X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Farray-tran.lisp;h=340ce5313b62b093f5e305cea7c7cba65929283e;hb=e4c6f7338e2ca63cef6f82fbd8f88bc9264c292e;hp=ee40d894c23ab2bc934d30ef545eaffdb517a6c5;hpb=dccd283c6fedf7fe61d2d2bede328a6b7d92f7be;p=sbcl.git diff --git a/src/compiler/array-tran.lisp b/src/compiler/array-tran.lisp index ee40d89..340ce53 100644 --- a/src/compiler/array-tran.lisp +++ b/src/compiler/array-tran.lisp @@ -24,8 +24,11 @@ "upgraded array element type not known at compile time") element-type-specifier))) -;;; Array access functions return an object from the array, hence its -;;; type is going to be the array upgraded element type. +;;; Array access functions return an object from the array, hence its type is +;;; going to be the array upgraded element type. Secondary return value is the +;;; known supertype of the upgraded-array-element-type, if if the exact +;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good +;;; as it gets.) (defun extract-upgraded-element-type (array) (let ((type (lvar-type array))) (cond @@ -34,27 +37,28 @@ ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE), ;; which are represented in the compiler as INTERSECTION-TYPE, not ;; array type. - ((array-type-p type) (array-type-specialized-element-type type)) - ;; fix for bug #396. This type logic corresponds to the special - ;; case for strings in HAIRY-DATA-VECTOR-REF - ;; (generic/vm-tran.lisp) - ((csubtypep type (specifier-type 'simple-string)) + ((array-type-p type) + (values (array-type-specialized-element-type type) nil)) + ;; fix for bug #396. This type logic corresponds to the special case for + ;; strings in HAIRY-DATA-VECTOR-REF (generic/vm-tran.lisp) + ((csubtypep type (specifier-type 'string)) (cond - ((csubtypep type (specifier-type '(simple-array character (*)))) - (specifier-type 'character)) + ((csubtypep type (specifier-type '(array character (*)))) + (values (specifier-type 'character) nil)) #!+sb-unicode - ((csubtypep type (specifier-type '(simple-array base-char (*)))) - (specifier-type 'base-char)) - ((csubtypep type (specifier-type '(simple-array nil (*)))) - *empty-type*) - ;; see KLUDGE below. - (t *wild-type*))) + ((csubtypep type (specifier-type '(array base-char (*)))) + (values (specifier-type 'base-char) nil)) + ((csubtypep type (specifier-type '(array nil (*)))) + (values *empty-type* nil)) + (t + ;; See KLUDGE below. + (values *wild-type* (specifier-type 'character))))) (t ;; KLUDGE: there is no good answer here, but at least ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR, ;; 2002-08-21 - *wild-type*)))) + (values *wild-type* nil))))) (defun extract-declared-element-type (array) (let ((type (lvar-type array))) @@ -100,44 +104,64 @@ (specifier-type `(array * ,(make-list rank :initial-element '*))) (lexenv-policy (node-lexenv (lvar-dest array))))) +(defun derive-aref-type (array) + (multiple-value-bind (uaet other) (extract-upgraded-element-type array) + (or other uaet))) + (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices)) (assert-array-rank array (length indices)) *universal-type*) (defoptimizer (aref derive-type) ((array &rest indices) node) (assert-array-rank array (length indices)) - (extract-upgraded-element-type array)) + (derive-aref-type array)) (defoptimizer (%aset derive-type) ((array &rest stuff)) (assert-array-rank array (1- (length stuff))) (assert-new-value-type (car (last stuff)) array)) -(defoptimizer (hairy-data-vector-ref derive-type) ((array index)) - (extract-upgraded-element-type array)) -(defoptimizer (data-vector-ref derive-type) ((array index)) - (extract-upgraded-element-type array)) +(macrolet ((define (name) + `(defoptimizer (,name derive-type) ((array index)) + (derive-aref-type array)))) + (define hairy-data-vector-ref) + (define hairy-data-vector-ref/check-bounds) + (define data-vector-ref)) -(defoptimizer (data-vector-set derive-type) ((array index new-value)) - (assert-new-value-type new-value array)) -(defoptimizer (hairy-data-vector-set derive-type) ((array index new-value)) +#!