X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcode%2Flate-type.lisp;h=bc8fc169b88b02f26bb21546dd700522f043af6d;hb=334af30b26555f0bf706f7157b399bdbd4fad548;hp=e9c4a67a205a4ca24f3c6eb8ad23b92f10662871;hpb=6044a3ac0bcca2f650f76f665a0cf30b8d8e3beb;p=sbcl.git diff --git a/src/code/late-type.lisp b/src/code/late-type.lisp index e9c4a67..bc8fc16 100644 --- a/src/code/late-type.lisp +++ b/src/code/late-type.lisp @@ -16,6 +16,8 @@ (in-package "SB!KERNEL") +(/show0 "late-type.lisp 19") + (!begin-collecting-cold-init-forms) ;;; ### Remaining incorrectnesses: @@ -55,11 +57,11 @@ (if subtypep-arg1 (funcall subtypep-arg1 type1 type2) (values nil t)))) -(defun delegate-complex-intersection (type1 type2) - (let ((method (type-class-complex-intersection (type-class-info type1)))) - (if (and method (not (eq method #'delegate-complex-intersection))) +(defun delegate-complex-intersection2 (type1 type2) + (let ((method (type-class-complex-intersection2 (type-class-info type1)))) + (if (and method (not (eq method #'delegate-complex-intersection2))) (funcall method type2 type1) - (vanilla-intersection type1 type2)))) + (hierarchical-intersection2 type1 type2)))) ;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1 ;;; method. INFO is a list of conses @@ -108,8 +110,8 @@ (!has-superclasses-complex-subtypep-arg1 type1 type2 ,info))) (setf (type-class-complex-subtypep-arg2 ,type-class) #'delegate-complex-subtypep-arg2) - (setf (type-class-complex-intersection ,type-class) - #'delegate-complex-intersection))))) + (setf (type-class-complex-intersection2 ,type-class) + #'delegate-complex-intersection2))))) ;;;; FUNCTION and VALUES types ;;;; @@ -127,22 +129,24 @@ ;;;; -- Many of the places that can be annotated with real types can ;;;; also be annotated with function or values types. -;;; the description of a keyword argument -(defstruct (key-info #-sb-xc-host (:pure t)) - ;; the keyword - (name (required-argument) :type keyword) +;;; the description of a &KEY argument +(defstruct (key-info #-sb-xc-host (:pure t) + (:copier nil)) + ;; the key (not necessarily a keyword in ANSI) + (name (required-argument) :type symbol) ;; the type of the argument value (type (required-argument) :type ctype)) (!define-type-method (values :simple-subtypep :complex-subtypep-arg1) - (type1 type2) + (type1 type2) (declare (ignore type2)) - (error "Subtypep is illegal on this type:~% ~S" (type-specifier type1))) + ;; FIXME: should be TYPE-ERROR, here and in next method + (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1))) (!define-type-method (values :complex-subtypep-arg2) - (type1 type2) + (type1 type2) (declare (ignore type1)) - (error "Subtypep is illegal on this type:~% ~S" (type-specifier type2))) + (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2))) (!define-type-method (values :unparse) (type) (cons 'values (unparse-args-types type))) @@ -211,12 +215,12 @@ (!define-superclasses function ((function)) !cold-init-forms) ;;; The union or intersection of two FUNCTION types is FUNCTION. -(!define-type-method (function :simple-union) (type1 type2) +(!define-type-method (function :simple-union2) (type1 type2) (declare (ignore type1 type2)) (specifier-type 'function)) -(!define-type-method (function :simple-intersection) (type1 type2) +(!define-type-method (function :simple-intersection2) (type1 type2) (declare (ignore type1 type2)) - (values (specifier-type 'function) t)) + (specifier-type 'function)) ;;; ### Not very real, but good enough for redefining transforms ;;; according to type: @@ -242,7 +246,7 @@ (multiple-value-bind (required optional restp rest keyp keys allowp aux) (parse-lambda-list lambda-list) (when aux - (error "&Aux in a FUNCTION or VALUES type: ~S." lambda-list)) + (error "&AUX in a FUNCTION or VALUES type: ~S." lambda-list)) (setf (args-type-required result) (mapcar #'specifier-type required)) (setf (args-type-optional result) (mapcar #'specifier-type optional)) (setf (args-type-rest result) (if restp (specifier-type rest) nil)) @@ -253,7 +257,8 @@ (error "Keyword type description is not a two-list: ~S." key)) (let ((kwd (first key))) (when (find kwd (key-info) :key #'key-info-name) - (error "Repeated keyword ~S in lambda list: ~S." kwd lambda-list)) + (error "~@" + kwd lambda-list)) (key-info (make-key-info :name kwd :type (specifier-type (second key)))))) (setf (args-type-keywords result) (key-info))) @@ -325,7 +330,7 @@ (t type))) -;;; Return the minmum number of arguments that a function can be +;;; Return the minimum number of arguments that a function can be ;;; called with, and the maximum number or NIL. If not a function ;;; type, return NIL, NIL. (defun function-type-nargs (type) @@ -409,7 +414,7 @@ ;;; This has the virtue of always keeping the VALUES type specifier ;;; outermost, and retains all of the information that is really ;;; useful for static type analysis. We want to know what is always -;;; true of each value independently. It is worthless to know that IF +;;; true of each value independently. It is worthless to know that if ;;; the first value is B0 then the second will be B1. ;;; ;;; If the VALUES count signatures differ, then we produce a result with @@ -601,62 +606,130 @@ (values (not res) t) (values nil nil)))) +;;; the type method dispatch case of TYPE-UNION2 +(defun %type-union2 (type1 type2) + ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give + ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike + ;; %TYPE-INTERSECTION2, though, I don't have a specific case which + ;; demonstrates this is actually necessary. Also unlike + ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish + ;; between not finding a method and having a method return NIL. + (flet ((1way (x y) + (!invoke-type-method :simple-union2 :complex-union2 + x y + :default nil))) + (declare (inline 1way)) + (or (1way type1 type2) + (1way type2 type1)))) + ;;; Find a type which includes both types. Any inexactness is ;;; represented by the fuzzy element types; we return a single value ;;; that is precise to the best of our knowledge. This result is -;;; simplified into the canonical form, thus is not a UNION type -;;; unless there is no other way to represent the result. -(defun-cached (type-union :hash-function type-cache-hash - :hash-bits 8 - :init-wrapper !cold-init-forms) +;;; simplified into the canonical form, thus is not a UNION-TYPE +;;; unless we find no other way to represent the result. +(defun-cached (type-union2 :hash-function type-cache-hash + :hash-bits 8 + :init-wrapper !cold-init-forms) ((type1 eq) (type2 eq)) + ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And + ;; Paste technique of programming. If it stays around (as opposed to + ;; e.g. fading away in favor of some CLOS solution) the shared logic + ;; should probably become shared code. -- WHN 2001-03-16 (declare (type ctype type1 type2)) - (if (eq type1 type2) - type1 - (let ((res (!invoke-type-method :simple-union :complex-union - type1 type2 - :default :vanilla))) - (cond ((eq res :vanilla) - (or (vanilla-union type1 type2) - (make-union-type (list type1 type2)))) - (res) - (t - (make-union-type (list type1 type2))))))) - -;;; Return as restrictive a type as we can discover that is no more -;;; restrictive than the intersection of Type1 and Type2. The second -;;; value is true if the result is exact. At worst, we randomly return -;;; one of the arguments as the first value (trying not to return a -;;; hairy type). -(defun-cached (type-intersection :hash-function type-cache-hash - :hash-bits 8 - :values 2 - :default (values nil :empty) - :init-wrapper !cold-init-forms) + (cond ((eq type1 type2) + type1) + ((or (union-type-p type1) + (union-type-p type2)) + ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES + ;; values broken out and united separately. The full TYPE-UNION + ;; function knows how to do this, so let it handle it. + (type-union type1 type2)) + (t + ;; the ordinary case: we dispatch to type methods + (%type-union2 type1 type2)))) + +;;; the type method dispatch case of TYPE-INTERSECTION2 +(defun %type-intersection2 (type1 type2) + ;; We want to give both argument orders a chance at + ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type + ;; methods could give noncommutative results, e.g. + ;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE) + ;; => NIL, NIL + ;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*) + ;; => #, T + ;; We also need to distinguish between the case where we found a + ;; type method, and it returned NIL, and the case where we fell + ;; through without finding any type method. An example of the first + ;; case is the intersection of a HAIRY-TYPE with some ordinary type. + ;; An example of the second case is the intersection of two + ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and + ;; ARRAY. + ;; + ;; (Why yes, CLOS probably *would* be nicer..) + (flet ((1way (x y) + (!invoke-type-method :simple-intersection2 :complex-intersection2 + x y + :default :no-type-method-found))) + (declare (inline 1way)) + (let ((xy (1way type1 type2))) + (or (and (not (eql xy :no-type-method-found)) xy) + (let ((yx (1way type2 type1))) + (or (and (not (eql yx :no-type-method-found)) yx) + (cond ((and (eql xy :no-type-method-found) + (eql yx :no-type-method-found)) + *empty-type*) + (t + (aver (and (not xy) (not yx))) ; else handled above + nil)))))))) + +(defun-cached (type-intersection2 :hash-function type-cache-hash + :hash-bits 8 + :values 1 + :default nil + :init-wrapper !cold-init-forms) ((type1 eq) (type2 eq)) (declare (type ctype type1 type2)) - (if (eq type1 type2) - (values type1 t) - (!invoke-type-method :simple-intersection :complex-intersection - type1 type2 - :default (values *empty-type* t)))) + (cond ((eq type1 type2) + type1) + ((or (intersection-type-p type1) + (intersection-type-p type2)) + ;; Intersections of INTERSECTION-TYPE should have the + ;; INTERSECTION-TYPE-TYPES values broken out and intersected + ;; separately. The full TYPE-INTERSECTION function knows how + ;; to do that, so let it handle it. + (type-intersection type1 type2)) + (t + ;; the ordinary case: we dispatch to type methods + (%type-intersection2 type1 type2)))) + +;;; Return as restrictive and simple a type as we can discover that is +;;; no more restrictive than the intersection of TYPE1 and TYPE2. At +;;; worst, we arbitrarily return one of the arguments as the first +;;; value (trying not to return a hairy type). +(defun type-approx-intersection2 (type1 type2) + (cond ((type-intersection2 type1 type2)) + ((hairy-type-p type1) type2) + (t type1))) ;;; The first value is true unless the types don't intersect. The ;;; second value is true if the first value is definitely correct. NIL ;;; is considered to intersect with any type. If T is a subtype of -;;; either type, then we also return T, T. This way we consider hairy -;;; types to intersect with T. +;;; either type, then we also return T, T. This way we recognize +;;; that hairy types might intersect with T. +;;; +;;; FIXME: It would be more accurate to call this TYPES-MIGHT-INTERSECT, +;;; and rename VALUES-TYPES-INTERSECT the same way. (defun types-intersect (type1 type2) (declare (type ctype type1 type2)) (if (or (eq type1 *empty-type*) (eq type2 *empty-type*)) (values t t) - (multiple-value-bind (val winp) (type-intersection type1 type2) - (cond ((not winp) + (let ((intersection2 (type-intersection2 type1 type2))) + (cond ((not intersection2) (if (or (csubtypep *universal-type* type1) (csubtypep *universal-type* type2)) (values t t) (values t nil))) - ((eq val *empty-type*) (values nil t)) + ((eq intersection2 *empty-type*) (values nil t)) (t (values t t)))))) ;;; Return a Common Lisp type specifier corresponding to the TYPE @@ -679,6 +752,126 @@ (setf (info :type :kind spec) :primitive)))) (values)) +;;;; general TYPE-UNION and TYPE-INTERSECTION operations +;;;; +;;;; These are fully general operations on CTYPEs: they'll always +;;;; return a CTYPE representing the result. + +;;; shared logic for unions and intersections: Stuff TYPE into the +;;; vector TYPES, finding pairs of types which can be simplified by +;;; SIMPLIFY2 (TYPE-UNION2 or TYPE-INTERSECTION2) and replacing them +;;; by their simplified forms. +(defun accumulate1-compound-type (type types %compound-type-p simplify2) + (declare (type ctype type)) + (declare (type (vector ctype) types)) + (declare (type function simplify2)) + ;; Any input object satisfying %COMPOUND-TYPE-P should've been + ;; broken into components before it reached us. + (aver (not (funcall %compound-type-p type))) + (dotimes (i (length types) (vector-push-extend type types)) + (let ((simplified2 (funcall simplify2 type (aref types i)))) + (when simplified2 + ;; Discard the old (AREF TYPES I). + (setf (aref types i) (vector-pop types)) + ;; Merge the new SIMPLIFIED2 into TYPES, by tail recursing. + ;; (Note that the tail recursion is indirect: we go through + ;; ACCUMULATE, not ACCUMULATE1, so that if SIMPLIFIED2 is + ;; handled properly if it satisfies %COMPOUND-TYPE-P.) + (return (accumulate-compound-type simplified2 + types + %compound-type-p + simplify2))))) + ;; Voila. + (values)) + +;;; shared logic for unions and intersections: Use +;;; ACCUMULATE1-COMPOUND-TYPE to merge TYPE into TYPES, either +;;; all in one step or, if %COMPOUND-TYPE-P is satisfied, +;;; component by component. +(defun accumulate-compound-type (type types %compound-type-p simplify2) + (declare (type function %compound-type-p simplify2)) + (flet ((accumulate1 (x) + (accumulate1-compound-type x types %compound-type-p simplify2))) + (declare (inline accumulate1)) + (if (funcall %compound-type-p type) + (map nil #'accumulate1 (compound-type-types type)) + (accumulate1 type))) + (values)) + +;;; shared logic for unions and intersections: Return a vector of +;;; types representing the same types as INPUT-TYPES, but with +;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their +;;; component types, and with any SIMPLY2 simplifications applied. +(defun simplified-compound-types (input-types %compound-type-p simplify2) + (let ((simplified-types (make-array (length input-types) + :fill-pointer 0 + :element-type 'ctype + ;; (This INITIAL-ELEMENT shouldn't + ;; matter, but helps avoid type + ;; warnings at compile time.) + :initial-element *empty-type*))) + (dolist (input-type input-types) + (accumulate-compound-type input-type + simplified-types + %compound-type-p + simplify2)) + simplified-types)) + +;;; shared logic for unions and intersections: Make a COMPOUND-TYPE +;;; object whose components are the types in TYPES, or skip to special +;;; cases when TYPES is short. +(defun make-compound-type-or-something (constructor types enumerable identity) + (declare (type function constructor)) + (declare (type (vector ctype) types)) + (declare (type ctype identity)) + (case (length types) + (0 identity) + (1 (aref types 0)) + (t (funcall constructor + enumerable + ;; FIXME: This should be just (COERCE TYPES 'LIST), but as + ;; of sbcl-0.6.11.17 the COERCE optimizer is really + ;; brain-dead, so that would generate a full call to + ;; SPECIFIER-TYPE at runtime, so we get into bootstrap + ;; problems in cold init because 'LIST is a compound + ;; type, so we need to MAKE-COMPOUND-TYPE-OR-SOMETHING + ;; before we know what 'LIST is. Once the COERCE + ;; optimizer is less brain-dead, we can make this + ;; (COERCE TYPES 'LIST) again. + #+sb-xc-host (coerce types 'list) + #-sb-xc-host (coerce-to-list types))))) + +(defun type-intersection (&rest input-types) + (let ((simplified-types (simplified-compound-types input-types + #'intersection-type-p + #'type-intersection2))) + (declare (type (vector ctype) simplified-types)) + ;; We want to have a canonical representation of types (or failing + ;; that, punt to HAIRY-TYPE). Canonical representation would have + ;; intersections inside unions but not vice versa, since you can + ;; always achieve that by the distributive rule. But we don't want + ;; to just apply the distributive rule, since it would be too easy + ;; to end up with unreasonably huge type expressions. So instead + ;; we punt to HAIRY-TYPE when this comes up. + (if (and (> (length simplified-types) 1) + (some #'union-type-p simplified-types)) + (make-hairy-type + :specifier `(and ,@(map 'list #'type-specifier simplified-types))) + (make-compound-type-or-something #'%make-intersection-type + simplified-types + (some #'type-enumerable + simplified-types) + *universal-type*)))) + +(defun type-union (&rest input-types) + (let ((simplified-types (simplified-compound-types input-types + #'union-type-p + #'type-union2))) + (make-compound-type-or-something #'%make-union-type + simplified-types + (every #'type-enumerable simplified-types) + *empty-type*))) + ;;;; built-in types (!define-type-class named) @@ -704,22 +897,54 @@ (frob t *universal-type*))) (!define-type-method (named :simple-=) (type1 type2) + ;; FIXME: BUG 85: This assertion failed when I added it in + ;; sbcl-0.6.11.13. It probably shouldn't fail; but for now it's + ;; just commented out. + ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type. (values (eq type1 type2) t)) (!define-type-method (named :simple-subtypep) (type1 type2) + (aver (not (eq type1 *wild-type*))) ; * isn't really a type. (values (or (eq type1 *empty-type*) (eq type2 *wild-type*)) t)) (!define-type-method (named :complex-subtypep-arg1) (type1 type2) - (assert (not (hairy-type-p type2))) + (aver (not (eq type1 *wild-type*))) ; * isn't really a type. + ;; FIXME: Why does this (old CMU CL) assertion hold? Perhaps 'cause + ;; the HAIRY-TYPE COMPLEX-SUBTYPEP-ARG2 method takes precedence over + ;; this COMPLEX-SUBTYPE-ARG1 method? (I miss CLOS..) + (aver (not (hairy-type-p type2))) + ;; Besides the old CMU CL assertion above, we also need to avoid + ;; compound types, else we could get into trouble with + ;; (SUBTYPEP 'T '(OR (SATISFIES FOO) (SATISFIES BAR))) + ;; or + ;; (SUBTYPEP 'T '(AND (SATISFIES FOO) (SATISFIES BAR))). + (aver (not (compound-type-p type2))) + ;; Then, since TYPE2 is reasonably tractable, we're good to go. (values (eq type1 *empty-type*) t)) (!define-type-method (named :complex-subtypep-arg2) (type1 type2) - (if (hairy-type-p type1) - (values nil nil) - (values (not (eq type2 *empty-type*)) t))) - -(!define-type-method (named :complex-intersection) (type1 type2) - (vanilla-intersection type1 type2)) + (aver (not (eq type2 *wild-type*))) ; * isn't really a type. + (cond ((eq type2 *universal-type*) + (values t t)) + ((hairy-type-p type1) + (values nil nil)) + (t + ;; FIXME: This seems to rely on there only being 2 or 3 + ;; HAIRY-TYPE values, and the exclusion of various + ;; possibilities above. It would be good to explain it and/or + ;; rewrite it so that it's clearer. + (values (not (eq type2 *empty-type*)) t)))) + +(!define-type-method (named :complex-intersection2) (type1 type2) + ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13. + ;; Perhaps when bug 85 is fixed it can be reenabled. + ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type. + (hierarchical-intersection2 type1 type2)) + +(!define-type-method (named :complex-union2) (type1 type2) + ;; Perhaps when bug 85 is fixed this can be reenabled. + ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type. + (hierarchical-union2 type1 type2)) (!define-type-method (named :unparse) (x) (named-type-name x)) @@ -743,10 +968,11 @@ (!define-type-method (hairy :complex-subtypep-arg2) (type1 type2) (let ((hairy-spec (hairy-type-specifier type2))) (cond ((and (consp hairy-spec) (eq (car hairy-spec) 'not)) - (multiple-value-bind (val win) - (type-intersection type1 (specifier-type (cadr hairy-spec))) - (if win - (values (eq val *empty-type*) t) + (let* ((complement-type2 (specifier-type (cadr hairy-spec))) + (intersection2 (type-intersection2 type1 + complement-type2))) + (if intersection2 + (values (eq intersection2 *empty-type*) t) (values nil nil)))) (t (values nil nil))))) @@ -755,13 +981,10 @@ (declare (ignore type1 type2)) (values nil nil)) -(!define-type-method (hairy :simple-intersection :complex-intersection) - (type1 type2) - (declare (ignore type2)) - (values type1 nil)) - -(!define-type-method (hairy :complex-union) (type1 type2) - (make-union-type (list type1 type2))) +(!define-type-method (hairy :simple-intersection2 :complex-intersection2) + (type1 type2) + (declare (ignore type1 type2)) + nil) (!define-type-method (hairy :simple-=) (type1 type2) (if (equal (hairy-type-specifier type1) @@ -771,44 +994,29 @@ (!def-type-translator not (&whole whole type) (declare (ignore type)) + ;; Check legality of arguments. + (destructuring-bind (not typespec) whole + (declare (ignore not)) + (specifier-type typespec)) ; must be legal typespec + ;; Create object. (make-hairy-type :specifier whole)) (!def-type-translator satisfies (&whole whole fun) (declare (ignore fun)) + ;; Check legality of arguments. + (destructuring-bind (satisfies predicate-name) whole + (declare (ignore satisfies)) + (unless (symbolp predicate-name) + (error 'simple-type-error + :datum predicate-name + :expected-type 'symbol + :format-control "~S is not a symbol." + :format-arguments (list predicate-name)))) + ;; Create object. (make-hairy-type :specifier whole)) ;;;; numeric types -;;; A list of all the float formats, in order of decreasing precision. -(eval-when (:compile-toplevel :load-toplevel :execute) - (defparameter *float-formats* - '(long-float double-float single-float short-float))) - -;;; The type of a float format. -(deftype float-format () `(member ,@*float-formats*)) - -#!+negative-zero-is-not-zero -(defun make-numeric-type (&key class format (complexp :real) low high - enumerable) - (flet ((canonicalise-low-bound (x) - ;; Canonicalise a low bound of (-0.0) to 0.0. - (if (and (consp x) (floatp (car x)) (zerop (car x)) - (minusp (float-sign (car x)))) - (float 0.0 (car x)) - x)) - (canonicalise-high-bound (x) - ;; Canonicalise a high bound of (+0.0) to -0.0. - (if (and (consp x) (floatp (car x)) (zerop (car x)) - (plusp (float-sign (car x)))) - (float -0.0 (car x)) - x))) - (%make-numeric-type :class class - :format format - :complexp complexp - :low (canonicalise-low-bound low) - :high (canonicalise-high-bound high) - :enumerable enumerable))) - (!define-type-class number) (!define-type-method (number :simple-=) (type1 type2) @@ -864,7 +1072,7 @@ 'complex `(complex ,base+bounds))) ((nil) - (assert (eq base+bounds 'real)) + (aver (eq base+bounds 'real)) 'number))))) ;;; Return true if X is "less than or equal" to Y, taking open bounds @@ -1034,7 +1242,7 @@ ;;; ;;; ### Note: we give up early to keep from dropping lots of information on ;;; the floor by returning overly general types. -(!define-type-method (number :simple-union) (type1 type2) +(!define-type-method (number :simple-union2) (type1 type2) (declare (type numeric-type type1 type2)) (cond ((csubtypep type1 type2) type2) ((csubtypep type2 type1) type1) @@ -1067,17 +1275,38 @@ (setf (info :type :builtin 'number) (make-numeric-type :complexp nil))) -(!def-type-translator complex (&optional (spec '*)) - (if (eq spec '*) +(!def-type-translator complex (&optional (typespec '*)) + (if (eq typespec '*) (make-numeric-type :complexp :complex) - (let ((type (specifier-type spec))) - (unless (numeric-type-p type) - (error "Component type for Complex is not numeric: ~S." spec)) - (when (eq (numeric-type-complexp type) :complex) - (error "Component type for Complex is complex: ~S." spec)) - (let ((res (copy-numeric-type type))) - (setf (numeric-type-complexp res) :complex) - res)))) + (labels ((not-numeric () + ;; FIXME: should probably be TYPE-ERROR + (error "The component type for COMPLEX is not numeric: ~S" + typespec)) + (complex1 (component-type) + (unless (numeric-type-p component-type) + ;; FIXME: As per the FIXME below, ANSI says we're + ;; supposed to handle any subtype of REAL, not only + ;; those which can be represented as NUMERIC-TYPE. + (not-numeric)) + (when (eq (numeric-type-complexp component-type) :complex) + (error "The component type for COMPLEX is complex: ~S" + typespec)) + (modified-numeric-type component-type :complexp :complex))) + (let ((type (specifier-type typespec))) + (typecase type + ;; This is all that CMU CL handled. + (numeric-type (complex1 type)) + ;; We need to handle UNION-TYPEs in order to deal with + ;; REAL and FLOAT being represented as UNION-TYPEs of more + ;; primitive types. + (union-type (apply #'type-union + (mapcar #'complex1 + (union-type-types type)))) + ;; FIXME: ANSI just says