X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;ds=sidebyside;f=src%2Fcompiler%2Ffloat-tran.lisp;h=f4f65bfaa625af45d3072bf5920e7849cdec1bfd;hb=22b819c0cd0ca0ea5be52ba280b9e9e0b8e86210;hp=f6c14279ebd64d5402f58ec5e217b6c98cf69669;hpb=c8af15e61b030c8d4b0e950bc9b7618530044618;p=sbcl.git diff --git a/src/compiler/float-tran.lisp b/src/compiler/float-tran.lisp index f6c1427..f4f65bf 100644 --- a/src/compiler/float-tran.lisp +++ b/src/compiler/float-tran.lisp @@ -18,35 +18,22 @@ (defknown %single-float (real) single-float (movable foldable flushable)) (defknown %double-float (real) double-float (movable foldable flushable)) -(deftransform float ((n &optional f) (* &optional single-float) * :when :both) +(deftransform float ((n &optional f) (* &optional single-float) *) '(%single-float n)) -(deftransform float ((n f) (* double-float) * :when :both) +(deftransform float ((n f) (* double-float) *) '(%double-float n)) -(deftransform %single-float ((n) (single-float) * :when :both) +(deftransform %single-float ((n) (single-float) *) 'n) -(deftransform %double-float ((n) (double-float) * :when :both) +(deftransform %double-float ((n) (double-float) *) 'n) -;;; not strictly float functions, but primarily useful on floats: -(macrolet ((frob (fun ufun) - `(progn - (defknown ,ufun (real) integer (movable foldable flushable)) - (deftransform ,fun ((x &optional by) - (* &optional - (constant-argument (member 1)))) - '(let ((res (,ufun x))) - (values res (- x res))))))) - (frob truncate %unary-truncate) - (frob round %unary-round)) - ;;; RANDOM (macrolet ((frob (fun type) `(deftransform random ((num &optional state) - (,type &optional *) * - :when :both) + (,type &optional *) *) "Use inline float operations." '(,fun num (or state *random-state*))))) (frob %random-single-float single-float) @@ -63,7 +50,7 @@ ;; of automatically finding #!+sb-doc in proximity to DEFTRANSFORM ;; to let me scan for places that I made this mistake and didn't ;; catch myself. - "use inline (unsigned-byte 32) operations" + "use inline (UNSIGNED-BYTE 32) operations" (let ((num-high (numeric-type-high (continuation-type num)))) (when (null num-high) (give-up-ir1-transform)) @@ -151,39 +138,69 @@ (defknown scale-double-float (double-float fixnum) double-float (movable foldable flushable)) -(deftransform decode-float ((x) (single-float) * :when :both) +(deftransform decode-float ((x) (single-float) *) '(decode-single-float x)) -(deftransform decode-float ((x) (double-float) * :when :both) +(deftransform decode-float ((x) (double-float) *) '(decode-double-float x)) -(deftransform integer-decode-float ((x) (single-float) * :when :both) +(deftransform integer-decode-float ((x) (single-float) *) '(integer-decode-single-float x)) -(deftransform integer-decode-float ((x) (double-float) * :when :both) +(deftransform integer-decode-float ((x) (double-float) *) '(integer-decode-double-float x)) -(deftransform scale-float ((f ex) (single-float *) * :when :both) +(deftransform scale-float ((f ex) (single-float *) *) (if (and #!+x86 t #!-x86 nil (csubtypep (continuation-type ex) - (specifier-type '(signed-byte 32))) - (not (byte-compiling))) + (specifier-type '(signed-byte 32)))) '(coerce (%scalbn (coerce f 'double-float) ex) 'single-float) '(scale-single-float f ex))) -(deftransform scale-float ((f ex) (double-float *) * :when :both) +(deftransform scale-float ((f ex) (double-float *) *) (if (and #!+x86 t #!