+(or x86 x86-64) +(defoptimizer (data-vector-ref-with-offset derive-type) ((array index offset)) + (derive-aref-type array)) + +(macrolet ((define (name) + `(defoptimizer (,name derive-type) ((array index new-value)) + (assert-new-value-type new-value array)))) + (define hairy-data-vector-set) + (define hairy-data-vector-set/check-bounds) + (define data-vector-set)) + +#!+(or x86 x86-64) +(defoptimizer (data-vector-set-with-offset derive-type) ((array index offset new-value)) (assert-new-value-type new-value array)) ;;; Figure out the type of the data vector if we know the argument ;;; element type. -(defoptimizer (%with-array-data derive-type) ((array start end)) +(defun derive-%with-array-data/mumble-type (array) (let ((atype (lvar-type array))) (when (array-type-p atype) (specifier-type `(simple-array ,(type-specifier - (array-type-specialized-element-type atype)) - (*)))))) + (array-type-specialized-element-type atype)) + (*)))))) +(defoptimizer (%with-array-data derive-type) ((array start end)) + (derive-%with-array-data/mumble-type array)) +(defoptimizer (%with-array-data/fp derive-type) ((array start end)) + (derive-%with-array-data/mumble-type array)) (defoptimizer (array-row-major-index derive-type) ((array &rest indices)) (assert-array-rank array (length indices)) *universal-type*) (defoptimizer (row-major-aref derive-type) ((array index)) - (extract-upgraded-element-type array)) + (derive-aref-type array)) (defoptimizer (%set-row-major-aref derive-type) ((array index new-value)) (assert-new-value-type new-value array)) @@ -193,20 +217,9 @@ ;;;; constructors -;;; Convert VECTOR into a MAKE-ARRAY followed by SETFs of all the -;;; elements. +;;; Convert VECTOR into a MAKE-ARRAY. (define-source-transform vector (&rest elements) - (let ((len (length elements)) - (n -1)) - (once-only ((n-vec `(make-array ,len))) - `(progn - ,@(mapcar (lambda (el) - (once-only ((n-val el)) - `(locally (declare (optimize (safety 0))) - (setf (svref ,n-vec ,(incf n)) - ,n-val)))) - elements) - ,n-vec)))) + `(make-array ,(length elements) :initial-contents (list ,@elements))) ;;; Just convert it into a MAKE-ARRAY. (deftransform make-string ((length &key @@ -218,6 +231,249 @@ ,@(when initial-element '(:initial-element initial-element))))) +;;; Prevent open coding DIMENSION and :INITIAL-CONTENTS arguments, +;;; so that we can pick them apart. +(define-source-transform make-array (&whole form dimensions &rest keyargs + &environment env) + (if (and (fun-lexically-notinline-p 'list) + (fun-lexically-notinline-p 'vector)) + (values nil t) + `(locally (declare (notinline list vector)) + ;; Transform '(3) style dimensions to integer args directly. + ,(if (sb!xc:constantp dimensions env) + (let ((dims (constant-form-value dimensions env))) + (if (and (listp dims) (= 1 (length dims))) + `(make-array ',(car dims) ,@keyargs) + form)) + form)))) + +;;; This baby is a bit of a monster, but it takes care of any MAKE-ARRAY +;;; call which creates a vector with a known element type -- and tries +;;; to do a good job with all the different ways it can happen. +(defun transform-make-array-vector (length element-type initial-element + initial-contents call) + (aver (or (not element-type) (constant-lvar-p element-type))) + (let* ((c-length (when (constant-lvar-p length) + (lvar-value length))) + (elt-spec (if element-type + (lvar-value element-type) + t)) + (elt-ctype (ir1-transform-specifier-type elt-spec)) + (saetp (if (unknown-type-p elt-ctype) + (give-up-ir1-transform "~S is an unknown type: ~S" + :element-type elt-spec) + (find-saetp-by-ctype elt-ctype))) + (default-initial-element (sb!vm:saetp-initial-element-default saetp)) + (n-bits (sb!vm:saetp-n-bits saetp)) + (typecode (sb!vm:saetp-typecode saetp)) + (n-pad-elements (sb!vm:saetp-n-pad-elements saetp)) + (n-words-form + (if c-length + (ceiling (* (+ c-length n-pad-elements) n-bits) + sb!vm:n-word-bits) + (let ((padded-length-form (if (zerop n-pad-elements) + 'length + `(+ length ,n-pad-elements)))) + (cond + ((= n-bits 0) 0) + ((>= n-bits sb!vm:n-word-bits) + `(* ,padded-length-form + ;; i.e., not RATIO + ,(the fixnum (/ n-bits sb!vm:n-word-bits)))) + (t + (let ((n-elements-per-word (/ sb!vm:n-word-bits n-bits))) + (declare (type index n-elements-per-word)) ; i.e., not RATIO + `(ceiling ,padded-length-form ,n-elements-per-word))))))) + (result-spec + `(simple-array ,(sb!vm:saetp-specifier saetp) (,(or c-length '*)))) + (alloc-form + `(truly-the ,result-spec + (allocate-vector ,typecode (the index length) ,n-words-form)))) + (cond ((and initial-element initial-contents) + (abort-ir1-transform "Both ~S and ~S specified." + :initial-contents :initial-element)) + ;; :INITIAL-CONTENTS (LIST ...), (VECTOR ...) and `(1 1 ,x) with a + ;; constant LENGTH. + ((and initial-contents c-length + (lvar-matches initial-contents + :fun-names '(list vector sb!impl::backq-list) + :arg-count c-length)) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-contents initial-contents)))) + (elt-vars (make-gensym-list c-length)) + (lambda-list '(length))) + (splice-fun-args initial-contents :any c-length) + (dolist (p parameters) + (setf lambda-list + (append lambda-list + (if (eq p 'initial-contents) + elt-vars + (list p))))) + `(lambda ,lambda-list + (declare (type ,elt-spec ,@elt-vars) + (ignorable ,@lambda-list)) + (truly-the ,result-spec + (initialize-vector ,alloc-form ,@elt-vars))))) + ;; constant :INITIAL-CONTENTS and LENGTH + ((and initial-contents c-length (constant-lvar-p initial-contents)) + (let ((contents (lvar-value initial-contents))) + (unless (= c-length (length contents)) + (abort-ir1-transform "~S has ~S elements, vector length is ~S." + :initial-contents (length contents) c-length)) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-contents initial-contents))))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + (truly-the ,result-spec + (initialize-vector ,alloc-form + ,@(map 'list (lambda (elt) + `(the ,elt-spec ,elt)) + contents))))))) + ;; any other :INITIAL-CONTENTS + (initial-contents + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-contents initial-contents))))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + (unless (= length (length initial-contents)) + (error "~S has ~S elements, vector length is ~S." + :initial-contents (length initial-contents) length)) + (truly-the ,result-spec + (replace ,alloc-form initial-contents))))) + ;; :INITIAL-ELEMENT, not EQL to the default + ((and initial-element + (or (not (constant-lvar-p initial-element)) + (not (eql default-initial-element (lvar-value initial-element))))) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-element initial-element)))) + (init (if (constant-lvar-p initial-element) + (lvar-value initial-element) + 'initial-element))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + (truly-the ,result-spec + (fill ,alloc-form (the ,elt-spec ,init)))))) + ;; just :ELEMENT-TYPE, or maybe with :INITIAL-ELEMENT EQL to the + ;; default + (t + #-sb-xc-host + (unless (ctypep default-initial-element elt-ctype) + ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE + ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If + ;; INITIAL-ELEMENT is not supplied, the consequences of later + ;; reading an uninitialized element of new-array are undefined," + ;; so this could be legal code as long as the user plans to + ;; write before he reads, and if he doesn't we're free to do + ;; anything we like. But