argslist like functionality that ;;; we actually export. ;;; ;;; Return the debug arglist of the function object FUN as a list, or ;;; punt with :UNKNOWN. (defun get-arglist (fun) (declare (type function fun)) ;; The Lisp-level type FUNCTION can conceal a multitude of sins.. (case (sb-kernel:widetag-of fun) (#.sb-vm:simple-fun-header-widetag (sb-kernel:%simple-fun-arglist fun)) (#.sb-vm:closure-header-widetag (get-arglist (sb-kernel:%closure-fun fun))) ;; In code/describe.lisp, ll. 227 (%describe-fun), we use a scheme ;; like above, and it seems to work. -- MNA 2001-06-12 ;; ;; (There might be other cases with arglist info also. ;; SIMPLE-FUN-HEADER-WIDETAG and CLOSURE-HEADER-WIDETAG just ;; happen to be the two case that I had my nose rubbed in when ;; debugging a GC problem caused by applying %SIMPLE-FUN-ARGLIST to ;; a closure. -- WHN 2001-06-05) (t :unknown))) (defun zoop (zeep &key beep) blurp) (assert (equal (get-arglist #'zoop) '(zeep &key beep))) ;;; Check some predefined functions too. ;;; ;;; (We don't know exactly what the arguments are, e.g. the first ;;; argument of PRINT might be SB-IMPL::OBJECT or SB-KERNEL::OBJ or ;;; whatever. But we do know the general structure that a correct ;;; answer should have, so we can safely do a lot of checks.) (destructuring-bind (object-sym &optional-sym stream-sym) (get-arglist #'print) (assert (symbolp object-sym)) (assert (eql &optional-sym '&optional)) (assert (symbolp stream-sym))) (destructuring-bind (dest-sym control-sym &rest-sym format-args-sym) (get-arglist #'format) (assert (symbolp dest-sym)) (assert (symbolp control-sym)) (assert (eql &rest-sym '&rest)) (assert (symbolp format-args-sym))) ;;; Check for backtraces generally being correct. Ensure that the ;;; actual backtrace finishes (doesn't signal any errors on its own), ;;; and that it contains the frames we expect, doesn't contain any ;;; "bogus stack frame"s, and contains the appropriate toplevel call ;;; and hasn't been cut off anywhere. (defun verify-backtrace (test-function frame-specs &key (allow-stunted nil)) (labels ((args-equal (want real) (cond ((endp want) (endp real)) ((eq '&rest (car want)) t) ((or (eq '? (car want)) (equal (car want) (car real))) (args-equal (cdr want) (cdr real))) (t nil)))) (let ((result nil)) (block outer-handler (handler-bind ((error (lambda (condition) ;; find the part of the backtrace we're interested in (let ((backtrace (progn ;; (backtrace 13) (member (caar frame-specs) (sb-debug:backtrace-as-list) :key #'car :test #'equal)))) (setf result condition) (unless backtrace (print :missing-backtrace) (setf result nil)) ;; check that we have all the frames we wanted (mapcar (lambda (spec frame) (unless (or (not spec) (and (equal (car spec) (car frame)) (args-equal (cdr spec) (cdr frame)))) (print (list :mismatch spec frame)) (setf result nil))) frame-specs backtrace) ;; Make sure the backtrace isn't stunted in ;; any way. (Depends on running in the main ;; thread.) (let ((end (last backtrace 2))) (unless (equal (caar end) (if *show-entry-point-details* '(sb-c::tl-xep sb-impl::toplevel-init) 'sb-impl::toplevel-init)) (print (list :backtrace-stunted (caar end))) (setf result nil))) (return-from outer-handler))))) (funcall test-function))) result))) (defvar *undefined-function-frame* ;; bug 353 '(#+(or x86 x86-64) "bogus stack frame" #-(or x86 x86-64) "undefined function")) #-(or alpha) ; bug 346 ;;; Test for "undefined function" (undefined_tramp) working properly. ;;; Try it with and without tail call elimination, since they can have ;;; different effects. (Specifically, if undefined_tramp is incorrect ;;; a stunted