X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcode%2Ffloat.lisp;h=29cefa36f85c41c84c46cb8048723e8b1b296c17;hb=af141fe8d840aeb9011e3c6d2d6492216a12304c;hp=cc2b750968db13dd0c7d6612f5cc06c499c0a92a;hpb=8286d1fc02d1e769a766fbf1670bca474237161f;p=sbcl.git diff --git a/src/code/float.lisp b/src/code/float.lisp index cc2b750..29cefa3 100644 --- a/src/code/float.lisp +++ b/src/code/float.lisp @@ -15,165 +15,6 @@ (in-package "SB!KERNEL") -;;;; utilities - -(eval-when (:compile-toplevel :load-toplevel :execute) - -;;; These functions let us create floats from bits with the -;;; significand uniformly represented as an integer. This is less -;;; efficient for double floats, but is more convenient when making -;;; special values, etc. -(defun single-from-bits (sign exp sig) - (declare (type bit sign) (type (unsigned-byte 24) sig) - (type (unsigned-byte 8) exp)) - (make-single-float - (dpb exp sb!vm:single-float-exponent-byte - (dpb sig sb!vm:single-float-significand-byte - (if (zerop sign) 0 -1))))) -(defun double-from-bits (sign exp sig) - (declare (type bit sign) (type (unsigned-byte 53) sig) - (type (unsigned-byte 11) exp)) - (make-double-float (dpb exp sb!vm:double-float-exponent-byte - (dpb (ash sig -32) - sb!vm:double-float-significand-byte - (if (zerop sign) 0 -1))) - (ldb (byte 32 0) sig))) -#!+(and long-float x86) -(defun long-from-bits (sign exp sig) - (declare (type bit sign) (type (unsigned-byte 64) sig) - (type (unsigned-byte 15) exp)) - (make-long-float (logior (ash sign 15) exp) - (ldb (byte 32 32) sig) - (ldb (byte 32 0) sig))) - -) ; EVAL-WHEN - -;;;; float parameters - -(defconstant least-positive-single-float (single-from-bits 0 0 1)) -(defconstant least-positive-short-float least-positive-single-float) -(defconstant least-negative-single-float (single-from-bits 1 0 1)) -(defconstant least-negative-short-float least-negative-single-float) -(defconstant least-positive-double-float (double-from-bits 0 0 1)) -#!-long-float -(defconstant least-positive-long-float least-positive-double-float) -#!+(and long-float x86) -(defconstant least-positive-long-float (long-from-bits 0 0 1)) -(defconstant least-negative-double-float (double-from-bits 1 0 1)) -#!-long-float -(defconstant least-negative-long-float least-negative-double-float) -#!+(and long-float x86) -(defconstant least-negative-long-float (long-from-bits 1 0 1)) - -(defconstant least-positive-normalized-single-float - (single-from-bits 0 sb!vm:single-float-normal-exponent-min 0)) -(defconstant least-positive-normalized-short-float - least-positive-normalized-single-float) -(defconstant least-negative-normalized-single-float - (single-from-bits 1 sb!vm:single-float-normal-exponent-min 0)) -(defconstant least-negative-normalized-short-float - least-negative-normalized-single-float) -(defconstant least-positive-normalized-double-float - (double-from-bits 0 sb!vm:double-float-normal-exponent-min 0)) -#!-long-float -(defconstant least-positive-normalized-long-float - least-positive-normalized-double-float) -#!+(and long-float x86) -(defconstant least-positive-normalized-long-float - (long-from-bits 0 sb!vm:long-float-normal-exponent-min - (ash sb!vm:long-float-hidden-bit 32))) -(defconstant least-negative-normalized-double-float - (double-from-bits 1 sb!vm:double-float-normal-exponent-min 0)) -#!-long-float -(defconstant least-negative-normalized-long-float - least-negative-normalized-double-float) -#!