in case the user doesn't know to write + ;; elements before he reads elements (or to read manuals before + ;; he writes code:-), we'll signal a STYLE-WARNING in case he + ;; didn't realize this. + (if initial-element + (compiler-warn "~S ~S is not a ~S" + :initial-element default-initial-element + elt-spec) + (compiler-style-warn "The default initial element ~S is not a ~S." + default-initial-element + elt-spec))) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type))))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + ,alloc-form)))))) + +(deftransform make-array ((dims &key + element-type initial-element initial-contents) + (integer &key + (:element-type (constant-arg *)) + (:initial-element *) + (:initial-contents *)) + * + :node call) + (transform-make-array-vector dims + element-type + initial-element + initial-contents + call)) + +;;; The list type restriction does not ensure that the result will be a +;;; multi-dimensional array. But the lack of adjustable, fill-pointer, +;;; and displaced-to keywords ensures that it will be simple. +;;; +;;; FIXME: should we generalize this transform to non-simple (though +;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to +;;; deal with those? Maybe when the DEFTRANSFORM +;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? -- +;;; CSR, 2002-07-01 +(deftransform make-array ((dims &key + element-type initial-element initial-contents) + (list &key + (:element-type (constant-arg *)) + (:initial-element *) + (:initial-contents *)) + * + :node call) + (block make-array + (when (lvar-matches dims :fun-names '(list) :arg-count 1) + (let ((length (car (splice-fun-args dims :any 1)))) + (return-from make-array + (transform-make-array-vector length + element-type + initial-element + initial-contents + call)))) + (unless (constant-lvar-p dims) + (give-up-ir1-transform + "The dimension list is not constant; cannot open code array creation.")) + (let ((dims (lvar-value dims))) + (unless (every #'integerp dims) + (give-up-ir1-transform + "The dimension list contains something other than an integer: ~S" + dims)) + (if (= (length dims) 1) + `(make-array ',(car dims) + ,@(when element-type + '(:element-type element-type)) + ,@(when initial-element + '(:initial-element initial-element)) + ,@(when initial-contents + '(:initial-contents initial-contents))) + (let* ((total-size (reduce #'* dims)) + (rank (length dims)) + (spec `(simple-array + ,(cond ((null element-type) t) + ((and (constant-lvar-p element-type) + (ir1-transform-specifier-type + (lvar-value element-type))) + (sb!xc:upgraded-array-element-type + (lvar-value element-type))) + (t '*)) + ,(make-list rank :initial-element '*)))) + `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank)) + (data (make-array ,total-size + ,@(when element-type + '(:element-type element-type)) + ,@(when initial-element + '(:initial-element initial-element))))) + ,@(when initial-contents + ;; FIXME: This is could be open coded at least a bit too + `((sb!impl::fill-data-vector data ',dims initial-contents))) + (setf (%array-fill-pointer header) ,total-size) + (setf (%array-fill-pointer-p header) nil) + (setf (%array-available-elements header) ,total-size) + (setf (%array-data-vector header) data) + (setf (%array-displaced-p header) nil) + (setf (%array-displaced-from header) nil) + ,@(let ((axis -1)) + (mapcar (lambda (dim) + `(setf (%array-dimension header ,(incf axis)) + ,dim)) + dims)) + (truly-the ,spec header))))))) + (deftransform make-array ((dims &key initial-element element-type adjustable fill-pointer) (t &rest *)) @@ -274,129 +530,8 @@ `(let ((array ,creation-form)) (multiple-value-bind (vector) (%data-vector-and-index array 0) - (fill vector initial-element)) + (fill vector (the ,(sb!vm:saetp-specifier saetp) initial-element))) array))))) - -;;; The integer type