X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcode%2Fprint.lisp;h=018cf57f29c9eae3f5de04761994faf2bcbed2e3;hb=ad3beba970fab6e451a461c9f9b14faf4ef17718;hp=057df860ef44939d9a3fbc87d47f9fcd1667c483;hpb=069ca63d16c8de8742fc78b927dfa7b79a27c96d;p=sbcl.git diff --git a/src/code/print.lisp b/src/code/print.lisp index 057df86..018cf57 100644 --- a/src/code/print.lisp +++ b/src/code/print.lisp @@ -21,7 +21,7 @@ "If true, all objects will printed readably. If readable printing is impossible, an error will be signalled. This overrides the value of *PRINT-ESCAPE*.") -(defvar *print-escape* T +(defvar *print-escape* t #!+sb-doc "Should we print in a reasonably machine-readable way? (possibly overridden by *PRINT-READABLY*)") @@ -230,16 +230,11 @@ ;;; This produces the printed representation of an object as a string. ;;; The few ...-TO-STRING functions above call this. -(defvar *string-output-streams* ()) (defun stringify-object (object) - (let ((stream (if *string-output-streams* - (pop *string-output-streams*) - (make-string-output-stream)))) + (let ((stream (make-string-output-stream))) (setup-printer-state) (output-object object stream) - (prog1 - (get-output-stream-string stream) - (push stream *string-output-streams*)))) + (get-output-stream-string stream))) ;;;; support for the PRINT-UNREADABLE-OBJECT macro @@ -275,108 +270,6 @@ (write-char #\> stream)))) nil) -;;;; circularity detection stuff - -;;; When *PRINT-CIRCLE* is T, this gets bound to a hash table that -;;; (eventually) ends up with entries for every object printed. When -;;; we are initially looking for circularities, we enter a T when we -;;; find an object for the first time, and a 0 when we encounter an -;;; object a second time around. When we are actually printing, the 0 -;;; entries get changed to the actual marker value when they are first -;;; printed. -(defvar *circularity-hash-table* nil) - -;;; When NIL, we are just looking for circularities. After we have -;;; found them all, this gets bound to 0. Then whenever we need a new -;;; marker, it is incremented. -(defvar *circularity-counter* nil) - -;;; Check to see whether OBJECT is a circular reference, and return -;;; something non-NIL if it is. If ASSIGN is T, then the number to use -;;; in the #n= and #n# noise is assigned at this time. -;;; If ASSIGN is true, reference bookkeeping will only be done for -;;; existing entries, no new references will be recorded! -;;; -;;; Note: CHECK-FOR-CIRCULARITY must be called *exactly* once with -;;; ASSIGN true, or the circularity detection noise will get confused -;;; about when to use #n= and when to use #n#. If this returns non-NIL -;;; when ASSIGN is true, then you must call HANDLE-CIRCULARITY on it. -;;; If CHECK-FOR-CIRCULARITY returns :INITIATE as the second value, -;;; you need to initiate the circularity detection noise, e.g. bind -;;; *CIRCULARITY-HASH-TABLE* and *CIRCULARITY-COUNTER* to suitable values -;;; (see #'OUTPUT-OBJECT for an example). -(defun check-for-circularity (object &optional assign) - (cond ((null *print-circle*) - ;; Don't bother, nobody cares. - nil) - ((null *circularity-hash-table*) - (values nil :initiate)) - ((null *circularity-counter*) - (ecase (gethash object *circularity-hash-table*) - ((nil) - ;; first encounter - (setf (gethash object *circularity-hash-table*) t) - ;; We need to keep looking. - nil) - ((t) - ;; second encounter - (setf (gethash object *circularity-hash-table*) 0) - ;; It's a circular reference. - t) - (0 - ;; It's a circular reference. - t))) - (t - (let ((value (gethash object *circularity-hash-table*))) - (case value - ((nil t) - ;; If NIL, we found an object that wasn't there the - ;; first time around. If T, this object appears exactly - ;; once. Either way, just print the thing without any - ;; special processing. Note: you might argue that - ;; finding a new object means that something is broken, - ;; but this can happen. If someone uses the ~@<...