+(and long-float x86) -(defconstant least-negative-normalized-long-float - (long-from-bits 1 sb!vm:long-float-normal-exponent-min - (ash sb!vm:long-float-hidden-bit 32))) - -(defconstant most-positive-single-float - (single-from-bits 0 sb!vm:single-float-normal-exponent-max - (ldb sb!vm:single-float-significand-byte -1))) -(defconstant most-positive-short-float most-positive-single-float) -(defconstant most-negative-single-float - (single-from-bits 1 sb!vm:single-float-normal-exponent-max - (ldb sb!vm:single-float-significand-byte -1))) -(defconstant most-negative-short-float most-negative-single-float) -(defconstant most-positive-double-float - (double-from-bits 0 sb!vm:double-float-normal-exponent-max - (ldb (byte sb!vm:double-float-digits 0) -1))) -#!-long-float -(defconstant most-positive-long-float most-positive-double-float) -#!+(and long-float x86) -(defconstant most-positive-long-float - (long-from-bits 0 sb!vm:long-float-normal-exponent-max - (ldb (byte sb!vm:long-float-digits 0) -1))) -(defconstant most-negative-double-float - (double-from-bits 1 sb!vm:double-float-normal-exponent-max - (ldb (byte sb!vm:double-float-digits 0) -1))) -#!-long-float -(defconstant most-negative-long-float most-negative-double-float) -#!+(and long-float x86) -(defconstant most-negative-long-float - (long-from-bits 1 sb!vm:long-float-normal-exponent-max - (ldb (byte sb!vm:long-float-digits 0) -1))) - -;;; We don't want to do these DEFCONSTANTs at cross-compilation time, -;;; because the cross-compilation host might not support floating -;;; point infinities. Putting them inside a LET removes -;;; toplevel-formness, so that any EVAL-WHEN trickiness in the -;;; DEFCONSTANT forms is suppressed. -(let () -(defconstant single-float-positive-infinity - (single-from-bits 0 (1+ sb!vm:single-float-normal-exponent-max) 0)) -(defconstant short-float-positive-infinity single-float-positive-infinity) -(defconstant single-float-negative-infinity - (single-from-bits 1 (1+ sb!vm:single-float-normal-exponent-max) 0)) -(defconstant short-float-negative-infinity single-float-negative-infinity) -(defconstant double-float-positive-infinity - (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0)) -#!+(not long-float) -(defconstant long-float-positive-infinity double-float-positive-infinity) -#!+(and long-float x86) -(defconstant long-float-positive-infinity - (long-from-bits 0 (1+ sb!vm:long-float-normal-exponent-max) - (ash sb!vm:long-float-hidden-bit 32))) -(defconstant double-float-negative-infinity - (double-from-bits 1 (1+ sb!vm:double-float-normal-exponent-max) 0)) -#!+(not long-float) -(defconstant long-float-negative-infinity double-float-negative-infinity) -#!+(and long-float x86) -(defconstant long-float-negative-infinity - (long-from-bits 1 (1+ sb!vm:long-float-normal-exponent-max) - (ash sb!vm:long-float-hidden-bit 32))) -) ; LET-to-suppress-possible-EVAL-WHENs - -(defconstant single-float-epsilon - (single-from-bits 0 (- sb!vm:single-float-bias - (1- sb!vm:single-float-digits)) 1)) -(defconstant short-float-epsilon single-float-epsilon) -(defconstant single-float-negative-epsilon - (single-from-bits 0 (- sb!vm:single-float-bias sb!vm:single-float-digits) 1)) -(defconstant short-float-negative-epsilon single-float-negative-epsilon) -(defconstant double-float-epsilon - (double-from-bits 0 (- sb!vm:double-float-bias - (1- sb!vm:double-float-digits)) 1)) -#!-long-float -(defconstant long-float-epsilon double-float-epsilon) -#!+(and long-float x86) -(defconstant long-float-epsilon - (long-from-bits 0 (- sb!vm:long-float-bias (1- sb!vm:long-float-digits)) - (+ 1 (ash sb!vm:long-float-hidden-bit 32)))) -(defconstant double-float-negative-epsilon - (double-from-bits 0 (- sb!vm:double-float-bias sb!vm:double-float-digits) 1)) -#!