stack can result from the tail call variant.) (flet ((optimized () (declare (optimize (speed 2) (debug 1))) ; tail call elimination (#:undefined-function 42)) (not-optimized () (declare (optimize (speed 1) (debug 2))) ; no tail call elimination (#:undefined-function 42)) (test (fun) (declare (optimize (speed 1) (debug 2))) ; no tail call elimination (funcall fun))) (assert (verify-backtrace (lambda () (test #'optimized)) (list *undefined-function-frame* (list '(flet test) #'optimized)))) (assert (verify-backtrace (lambda () (test #'not-optimized)) (list *undefined-function-frame* (list '(flet not-optimized)) (list '(flet test) #'not-optimized))))) #-alpha ; bug 346 ;;; Division by zero was a common error on PPC. It depended on the ;;; return function either being before INTEGER-/-INTEGER in memory, ;;; or more than MOST-POSITIVE-FIXNUM bytes ahead. It also depends on ;;; INTEGER-/-INTEGER calling SIGNED-TRUNCATE. I believe Raymond Toy ;;; says that the Sparc backend (at least for CMUCL) inlines this, so ;;; if SBCL does the same this test is probably not good for the ;;; Sparc. ;;; ;;; Disabling tail call elimination on this will probably ensure that ;;; the return value (to the flet or the enclosing top level form) is ;;; more than MOST-POSITIVE-FIXNUM with the current spaces on OS X. ;;; Enabling it might catch other problems, so do it anyway. (flet ((optimized () (declare (optimize (speed 2) (debug 1))) ; tail call elimination (/ 42 0)) (not-optimized () (declare (optimize (speed 1) (debug 2))) ; no tail call elimination (/ 42 0)) (test (fun) (declare (optimize (speed 1) (debug 2))) ; no tail call elimination (funcall fun))) (assert (verify-backtrace (lambda () (test #'optimized)) (list '(/ 42 &rest) (list '(flet test) #'optimized)))) (assert (verify-backtrace (lambda () (test #'not-optimized)) (list '(/ 42 &rest) '((flet not-optimized)) (list '(flet test) #'not-optimized))))) #-(or alpha) ; bug 61 (progn (defun throw-test () (throw 'no-such-tag t)) (assert (verify-backtrace #'throw-test '((throw-test))))) ;;; test entry point handling in backtraces (defun oops () (error "oops")) (defun bt.1 (&key key) (list key)) (defun bt.2 (x) (list x)) (defun bt.3 (&key (key (oops))) (list key)) ;;; ERROR instead of OOPS so that tail call elimination doesn't happen (defun bt.4 (&optional opt) (list (error "error"))) (defun bt.5 (&optional (opt (oops))) (list opt)) (macrolet ((with-details (bool &body body) `(let ((sb-debug:*show-entry-point-details* ,bool)) ,@body))) ;; &MORE-PROCESSOR (with-details t (assert (verify-backtrace (lambda () (bt.1 :key)) '(((sb-c::&more-processor bt.1) &rest))))) (with-details nil (assert (verify-backtrace (lambda () (bt.1 :key)) '((bt.1 :key))))) ;; XEP (with-details t (assert (verify-backtrace #'bt.2 '(((sb-c::xep bt.2) 0 ?))))) (with-details nil (assert (verify-backtrace #'bt.2 '((bt.2))))) ;; TL-XEP (with-details t (assert (verify-backtrace #'namestring '(((sb-c::tl-xep namestring) 0 ?))))) (with-details nil (assert (verify-backtrace #'namestring '((namestring))))) ;; VARARGS-ENTRY (with-details t (assert (verify-backtrace #'bt.3 '(((sb-c::varargs-entry bt.3) :key nil))))) (with-details nil (assert (verify-backtrace #'bt.3 '((bt.3 :key nil))))) ;; HAIRY-ARG-PROCESSOR (with-details t (assert (verify-backtrace #'bt.4 '(((sb-c::hairy-arg-processor bt.4) ?))))) (with-details nil (assert (verify-backtrace #'bt.4 '((bt.4 ?))))) ;; &OPTIONAL-PROCESSOR (with-details t (assert (verify-backtrace #'bt.5 '(((sb-c::&optional-processor bt.5)))))) (with-details nil (assert (verify-backtrace #'bt.5 '((bt.5)))))) ;;; success (quit :unix-status 104)