~:> - ;; format directive, it conses a new list each time - ;; though format (i.e. the &REST list), so we will have - ;; different cdrs. - nil) - (0 - (if assign - (let ((value (incf *circularity-counter*))) - ;; first occurrence of this object: Set the counter. - (setf (gethash object *circularity-hash-table*) value) - value) - t)) - (t - ;; second or later occurrence - (- value))))))) - -;;; Handle the results of CHECK-FOR-CIRCULARITY. If this returns T then -;;; you should go ahead and print the object. If it returns NIL, then -;;; you should blow it off. -(defun handle-circularity (marker stream) - (case marker - (:initiate - ;; Someone forgot to initiate circularity detection. - (let ((*print-circle* nil)) - (error "trying to use CHECK-FOR-CIRCULARITY when ~ - circularity checking isn't initiated"))) - ((t) - ;; It's a second (or later) reference to the object while we are - ;; just looking. So don't bother groveling it again. - nil) - (t - (write-char #\# stream) - (let ((*print-base* 10) (*print-radix* nil)) - (cond ((minusp marker) - (output-integer (- marker) stream) - (write-char #\# stream) - nil) - (t - (output-integer marker stream) - (write-char #\= stream) - t)))))) - ;;;; OUTPUT-OBJECT -- the main entry point ;;; Objects whose print representation identifies them EQLly don't @@ -394,9 +287,8 @@ (sb!pretty:output-pretty-object object stream) (output-ugly-object object stream))) (check-it (stream) - (multiple-value-bind (marker initiate) - (check-for-circularity object t) - ;; initialization of the circulation detect noise ... + (multiple-value-bind (marker initiate) + (check-for-circularity object t) (if (eq initiate :initiate) (let ((*circularity-hash-table* (make-hash-table :test 'eq))) @@ -454,8 +346,6 @@ ;; As long as no one comes up with a non-obscure way of detecting this ;; sleaziness, fixing this nonconformity will probably have a low ;; priority. -- WHN 2001-11-25 - (fixnum - (output-integer object stream)) (list (if (null object) (output-symbol object stream) @@ -1082,115 +972,95 @@ ;;;; integer, ratio, and complex printing (i.e. everything but floats) +(defun %output-radix (base stream) + (write-char #\# stream) + (write-char (case base + (2 #\b) + (8 #\o) + (16 #\x) + (t (%output-fixnum-in-base base 10 stream) + #\r)) + stream)) + +(defun %output-fixnum-in-base (n base stream) + (multiple-value-bind (q r) + (truncate n base) + ;; Recurse until you have all the digits pushed on + ;; the stack. + (unless (zerop q) + (%output-fixnum-in-base q base stream)) + ;; Then as each recursive call unwinds, turn the + ;; digit (in remainder) into a character and output + ;; the character. + (write-char + (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r) + stream))) + +;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05 +(defun %output-bignum-in-base (n base stream) + (declare (type bignum n) (type fixnum base)) + (let ((power (make-array 10 :adjustable t :fill-pointer 0))) + ;; Here there be the bottleneck for big bignums, in the (* p p). + ;; A special purpose SQUARE-BIGNUM might help a bit. See eg: Dan + ;; Zuras, "On Squaring and Multiplying Large Integers", ARITH-11: + ;; IEEE Symposium on Computer Arithmetic, 1993, pp. 260 to 271. + ;; Reprinted as "More on Multiplying and Squaring Large Integers", + ;; IEEE Transactions on Computers, volume 43, number 8, August + ;; 1994, pp. 899-908. + (do ((p base (* p p))) + ((> p n)) + (vector-push-extend p power)) + ;; (aref power k) == (expt