X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcode%2Flate-type.lisp;h=5950822c575461a6cbe2bba7648520fc02b01eac;hb=bed279acc9bd04eb1bbf56acb0dcaa3b1acf04f0;hp=9bdafbbc0ccb973038c81fb18d96490ed9c3d2b3;hpb=5470bfd1ed062203f4ab009f6ec19e81f8f32066;p=sbcl.git diff --git a/src/code/late-type.lisp b/src/code/late-type.lisp index 9bdafbb..5950822 100644 --- a/src/code/late-type.lisp +++ b/src/code/late-type.lisp @@ -31,9 +31,9 @@ ;;; ;;; RATIO and BIGNUM are not recognized as numeric types. -;;; FIXME: It seems to me that this should be set to NIL by default, -;;; and perhaps not even optionally set to T. -(defvar *use-implementation-types* t +;;; FIXME: This really should go away. Alas, it doesn't seem to be so +;;; simple to make it go away.. (See bug 123 in BUGS file.) +(defvar *use-implementation-types* t ; actually initialized in cold init #!+sb-doc "*USE-IMPLEMENTATION-TYPES* is a semi-public flag which determines how restrictive we are in determining type membership. If two types are the @@ -41,7 +41,6 @@ this switch is on. When it is off, we try to be as restrictive as the language allows, allowing us to detect more errors. Currently, this only affects array types.") - (!cold-init-forms (setq *use-implementation-types* t)) ;;; These functions are used as method for types which need a complex @@ -132,10 +131,10 @@ ;;; the description of a &KEY argument (defstruct (key-info #-sb-xc-host (:pure t) (:copier nil)) - ;; the key (not necessarily a keyword in ANSI) - (name (required-argument) :type symbol) + ;; the key (not necessarily a keyword in ANSI Common Lisp) + (name (missing-arg) :type symbol) ;; the type of the argument value - (type (required-argument) :type ctype)) + (type (missing-arg) :type ctype)) (!define-type-method (values :simple-subtypep :complex-subtypep-arg1) (type1 type2) @@ -193,18 +192,18 @@ ;;; a flag that we can bind to cause complex function types to be ;;; unparsed as FUNCTION. This is useful when we want a type that we ;;; can pass to TYPEP. -(defvar *unparse-function-type-simplify*) -(!cold-init-forms (setq *unparse-function-type-simplify* nil)) +(defvar *unparse-fun-type-simplify*) +(!cold-init-forms (setq *unparse-fun-type-simplify* nil)) (!define-type-method (function :unparse) (type) - (if *unparse-function-type-simplify* + (if *unparse-fun-type-simplify* 'function (list 'function - (if (function-type-wild-args type) + (if (fun-type-wild-args type) '* (unparse-args-types type)) (type-specifier - (function-type-returns type))))) + (fun-type-returns type))))) ;;; Since all function types are equivalent to FUNCTION, they are all ;;; subtypes of each other. @@ -295,10 +294,9 @@ (result))) (!def-type-translator function (&optional (args '*) (result '*)) - (let ((res (make-function-type - :returns (values-specifier-type result)))) + (let ((res (make-fun-type :returns (values-specifier-type result)))) (if (eq args '*) - (setf (function-type-wild-args res) t) + (setf (fun-type-wild-args res) t) (parse-args-types args res)) res)) @@ -333,9 +331,9 @@ ;;; Return the minimum number of arguments that a function can be ;;; called with, and the maximum number or NIL. If not a function ;;; type, return NIL, NIL. -(defun function-type-nargs (type) +(defun fun-type-nargs (type) (declare (type ctype type)) - (if (function-type-p type) + (if (fun-type-p type) (let ((fixed (length (args-type-required type)))) (if (or (args-type-rest type) (args-type-keyp type) @@ -466,7 +464,7 @@ ;;; than the precise result. ;;; ;;; The return convention seems to be analogous to -;;; TYPES-INTERSECT. -- WHN 19990910. +;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910. (defun-cached (values-type-union :hash-function type-cache-hash :hash-bits 8 :default nil @@ -493,22 +491,19 @@ #'max (specifier-type 'null))))) -;;; This is like TYPES-INTERSECT, except that it sort of works on -;;; VALUES types. Note that due to the semantics of +;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of +;;; works on VALUES types. Note that due to the semantics of ;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when -;;; there isn't really any intersection (?). -;;; -;;; The return convention seems to be analogous to -;;; TYPES-INTERSECT. -- WHN 19990910. -(defun values-types-intersect (type1 type2) +;;; there isn't really any intersection. +(defun values-types-equal-or-intersect (type1 type2) (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*)) - (values 't t)) + (values t t)) ((or (values-type-p type1) (values-type-p