that TYPESPEC is a subtype of type + ;; REAL, not necessarily a NUMERIC-TYPE. E.g. TYPESPEC could + ;; legally be (AND REAL (SATISFIES ODDP))! But like the old + ;; CMU CL code, we're still not nearly that general. + (t (not-numeric))))))) ;;; If X is *, return NIL, otherwise return the bound, which must be a ;;; member of TYPE or a one-element list of a member of TYPE. @@ -1109,7 +1338,7 @@ :low lb :high hb))) -(defmacro def-bounded-type (type class format) +(defmacro !def-bounded-type (type class format) `(!def-type-translator ,type (&optional (low '*) (high '*)) (let ((lb (canonicalized-bound low ',type)) (hb (canonicalized-bound high ',type))) @@ -1117,17 +1346,75 @@ (error "Lower bound ~S is not less than upper bound ~S." low high)) (make-numeric-type :class ',class :format ',format :low lb :high hb)))) -(def-bounded-type rational rational nil) -(def-bounded-type float float nil) -(def-bounded-type real nil nil) - -(defmacro define-float-format (f) - `(def-bounded-type ,f float ,f)) - -(define-float-format short-float) -(define-float-format single-float) -(define-float-format double-float) -(define-float-format long-float) +(!def-bounded-type rational rational nil) + +;;; Unlike CMU CL, we represent the types FLOAT and REAL as +;;; UNION-TYPEs of more primitive types, in order to make +;;; type representation more unique, avoiding problems in the +;;; simplification of things like +;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1)) +;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0))) +;;; When we allowed REAL to remain as a separate NUMERIC-TYPE, +;;; it was too easy for the first argument to be simplified to +;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified +;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the +;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because +;;; the first argument can't be seen to be a subtype of any of the +;;; terms in the second argument. +;;; +;;; The old CMU CL way was: +;;; (!def-bounded-type float float nil) +;;; (!def-bounded-type real nil nil) +;;; +;;; FIXME: If this new way works for a while with no weird new +;;; problems, we can go back and rip out support for separate FLOAT +;;; and REAL flavors of NUMERIC-TYPE. The new way was added in +;;; sbcl-0.6.11.22, 2001-03-21. +;;; +;;; FIXME: It's probably necessary to do something to fix the +;;; analogous problem with INTEGER and RATIONAL types. Perhaps +;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER). +(defun coerce-bound (bound type inner-coerce-bound-fun) + (declare (type function inner-coerce-bound-fun)) + (cond ((eql bound '*) + bound) + ((consp bound) + (destructuring-bind (inner-bound) bound + (list (funcall inner-coerce-bound-fun inner-bound type)))) + (t + (funcall inner-coerce-bound-fun bound type)))) +(defun inner-coerce-real-bound (bound type) + (ecase type + (rational (rationalize bound)) + (float (if (floatp bound) + bound + ;; Coerce to the widest float format available, to + ;; avoid unnecessary loss of precision: + (coerce bound 'long-float))))) +(defun coerced-real-bound (bound type) + (coerce-bound bound type #'inner-coerce-real-bound)) +(defun coerced-float-bound (bound type) + (coerce-bound bound type #'coerce)) +(!def-type-translator real (&optional (low '*) (high '*)) + (specifier-type `(or (float ,(coerced-real-bound low 'float) + ,(coerced-real-bound high 'float)) + (rational ,(coerced-real-bound low 'rational) + ,(coerced-real-bound high 'rational))))) +(!def-type-translator float (&optional (low '*) (high '*)) + (specifier-type + `(or (single-float ,(coerced-float-bound low 'single-float) + ,(coerced-float-bound high 'single-float)) + (double-float ,(coerced-float-bound low 'double-float) + ,(coerced-float-bound high 'double-float)) + #!+long-float ,(error "stub: no long float support yet")))) + +(defmacro !define-float-format (f) + `(!def-bounded-type ,f float ,f)) + +(!define-float-format short-float) +(!define-float-format single-float) +(!define-float-format double-float) +(!define-float-format long-float) (defun numeric-types-intersect (type1 type2) (declare (type numeric-type type1 type2)) @@ -1204,7 +1491,7 @@ (if (consp x) (list res) res))))) nil)) -;;; Handle the case of TYPE-INTERSECTION on two numeric types. We use +;;; Handle the case of type intersection on two numeric types. We use ;;; TYPES-INTERSECT to throw out the case of types with no ;;; intersection. If an attribute in TYPE1 is unspecified, then we use ;;; TYPE2's attribute, which must be at least as restrictive. If the @@ -1220,7 +1507,7 @@ ;;; appropriate numeric type before maximizing. This avoids possible ;;; confusion due to mixed-type comparisons (but I think the result is ;;; the same). -(!define-type-method (number :simple-intersection) (type1 type2) +(!define-type-method (number :simple-intersection2) (type1 type2) (declare (type numeric-type type1 type2)) (if (numeric-types-intersect type1 type2) (let* ((class1 (numeric-type-class type1)) @@ -1233,26 +1520,24 @@ 'rational)))) (format (or (numeric-type-format type1) (numeric-type-format type2)))) - (values - (make-numeric-type - :class class - :format format - :complexp (or (numeric-type-complexp type1) - (numeric-type-complexp type2)) - :low (numeric-bound-max - (round-numeric-bound (numeric-type-low type1) - class format t) - (round-numeric-bound (numeric-type-low type2) - class format t) - > >= nil) - :high (numeric-bound-max - (round-numeric-bound (numeric-type-high type1) - class format nil) - (round-numeric-bound (numeric-type-high type2) - class format nil) - < <= nil)) - t)) - (values *empty-type* t))) + (make-numeric-type + :class class + :format format + :complexp (or (numeric-type-complexp type1) + (numeric-type-complexp type2)) + :low (numeric-bound-max + (round-numeric-bound (numeric-type-low type1) + class format t) + (round-numeric-bound (numeric-type-low type2) + class format t) + > >= nil) + :high (numeric-bound-max + (round-numeric-bound (numeric-type-high type1) + class format nil) + (round-numeric-bound (numeric-type-high type2) + class format nil) + < <= nil))) + *empty-type*)) ;;; Given two float