-x86 nil (csubtypep (continuation-type ex) (specifier-type '(signed-byte 32)))) '(%scalbn f ex) '(scale-double-float f ex))) -;;; toy@rtp.ericsson.se: +;;; What is the CROSS-FLOAT-INFINITY-KLUDGE? ;;; +;;; SBCL's own implementation of floating point supports floating +;;; point infinities. Some of the old CMU CL :PROPAGATE-FLOAT-TYPE and +;;; :PROPAGATE-FUN-TYPE code, like the DEFOPTIMIZERs below, uses this +;;; floating point support. Thus, we have to avoid running it on the +;;; cross-compilation host, since we're not guaranteed that the +;;; cross-compilation host will support floating point infinities. +;;; +;;; If we wanted to live dangerously, we could conditionalize the code +;;; with #+(OR SBCL SB-XC) instead. That way, if the cross-compilation +;;; host happened to be SBCL, we'd be able to run the infinity-using +;;; code. Pro: +;;; * SBCL itself gets built with more complete optimization. +;;; Con: +;;; * You get a different SBCL depending on what your cross-compilation +;;; host is. +;;; So far the pros and cons seem seem to be mostly academic, since +;;; AFAIK (WHN 2001-08-28) the propagate-foo-type optimizations aren't +;;; actually important in compiling SBCL itself. If this changes, then +;;; we have to decide: +;;; * Go for simplicity, leaving things as they are. +;;; * Go for performance at the expense of conceptual clarity, +;;; using #+(OR SBCL SB-XC) and otherwise leaving the build +;;; process as is. +;;; * Go for performance at the expense of build time, using +;;; #+(OR SBCL SB-XC) and also making SBCL do not just +;;; make-host-1.sh and make-host-2.sh, but a third step +;;; make-host-3.sh where it builds itself under itself. (Such a +;;; 3-step build process could also help with other things, e.g. +;;; using specialized arrays to represent debug information.) +;;; * Rewrite the code so that it doesn't depend on unportable +;;; floating point infinities. + ;;; optimizers for SCALE-FLOAT. If the float has bounds, new bounds ;;; are computed for the result, if possible. - -#!+propagate-float-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn (defun scale-float-derive-type-aux (f ex same-arg) @@ -194,7 +211,7 @@ ;; zeros. (set-bound (handler-case - (scale-float (bound-value x) n) + (scale-float (type-bound-number x) n) (floating-point-overflow () nil)) (consp x)))) @@ -225,7 +242,6 @@ ;;; FLOAT function return the correct ranges if the input has some ;;; defined range. Quite useful if we want to convert some type of ;;; bounded integer into a float. - (macrolet ((frob (fun type) (let ((aux-name (symbolicate fun "-DERIVE-TYPE-AUX"))) @@ -233,11 +249,11 @@ (defun ,aux-name (num) ;; When converting a number to a float, the limits are ;; the same. - (let* ((lo (bound-func #'(lambda (x) - (coerce x ',type)) + (let* ((lo (bound-func (lambda (x) + (coerce x ',type)) (numeric-type-low num))) - (hi (bound-func #'(lambda (x) - (coerce x ',type)) + (hi (bound-func (lambda (x) + (coerce x ',type)) (numeric-type-high num)))) (specifier-type `(,',type ,(or lo '*) ,(or hi '*))))) @@ -251,12 +267,12 @@ ;;; Do some stuff to recognize when the loser is doing mixed float and ;;; rational arithmetic, or different float types, and fix it up. If -;;; we don't, he won't even get so much as an efficency note. +;;; we don't, he won't even get so much as an efficiency note. (deftransform float-contagion-arg1 ((x y) * * :defun-only t :node node) - `(,(continuation-function-name (basic-combination-fun node)) + `(,(continuation-fun-name (basic-combination-fun node)) (float x y) y)) (deftransform float-contagion-arg2 ((x y) * * :defun-only t :node node) - `(,(continuation-function-name (basic-combination-fun node)) + `(,(continuation-fun-name (basic-combination-fun node)) x (float y x))) (dolist (x '(+ * / -)) @@ -275,7 +291,7 @@ ;;; do it for any rational that has a precise representation as a ;;; float (such as 0). (macrolet ((frob (op) - `(deftransform ,op ((x y) (float rational) * :when :both) + `(deftransform ,op ((x y) (float rational) *) "open-code FLOAT to RATIONAL comparison" (unless (constant-continuation-p y) (give-up-ir1-transform @@ -294,7 +310,7 @@ ;;; Derive the result to be float for argument types in the ;;; appropriate domain. -#!