base (expt 2 k)) + (labels ((bisect (n k exactp) + (declare (fixnum k)) + ;; N is the number to bisect + ;; K on initial entry BASE^(2^K) > N + ;; EXACTP is true if 2^K is the exact number of digits + (cond ((zerop n) + (when exactp + (loop repeat (ash 1 k) do (write-char #\0 stream)))) + ((zerop k) + (write-char + (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n) + stream)) + (t + (setf k (1- k)) + (multiple-value-bind (q r) (truncate n (aref power k)) + ;; EXACTP is NIL only at the head of the + ;; initial number, as we don't know the number + ;; of digits there, but we do know that it + ;; doesn't get any leading zeros. + (bisect q k exactp) + (bisect r k (or exactp (plusp q)))))))) + (bisect n (fill-pointer power) nil)))) + +(defun %output-integer-in-base (integer base stream) + (when (minusp integer) + (write-char #\- stream) + (setf integer (- integer))) + (if (fixnump integer) + (%output-fixnum-in-base integer base stream) + (%output-bignum-in-base integer base stream))) + (defun output-integer (integer stream) - ;; FIXME: This UNLESS form should be pulled out into something like - ;; (SANE-PRINT-BASE), along the lines of (SANE-PACKAGE) for the - ;; *PACKAGE* variable. - (unless (and (fixnump *print-base*) - (< 1 *print-base* 37)) - (let ((obase *print-base*)) - (setq *print-base* 10.) - (error "~A is not a reasonable value for *PRINT-BASE*." obase))) - (when (and (not (= *print-base* 10.)) - *print-radix*) - ;; First print leading base information, if any. - (write-char #\# stream) - (write-char (case *print-base* - (2. #\b) - (8. #\o) - (16. #\x) - (T (let ((fixbase *print-base*) - (*print-base* 10.) - (*print-radix* ())) - (sub-output-integer fixbase stream)) - #\r)) - stream)) - ;; Then output a minus sign if the number is negative, then output - ;; the absolute value of the number. - (cond ((bignump integer) (print-bignum integer stream)) - ((< integer 0) - (write-char #\- stream) - (sub-output-integer (- integer) stream)) - (t - (sub-output-integer integer stream))) - ;; Print any trailing base information, if any. - (if (and (= *print-base* 10.) *print-radix*) - (write-char #\. stream))) - -(defun sub-output-integer (integer stream) - (let ((quotient ()) - (remainder ())) - ;; Recurse until you have all the digits pushed on the stack. - (if (not (zerop (multiple-value-setq (quotient remainder) - (truncate integer *print-base*)))) - (sub-output-integer quotient stream)) - ;; Then as each recursive call unwinds, turn the digit (in remainder) - ;; into a character and output the character. - (write-char (code-char (if (and (> remainder 9.) - (> *print-base* 10.)) - (+ (char-code #\A) (- remainder 10.)) - (+ (char-code #\0) remainder))) - stream))) - -;;;; bignum printing - -;;; *BASE-POWER* holds the number that we keep dividing into the -;;; bignum for each *print-base*. We want this number as close to -;;; *most-positive-fixnum* as possible, i.e. (floor (log -;;; most-positive-fixnum *print-base*)). -(defparameter *base-power* (make-array 37 :initial-element nil)) - -;;; *FIXNUM-POWER--1* holds the number of digits for each *PRINT-BASE* -;;; that fit in the corresponding *base-power*. -(defparameter *fixnum-power--1* (make-array 37 :initial-element nil)) - -;;; Print the bignum to the stream. We first generate the correct -;;; value for *base-power* and *fixnum-power--1* if we have not -;;; already. Then we call bignum-print-aux to do the printing. -(defun print-bignum (big stream) - (unless (aref *base-power* *print-base*) - (do ((power-1 -1 (1+ power-1)) - (new-divisor *print-base* (* new-divisor *print-base*)) - (divisor 1 new-divisor)) - ((not (fixnump new-divisor)) - (setf (aref *base-power* *print-base*) divisor) - (setf (aref *fixnum-power--1* *print-base*) power-1)))) - (bignum-print-aux (cond ((minusp big) - (write-char #\- stream) - (- big)) - (t big)) - (aref *base-power* *print-base*) - (aref *fixnum-power--1* *print-base*) - stream) - big) - -(defun bignum-print-aux (big divisor power-1 stream) - (multiple-value-bind (newbig fix) (truncate big divisor) - (if (fixnump newbig) - (sub-output-integer newbig stream) - (bignum-print-aux newbig divisor power-1 stream)) - (do ((zeros power-1 (1- zeros)) - (base-power *print-base* (* base-power *print-base*))) - ((> base-power fix) - (dotimes (i zeros) (write-char #\0 stream)) - (sub-output-integer fix stream))))) + (let ((base *print-base*)) + (when (and (/= base 10) *print-radix*) + (%output-radix base stream)) + (%output-integer-in-base integer base stream) + (when (and *print-radix* (= base 10)) + (write-char #\. stream)))) (defun output-ratio (ratio stream) - (when *print-radix* - (write-char #\# stream) - (case *print-base* - (2 (write-char #\b stream)) - (8 (write-char #\o stream)) - (16 (write-char #\x stream)) - (t (write *print-base* :stream stream :radix nil :base 10) - (write-char #\r stream)))) - (let ((*print-radix* nil)) - (output-integer (numerator ratio) stream) + (let ((base *print-base*)) + (when *print-radix* + (%output-radix base stream)) + (%output-integer-in-base (numerator ratio) base stream) (write-char #\/ stream) - (output-integer (denominator ratio) stream))) + (%output-integer-in-base (denominator ratio) base stream))) (defun output-complex (complex stream) (write-string "#C(" stream) + ;; FIXME: Could this just be OUTPUT-NUMBER? (output-object (realpart complex) stream) (write-char #\space stream) (output-object (imagpart complex) stream) @@ -1199,10 +1069,10 @@ ;;;; float printing ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does -;;; most of the work for all printing of floating point numbers in the -;;; printer and in FORMAT. It converts a floating point number to a -;;; string in a free or fixed format with no exponent. The -;;; interpretation of the arguments is as follows: +;;; most of the work for all printing of floating point numbers in +;;; FORMAT. It converts a floating point number to a string in a free +;;; or fixed format with no exponent. The interpretation of the +;;; arguments is as follows: ;;; ;;; X - The floating point number to convert, which must not be ;;; negative. @@ -1228,9 +1098,6 @@ ;;; significance in the printed value due to a bogus choice of ;;; scale factor. ;;; -;;; Most of the optional arguments are for the benefit for FORMAT and are not -;;; used by the printer. -;;; ;;; Returns: ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT) ;;; where the results have the following interpretation: @@ -1255,17 +1122,14 @@ ;;; representation. Furthermore, only as many digits as necessary to ;;; satisfy this condition will be printed. ;;; -;;; FLOAT-STRING actually generates the digits for positive numbers. -;;; The algorithm is essentially that of algorithm Dragon4 in "How to -;;; Print Floating-Point Numbers Accurately" by Steele and White. The -;;; current (draft) version of this paper may be found in -;;; [CMUC]tradix.press. DO NOT EVEN THINK OF ATTEMPTING TO -;;; UNDERSTAND THIS CODE WITHOUT READING THE PAPER! - -(declaim (type (simple-array character (10)) *digits*)) -(defvar *digits* "0123456789") +;;; FLOAT-DIGITS actually generates the digits for positive numbers; +;;; see below for comments. (defun flonum-to-string (x &optional width fdigits scale fmin) + (declare (type float x)) + ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with + ;; possibly-negative X. + (setf x (abs x)) (cond ((zerop x) ;; Zero is a special case which FLOAT-STRING cannot handle. (if fdigits @@ -1274,147 +1138,56 @@ (values s (length s) t (zerop fdigits) 0)) (values "." 