formats, return the one with more precision. If ;;; either one is null, return NIL. @@ -1380,8 +1665,8 @@ (let ((dims1 (array-type-dimensions type1)) (dims2 (array-type-dimensions type2)) (complexp2 (array-type-complexp type2))) - ;; See whether dimensions are compatible. - (cond ((not (or (eq dims2 '*) + (cond (;; not subtypep unless dimensions are compatible + (not (or (eq dims2 '*) (and (not (eq dims1 '*)) ;; (sbcl-0.6.4 has trouble figuring out that ;; DIMS1 and DIMS2 must be lists at this @@ -1394,18 +1679,27 @@ (the list dims1) (the list dims2))))) (values nil t)) - ;; See whether complexpness is compatible. + ;; not subtypep unless complexness is compatible ((not (or (eq complexp2 :maybe) (eq (array-type-complexp type1) complexp2))) (values nil t)) - ;; If the TYPE2 eltype is wild, we win. Otherwise, the types - ;; must be identical. - ((or (eq (array-type-element-type type2) *wild-type*) - (type= (specialized-element-type-maybe type1) - (specialized-element-type-maybe type2))) + ;; Since we didn't fail any of the tests above, we win + ;; if the TYPE2 element type is wild. + ((eq (array-type-element-type type2) *wild-type*) (values t t)) - (t - (values nil t))))) + (;; Since we didn't match any of the special cases above, we + ;; can't give a good answer unless both the element types + ;; have been defined. + (or (unknown-type-p (array-type-element-type type1)) + (unknown-type-p (array-type-element-type type2))) + (values nil nil)) + (;; Otherwise, the subtype relationship holds iff the + ;; types are equal, and they're equal iff the specialized + ;; element types are identical. + t + (values (type= (specialized-element-type-maybe type1) + (specialized-element-type-maybe type2)) + t))))) (!define-superclasses array ((string string) @@ -1442,7 +1736,7 @@ (t (values nil t))))) -(!define-type-method (array :simple-intersection) (type1 type2) +(!define-type-method (array :simple-intersection2) (type1 type2) (declare (type array-type type1 type2)) (if (array-types-intersect type1 type2) (let ((dims1 (array-type-dimensions type1)) @@ -1451,18 +1745,16 @@ (complexp2 (array-type-complexp type2)) (eltype1 (array-type-element-type type1)) (eltype2 (array-type-element-type type2))) - (values - (specialize-array-type - (make-array-type - :dimensions (cond ((eq dims1 '*) dims2) - ((eq dims2 '*) dims1) - (t - (mapcar (lambda (x y) (if (eq x '*) y x)) - dims1 dims2))) - :complexp (if (eq complexp1 :maybe) complexp2 complexp1) - :element-type (if (eq eltype1 *wild-type*) eltype2 eltype1))) - t)) - (values *empty-type* t))) + (specialize-array-type + (make-array-type + :dimensions (cond ((eq dims1 '*) dims2) + ((eq dims2 '*) dims1) + (t + (mapcar (lambda (x y) (if (eq x '*) y x)) + dims1 dims2))) + :complexp (if (eq complexp1 :maybe) complexp2 complexp1) + :element-type (if (eq eltype1 *wild-type*) eltype2 eltype1)))) + *empty-type*)) ;;; Check a supplied dimension list to determine whether it is legal, ;;; and return it in canonical form (as either '* or a list). @@ -1503,10 +1795,9 @@ t)) (!define-type-method (member :complex-subtypep-arg1) (type1 type2) - (block punt-type-method - (values (every-type-op ctypep type2 (member-type-members type1) - :list-first t) - t))) + (every/type (swapped-args-fun #'ctypep) + type2 + (member-type-members type1))) ;;; We punt if the odd type is enumerable and intersects with the ;;; MEMBER type. If not enumerable, then it is definitely not a @@ -1514,41 +1805,37 @@ (!define-type-method (member :complex-subtypep-arg2) (type1 type2) (cond ((not (type-enumerable type1)) (values nil t)) ((types-intersect type1 type2) (values nil nil)) - (t - (values nil t)))) + (t (values nil t)))) -(!define-type-method (member :simple-intersection) (type1 type2) +(!define-type-method (member :simple-intersection2) (type1 type2) (let ((mem1 (member-type-members type1)) (mem2 (member-type-members type2))) - (values (cond ((subsetp mem1 mem2) type1) - ((subsetp mem2 mem1) type2) - (t - (let ((res (intersection mem1 mem2))) - (if res - (make-member-type :members res) - *empty-type*)))) - t))) + (cond ((subsetp mem1 mem2) type1) + ((subsetp mem2 mem1) type2) + (t + (let ((res (intersection mem1 mem2))) + (if res + (make-member-type :members res) + *empty-type*)))))) -(!define-type-method (member :complex-intersection) (type1 type2) - (block punt-type-method +(!define-type-method (member :complex-intersection2) (type1 type2) + (block punt (collect ((members)) (let ((mem2 (member-type-members type2))) - (dolist (member mem2) + (dolist (member mem2) (multiple-value-bind (val win) (ctypep member type1) (unless win - (return-from punt-type-method (values type2 nil))) + (return-from punt nil)) (when val (members member)))) + (cond ((subsetp mem2 (members)) type2) + ((null (members)) *empty-type*) + (t + (make-member-type :members (members)))))))) - (values (cond ((subsetp mem2 (members)) type2) - ((null (members)) *empty-type*) - (t - (make-member-type :members (members)))) - t))))) - -;;; We don't need a :COMPLEX-UNION, since the only interesting case is a union -;;; type, and the member/union interaction is handled by the union type -;;; method. -(!define-type-method (member :simple-union) (type1 type2) +;;; We don't need a :COMPLEX-UNION2, since the only interesting case is +;;; a union type, and the member/union interaction is handled by the +;;; union type method. +(!define-type-method (member :simple-union2) (type1 type2) (let ((mem1 (member-type-members type1)) (mem2 (member-type-members type2))) (cond ((subsetp mem1 mem2) type2) @@ -1559,7 +1846,8 @@ (!define-type-method (member :simple-=) (type1 type2) (let ((mem1 (member-type-members type1)) (mem2 (member-type-members type2))) - (values (and (subsetp mem1 mem2) (subsetp mem2 mem1)) + (values (and (subsetp mem1 mem2) + (subsetp mem2 mem1)) t))) (!define-type-method (member :complex-=) (type1 type2) @@ -1584,136 +1872,149 @@ ;;;; ;; reasonable definition ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP))) ;;;; ;; reasonable behavior -;;;; (ASSERT (SUBTYPEP 'KEYWORD 'SYMBOL)) +;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL)) ;;;; Without