-long-float -(defconstant long-float-negative-epsilon double-float-negative-epsilon) -#!+(and long-float x86) -(defconstant long-float-negative-epsilon - (long-from-bits 0 (- sb!vm:long-float-bias sb!vm:long-float-digits) - (+ 1 (ash sb!vm:long-float-hidden-bit 32)))) - ;;;; float predicates and environment query #!-sb-fluid @@ -196,59 +37,60 @@ (and (zerop (ldb sb!vm:long-float-exponent-byte (long-float-exp-bits x))) (not (zerop x)))))) -(macrolet ((def (name doc single double #!+(and long-float x86) long) - `(defun ,name (x) - ,doc - (number-dispatch ((x float)) - ((single-float) - (let ((bits (single-float-bits x))) - (and (> (ldb sb!vm:single-float-exponent-byte bits) - sb!vm:single-float-normal-exponent-max) - ,single))) - ((double-float) - (let ((hi (double-float-high-bits x)) - (lo (double-float-low-bits x))) - (declare (ignorable lo)) - (and (> (ldb sb!vm:double-float-exponent-byte hi) - sb!vm:double-float-normal-exponent-max) - ,double))) - #!+(and long-float x86) - ((long-float) - (let ((exp (long-float-exp-bits x)) - (hi (long-float-high-bits x)) - (lo (long-float-low-bits x))) - (declare (ignorable lo)) - (and (> (ldb sb!vm:long-float-exponent-byte exp) - sb!vm:long-float-normal-exponent-max) - ,long))))))) - - (def float-infinity-p - "Return true if the float X is an infinity (+ or -)." - (zerop (ldb sb!vm:single-float-significand-byte bits)) - (and (zerop (ldb sb!vm:double-float-significand-byte hi)) - (zerop lo)) - #!+(and long-float x86) - (and (zerop (ldb sb!vm:long-float-significand-byte hi)) - (zerop lo))) - - (def float-nan-p - "Return true if the float X is a NaN (Not a Number)." - (not (zerop (ldb sb!vm:single-float-significand-byte bits))) - (or (not (zerop (ldb sb!vm:double-float-significand-byte hi))) - (not (zerop lo))) - #!+(and long-float x86) - (or (not (zerop (ldb sb!vm:long-float-significand-byte hi))) - (not (zerop lo)))) - - (def float-trapping-nan-p - "Return true if the float X is a trapping NaN (Not a Number)." - (zerop (logand (ldb sb!vm:single-float-significand-byte bits) - sb!vm:single-float-trapping-nan-bit)) - (zerop (logand (ldb sb!vm:double-float-significand-byte hi) - sb!vm:double-float-trapping-nan-bit)) - #!+(and long-float x86) - (zerop (logand (ldb sb!vm:long-float-significand-byte hi) - sb!vm:long-float-trapping-nan-bit)))) +(defmacro !define-float-dispatching-function + (name doc single double #!+(and long-float x86) long) + `(defun ,name (x) + ,doc + (number-dispatch ((x float)) + ((single-float) + (let ((bits (single-float-bits x))) + (and (> (ldb sb!vm:single-float-exponent-byte bits) + sb!vm:single-float-normal-exponent-max) + ,single))) + ((double-float) + (let ((hi (double-float-high-bits x)) + (lo (double-float-low-bits x))) + (declare (ignorable lo)) + (and (> (ldb sb!vm:double-float-exponent-byte hi) + sb!vm:double-float-normal-exponent-max) + ,double))) + #!+(and long-float x86) + ((long-float) + (let ((exp (long-float-exp-bits x)) + (hi (long-float-high-bits x)) + (lo (long-float-low-bits x))) + (declare (ignorable lo)) + (and (> (ldb sb!vm:long-float-exponent-byte exp) + sb!vm:long-float-normal-exponent-max) + ,long)))))) + +(!define-float-dispatching-function float-infinity-p + "Return true if the float X is an infinity (+ or -)." + (zerop (ldb sb!vm:single-float-significand-byte bits)) + (and (zerop (ldb sb!vm:double-float-significand-byte hi)) + (zerop lo)) + #!+(and long-float x86) + (and (zerop (ldb sb!vm:long-float-significand-byte hi)) + (zerop lo))) + +(!define-float-dispatching-function float-nan-p + "Return true if the float X is a NaN (Not a Number)." + (not (zerop (ldb sb!vm:single-float-significand-byte bits))) + (or (not (zerop (ldb sb!vm:double-float-significand-byte hi))) + (not (zerop lo))) + #!