-propagate-fun-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (dolist (stuff '((asin (real -1.0 1.0)) (acos (real -1.0 1.0)) (acosh (real 1.0)) @@ -302,7 +318,7 @@ (sqrt (real 0.0)))) (destructuring-bind (name type) stuff (let ((type (specifier-type type))) - (setf (function-info-derive-type (function-info-or-lose name)) + (setf (fun-info-derive-type (fun-info-or-lose name)) (lambda (call) (declare (type combination call)) (when (csubtypep (continuation-type @@ -310,7 +326,7 @@ type) (specifier-type 'float))))))) -#!-propagate-fun-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (log derive-type) ((x &optional y)) (when (and (csubtypep (continuation-type x) (specifier-type '(real 0.0))) @@ -330,11 +346,13 @@ (movable foldable flushable)) (defknown (%asin %atan) - (double-float) (double-float #.(- (/ pi 2)) #.(/ pi 2)) + (double-float) + (double-float #.(coerce (- (/ pi 2)) 'double-float) + #.(coerce (/ pi 2) 'double-float)) (movable foldable flushable)) (defknown (%acos) - (double-float) (double-float 0.0d0 #.pi) + (double-float) (double-float 0.0d0 #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%cosh) @@ -358,7 +376,9 @@ (movable foldable flushable)) (defknown (%atan2) - (double-float double-float) (double-float #.(- pi) #.pi) + (double-float double-float) + (double-float #.(coerce (- pi) 'double-float) + #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%scalb) @@ -373,74 +393,77 @@ (double-float) double-float (movable foldable flushable)) -(dolist (stuff '((exp %exp *) - (log %log float) - (sqrt %sqrt float) - (asin %asin float) - (acos %acos float) - (atan %atan *) - (sinh %sinh *) - (cosh %cosh *) - (tanh %tanh *) - (asinh %asinh *) - (acosh %acosh float) - (atanh %atanh float))) - (destructuring-bind (name prim rtype) stuff - (deftransform name ((x) '(single-float) rtype :eval-name t) - `(coerce (,prim (coerce x 'double-float)) 'single-float)) - (deftransform name ((x) '(double-float) rtype :eval-name t :when :both) - `(,prim x)))) +(macrolet ((def (name prim rtype) + `(progn + (deftransform ,name ((x) (single-float) ,rtype) + `(coerce (,',prim (coerce x 'double-float)) 'single-float)) + (deftransform ,name ((x) (double-float) ,rtype) + `(,',prim x))))) + (def exp %exp *) + (def log %log float) + (def sqrt %sqrt float) + (def asin %asin float) + (def acos %acos float) + (def atan %atan *) + (def sinh %sinh *) + (def cosh %cosh *) + (def tanh %tanh *) + (def asinh %asinh *) + (def acosh %acosh float) + (def atanh %atanh float)) ;;; The argument range is limited on the x86 FP trig. functions. A ;;; post-test can detect a failure (and load a suitable result), but ;;; this test is avoided if possible. -(dolist (stuff '((sin %sin %sin-quick) - (cos %cos %cos-quick) - (tan %tan %tan-quick))) - (destructuring-bind (name prim prim-quick) stuff - (deftransform name ((x) '(single-float) '* :eval-name t) - #!+x86 (cond ((csubtypep (continuation-type x) - (specifier-type '(single-float - (#.(- (expt 2f0 64))) - (#.(expt 2f0 64))))) - `(coerce (,prim-quick (coerce x 'double-float)) - 'single-float)) - (t - (compiler-note - "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" - (type-specifier (continuation-type x))) - `(coerce (,prim (coerce x 'double-float)) 'single-float))) - #!