type2)) (multiple-value-bind (res win) (values-type-intersection type1 type2) (values (not (eq res *empty-type*)) win))) (t - (types-intersect type1 type2)))) + (types-equal-or-intersect type1 type2)))) ;;; a SUBTYPEP-like operation that can be used on any types, including ;;; VALUES types @@ -522,7 +517,7 @@ (cond ((eq type2 *wild-type*) (values t t)) ((eq type1 *wild-type*) (values (eq type2 *universal-type*) t)) - ((not (values-types-intersect type1 type2)) + ((not (values-types-equal-or-intersect type1 type2)) (values nil t)) (t (if (or (values-type-p type1) (values-type-p type2)) @@ -679,7 +674,7 @@ (eql yx :no-type-method-found)) *empty-type*) (t - (assert (and (not xy) (not yx))) ; else handled above + (aver (and (not xy) (not yx))) ; else handled above nil)))))))) (defun-cached (type-intersection2 :hash-function type-cache-hash @@ -711,15 +706,15 @@ ((hairy-type-p type1) type2) (t type1))) -;;; The first value is true unless the types don't intersect. The -;;; second value is true if the first value is definitely correct. NIL -;;; is considered to intersect with any type. If T is a subtype of -;;; either type, then we also return T, T. This way we recognize -;;; that hairy types might intersect with T. +;;; a test useful for checking whether a derived type matches a +;;; declared type ;;; -;;; FIXME: It would be more accurate to call this TYPES-MIGHT-INTERSECT, -;;; and rename VALUES-TYPES-INTERSECT the same way. -(defun types-intersect (type1 type2) +;;; The first value is true unless the types don't intersect and +;;; aren't equal. The second value is true if the first value is +;;; definitely correct. NIL is considered to intersect with any type. +;;; If T is a subtype of either type, then we also return T, T. This +;;; way we recognize that hairy types might intersect with T. +(defun types-equal-or-intersect (type1 type2) (declare (type ctype type1 type2)) (if (or (eq type1 *empty-type*) (eq type2 *empty-type*)) (values t t) @@ -767,7 +762,7 @@ (declare (type function simplify2)) ;; Any input object satisfying %COMPOUND-TYPE-P should've been ;; broken into components before it reached us. - (assert (not (funcall %compound-type-p type))) + (aver (not (funcall %compound-type-p type))) (dotimes (i (length types) (vector-push-extend type types)) (let ((simplified2 (funcall simplify2 type (aref types i)))) (when simplified2 @@ -879,7 +874,7 @@ (defvar *wild-type*) (defvar *empty-type*) (defvar *universal-type*) - +(defvar *universal-fun-type*) (!cold-init-forms (macrolet ((frob (name var) `(progn @@ -894,36 +889,39 @@ ;; Ts and *UNIVERSAL-TYPE*s. (frob * *wild-type*) (frob nil *empty-type*) - (frob t *universal-type*))) + (frob t *universal-type*)) + (setf *universal-fun-type* + (make-fun-type :wild-args t + :returns *wild-type*))) (!define-type-method (named :simple-=) (type1 type2) ;; FIXME: BUG 85: This assertion failed when I added it in ;; sbcl-0.6.11.13. It probably shouldn't fail; but for now it's ;; just commented out. - ;;(assert (not (eq type1 *wild-type*))) ; * isn't really a type. + ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type. (values (eq type1 type2) t)) (!define-type-method (named :simple-subtypep) (type1 type2) - (assert (not (eq type1 *wild-type*))) ; * isn't really a type. + (aver (not (eq type1 *wild-type*))) ; * isn't really a type. (values (or (eq type1 *empty-type*) (eq type2 *wild-type*)) t)) (!define-type-method (named :complex-subtypep-arg1) (type1 type2) - (assert (not (eq type1 *wild-type*))) ; * isn't really a type. + (aver (not (eq type1 *wild-type*))) ; * isn't really a type. ;; FIXME: Why does this (old CMU CL) assertion hold? Perhaps 'cause ;; the HAIRY-TYPE COMPLEX-SUBTYPEP-ARG2 method takes precedence over ;; this COMPLEX-SUBTYPE-ARG1 method? (I miss CLOS..) - (assert (not (hairy-type-p type2))) + (aver (not (hairy-type-p type2))) ;; Besides the old CMU CL assertion above, we also need to avoid ;; compound types, else we could get into trouble with - ;; (SUBTYPEP 'T '(OR (SATISFIES FOO) (SATISFIES BAR))) + ;; (SUBTYPEP T '(OR (SATISFIES FOO) (SATISFIES BAR))) ;; or - ;; (SUBTYPEP 'T '(AND (SATISFIES FOO) (SATISFIES BAR))). - (assert (not (compound-type-p type2))) + ;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR))). + (aver (not (compound-type-p type2))) ;; Then, since TYPE2 is reasonably tractable, we're good to go. (values (eq type1 *empty-type*) t)) (!define-type-method (named :complex-subtypep-arg2) (type1 type2) - (assert (not (eq type2 *wild-type*))) ; * isn't really a