restriction on the length ensures that it will be -;;; a vector. The lack of :ADJUSTABLE, :FILL-POINTER, and -;;; :DISPLACED-TO keywords ensures that it will be simple; the lack of -;;; :INITIAL-ELEMENT relies on another transform to deal with that -;;; kind of initialization efficiently. -(deftransform make-array ((length &key element-type) - (integer &rest *)) - (let* ((eltype (cond ((not element-type) t) - ((not (constant-lvar-p element-type)) - (give-up-ir1-transform - "ELEMENT-TYPE is not constant.")) - (t - (lvar-value element-type)))) - (len (if (constant-lvar-p length) - (lvar-value length) - '*)) - (eltype-type (ir1-transform-specifier-type eltype)) - (result-type-spec - `(simple-array - ,(if (unknown-type-p eltype-type) - (give-up-ir1-transform - "ELEMENT-TYPE is an unknown type: ~S" eltype) - (sb!xc:upgraded-array-element-type eltype)) - (,len))) - (saetp (find-if (lambda (saetp) - (csubtypep eltype-type (sb!vm:saetp-ctype saetp))) - sb!vm:*specialized-array-element-type-properties*))) - (unless saetp - (give-up-ir1-transform - "cannot open-code creation of ~S" result-type-spec)) - #-sb-xc-host - (unless (ctypep (sb!vm:saetp-initial-element-default saetp) eltype-type) - ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE - ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If - ;; INITIAL-ELEMENT is not supplied, the consequences of later - ;; reading an uninitialized element of new-array are undefined," - ;; so this could be legal code as long as the user plans to - ;; write before he reads, and if he doesn't we're free to do - ;; anything we like. But in case the user doesn't know to write - ;; elements before he reads elements (or to read manuals before - ;; he writes code:-), we'll signal a STYLE-WARNING in case he - ;; didn't realize this. - (compiler-style-warn "The default initial element ~S is not a ~S." - (sb!vm:saetp-initial-element-default saetp) - eltype)) - (let* ((n-bits-per-element (sb!vm:saetp-n-bits saetp)) - (typecode (sb!vm:saetp-typecode saetp)) - (n-pad-elements (sb!vm:saetp-n-pad-elements saetp)) - (padded-length-form (if (zerop n-pad-elements) - 'length - `(+ length ,n-pad-elements))) - (n-words-form - (cond - ((= n-bits-per-element 0) 0) - ((>= n-bits-per-element sb!vm:n-word-bits) - `(* ,padded-length-form - (the fixnum ; i.e., not RATIO - ,(/ n-bits-per-element sb!vm:n-word-bits)))) - (t - (let ((n-elements-per-word (/ sb!vm:n-word-bits - n-bits-per-element))) - (declare (type index n-elements-per-word)) ; i.e., not RATIO - `(ceiling ,padded-length-form ,n-elements-per-word)))))) - (values - `(truly-the ,result-type-spec - (allocate-vector ,typecode length ,n-words-form)) - '((declare (type index length))))))) - -;;; The list type restriction does not ensure that the result will be a -;;; multi-dimensional array. But the lack of adjustable, fill-pointer, -;;; and displaced-to keywords ensures that it will be simple. -;;; -;;; FIXME: should we generalize this transform to non-simple (though -;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to -;;; deal with those? Maybe when the DEFTRANSFORM -;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? -- -;;; CSR, 2002-07-01 -(deftransform make-array ((dims &key element-type) - (list &rest *)) - (unless (or (null element-type) (constant-lvar-p element-type)) - (give-up-ir1-transform - "The element-type is not constant; cannot open code array creation.")) - (unless (constant-lvar-p dims) - (give-up-ir1-transform - "The dimension list is not constant; cannot open code array creation.")) - (let ((dims (lvar-value dims))) - (unless (every #'integerp dims) - (give-up-ir1-transform - "The dimension list contains something other than an integer: ~S" - dims)) - (if (= (length dims) 1) - `(make-array ',(car dims) - ,@(when element-type - '(:element-type