-x86 `(coerce (,prim (coerce x 'double-float)) 'single-float)) - (deftransform name ((x) '(double-float) '* :eval-name t :when :both) - #!+x86 (cond ((csubtypep (continuation-type x) - (specifier-type '(double-float - (#.(- (expt 2d0 64))) - (#.(expt 2d0 64))))) - `(,prim-quick x)) - (t - (compiler-note - "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" - (type-specifier (continuation-type x))) - `(,prim x))) - #!-x86 `(,prim x)))) +(macrolet ((def (name prim prim-quick) + (declare (ignorable prim-quick)) + `(progn + (deftransform ,name ((x) (single-float) *) + #!+x86 (cond ((csubtypep (continuation-type x) + (specifier-type '(single-float + (#.(- (expt 2f0 64))) + (#.(expt 2f0 64))))) + `(coerce (,',prim-quick (coerce x 'double-float)) + 'single-float)) + (t + (compiler-note + "unable to avoid inline argument range check~@ + because the argument range (~S) was not within 2^64" + (type-specifier (continuation-type x))) + `(coerce (,',prim (coerce x 'double-float)) 'single-float))) + #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float)) + (deftransform ,name ((x) (double-float) *) + #!+x86 (cond ((csubtypep (continuation-type x) + (specifier-type '(double-float + (#.(- (expt 2d0 64))) + (#.(expt 2d0 64))))) + `(,',prim-quick x)) + (t + (compiler-note + "unable to avoid inline argument range check~@ + because the argument range (~S) was not within 2^64" + (type-specifier (continuation-type x))) + `(,',prim x))) + #!-x86 `(,',prim x))))) + (def sin %sin %sin-quick) + (def cos %cos %cos-quick) + (def tan %tan %tan-quick)) (deftransform atan ((x y) (single-float single-float) *) `(coerce (%atan2 (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform atan ((x y) (double-float double-float) * :when :both) +(deftransform atan ((x y) (double-float double-float) *) `(%atan2 x y)) (deftransform expt ((x y) ((single-float 0f0) single-float) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform expt ((x y) ((double-float 0d0) double-float) * :when :both) +(deftransform expt ((x y) ((double-float 0d0) double-float) *) `(%pow x y)) (deftransform expt ((x y) ((single-float 0f0) (signed-byte 32)) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) * :when :both) +(deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *) `(%pow x (coerce y 'double-float))) ;;; ANSI says log with base zero returns zero. @@ -449,7 +472,7 @@ ;;; Handle some simple transformations. -(deftransform abs ((x) ((complex double-float)) double-float :when :both) +(deftransform abs ((x) ((complex double-float)) double-float) '(%hypot (realpart x) (imagpart x))) (deftransform abs ((x) ((complex single-float)) single-float) @@ -457,7 +480,7 @@ (coerce (imagpart x) 'double-float)) 'single-float)) -(deftransform phase ((x) ((complex double-float)) double-float :when :both) +(deftransform phase ((x) ((complex double-float)) double-float) '(%atan2 (imagpart x) (realpart x))) (deftransform phase ((x) ((complex single-float)) single-float) @@ -465,16 +488,12 @@ (coerce (realpart x) 'double-float)) 'single-float)) -(deftransform phase ((x) ((float)) float :when :both) +(deftransform phase ((x) ((float)) float) '(if (minusp (float-sign x)) (float pi x) (float 0 x))) -#!+(or propagate-float-type propagate-fun-type) -(progn - ;;; The number is of type REAL. -#!-sb-fluid (declaim (inline numeric-type-real-p)) (defun numeric-type-real-p (type) (and (numeric-type-p type) (eq (numeric-type-complexp type) :real))) @@ -487,9 +506,7 @@ (list (coerce (car bound) type)) (coerce bound type)))) -) ; PROGN - -#!