type. + (aver (not (eq type2 *wild-type*))) ; * isn't really a type. (cond ((eq type2 *universal-type*) (values t t)) ((hairy-type-p type1) @@ -938,12 +936,12 @@ (!define-type-method (named :complex-intersection2) (type1 type2) ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13. ;; Perhaps when bug 85 is fixed it can be reenabled. - ;;(assert (not (eq type2 *wild-type*))) ; * isn't really a type. + ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type. (hierarchical-intersection2 type1 type2)) (!define-type-method (named :complex-union2) (type1 type2) ;; Perhaps when bug 85 is fixed this can be reenabled. - ;;(assert (not (eq type2 *wild-type*))) ; * isn't really a type. + ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type. (hierarchical-union2 type1 type2)) (!define-type-method (named :unparse) (x) @@ -1017,28 +1015,6 @@ ;;;; numeric types -#!+negative-zero-is-not-zero -(defun make-numeric-type (&key class format (complexp :real) low high - enumerable) - (flet ((canonicalise-low-bound (x) - ;; Canonicalise a low bound of (-0.0) to 0.0. - (if (and (consp x) (floatp (car x)) (zerop (car x)) - (minusp (float-sign (car x)))) - (float 0.0 (car x)) - x)) - (canonicalise-high-bound (x) - ;; Canonicalise a high bound of (+0.0) to -0.0. - (if (and (consp x) (floatp (car x)) (zerop (car x)) - (plusp (float-sign (car x)))) - (float -0.0 (car x)) - x))) - (%make-numeric-type :class class - :format format - :complexp complexp - :low (canonicalise-low-bound low) - :high (canonicalise-high-bound high) - :enumerable enumerable))) - (!define-type-class number) (!define-type-method (number :simple-=) (type1 type2) @@ -1094,7 +1070,7 @@ 'complex `(complex ,base+bounds))) ((nil) - (assert (eq base+bounds 'real)) + (aver (eq base+bounds 'real)) 'number))))) ;;; Return true if X is "less than or equal" to Y, taking open bounds @@ -1313,9 +1289,7 @@ (when (eq (numeric-type-complexp component-type) :complex) (error "The component type for COMPLEX is complex: ~S" typespec)) - (let ((result (copy-numeric-type component-type))) - (setf (numeric-type-complexp result) :complex) - result))) + (modified-numeric-type component-type :complexp :complex))) (let ((type (specifier-type typespec))) (typecase type ;; This is all that CMU CL handled. @@ -1516,7 +1490,7 @@ nil)) ;;; Handle the case of type intersection on two numeric types. We use -;;; TYPES-INTERSECT to throw out the case of types with no +;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no ;;; intersection. If an attribute in TYPE1 is unspecified, then we use ;;; TYPE2's attribute, which must be at least as restrictive. If the ;;; types intersect, then the only attributes that can be specified @@ -1828,7 +1802,7 @@ ;;; subtype of the MEMBER type. (!define-type-method (member :complex-subtypep-arg2) (type1 type2) (cond ((not (type-enumerable type1)) (values nil t)) - ((types-intersect type1 type2) (values nil nil)) + ((types-equal-or-intersect type1 type2) (values nil nil)) (t (values nil t)))) (!define-type-method (member :simple-intersection2) (type1 type2) @@ -1896,7 +1870,7 @@ ;;;; ;; reasonable definition ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP))) ;;;; ;; reasonable behavior -;;;; (ASSERT (SUBTYPEP 'KEYWORD 'SYMBOL)) +;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL)) ;;;; Without understanding a little about the semantics of AND, we'd ;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely ;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's @@ -1939,16 +1913,18 @@ (type=-set (intersection-type-types type1) (intersection-type-types type2))) -(flet ((intersection-complex-subtypep-arg1 (type1 type2) - (any/type (swapped-args-fun #'csubtypep) - type2 - (intersection-type-types type1)))) - (!define-type-method (intersection :simple-subtypep) (type1 type2) - (every/type #'intersection-complex-subtypep-arg1 - type1 - (intersection-type-types type2))) - (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2) - (intersection-complex-subtypep-arg1 type1 type2))) +(defun %intersection-complex-subtypep-arg1 (type1 type2) + (any/type (swapped-args-fun #'csubtypep) + type2 + (intersection-type-types type1))) + +(!define-type-method (intersection :simple-subtypep) (type1 type2) + (every/type #'%intersection-complex-subtypep-arg1 + type1 + (intersection-type-types type2))) + +(!define-type-method (intersection :complex-subtypep-arg1) (type1 type2) + (%intersection-complex-subtypep-arg1 type1 type2)) (!define-type-method (intersection :complex-subtypep-arg2) (type1 