element-type))) - (let* ((total-size (reduce #'* dims)) - (rank (length dims)) - (spec `(simple-array - ,(cond ((null element-type) t) - ((and (constant-lvar-p element-type) - (ir1-transform-specifier-type - (lvar-value element-type))) - (sb!xc:upgraded-array-element-type - (lvar-value element-type))) - (t '*)) - ,(make-list rank :initial-element '*)))) - `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank))) - (setf (%array-fill-pointer header) ,total-size) - (setf (%array-fill-pointer-p header) nil) - (setf (%array-available-elements header) ,total-size) - (setf (%array-data-vector header) - (make-array ,total-size - ,@(when element-type - '(:element-type element-type)))) - (setf (%array-displaced-p header) nil) - ,@(let ((axis -1)) - (mapcar (lambda (dim) - `(setf (%array-dimension header ,(incf axis)) - ,dim)) - dims)) - (truly-the ,spec header)))))) ;;;; miscellaneous properties of arrays @@ -438,11 +573,14 @@ (deftransform array-rank ((array)) (let ((array-type (lvar-type array))) (let ((dims (array-type-dimensions-or-give-up array-type))) - (if (not (listp dims)) - (give-up-ir1-transform - "The array rank is not known at compile time: ~S" - dims) - (length dims))))) + (cond ((listp dims) + (length dims)) + ((eq t (array-type-complexp array-type)) + '(%array-rank array)) + (t + `(if (array-header-p array) + (%array-rank array) + 1)))))) ;;; If we know the dimensions at compile time, just use it. Otherwise, ;;; if we can tell that the axis is in bounds, convert to @@ -452,7 +590,9 @@ (array index)) (unless (constant-lvar-p axis) (give-up-ir1-transform "The axis is not constant.")) - (let ((array-type (lvar-type array)) + ;; Dimensions may change thanks to ADJUST-ARRAY, so we need the + ;; conservative type. + (let ((array-type (lvar-conservative-type array)) (axis (lvar-value axis))) (let ((dims (array-type-dimensions-or-give-up array-type))) (unless (listp dims) @@ -470,10 +610,11 @@ ((t) '(%array-dimension array 0)) ((nil) - '(length array)) + '(vector-length array)) ((:maybe) - (give-up-ir1-transform - "can't tell whether array is simple")))) + `(if (array-header-p array) + (%array-dimension array axis) + (vector-length array))))) (t '(%array-dimension array axis))))))) @@ -549,6 +690,7 @@ (give-up-ir1-transform)) (t (let ((dim (lvar-value dimension))) + ;; FIXME: Can SPEED > SAFETY weaken this check to INTEGER? `(the (integer 0 (,dim)) index))))) ;;;; WITH-ARRAY-DATA @@ -578,29 +720,39 @@ (def!macro with-array-data (((data-var array &key offset-var) (start-var &optional (svalue 0)) (end-var &optional (evalue nil)) - &key force-inline) - &body forms) + &key force-inline check-fill-pointer) + &body forms + &environment env) (once-only ((n-array array) (n-svalue `(the index ,svalue)) (n-evalue `(the (or index null) ,evalue))) - `(multiple-value-bind (,data-var - ,start-var - ,end-var - ,@(when offset-var `(,offset-var))) - (if (not (array-header-p ,n-array)) - (let ((,n-array ,n-array)) - (declare (type (simple-array * (*)) ,n-array)) - ,(once-only ((n-len `(length ,n-array)) - (n-end `(or ,n-evalue ,n-len))) - `(if (<= ,n-svalue ,n-end ,n-len) - ;; success - (values ,n-array ,n-svalue ,n-end 0) - (failed-%with-array-data ,n-array - ,n-svalue - ,n-evalue)))) - (,(if force-inline '%with-array-data-macro '%with-array-data) - ,n-array ,n-svalue ,n-evalue)) - ,@forms))) + (let ((check-bounds (policy env (plusp insert-array-bounds-checks)))) + `(multiple-value-bind (,data-var + ,start-var + ,end-var + ,@(when offset-var `(,offset-var))) + (if (not (array-header-p ,n-array)) + (let ((,n-array ,n-array)) + (declare (type (simple-array * (*)) ,n-array)) + ,(once-only ((n-len (if check-fill-pointer + `(length ,n-array) + `(array-total-size ,n-array))) + (n-end `(or ,n-evalue ,n-len))) + (if check-bounds + `(if (<= 0 ,n-svalue ,n-end ,n-len) + (values ,n-array ,n-svalue ,n-end 0) + ,(if check-fill-pointer + `(sequence-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue) + `(array-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue))) + `(values ,n-array ,n-svalue ,n-end 0)))) + ,(if force-inline + `(%with-array-data-macro ,n-array ,n-svalue ,n-evalue + :check-bounds ,check-bounds + :check-fill-pointer ,check-fill-pointer) + (if check-fill-pointer + `(%with-array-data/fp ,n-array ,n-svalue ,n-evalue) + `(%with-array-data ,n-array ,n-svalue ,n-evalue)))) + ,@forms)))) ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in ;;; DEFTRANSFORMs and DEFUNs. @@ -609,30 +761,18 @@ end &key (element-type '*) - unsafe? - fail-inline?) + check-bounds + check-fill-pointer) (with-unique-names (size defaulted-end data cumulative-offset) - `(let* ((,size (array-total-size ,array)) - (,defaulted-end - (cond (,end - (unless (or ,unsafe? (<= ,end ,size)) - ,(if fail-inline? - `(error 'bounding-indices-bad-error - :datum (cons ,start ,end) - :expected-type `(cons (integer 0 ,',size) - (integer ,',start ,',size)) - :object ,array) - `(failed-%with-array-data ,array ,start ,end))) - ,end) - (t ,size)))) - (unless (or ,unsafe? (<= ,start ,defaulted-end)) - ,(if fail-inline? - `(error 'bounding-indices-bad-error - :datum (cons ,start ,end) - :expected-type `(cons (integer 0 ,',size) - (integer ,',start ,',size)) - :object ,array) - `(failed-%with-array-data ,array ,start ,end))) + `(let* ((,size ,(if check-fill-pointer + `(length ,array) + `(array-total-size ,array))) + (,defaulted-end (or ,end ,size))) + ,@(when check-bounds + `((unless (<= ,start ,defaulted-end ,size) + ,(if check-fill-pointer + `(sequence-bounding-indices-bad-error ,array ,start ,end) + `(array-bounding-indices-bad-error ,array ,start ,end))))) (do ((,data ,array (%array-data-vector ,data)) (,cumulative-offset 0 (+ ,cumulative-offset @@ -644,21 +784,54 @@ (the index ,cumulative-offset))) (declare (type index ,cumulative-offset)))))) +(defun transform-%with-array-data/muble (array node check-fill-pointer) + (let ((element-type (upgraded-element-type-specifier-or-give-up array)) + (type (lvar-type array)) + (check-bounds (policy node (plusp insert-array-bounds-checks)))) + (if (and (array-type-p type) + (not (array-type-complexp type)) + (listp (array-type-dimensions type)) + (not (null (cdr (array-type-dimensions type))))) + ;; If it's a simple multidimensional array, then just return + ;; its data vector directly rather than going through + ;; %WITH-ARRAY-DATA-MACRO. SBCL doesn't generally generate + ;; code that would use this currently, but we have encouraged + ;; users to use WITH-ARRAY-DATA and we may use it ourselves at + ;; some point in the future for optimized libraries or + ;; similar. + (if check-bounds + `(let* ((data (truly-the (simple-array ,element-type (*)) + (%array-data-vector array))) + (len (length data)) + (real-end (or end len))) + (unless (<= 0 start data-end lend) + (sequence-bounding-indices-bad-error array start end)) + (values data 0 real-end 0)) + `(let ((data (truly-the (simple-array ,element-type (*)) + (%array-data-vector array)))) + (values data 0 (or end (length data)) 0))) + `(%with-array-data-macro array start end + :check-fill-pointer ,check-fill-pointer + :check-bounds ,check-bounds + :element-type ,element-type)))) + +;; It might very well be reasonable to allow general ARRAY here, I +;; just haven't tried to understand the performance issues involved. +;; -- WHN, and also CSR 2002-05-26 (deftransform %with-array-data ((array start end) - ;; It might very well be reasonable to - ;; allow general ARRAY here, I just - ;; haven't tried to understand the - ;; performance issues involved. -- - ;; WHN, and also CSR 2002-05-26 - ((or vector simple-array) index (or index null)) + ((or vector simple-array) index (or index