+propagate-fun-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn ;;;; optimizers for elementary functions @@ -507,7 +524,7 @@ (float-type (or format 'float))) (specifier-type `(complex ,float-type)))) -;;; Compute a specifier like '(or float (complex float)), except float +;;; Compute a specifier like '(OR FLOAT (COMPLEX FLOAT)), except float ;;; should be the right kind of float. Allow bounds for the float ;;; part too. (defun float-or-complex-float-type (arg &optional lo hi) @@ -521,27 +538,41 @@ (specifier-type `(or (,float-type ,(or lo '*) ,(or hi '*)) (complex ,float-type))))) +) ; PROGN + +(eval-when (:compile-toplevel :execute) + ;; So the problem with this hack is that it's actually broken. If + ;; the host does not have long floats, then setting *R-D-F-F* to + ;; LONG-FLOAT doesn't actually buy us anything. FIXME. + (setf *read-default-float-format* + #!+long-float 'long-float #!-long-float 'double-float)) ;;; Test whether the numeric-type ARG is within in domain specified by ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to -;;; be distinct as for the :negative-zero-is-not-zero feature. With -;;; the :negative-zero-is-not-zero feature this could be handled by -;;; the numeric subtype code in type.lisp. +;;; be distinct. +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defun domain-subtypep (arg domain-low domain-high) (declare (type numeric-type arg) (type (or real null) domain-low domain-high)) (let* ((arg-lo (numeric-type-low arg)) - (arg-lo-val (bound-value arg-lo)) + (arg-lo-val (type-bound-number arg-lo)) (arg-hi (numeric-type-high arg)) - (arg-hi-val (bound-value arg-hi))) + (arg-hi-val (type-bound-number arg-hi))) ;; Check that the ARG bounds are correctly canonicalized. (when (and arg-lo (floatp arg-lo-val) (zerop arg-lo-val) (consp arg-lo) (minusp (float-sign arg-lo-val))) (compiler-note "float zero bound ~S not correctly canonicalized?" arg-lo) - (setq arg-lo '(0l0) arg-lo-val 0l0)) + (setq arg-lo '(0e0) arg-lo-val 0e0)) (when (and arg-hi (zerop arg-hi-val) (floatp arg-hi-val) (consp arg-hi) (plusp (float-sign arg-hi-val))) (compiler-note "float zero bound ~S not correctly canonicalized?" arg-hi) - (setq arg-hi '(-0l0) arg-hi-val -0l0)) + (setq arg-hi `(,(ecase *read-default-float-format* + (double-float (load-time-value (make-unportable-float :double-float-negative-zero))) + #!+long-float + (long-float (load-time-value (make-unportable-float :long-float-negative-zero))))) + arg-hi-val (ecase *read-default-float-format* + (double-float (load-time-value (make-unportable-float :double-float-negative-zero))) + #!+long-float + (long-float (load-time-value (make-unportable-float :long-float-negative-zero)))))) (and (or (null domain-low) (and arg-lo (>= arg-lo-val domain-low) (not (and (zerop domain-low) (floatp domain-low) @@ -558,6 +589,11 @@ (if (consp arg-hi) (minusp (float-sign arg-hi-val)) (plusp (float-sign arg-hi-val)))))))))) +(eval-when (:compile-toplevel :execute) + (setf *read-default-float-format* 'single-float)) + +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) +(progn ;;; Handle monotonic functions of a single variable whose domain is ;;; possibly part of the real line. ARG is the variable, FCN is the @@ -568,8 +604,7 @@ ;;; result, which occurs for the parts of ARG not in the DOMAIN. ;;; ;;; Negative and positive zero are considered distinct within -;;; DOMAIN-LOW and DOMAIN-HIGH, as for the :negative-zero-is-not-zero -;;; feature. +;;; DOMAIN-LOW and DOMAIN-HIGH. ;;; ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we ;;; can't compute the bounds using FCN. @@ -603,7 +638,6 @@ default-low)) (res-hi (or (bound-func fcn (if increasingp high low)) default-high)) - ;; Result specifier