X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcode%2Fnumbers.lisp;h=751b6f2c40b683405e58cafee738d9f762ff3ef3;hb=6cc71ab8ffad49f43895ad0a1df6885c81876687;hp=8e668dc57822cacfb7b4bcfabd71d1b3c72c7baa;hpb=56f96e77ade913d6363a3068c94e60f44ae9b3e7;p=sbcl.git diff --git a/src/code/numbers.lisp b/src/code/numbers.lisp index 8e668dc..751b6f2 100644 --- a/src/code/numbers.lisp +++ b/src/code/numbers.lisp @@ -211,10 +211,11 @@ ;;;; COMPLEXes -(defun upgraded-complex-part-type (spec) +(defun upgraded-complex-part-type (spec &optional environment) #!+sb-doc "Return the element type of the most specialized COMPLEX number type that can hold parts of type SPEC." + (declare (ignore environment)) (cond ((unknown-type-p (specifier-type spec)) (error "undefined type: ~S" spec)) ((subtypep spec 'single-float) @@ -411,7 +412,7 @@ (nd (if (eql t2 1) t3 (* t2 t3)))) (if (eql nd 1) nn (%make-ratio nn nd)))))))))))) -); Eval-When (Compile) +) ; EVAL-WHEN (two-arg-+/- two-arg-+ + add-bignums) (two-arg-+/- two-arg-- - subtract-bignum) @@ -577,7 +578,7 @@ (numerator divisor)))) (values q (- number (* q divisor))))) ((fixnum bignum) - (values 0 number)) + (bignum-truncate (make-small-bignum number) divisor)) ((ratio (or float rational)) (let ((q (truncate (numerator number) (* (denominator number) divisor)))) @@ -653,19 +654,21 @@ (if (eql divisor 1) (round number) (multiple-value-bind (tru rem) (truncate number divisor) - (let ((thresh (/ (abs divisor) 2))) - (cond ((or (> rem thresh) - (and (= rem thresh) (oddp tru))) - (if (minusp divisor) - (values (- tru 1) (+ rem divisor)) - (values (+ tru 1) (- rem divisor)))) - ((let ((-thresh (- thresh))) - (or (< rem -thresh) - (and (= rem -thresh) (oddp tru)))) - (if (minusp divisor) - (values (+ tru 1) (- rem divisor)) - (values (- tru 1) (+ rem divisor)))) - (t (values tru rem))))))) + (if (zerop rem) + (values tru rem) + (let ((thresh (/ (abs divisor) 2))) + (cond ((or (> rem thresh) + (and (= rem thresh) (oddp tru))) + (if (minusp divisor) + (values (- tru 1) (+ rem divisor)) + (values (+ tru 1) (- rem divisor)))) + ((let ((-thresh (- thresh))) + (or (< rem -thresh) + (and (= rem -thresh) (oddp tru)))) + (if (minusp divisor) + (values (+ tru 1) (- rem divisor)) + (values (- tru 1) (+ rem divisor)))) + (t (values tru rem)))))))) (defun rem (number divisor) #!+sb-doc @@ -685,19 +688,20 @@ (+ rem divisor) rem))) -(macrolet ((def (name op doc) - `(defun ,name (number &optional (divisor 1)) - ,doc - (multiple-value-bind (res rem) (,op number divisor) - (values (float res (if (floatp rem) rem 1.0)) rem))))) - (def ffloor floor - "Same as FLOOR, but returns first value as a float.") - (def fceiling ceiling - "Same as CEILING, but returns first value as a float." ) - (def ftruncate truncate - "Same as TRUNCATE, but returns first value as a float.") - (def fround round - "Same as ROUND, but returns first value as a float.")) +(defmacro !define-float-rounding-function (name op doc) + `(defun ,name (number &optional (divisor 1)) + ,doc + (multiple-value-bind (res rem) (,op number divisor) + (values (float res (if (floatp rem) rem 1.0)) rem)))) + +(!define-float-rounding-function ffloor floor + "Same as FLOOR, but returns first value as a float.") +(!define-float-rounding-function fceiling ceiling + "Same as CEILING, but returns first value as a float." ) +(!define-float-rounding-function ftruncate truncate + "Same as TRUNCATE, but returns first value as a float.") +(!define-float-rounding-function fround round + "Same as ROUND, but returns first value as a float.") ;;;; comparisons @@ -919,7 +923,8 @@ (declare (list integers)) (if integers (do ((result (pop integers) (logior result (pop integers)))) - ((null integers) result)) + ((null integers) result) + (declare (integer