+(and long-float x86) + (or (not (zerop (ldb sb!vm:long-float-significand-byte hi))) + (not (zerop lo)))) + +(!define-float-dispatching-function float-trapping-nan-p + "Return true if the float X is a trapping NaN (Not a Number)." + (zerop (logand (ldb sb!vm:single-float-significand-byte bits) + sb!vm:single-float-trapping-nan-bit)) + (zerop (logand (ldb sb!vm:double-float-significand-byte hi) + sb!vm:double-float-trapping-nan-bit)) + #!+(and long-float x86) + (zerop (logand (ldb sb!vm:long-float-significand-byte hi) + sb!vm:long-float-trapping-nan-bit))) ;;; If denormalized, use a subfunction from INTEGER-DECODE-FLOAT to find the ;;; actual exponent (and hence how denormalized it is), otherwise we just @@ -282,8 +124,8 @@ (defun float-sign (float1 &optional (float2 (float 1 float1))) #!+sb-doc "Return a floating-point number that has the same sign as - float1 and, if float2 is given, has the same absolute value - as float2." + FLOAT1 and, if FLOAT2 is given, has the same absolute value + as FLOAT2." (declare (float float1 float2)) (* (if (etypecase float1 (single-float (minusp (single-float-bits float1))) @@ -313,11 +155,7 @@ (defun float-radix (x) #!+sb-doc "Return (as an integer) the radix b of its floating-point argument." - ;; ANSI says this function "should signal an error if [..] argument - ;; is not a float". Since X is otherwise ignored, Python doesn't - ;; check the type by default, so we have to do it ourself: - (unless (floatp x) - (error 'type-error :datum x :expected-type 'float)) + (declare (ignore x)) 2) ;;;; INTEGER-DECODE-FLOAT and DECODE-FLOAT @@ -674,49 +512,61 @@ :operands (list x exp))) (* (float-sign x) (etypecase x - (single-float single-float-positive-infinity) - (double-float double-float-positive-infinity)))))) + (single-float + ;; SINGLE-FLOAT-POSITIVE-INFINITY + (single-from-bits 0 (1+ sb!vm:single-float-normal-exponent-max) 0)) + (double-float + ;; DOUBLE-FLOAT-POSITIVE-INFINITY + (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0))))))) ;;; Scale a single or double float, calling the correct over/underflow ;;; functions. (defun scale-single-float (x exp) - (declare (single-float x) (fixnum exp)) - (let* ((bits (single-float-bits x)) - (old-exp (ldb sb!vm:single-float-exponent-byte bits)) - (new-exp (+ old-exp exp))) - (cond - ((zerop x) x) - ((or (< old-exp sb!vm:single-float-normal-exponent-min) - (< new-exp sb!vm:single-float-normal-exponent-min)) - (scale-float-maybe-underflow x exp)) - ((or (> old-exp sb!vm:single-float-normal-exponent-max) - (> new-exp sb!vm:single-float-normal-exponent-max)) - (scale-float-maybe-overflow x exp)) - (t - (make-single-float (dpb new-exp - sb!vm:single-float-exponent-byte - bits)))))) + (declare (single-float x) (integer exp)) + (etypecase exp + (fixnum + (let* ((bits (single-float-bits x)) + (old-exp (ldb sb!vm:single-float-exponent-byte bits)) + (new-exp (+ old-exp exp))) + (cond + ((zerop x) x) + ((or (< old-exp sb!vm:single-float-normal-exponent-min) + (< new-exp sb!vm:single-float-normal-exponent-min)) + (scale-float-maybe-underflow x exp)) + ((or (> old-exp sb!vm:single-float-normal-exponent-max) + (> new-exp sb!vm:single-float-normal-exponent-max)) + (scale-float-maybe-overflow x exp)) + (t + (make-single-float (dpb new-exp + sb!vm:single-float-exponent-byte + bits)))))) + (unsigned-byte (scale-float-maybe-overflow x exp)) + ((integer * 0) (scale-float-maybe-underflow x exp)))) (defun