type. (format (case (numeric-type-class arg) ((integer rational) 'single-float) (t (numeric-type-format arg)))) @@ -636,11 +670,11 @@ `(defoptimizer (,name derive-type) ((,num)) (one-arg-derive-type ,num - #'(lambda (arg) - (elfun-derive-type-simple arg #',name - ,domain-low ,domain-high - ,def-low-bnd ,def-high-bnd - ,increasingp)) + (lambda (arg) + (elfun-derive-type-simple arg #',name + ,domain-low ,domain-high + ,def-low-bnd ,def-high-bnd + ,increasingp)) #',name))))) ;; These functions are easy because they are defined for the whole ;; real line. @@ -659,7 +693,7 @@ (frob atanh -1d0 1d0 -1 1) ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that ;; includes -0.0. - (frob sqrt -0d0 nil 0 nil)) + (frob sqrt (load-time-value (make-unportable-float :double-float-negative-zero)) nil 0 nil)) ;;; Compute bounds for (expt x y). This should be easy since (expt x ;;; y) = (exp (* y (log x))). However, computations done this way @@ -677,19 +711,19 @@ ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is ;; obviously non-negative. We just have to be careful for ;; infinite bounds (given by nil). - (let ((lo (safe-expt (sb!c::bound-value (sb!c::interval-low x)) - (sb!c::bound-value (sb!c::interval-low y)))) - (hi (safe-expt (sb!c::bound-value (sb!c::interval-high x)) - (sb!c::bound-value (sb!c::interval-high y))))) + (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x)) + (type-bound-number (sb!c::interval-low y)))) + (hi (safe-expt (type-bound-number (sb!c::interval-high x)) + (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 1) :high hi)))) ('- ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is ;; obviously [0, 1]. However, underflow (nil) means 0 is the ;; result. - (let ((lo (safe-expt (sb!c::bound-value (sb!c::interval-high x)) - (sb!c::bound-value (sb!c::interval-low y)))) - (hi (safe-expt (sb!c::bound-value (sb!c::interval-low x)) - (sb!c::bound-value (sb!c::interval-high y))))) + (let ((lo (safe-expt (type-bound-number (sb!c::interval-high x)) + (type-bound-number (sb!c::interval-low y)))) + (hi (safe-expt (type-bound-number (sb!c::interval-low x)) + (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) (t ;; Split the interval in half. @@ -708,18 +742,18 @@ ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is ;; obviously [0, 1]. We just have to be careful for infinite bounds ;; (given by nil). - (let ((lo (safe-expt (sb!c::bound-value (sb!c::interval-low x)) - (sb!c::bound-value (sb!c::interval-high y)))) - (hi (safe-expt (sb!c::bound-value (sb!c::interval-high x)) - (sb!c::bound-value (sb!c::interval-low y))))) + (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x)) + (type-bound-number (sb!c::interval-high y)))) + (hi (safe-expt (type-bound-number (sb!c::interval-high x)) + (type-bound-number (sb!c::interval-low y))))) (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) ('- ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is ;; obviously [1, inf]. - (let ((hi (safe-expt (sb!c::bound-value (sb!c::interval-low x)) - (sb!c::bound-value (sb!c::interval-low y)))) - (lo (safe-expt (sb!c::bound-value (sb!c::interval-high x)) - (sb!c::bound-value (sb!c::interval-high y))))) + (let ((hi (safe-expt (type-bound-number (sb!c::interval-low x)) + (type-bound-number (sb!c::interval-low y)))) + (lo (safe-expt (type-bound-number (sb!c::interval-high x)) + (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 1) :high hi)))) (t ;; Split the interval in half @@ -758,7 +792,7 @@ ;; Figure out what the return type should be, given the argument ;; types and bounds and the result type and bounds. (cond ((csubtypep x-type (specifier-type 