understanding a little about the semantics of AND, we'd -;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL, which is unreasonable.) +;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely +;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's +;;;; not so good..) ;;;; ;;;; We still follow the example of CMU CL to some extent, by punting ;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types ;;;; involving AND. -;;; Make a union type from the specifier types; or punt (to opaque -;;; HAIRY-TYPE) if the class looks as though it might get too hairy. -(defun make-intersection-type (types) - (declare (list types)) - ;; "If potentially too hairy.." - ;; - ;; (CMU CL punted for all AND-based types, and we'd like to avoid - ;; any really unreasonable cases which might have motivated them to - ;; do this, while still being reasonably effective on simple - ;; intersection types like KEYWORD.) - (if (any (lambda (type) - (or (union-type-p type) - (hairy-type-p type))) - types) - (make-hairy-type :specifier (mapcar #'type-specifier types)) - (%make-intersection-type (some #'type-enumerable types) types))) - (!define-type-class intersection) + +;;; A few intersection types have special names. The others just get +;;; mechanically unparsed. +(!define-type-method (intersection :unparse) (type) + (declare (type ctype type)) + (or (find type '(ratio bignum keyword) :key #'specifier-type :test #'type=) + `(and ,@(mapcar #'type-specifier (intersection-type-types type))))) + +;;; shared machinery for type equality: true if every type in the set +;;; TYPES1 matches a type in the set TYPES2 and vice versa +(defun type=-set (types1 types2) + (flet (;; true if every type in the set X matches a type in the set Y + (type<=-set (x y) + (declare (type list x y)) + (every (lambda (xelement) + (position xelement y :test #'type=)) + x))) + (values (and (type<=-set types1 types2) + (type<=-set types2 types1)) + t))) + +;;; Two intersection types are equal if their subtypes are equal sets. +;;; +;;; FIXME: Might it be better to use +;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X)) +;;; instead, since SUBTYPEP is the usual relationship that we care +;;; most about, so it would be good to leverage any ingenuity there +;;; in this more obscure method? +(!define-type-method (intersection :simple-=) (type1 type2) + (type=-set (intersection-type-types type1) + (intersection-type-types type2))) + +(flet ((intersection-complex-subtypep-arg1 (type1 type2) + (any/type (swapped-args-fun #'csubtypep) + type2 + (intersection-type-types type1)))) + (!define-type-method (intersection :simple-subtypep) (type1 type2) + (every/type #'intersection-complex-subtypep-arg1 + type1 + (intersection-type-types type2))) + (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2) + (intersection-complex-subtypep-arg1 type1 type2))) + +(!define-type-method (intersection :complex-subtypep-arg2) (type1 type2) + (every/type #'csubtypep type1 (intersection-type-types type2))) + +(!def-type-translator and (&whole whole &rest type-specifiers) + (apply #'type-intersection + (mapcar #'specifier-type + type-specifiers))) ;;;; union types -;;; Make a union type from the specifier types, setting ENUMERABLE in -;;; the result if all are enumerable. -(defun make-union-type (types) - (declare (list types)) - (%make-union-type (every #'type-enumerable types) types)) - (!define-type-class union) -;;; If LIST, then return that, otherwise the OR of the component types. +;;; The LIST type has a special name. Other union types just get +;;; mechanically unparsed. (!define-type-method (union :unparse) (type) (declare (type ctype type)) (if (type= type (specifier-type 'list)) 'list `(or ,@(mapcar #'type-specifier (union-type-types type))))) -;;; Two union types are equal if every type in one is equal to some -;;; type in the other. +;;; Two union types are equal if their subtypes are equal sets. (!define-type-method (union :simple-=) (type1 type2) - (block punt-type-method - (let ((types1 (union-type-types type1)) - (types2 (union-type-types type2))) - (values (and (dolist (type1 types1 t) - (unless (any-type-op type= type1 types2) - (return nil))) - (dolist (type2 types2 t) - (unless (any-type-op type= type2 types1) - (return nil)))) - t)))) + (type=-set (union-type-types type1) + (union-type-types type2))) ;;; Similarly, a union type is a subtype of another if every element ;;; of TYPE1 is a subtype of some element of TYPE2. (!define-type-method (union :simple-subtypep) (type1 type2) - (block punt-type-method - (let ((types2 (union-type-types type2))) - (values (dolist (type1 (union-type-types type1) t) - (unless (any-type-op csubtypep type1 types2) - (return nil))) - t)))) - + (every/type (swapped-args-fun #'union-complex-subtypep-arg2) + type2 + (union-type-types type1))) + +(defun union-complex-subtypep-arg1 (type1 type2) + (every/type (swapped-args-fun #'csubtypep) + type2 + (union-type-types type1))) (!define-type-method (union :complex-subtypep-arg1) (type1 type2) - (block punt-type-method - (values (every-type-op csubtypep type2 (union-type-types type1) - :list-first t) - t))) + (union-complex-subtypep-arg1 type1 type2)) +(defun union-complex-subtypep-arg2 (type1 type2) + (any/type #'csubtypep type1 (union-type-types type2))) (!define-type-method (union :complex-subtypep-arg2) (type1 type2) - (block punt-type-method - (values (any-type-op csubtypep type1 (union-type-types type2)) t))) - -(!define-type-method (union :complex-union) (type1 type2) - (let* ((class1 (type-class-info type1))) - (collect ((res)) - (let ((this-type type1)) - (dolist (type (union-type-types type2) - (if (res) - (make-union-type (cons this-type (res))) - this-type)) - (cond ((eq (type-class-info type) class1) - (let ((union (funcall (type-class-simple-union class1) - this-type type))) - (if union - (setq this-type union) - (res type)))) - ((csubtypep type this-type)) - ((csubtypep type1 type) (return type2)) - (t - (res type)))))))) - -;;; For the union of union types, we let the :COMPLEX-UNION method do -;;; the work. -(!define-type-method (union :simple-union) (type1 type2) - (let ((res