result))) 0)) (defun logxor (&rest integers) @@ -928,7 +933,8 @@ (declare (list integers)) (if integers (do ((result (pop integers) (logxor result (pop integers)))) - ((null integers) result)) + ((null integers) result) + (declare (integer result))) 0)) (defun logand (&rest integers) @@ -937,7 +943,8 @@ (declare (list integers)) (if integers (do ((result (pop integers) (logand result (pop integers)))) - ((null integers) result)) + ((null integers) result) + (declare (integer result))) -1)) (defun logeqv (&rest integers) @@ -946,7 +953,8 @@ (declare (list integers)) (if integers (do ((result (pop integers) (logeqv result (pop integers)))) - ((null integers) result)) + ((null integers) result) + (declare (integer result))) -1)) (defun lognand (integer1 integer2) @@ -1000,8 +1008,9 @@ if INTEGER is negative." (etypecase integer (fixnum - (logcount (truly-the (integer 0 #.(max most-positive-fixnum - (lognot most-negative-fixnum))) + (logcount (truly-the (integer 0 + #.(max sb!xc:most-positive-fixnum + (lognot sb!xc:most-negative-fixnum))) (if (minusp (truly-the fixnum integer)) (lognot (truly-the fixnum integer)) integer)))) @@ -1016,7 +1025,12 @@ (defun logbitp (index integer) #!+sb-doc "Predicate returns T if bit index of integer is a 1." - (logbitp index integer)) + (number-dispatch ((index integer) (integer integer)) + ((fixnum fixnum) (if (> index #.(- sb!vm:n-word-bits sb!vm:n-lowtag-bits)) + (minusp integer) + (not (zerop (logand integer (ash 1 index)))))) + ((fixnum bignum) (bignum-logbitp index integer)) + ((bignum (foreach fixnum bignum)) (minusp integer)))) (defun ash (integer count) #!+sb-doc @@ -1255,7 +1269,20 @@ (defun two-arg-lcm (n m) (declare (integer n m)) - (* (truncate (max n m) (gcd n m)) (min n m))) + (if (or (zerop n) (zerop m)) + 0 + ;; KLUDGE: I'm going to assume that it was written this way + ;; originally for a reason. However, this is a somewhat + ;; complicated way of writing the algorithm in the CLHS page for + ;; LCM, and I don't know why. To be investigated. -- CSR, + ;; 2003-09-11 + (let ((m (abs m)) + (n (abs n))) + (multiple-value-bind (max min) + (if (> m n) + (values m n) + (values n m)) + (* (truncate max (gcd n m)) min))))) ;;; Do the GCD of two integer arguments. With fixnum arguments, we use the ;;; binary GCD algorithm from Knuth's seminumerical algorithms (slightly @@ -1263,8 +1290,8 @@ ;;; of 0 before the dispatch so that the bignum code doesn't have to worry ;;; about "small bignum" zeros. (defun two-arg-gcd (u v) - (cond ((eql u 0) v) - ((eql v 0) u) + (cond ((eql u 0) (abs v)) + ((eql v 0) (abs u)) (t (number-dispatch ((u integer) (v integer)) ((fixnum fixnum) @@ -1330,3 +1357,30 @@ (def minusp "Is this real number strictly negative?") (def oddp "Is this integer odd?") (def evenp "Is this integer even?")) + +;;;; modular functions +#. +(collect ((forms)) + (flet ((definition (name lambda-list width pattern) + ;; We rely on (SUBTYPEP `(UNSIGNED-BYTE ,WIDTH) + ;; 'BIGNUM-ELEMENT-TYPE) + `(defun ,name ,lambda-list + (flet ((prepare-argument (x) + (declare (integer x)) + (etypecase x + ((unsigned-byte ,width) x) + (bignum-element-type (logand x ,pattern)) + (fixnum (logand x ,pattern)) + (bignum (logand (%bignum-ref x 0) ,pattern))))) + (,name ,@(loop for arg in lambda-list + collect `(prepare-argument ,arg))))))) + (loop for infos being each hash-value of sb!c::*modular-funs* + ;; FIXME: We need to process only "toplevel" functions + unless (eq infos :good) + do (loop for info in infos + for name = (sb!c::modular-fun-info-name info) + and width = (sb!c::modular-fun-info-width info) + and lambda-list = (sb!c::modular-fun-info-lambda-list info) + for pattern = (1- (ash 1 width)) + do (forms (definition name lambda-list width pattern))))) + `(progn ,@(forms)))