'integer)) - ;; An integer to some power. Cases to consider: + ;; an integer to some power (case (numeric-type-class y-type) (integer ;; Positive integer to an integer power is either an @@ -766,7 +800,7 @@ (let ((lo (or (interval-low bnd) '*)) (hi (or (interval-high bnd) '*))) (if (and (interval-low y-int) - (>= (bound-value (interval-low y-int)) 0)) + (>= (type-bound-number (interval-low y-int)) 0)) (specifier-type `(integer ,lo ,hi)) (specifier-type `(rational ,lo ,hi))))) (rational @@ -775,10 +809,10 @@ (let* ((lo (interval-low bnd)) (hi (interval-high bnd)) (int-lo (if lo - (floor (bound-value lo)) + (floor (type-bound-number lo)) '*)) (int-hi (if hi - (ceiling (bound-value hi)) + (ceiling (type-bound-number hi)) '*)) (f-lo (if lo (bound-func #'float lo) @@ -789,32 +823,30 @@ (specifier-type `(or (rational ,int-lo ,int-hi) (single-float ,f-lo, f-hi))))) (float - ;; Positive integer to a float power is a float. - (let ((res (copy-numeric-type y-type))) - (setf (numeric-type-low res) (interval-low bnd)) - (setf (numeric-type-high res) (interval-high bnd)) - res)) + ;; A positive integer to a float power is a float. + (modified-numeric-type y-type + :low (interval-low bnd) + :high (interval-high bnd))) (t - ;; Positive integer to a number is a number (for now). - (specifier-type 'number))) - ) + ;; A positive integer to a number is a number (for now). + (specifier-type 'number)))) ((csubtypep x-type (specifier-type 'rational)) ;; a rational to some power (case (numeric-type-class y-type) (integer - ;; Positive rational to an integer power is always a rational. + ;; A positive rational to an integer power is always a rational. (specifier-type `(rational ,(or (interval-low bnd) '*) ,(or (interval-high bnd) '*)))) (rational - ;; Positive rational to rational power is either a rational + ;; A positive rational to rational power is either a rational ;; or a single-float. (let* ((lo (interval-low bnd)) (hi (interval-high bnd)) (int-lo (if lo - (floor (bound-value lo)) + (floor (type-bound-number lo)) '*)) (int-hi (if hi - (ceiling (bound-value hi)) + (ceiling (type-bound-number hi)) '*)) (f-lo (if lo (bound-func #'float lo) @@ -825,20 +857,18 @@ (specifier-type `(or (rational ,int-lo ,int-hi) (single-float ,f-lo, f-hi))))) (float - ;; Positive rational to a float power is a float. - (let ((res (copy-numeric-type y-type))) - (setf (numeric-type-low res) (interval-low bnd)) - (setf (numeric-type-high res) (interval-high bnd)) - res)) + ;; A positive rational to a float power is a float. + (modified-numeric-type y-type + :low (interval-low bnd) + :high (interval-high bnd))) (t - ;; Positive rational to a number is a number (for now). - (specifier-type 'number))) - ) + ;; A positive rational to a number is a number (for now). + (specifier-type 'number)))) ((csubtypep x-type (specifier-type 'float)) ;; a float to some power (case (numeric-type-class y-type) ((or integer rational) - ;; Positive float to an integer or rational power is + ;; A positive float to an integer or rational power is ;; always a float. (make-numeric-type :class 'float @@ -846,7 +876,8 @@ :low (interval-low bnd) :high (interval-high bnd))) (float - ;; Positive float to a float power is a float of the higher type. + ;; A positive float to a float power is a float of the + ;; higher type. (make-numeric-type :class 'float :format (float-format-max (numeric-type-format x-type) @@ -854,7 +885,7 @@ :low (interval-low bnd) :high (interval-high bnd))) (t - ;; Positive float to a number is a number (for now) + ;; A positive float to a number is a number (for now) (specifier-type 'number)))) (t ;; A number