type2) (every/type #'csubtypep type1 (intersection-type-types type2))) @@ -1977,23 +1953,10 @@ ;;; Similarly, a union type is a subtype of another if every element ;;; of TYPE1 is a subtype of some element of TYPE2. -;;; -;;; KLUDGE: This definition seems redundant, here in UNION-TYPE and -;;; similarly in INTERSECTION-TYPE, with the logic in the -;;; corresponding :COMPLEX-SUBTYPEP-ARG1 and :COMPLEX-SUBTYPEP-ARG2 -;;; methods. Ideally there's probably some way to make the -;;; :SIMPLE-SUBTYPEP method default to the :COMPLEX-SUBTYPEP-FOO -;;; methods in such a way that this definition could go away, but I -;;; don't grok the system well enough to tell whether it's simple to -;;; arrange this. -- WHN 2000-02-03 (!define-type-method (union :simple-subtypep) (type1 type2) - (dolist (t1 (union-type-types type1) (values t t)) - (multiple-value-bind (subtypep validp) - (union-complex-subtypep-arg2 t1 type2) - (cond ((not validp) - (return (values nil nil))) - ((not subtypep) - (return (values nil t))))))) + (every/type (swapped-args-fun #'union-complex-subtypep-arg2) + type2 + (union-type-types type1))) (defun union-complex-subtypep-arg1 (type1 type2) (every/type (swapped-args-fun #'csubtypep) @@ -2144,7 +2107,7 @@ (multiple-value-bind (val win) (csubtypep x-type y-type) (unless win (return-from type-difference nil)) (when val (return)) - (when (types-intersect x-type y-type) + (when (types-equal-or-intersect x-type y-type) (return-from type-difference nil)))))) (let ((y-mem (find-if #'member-type-p y-types))) (when y-mem @@ -2170,6 +2133,70 @@ :element-type (specifier-type element-type) :complexp nil))) -(!defun-from-collected-cold-init-forms !late-type-cold-init) +;;;; utilities shared between cross-compiler and target system + +;;; Does the type derived from compilation of an actual function +;;; definition satisfy declarations of a function's type? +(defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype) + (declare (type ctype defined-ftype declared-ftype)) + (flet ((is-built-in-class-function-p (ctype) + (and (built-in-class-p ctype) + (eq (built-in-class-%name ctype) 'function)))) + (cond (;; DECLARED-FTYPE could certainly be #; + ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)). + (is-built-in-class-function-p declared-ftype) + ;; In that case, any definition satisfies the declaration. + t) + (;; It's not clear whether or how DEFINED-FTYPE might be + ;; #, but it's not obviously + ;; invalid, so let's handle that case too, just in case. + (is-built-in-class-function-p defined-ftype) + ;; No matter what DECLARED-FTYPE might be, we can't prove + ;; that an object of type FUNCTION doesn't satisfy it, so + ;; we return success no matter what. + t) + (;; Otherwise both of them must be FUN-TYPE objects. + t + ;; FIXME: For now we only check compatibility of the return + ;; type, not argument types, and we don't even check the + ;; return type very precisely (as per bug 94a). It would be + ;; good to do a better job. Perhaps to check the + ;; compatibility of the arguments, we should (1) redo + ;; VALUES-TYPES-EQUAL-OR-INTERSECT as + ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to + ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE + ;; is a base class both of VALUES-TYPE and of FUN-TYPE.) + (values-types-equal-or-intersect + (fun-type-returns defined-ftype) + (fun-type-returns declared-ftype)))))) + +;;; This messy case of CTYPE for NUMBER is shared between the +;;; cross-compiler and the target system. +(defun ctype-of-number (x) + (let ((num (if (complexp x) (realpart x) x))) + (multiple-value-bind (complexp low high) + (if (complexp x) + (let ((imag (imagpart x))) + (values :complex (min num imag) (max num imag))) + (values :real num num)) + (make-numeric-type :class (etypecase num + (integer 'integer) + (rational 'rational) + (float 'float)) + :format (and (floatp num) (float-format-name num)) + :complexp complexp + :low low + :high high)))) + +(locally + ;; Why SAFETY 0? To suppress the is-it-the-right-structure-type + ;; checking for declarations in structure accessors. Otherwise we + ;; can get caught in a chicken-and-egg bootstrapping problem, whose + ;; symptom on x86 OpenBSD sbcl-0.pre7.37.flaky5.22 is an illegal + ;; instruction trap. I haven't tracked it down, but I'm guessing it + ;; has to do with setting LAYOUTs when the LAYOUT hasn't been set + ;; yet. -- WHN + (declare (optimize (safety 0))) + (!defun-from-collected-cold-init-forms !late-type-cold-init)) (/show0 "late-type.lisp end of file")