type1)) - (dolist (t2 (union-type-types type2) res) - (setq res (type-union res t2))))) - -(!define-type-method (union :simple-intersection :complex-intersection) - (type1 type2) - (let ((res *empty-type*) - (win t)) - (dolist (type (union-type-types type2) (values res win)) - (multiple-value-bind (int w) (type-intersection type1 type) - (setq res (type-union res int)) - (unless w (setq win nil)))))) - -(!def-type-translator or (&rest types) - (reduce #'type-union - (mapcar #'specifier-type types) - :initial-value *empty-type*)) - -;;; We don't actually have intersection types, since the result of -;;; reasonable type intersections is always describable as a union of -;;; simple types. If something is too hairy to fit this mold, then we -;;; make a hairy type. -(!def-type-translator and (&whole spec &rest types) - (let ((res *wild-type*)) - (dolist (type types res) - (let ((ctype (specifier-type type))) - (multiple-value-bind (int win) (type-intersection res ctype) - (unless win - (return (make-hairy-type :specifier spec))) - (setq res int)))))) + (union-complex-subtypep-arg2 type1 type2)) + +(!define-type-method (union :simple-intersection2 :complex-intersection2) + (type1 type2) + ;; The CSUBTYPEP clauses here let us simplify e.g. + ;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST) + ;; (SPECIFIER-TYPE '(OR LIST VECTOR))) + ;; (where LIST is (OR CONS NULL)). + ;; + ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice + ;; versa, but it's important that we pre-expand them into + ;; specialized operations on individual elements of + ;; UNION-TYPE-TYPES, instead of using the ordinary call to + ;; CSUBTYPEP, in order to avoid possibly invoking any methods which + ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus + ;; cause infinite recursion. + (cond ((union-complex-subtypep-arg2 type1 type2) + type1) + ((union-complex-subtypep-arg1 type2 type1) + type2) + (t + ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2 + ;; operations in a particular order, and gives up if any of + ;; the sub-unions turn out not to be simple. In other cases + ;; ca. sbcl-0.6.11.15, that approach to taking a union was a + ;; bad idea, since it can overlook simplifications which + ;; might occur if the terms were accumulated in a different + ;; order. It's possible that that will be a problem here too. + ;; However, I can't think of a good example to demonstrate + ;; it, and without an example to demonstrate it I can't write + ;; test cases, and without test cases I don't want to + ;; complicate the code to address what's still a hypothetical + ;; problem. So I punted. -- WHN 2001-03-20 + (let ((accumulator *empty-type*)) + (dolist (t2 (union-type-types type2) accumulator) + (setf accumulator + (type-union2 accumulator + (type-intersection type1 t2))) + ;; When our result isn't simple any more (because + ;; TYPE-UNION2 was unable to give us a simple result) + (unless accumulator + (return nil))))))) + +(!def-type-translator or (&rest type-specifiers) + (apply #'type-union + (mapcar #'specifier-type + type-specifiers))) ;;;; CONS types @@ -1748,7 +2049,7 @@ ;;; Give up if a precise type is not possible, to avoid returning ;;; overly general types. -(!define-type-method (cons :simple-union) (type1 type2) +(!define-type-method (cons :simple-union2) (type1 type2) (declare (type cons-type type1 type2)) (let ((car-type1 (cons-type-car-type type1)) (car-type2 (cons-type-car-type type2)) @@ -1761,16 +2062,15 @@ (make-cons-type (type-union cdr-type1 cdr-type2) cdr-type1))))) -(!define-type-method (cons :simple-intersection) (type1 type2) +(!define-type-method (cons :simple-intersection2) (type1 type2) (declare (type cons-type type1 type2)) - (multiple-value-bind (int-car win-car) - (type-intersection (cons-type-car-type type1) - (cons-type-car-type type2)) - (multiple-value-bind (int-cdr win-cdr) - (type-intersection (cons-type-cdr-type type1) - (cons-type-cdr-type type2)) - (values (make-cons-type int-car int-cdr) - (and win-car win-cdr))))) + (let (car-int2 + cdr-int2) + (and (setf car-int2 (type-intersection2 (cons-type-car-type type1) + (cons-type-car-type type2))) + (setf cdr-int2 (type-intersection2 (cons-type-cdr-type type1) + (cons-type-cdr-type type2))) + (make-cons-type car-int2 cdr-int2)))) ;;; Return the type that describes all objects that are in X but not ;;; in Y. If we can't determine this type, then return NIL. @@ -1809,7 +2109,6 @@ (when val (return)) (when (types-intersect x-type y-type) (return-from type-difference nil)))))) - (let ((y-mem (find-if #'member-type-p y-types))) (when y-mem (let ((members (member-type-members y-mem))) @@ -1819,23 +2118,41 @@ (multiple-value-bind (val win) (ctypep member x-type) (when (or (not win) val) (return-from type-difference nil))))))))) - - (cond ((null (res)) *empty-type*) - ((null (rest (res))) (first (res))) - (t - (make-union-type (res))))))) + (apply #'type-union (res))))) (!def-type-translator array (&optional (element-type '*) - (dimensions '*)) + (dimensions '*)) (specialize-array-type (make-array-type :dimensions (canonical-array-dimensions dimensions) :element-type (specifier-type element-type)))) (!def-type-translator simple-array (&optional (element-type '*) - (dimensions '*)) + (dimensions '*)) (specialize-array-type (make-array-type :dimensions (canonical-array-dimensions dimensions) :element-type (specifier-type element-type) :complexp nil))) +;;;; utilities shared between cross-compiler and target system + +;;; This messy case of CTYPE for NUMBER is shared between the +;;; cross-compiler and the target system. +(defun ctype-of-number (x) + (let ((num (if (complexp x) (realpart x) x))) + (multiple-value-bind (complexp low high) + (if (complexp x) + (let ((imag (imagpart x))) + (values :complex (min num imag) (max num imag))) + (values :real num num)) + (make-numeric-type :class (etypecase num + (integer 'integer) + (rational 'rational) + (float 'float)) + :format (and (floatp num) (float-format-name num)) + :complexp complexp + :low low + :high high)))) + (!defun-from-collected-cold-init-forms !late-type-cold-init) + +(/show0 "late-type.lisp end of file")