to some power is a number. @@ -921,7 +952,9 @@ (let ((result-type (numeric-contagion y x))) (cond ((and (numeric-type-real-p x) (numeric-type-real-p y)) - (let* ((format (case (numeric-type-class result-type) + (let* (;; FIXME: This expression for FORMAT seems to + ;; appear multiple times, and should be factored out. + (format (case (numeric-type-class result-type) ((integer rational) 'single-float) (t (numeric-type-format result-type)))) (bound-format (or format 'float))) @@ -1026,7 +1059,7 @@ :complexp :real :low (numeric-type-low type) :high (numeric-type-high type)))))) -#!+(or propagate-fun-type propagate-float-type) +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (realpart derive-type) ((num)) (one-arg-derive-type num #'realpart-derive-type-aux #'realpart)) (defun imagpart-derive-type-aux (type) @@ -1050,7 +1083,7 @@ :complexp :real :low (numeric-type-low type) :high (numeric-type-high type)))))) -#!+(or propagate-fun-type propagate-float-type) +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (imagpart derive-type) ((num)) (one-arg-derive-type num #'imagpart-derive-type-aux #'imagpart)) @@ -1092,7 +1125,7 @@ :complex)))) (specifier-type 'complex))) -#!+(or propagate-fun-type propagate-float-type) +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (complex derive-type) ((re &optional im)) (if im (two-arg-derive-type re im #'complex-derive-type-aux-2 #'complex) @@ -1175,7 +1208,7 @@ ;;; possible answer. This gets around the problem of doing range ;;; reduction correctly but still provides useful results when the ;;; inputs are union types. -#!+propagate-fun-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn (defun trig-derive-type-aux (arg domain fcn &optional def-lo def-hi (increasingp t)) @@ -1259,9 +1292,54 @@ (defoptimizer (cis derive-type) ((num)) (one-arg-derive-type num - #'(lambda (arg) - (sb!c::specifier-type - `(complex ,(or (numeric-type-format arg) 'float)))) + (lambda (arg) + (sb!c::specifier-type + `(complex ,(or (numeric-type-format arg) 'float)))) #'cis)) ) ; PROGN + +;;;; TRUNCATE, FLOOR, CEILING, and ROUND + +(macrolet ((define-frobs (fun ufun) + `(progn + (defknown ,ufun (real) integer (movable foldable flushable)) + (deftransform ,fun ((x &optional by) + (* &optional + (constant-arg (member 1)))) + '(let ((res (,ufun x))) + (values res (- x res))))))) + (define-frobs truncate %unary-truncate) + (define-frobs round %unary-round)) + +;;; Convert (TRUNCATE x y) to the obvious implementation. We only want +;;; this when under certain conditions and let the generic TRUNCATE +;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y +;;; should be removed by other DEFTRANSFORMs.) +(deftransform truncate ((x &optional y) + (float &optional (or float integer))) + (let ((defaulted-y (if y 'y 1))) + `(let ((res (%unary-truncate (/ x ,defaulted-y)))) + (values res (- x (* ,defaulted-y res)))))) + +(deftransform floor ((number &optional divisor) + (float &optional (or integer float))) + (let ((defaulted-divisor (if divisor 'divisor 1))) + `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor) + (if (and (not (zerop rem)) + (if (minusp ,defaulted-divisor) + (plusp number) + (minusp number))) + (values (1- tru) (+ rem ,defaulted-divisor)) + (values tru rem))))) + +(deftransform ceiling ((number &optional divisor) + (float &optional (or integer float))) + (let ((defaulted-divisor (if divisor 'divisor 1))) + `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor) + (if (and (not (zerop rem)) + (if (minusp ,defaulted-divisor) + (minusp number) + (plusp number))) + (values (1+ tru) (- rem ,defaulted-divisor)) + (values tru rem)))))