scale-double-float (x exp) - (declare (double-float x) (fixnum exp)) - (let* ((hi (double-float-high-bits x)) - (lo (double-float-low-bits x)) - (old-exp (ldb sb!vm:double-float-exponent-byte hi)) - (new-exp (+ old-exp exp))) - (cond - ((zerop x) x) - ((or (< old-exp sb!vm:double-float-normal-exponent-min) - (< new-exp sb!vm:double-float-normal-exponent-min)) - (scale-float-maybe-underflow x exp)) - ((or (> old-exp sb!vm:double-float-normal-exponent-max) - (> new-exp sb!vm:double-float-normal-exponent-max)) - (scale-float-maybe-overflow x exp)) - (t - (make-double-float (dpb new-exp sb!vm:double-float-exponent-byte hi) - lo))))) + (declare (double-float x) (integer exp)) + (etypecase exp + (fixnum + (let* ((hi (double-float-high-bits x)) + (lo (double-float-low-bits x)) + (old-exp (ldb sb!vm:double-float-exponent-byte hi)) + (new-exp (+ old-exp exp))) + (cond + ((zerop x) x) + ((or (< old-exp sb!vm:double-float-normal-exponent-min) + (< new-exp sb!vm:double-float-normal-exponent-min)) + (scale-float-maybe-underflow x exp)) + ((or (> old-exp sb!vm:double-float-normal-exponent-max) + (> new-exp sb!vm:double-float-normal-exponent-max)) + (scale-float-maybe-overflow x exp)) + (t + (make-double-float (dpb new-exp sb!vm:double-float-exponent-byte hi) + lo))))) + (unsigned-byte (scale-float-maybe-overflow x exp)) + ((integer * 0) (scale-float-maybe-underflow x exp)))) #!+(and x86 long-float) (defun scale-long-float (x exp) - (declare (long-float x) (fixnum exp)) + (declare (long-float x) (integer exp)) (scale-float x exp)) ;;; Dispatch to the correct type-specific scale-float function. @@ -937,6 +787,13 @@ uninterruptibly frob the rounding modes & do ieee round-to-integer. (- rounded) rounded))))))) +(defun %unary-ftruncate (number) + (number-dispatch ((number real)) + ((integer) (float number)) + ((ratio) (float (truncate (numerator number) (denominator number)))) + (((foreach single-float double-float #!+long-float long-float)) + (%unary-ftruncate number)))) + (defun rational (x) #!+sb-doc "RATIONAL produces a rational number for any real numeric argument. This is @@ -955,41 +812,108 @@ uninterruptibly frob the rounding modes & do ieee round-to-integer. (integer-/-integer (ash int ex) (ash 1 digits))))))) ((rational) x))) +;;; This algorithm for RATIONALIZE, due to Bruno Haible, is included +;;; with permission. +;;; +;;; Algorithm (recursively presented): +;;; If x is a rational number, return x. +;;; If x = 0.0, return 0. +;;; If x < 0.0, return (- (rationalize (- x))). +;;; If x > 0.0: +;;; Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, +;;; exponent, sign). +;;; If m = 0 or e >= 0: return x = m*2^e. +;;; Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e +;;; with smallest possible numerator and denominator. +;;; Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. +;;; But in this case the result will be x itself anyway, regardless of +;;; the choice of a. Therefore we can simply ignore this case. +;;; Note 2: At first, we need to consider the closed interval [a,b]. +;;; but since a and b have the denominator 2^(|e|+1) whereas x itself +;;; has a denominator <= 2^|e|, we can restrict the seach to the open +;;; interval (a,b). +;;; So, for given a and b (0 < a < b) we are searching a rational number +;;; y with a <= y <= b. +;;; Recursive algorithm fraction_between(a,b): +;;; c := (ceiling a) +;;; if c < b +;;; then return c ; because a <= c < b, c integer +;;; else +;;; ; a is not integer (otherwise we would have had c = a < b) +;;; k := c-1 ; k = floor(a), k < a < b <= k+1 +;;; return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) +;;; ; note 1 <= 1/(b-k) < 1/(a-k) +;;; +;;; You can see that we are actually computing a continued fraction expansion. +;;; +;;; Algorithm (iterative): +;;; If x is rational, return x. +;;; Call (integer-decode-float x). It returns a m,e,s (mantissa, +;;; exponent, sign). +;;; If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) +;;; Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) +;;; (positive and already in lowest terms because the denominator is a +;;; power of two and the numerator is odd). +;;; Start a continued fraction expansion +;;; p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. +;;; Loop +;;; c := (ceiling a) +;;; if c >= b +;;; then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), +;;; goto Loop +;;; finally partial_quotient(c). +;;; Here partial_quotient(c) denotes the iteration +;;; i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. +;;; At the end, return s * (p[i]/q[i]). +;;; This rational number is already in lowest terms because +;;; p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. +;;; +;;; See also +;;; Hardy, Wright: An introduction to number theory +;;; and/or +;;; +;;; + (defun rationalize (x) - #!+sb-doc - "Converts any REAL to a RATIONAL. Floats are converted to a simple rational + "Converts any REAL to a RATIONAL. Floats are converted to a simple rational representation exploiting the assumption that floats are only accurate to - their precision. RATIONALIZE (and also RATIONAL) preserve the invariant: + their precision. RATIONALIZE (and also RATIONAL) preserve the invariant: (= x (float (rationalize x) x))" (number-dispatch ((x real)) (((foreach single-float double-float #!+long-float long-float)) - ;; Thanks to Kim Fateman, who stole this function rationalize-float from - ;; macsyma's rational. Macsyma'a rationalize was written by the legendary - ;; Gosper (rwg). Guy Steele said about Gosper, "He has been called the - ;; only living 17th century mathematician and is also the best pdp-10 - ;; hacker I know." So, if you can understand or debug this code you win - ;; big. - (cond ((minusp x) (- (rationalize (- x)))) - ((zerop x) 0) - (t - (let ((eps (etypecase x - (single-float single-float-epsilon) - (double-float double-float-epsilon) - #!+long-float - (long-float long-float-epsilon))) - (y ()) - (a ())) - (do ((xx x (setq y (/ (float 1.0 x) (- xx (float a x))))) - (num (setq a (truncate x)) - (+ (* (setq a (truncate y)) num) onum)) - (den 1 (+ (* a den) oden)) - (onum 1 num) - (oden 0 den)) - ((and (not (zerop den)) - (not (> (abs (/ (- x (/ (float num x) - (float den x))) - x)) - eps))) - (integer-/-integer num den)) - (declare ((dispatch-type x) xx))))))) + ;; This is a fairly straigtforward implementation of the + ;; iterative algorithm above. + (multiple-value-bind (frac expo sign) + (integer-decode-float x) + (cond ((or (zerop frac) (>= expo 0)) + (if (minusp sign) + (- (ash frac expo)) + (ash frac expo))) + (t + ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e), + ;; so build the fraction up immediately, without having to do + ;; a gcd. + (let ((a (build-ratio (- (* 2 frac) 1) (ash 1 (- 1 expo)))) + (b (build-ratio (+ (* 2 frac) 1) (ash 1 (- 1 expo)))) + (p0 0) + (q0 1) + (p1 1) + (q1 0)) + (do ((c (ceiling a) (ceiling a))) + ((< c b) + (let ((top (+ (* c p1) p0)) + (bot (+ (* c q1) q0))) + (build-ratio (if (minusp sign) + (- top) + top) + bot))) + (let* ((k (- c 1)) + (p2 (+ (* k p1) p0)) + (q2 (+ (* k q1) q0))) + (psetf a (/ (- b k)) + b (/ (- a k))) + (setf p0 p1 + q0 q1 + p1 p2 + q1 q2)))))))) ((rational) x)))