1 t t 0))) (t - (multiple-value-bind (sig exp) (integer-decode-float x) - (let* ((precision (float-precision x)) - (digits (float-digits x)) - (fudge (- digits precision)) - (width (if width (max width 1) nil))) - (float-string (ash sig (- fudge)) (+ exp fudge) precision width - fdigits scale fmin)))))) - -(defun float-string (fraction exponent precision width fdigits scale fmin) - (let ((r fraction) (s 1) (m- 1) (m+ 1) (k 0) - (digits 0) (decpnt 0) (cutoff nil) (roundup nil) u low high - (digit-string (make-array 50 - :element-type 'base-char - :fill-pointer 0 - :adjustable t))) - ;; Represent fraction as r/s, error bounds as m+/s and m-/s. - ;; Rational arithmetic avoids loss of precision in subsequent - ;; calculations. - (cond ((> exponent 0) - (setq r (ash fraction exponent)) - (setq m- (ash 1 exponent)) - (setq m+ m-)) - ((< exponent 0) - (setq s (ash 1 (- exponent))))) - ;; Adjust the error bounds m+ and m- for unequal gaps. - (when (= fraction (ash 1 precision)) - (setq m+ (ash m+ 1)) - (setq r (ash r 1)) - (setq s (ash s 1))) - ;; Scale value by requested amount, and update error bounds. - (when scale - (if (minusp scale) - (let ((scale-factor (expt 10 (- scale)))) - (setq s (* s scale-factor))) - (let ((scale-factor (expt 10 scale))) - (setq r (* r scale-factor)) - (setq m+ (* m+ scale-factor)) - (setq m- (* m- scale-factor))))) - ;; Scale r and s and compute initial k, the base 10 logarithm of r. - (do () - ((>= r (ceiling s 10))) - (decf k) - (setq r (* r 10)) - (setq m- (* m- 10)) - (setq m+ (* m+ 10))) - (do ()(nil) - (do () - ((< (+ (ash r 1) m+) (ash s 1))) - (setq s (* s 10)) - (incf k)) - ;; Determine number of fraction digits to generate. - (cond (fdigits - ;; Use specified number of fraction digits. - (setq cutoff (- fdigits)) - ;;don't allow less than fmin fraction digits - (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin)))) - (width - ;; Use as many fraction digits as width will permit but - ;; force at least fmin digits even if width will be - ;; exceeded. - (if (< k 0) - (setq cutoff (- 1 width)) - (setq cutoff (1+ (- k width)))) - (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin))))) - ;; If we decided to cut off digit generation before precision - ;; has been exhausted, rounding the last digit may cause a carry - ;; propagation. We can prevent this, preserving left-to-right - ;; digit generation, with a few magical adjustments to m- and - ;; m+. Of course, correct rounding is also preserved. - (when (or fdigits width) - (let ((a (- cutoff k)) - (y s)) - (if (>= a 0) - (dotimes (i a) (setq y (* y 10))) - (dotimes (i (- a)) (setq y (ceiling y 10)))) - (setq m- (max y m-)) - (setq m+ (max y m+)) - (when (= m+ y) (setq roundup t)))) - (when (< (+ (ash r 1) m+) (ash s 1)) (return))) - ;; Zero-fill before fraction if no integer part. - (when (< k 0) - (setq decpnt digits) - (vector-push-extend #\. digit-string) - (dotimes (i (- k)) - (incf digits) (vector-push-extend #\0 digit-string))) - ;; Generate the significant digits. - (do ()(nil) - (decf k) - (when (= k -1) - (vector-push-extend #\. digit-string) - (setq decpnt digits)) - (multiple-value-setq (u r) (truncate (* r 10) s)) - (setq m- (* m- 10)) - (setq m+ (* m+ 10)) - (setq low (< (ash r 1) m-)) - (if roundup - (setq high (>= (ash r 1) (- (ash s 1) m+))) - (setq high (> (ash r 1) (- (ash s 1) m+)))) - ;; Stop when either precision is exhausted or we have printed as - ;; many fraction digits as permitted. - (when (or low high (and cutoff (<= k cutoff))) (return)) - (vector-push-extend (char *digits* u) digit-string) - (incf