null) t) + * + :node node + :policy (> speed space)) + "inline non-SIMPLE-vector-handling logic" + (transform-%with-array-data/muble array node nil)) +(deftransform %with-array-data/fp ((array start end) + ((or vector simple-array) index (or index null) t) * :node node :policy (> speed space)) "inline non-SIMPLE-vector-handling logic" - (let ((element-type (upgraded-element-type-specifier-or-give-up array))) - `(%with-array-data-macro array start end - :unsafe? ,(policy node (= safety 0)) - :element-type ,element-type))) + (transform-%with-array-data/muble array node t)) ;;;; array accessors @@ -742,11 +915,81 @@ (deftransform aref ((array &rest indices)) (with-row-major-index (array indices index) (hairy-data-vector-ref array index))) + (deftransform %aset ((array &rest stuff)) (let ((indices (butlast stuff))) (with-row-major-index (array indices index new-value) (hairy-data-vector-set array index new-value))))) +;; For AREF of vectors we do the bounds checking in the callee. This +;; lets us do a significantly more efficient check for simple-arrays +;; without bloating the code. If we already know the type of the array +;; with sufficient precision, skip directly to DATA-VECTOR-REF. +(deftransform aref ((array index) (t t) * :node node) + (let* ((type (lvar-type array)) + (element-ctype (extract-upgraded-element-type array))) + (cond + ((and (array-type-p type) + (null (array-type-complexp type)) + (not (eql element-ctype *wild-type*)) + (eql (length (array-type-dimensions type)) 1)) + (let* ((declared-element-ctype (extract-declared-element-type array)) + (bare-form + `(data-vector-ref array + (%check-bound array (array-dimension array 0) index)))) + (if (type= declared-element-ctype element-ctype) + bare-form + `(the ,(type-specifier declared-element-ctype) ,bare-form)))) + ((policy node (zerop insert-array-bounds-checks)) + `(hairy-data-vector-ref array index)) + (t `(hairy-data-vector-ref/check-bounds array index))))) + +(deftransform %aset ((array index new-value) (t t t) * :node node) + (if (policy node (zerop insert-array-bounds-checks)) + `(hairy-data-vector-set array index new-value) + `(hairy-data-vector-set/check-bounds array index new-value))) + +;;; But if we find out later that there's some useful type information +;;; available, switch back to the normal one to give other transforms +;;; a stab at it. +(macrolet ((define (name transform-to extra extra-type) + (declare (ignore extra-type)) + `(deftransform ,name ((array index ,@extra)) + (let ((type (lvar-type array)) + (element-type (extract-upgraded-element-type array)) + (declared-type (extract-declared-element-type array))) + ;; If an element type has been declared, we want to + ;; use that information it for type checking (even + ;; if the access can't be optimized due to the array + ;; not being simple). + (when (and (eql element-type *wild-type*) + ;; This type logic corresponds to the special + ;; case for strings in HAIRY-DATA-VECTOR-REF + ;; (generic/vm-tran.lisp) + (not (csubtypep type (specifier-type 'simple-string)))) + (when (or (not (array-type-p type)) + ;; If it's a simple array, we might be able + ;; to inline the access completely. + (not (null (array-type-complexp type)))) + (give-up-ir1-transform + "Upgraded element type of array is not known at compile time."))) + ,(if extra + ``(truly-the ,declared-type + (,',transform-to array + (%check-bound array + (array-dimension array 0) + index) + (the ,declared-type ,@',extra))) + ``(the ,declared-type + (,',transform-to array + (%check-bound array + (array-dimension array 0) + index)))))))) + (define hairy-data-vector-ref/check-bounds + hairy-data-vector-ref nil nil) + (define hairy-data-vector-set/check-bounds + hairy-data-vector-set (new-value) (*))) + ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the ;;; array total size.