digits)) - ;; If cutoff occurred before first digit, then no digits are - ;; generated at all. - (when (or (not cutoff) (>= k cutoff)) - ;; Last digit may need rounding - (vector-push-extend (char *digits* - (cond ((and low (not high)) u) - ((and high (not low)) (1+ u)) - (t (if (<= (ash r 1) s) u (1+ u))))) - digit-string) - (incf digits)) - ;; Zero-fill after integer part if no fraction. - (when (>= k 0) - (dotimes (i k) (incf digits) (vector-push-extend #\0 digit-string)) - (vector-push-extend #\. digit-string) - (setq decpnt digits)) - ;; Add trailing zeroes to pad fraction if fdigits specified. - (when fdigits - (dotimes (i (- fdigits (- digits decpnt))) - (incf digits) - (vector-push-extend #\0 digit-string))) - ;; all done - (values digit-string (1+ digits) (= decpnt 0) (= decpnt digits) decpnt))) + (multiple-value-bind (e string) + (if fdigits + (flonum-to-digits x (min (- fdigits) (- (or fmin 0)))) + (if (and width (> width 1)) + (let ((w (multiple-value-list (flonum-to-digits x (1- width) t))) + (f (multiple-value-list (flonum-to-digits x (- (or fmin 0)))))) + (cond + ((>= (length (cadr w)) (length (cadr f))) + (values-list w)) + (t (values-list f)))) + (flonum-to-digits x))) + (let ((e (+ e (or scale 0))) + (stream (make-string-output-stream))) + (if (plusp e) + (progn + (write-string string stream :end (min (length string) e)) + (dotimes (i (- e (length string))) + (write-char #\0 stream)) + (write-char #\. stream) + (write-string string stream :start (min (length string) e)) + (when fdigits + (dotimes (i (- fdigits + (- (length string) + (min (length string) e)))) + (write-char #\0 stream)))) + (progn + (write-string "." stream) + (dotimes (i (- e)) + (write-char #\0 stream)) + (write-string string stream) + (when fdigits + (dotimes (i (+ fdigits e (- (length string)))) + (write-char #\0 stream))))) + (let ((string (get-output-stream-string stream))) + (values string (length string) + (char= (char string 0) #\.) + (char= (char string (1- (length string))) #\.) + (position #\. string)))))))) ;;; implementation of figure 1 from Burger and Dybvig, 1996. As the -;;; implementation of the Dragon from Classic CMUCL (and above, -;;; FLONUM-TO-STRING) says: "DO NOT EVEN THINK OF ATTEMPTING TO -;;; UNDERSTAND THIS CODE WITHOUT READING THE PAPER!", and in this case -;;; we have to add that even reading the paper might not bring -;;; immediate illumination as CSR has attempted to turn idiomatic -;;; Scheme into idiomatic Lisp. +;;; implementation of the Dragon from Classic CMUCL (and previously in +;;; SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN THINK OF +;;; ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE PAPER!", +;;; and in this case we have to add that even reading the paper might +;;; not bring immediate illumination as CSR has attempted to turn +;;; idiomatic Scheme into idiomatic Lisp. ;;; ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has -;;; an improved algorithm, but CSR ran out of energy -;;; -;;; FIXME: Burger and Dybvig also provide an algorithm for -;;; fixed-format floating point printing. If it were implemented, -;;; then we could delete the Dragon altogether (see FLONUM-TO-STRING). +;;; an improved algorithm, but CSR ran out of energy. ;;; ;;; possible extension for the enthusiastic: printing floats in bases ;;; other than base 10. @@ -1426,10 +1199,11 @@ (defconstant long-float-min-e (nth-value 1 (decode-float least-positive-long-float))) -(defun flonum-to-digits (v) +(defun flonum-to-digits (v &optional position relativep) (let ((print-base 10) ; B (float-radix 2) ; b (float-digits (float-digits v)) ; p + (digit-characters "0123456789") (min-e (etypecase v (single-float single-float-min-e) @@ -1454,7 +1228,8 @@ (m+ m+ (* m+ print-base)) (m- m- (* m- print-base))) ((not (or (< (* (+ r m+) print-base) s) - (and high-ok (= (* (+ r m+) print-base) s)))) + (and (not high-ok) + (= (* (+ r m+) print-base) s)))) (values k (generate r s m+ m-))))))) (generate (r s m+ m-) (let (d tc1 tc2) @@ -1468,7 +1243,7 @@ (and high-ok (= (+ r m+) s)))) (when (or tc1 tc2) (go end)) - (vector-push-extend (char *digits* d) result) + (vector-push-extend (char digit-characters d) result) (go loop) end (let ((d (cond @@ -1476,19 +1251,55 @@ ((and tc1 (not tc2)) d) (t ; (and tc1 tc2) (if (< (* r 2) s) d (1+ d)))))) - (vector-push-extend (char *digits* d) result) - (return-from generate result)))))) - (if (>= e 0) - (if (/= f (expt float-radix (1- float-digits))) - (let ((be (expt float-radix e))) - (scale (* f be 2) 2 be be)) - (let* ((be (expt float-radix e)) - (be1 (* be float-radix))) - (scale (* f be1 2) (* float-radix 2) be1 be))) - (if (or (= e min-e) (/= f (expt float-radix (1- float-digits)))) - (scale (* f 2) (* (expt float-radix (- e)) 2) 1 1) - (scale (* f float-radix 2) - (* (expt float-radix (- 1 e)) 2) float-radix 1)))))))) + (vector-push-extend (char digit-characters d) result) + (return-from generate result))))) + (initialize () + (let (r s m+ m-) + (if (>= e 0) + (let* ((be (expt float-radix e)) + (be1 (* be float-radix))) + (if (/= f (expt float-radix (1- float-digits))) + (setf r (* f be 2) + s 2 + m+ be + m- be) + (setf r (* f be1 2) + s (* float-radix 2) + m+ be1 + m- be))) + (if (or (= e min-e) + (/= f (expt float-radix (1- float-digits)))) + (setf r (* f 2) + s (* (expt float-radix (- e)) 2) + m+ 1 + m- 1) + (setf r (* f float-radix 2) + s (* (expt float-radix (- 1 e)) 2) + m+ float-radix + m- 1))) + (when position + (when relativep + (aver (> position 0)) + (do ((k 0 (1+ k)) + ;; running out of letters here + (l 1 (* l print-base))) + ((>= (* s l) (+ r m+)) + ;; k is now \hat{k} + (if (< (+ r (* s (/ (expt print-base (- k position)) 2))) + (* s (expt print-base k))) + (setf position (- k position)) + (setf position (- k position 1)))))) + (let ((low (max m- (/ (* s (expt print-base position)) 2))) + (high (max m+ (/ (* s (expt print-base position)) 2)))) + (when (<= m- low) + (setf m- low) + (setf low-ok t)) + (when (<= m+ high) + (setf m+ high) + (setf high-ok t)))) + (values r s m+ m-)))) + (multiple-value-bind (r s m+ m-) (initialize) + (scale r s m+ m-))))))) ;;; Given a non-negative floating point number, SCALE-EXPONENT returns ;;; a new floating point number Z in the range (0.1, 1.0] and an @@ -1711,23 +1522,15 @@ nil) (defun output-fun (object stream) - (let* ((*print-length* 3) ; in case we have to.. - (*print-level* 3) ; ..print an interpreted function definition - ;; FIXME: This find-the-function-name idiom ought to be - ;; encapsulated in a function somewhere. - (name (case (fun-subtype object) - (#.sb!vm:closure-header-widetag "CLOSURE") - (#.sb!vm:simple-fun-header-widetag (%simple-fun-name object)) - (t 'no-name-available))) - (identified-by-name-p (and (symbolp name) - (fboundp name) - (eq (fdefinition name) object)))) - (print-unreadable-object (object - stream - :identity (not identified-by-name-p)) - (prin1 'function stream) - (unless (eq name 'no-name-available) - (format stream " ~S" name))))) + (let* ((*print-length* 3) ; in case we have to.. + (*print-level* 3) ; ..print an interpreted function definition + (name (%fun-name object)) + (proper-name-p (and (legal-fun-name-p name) (fboundp name) + (eq (fdefinition name) object)))) + (print-unreadable-object (object stream :identity (not proper-name-p)) + (format stream "~:[FUNCTION~;CLOSURE~]~@[ ~S~]" + (closurep object) + name)))) ;;;; catch-all for unknown things