X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Farray-tran.lisp;h=f3cf13671892cfcdfdade46346322ef55c74f4b6;hb=0e8649cf907d26f111864e4e29c7f9787828efbd;hp=2026bb2493df2185d1f89c054632ed4212b4a7b6;hpb=26265f96389d737bf2e1e4c787ea8943ae499944;p=sbcl.git diff --git a/src/compiler/array-tran.lisp b/src/compiler/array-tran.lisp index 2026bb2..f3cf136 100644 --- a/src/compiler/array-tran.lisp +++ b/src/compiler/array-tran.lisp @@ -17,50 +17,102 @@ ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be ;;; determined. (defun upgraded-element-type-specifier-or-give-up (lvar) - (let* ((element-ctype (extract-upgraded-element-type lvar)) - (element-type-specifier (type-specifier element-ctype))) + (let ((element-type-specifier (upgraded-element-type-specifier lvar))) (if (eq element-type-specifier '*) (give-up-ir1-transform "upgraded array element type not known at compile time") element-type-specifier))) -;;; Array access functions return an object from the array, hence its -;;; type is going to be the array upgraded element type. -(defun extract-upgraded-element-type (array) - (let ((type (lvar-type array))) - (cond - ;; Note that this IF mightn't be satisfied even if the runtime - ;; value is known to be a subtype of some specialized ARRAY, because - ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE), - ;; which are represented in the compiler as INTERSECTION-TYPE, not - ;; array type. - ((array-type-p type) (array-type-specialized-element-type type)) - ;; fix for bug #396. This type logic corresponds to the special - ;; case for strings in HAIRY-DATA-VECTOR-REF - ;; (generic/vm-tran.lisp) - ((csubtypep type (specifier-type 'simple-string)) - (cond - ((csubtypep type (specifier-type '(simple-array character (*)))) - (specifier-type 'character)) - #!+sb-unicode - ((csubtypep type (specifier-type '(simple-array base-char (*)))) - (specifier-type 'base-char)) - ((csubtypep type (specifier-type '(simple-array nil (*)))) - *empty-type*) - ;; see KLUDGE below. - (t *wild-type*))) - (t - ;; KLUDGE: there is no good answer here, but at least - ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be - ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR, - ;; 2002-08-21 - *wild-type*)))) - -(defun extract-declared-element-type (array) - (let ((type (lvar-type array))) - (if (array-type-p type) - (array-type-element-type type) - *wild-type*))) +(defun upgraded-element-type-specifier (lvar) + (type-specifier (array-type-upgraded-element-type (lvar-type lvar)))) + +;;; Array access functions return an object from the array, hence its type is +;;; going to be the array upgraded element type. Secondary return value is the +;;; known supertype of the upgraded-array-element-type, if if the exact +;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good +;;; as it gets.) +(defun array-type-upgraded-element-type (type) + (typecase type + ;; Note that this IF mightn't be satisfied even if the runtime + ;; value is known to be a subtype of some specialized ARRAY, because + ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE), + ;; which are represented in the compiler as INTERSECTION-TYPE, not + ;; array type. + (array-type + (values (array-type-specialized-element-type type) nil)) + ;; Deal with intersection types (bug #316078) + (intersection-type + (let ((intersection-types (intersection-type-types type)) + (element-type *wild-type*) + (element-supertypes nil)) + (dolist (intersection-type intersection-types) + (multiple-value-bind (cur-type cur-supertype) + (array-type-upgraded-element-type intersection-type) + ;; According to ANSI, an array may have only one specialized + ;; element type - e.g. '(and (array foo) (array bar)) + ;; is not a valid type unless foo and bar upgrade to the + ;; same element type. + (cond + ((eq cur-type *wild-type*) + nil) + ((eq element-type *wild-type*) + (setf element-type cur-type)) + ((or (not (csubtypep cur-type element-type)) + (not (csubtypep element-type cur-type))) + ;; At least two different element types where given, the array + ;; is valid iff they represent the same type. + ;; + ;; FIXME: TYPE-INTERSECTION already takes care of disjoint array + ;; types, so I believe this code should be unreachable. Maybe + ;; signal a warning / error instead? + (setf element-type *empty-type*))) + (push (or cur-supertype (type-*-to-t cur-type)) + element-supertypes))) + (values element-type + (when (and (eq *wild-type* element-type) element-supertypes) + (apply #'type-intersection element-supertypes))))) + (union-type + (let ((union-types (union-type-types type)) + (element-type nil) + (element-supertypes nil)) + (dolist (union-type union-types) + (multiple-value-bind (cur-type cur-supertype) + (array-type-upgraded-element-type union-type) + (cond + ((eq element-type *wild-type*) + nil) + ((eq element-type nil) + (setf element-type cur-type)) + ((or (eq cur-type *wild-type*) + ;; If each of the two following tests fail, it is not + ;; possible to determine the element-type of the array + ;; because more than one kind of element-type was provided + ;; like in '(or (array foo) (array bar)) although a + ;; supertype (or foo bar) may be provided as the second + ;; returned value returned. See also the KLUDGE below. + (not (csubtypep cur-type element-type)) + (not (csubtypep element-type cur-type))) + (setf element-type *wild-type*))) + (push (or cur-supertype (type-*-to-t cur-type)) + element-supertypes))) + (values element-type + (when (eq *wild-type* element-type) + (apply #'type-union element-supertypes))))) + (member-type + ;; Convert member-type to an union-type. + (array-type-upgraded-element-type + (apply #'type-union (mapcar #'ctype-of (member-type-members type))))) + (t + ;; KLUDGE: there is no good answer here, but at least + ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be + ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR, + ;; 2002-08-21 + (values *wild-type* nil)))) + +(defun array-type-declared-element-type (type) + (if (array-type-p type) + (array-type-element-type type) + *wild-type*)) ;;; The ``new-value'' for array setters must fit in the array, and the ;;; return type is going to be the same as the new-value for SETF @@ -74,14 +126,6 @@ (lexenv-policy (node-lexenv (lvar-dest new-value)))))) (lvar-type new-value)) -(defun assert-array-complex (array) - (assert-lvar-type - array - (make-array-type :complexp t - :element-type *wild-type*) - (lexenv-policy (node-lexenv (lvar-dest array)))) - nil) - ;;; Return true if ARG is NIL, or is a constant-lvar whose ;;; value is NIL, false otherwise. (defun unsupplied-or-nil (arg) @@ -89,6 +133,12 @@ (or (not arg) (and (constant-lvar-p arg) (not (lvar-value arg))))) + +(defun supplied-and-true (arg) + (and arg + (constant-lvar-p arg) + (lvar-value arg) + t)) ;;;; DERIVE-TYPE optimizers @@ -100,28 +150,100 @@ (specifier-type `(array * ,(make-list rank :initial-element '*))) (lexenv-policy (node-lexenv (lvar-dest array))))) +(defun derive-aref-type (array) + (multiple-value-bind (uaet other) + (array-type-upgraded-element-type (lvar-type array)) + (or other uaet))) + (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices)) (assert-array-rank array (length indices)) *universal-type*) +(deftransform array-in-bounds-p ((array &rest subscripts)) + (flet ((give-up () + (give-up-ir1-transform + "~@")) + (bound-known-p (x) + (integerp x))) ; might be NIL or * + (block nil + (let ((dimensions (array-type-dimensions-or-give-up + (lvar-conservative-type array)))) + ;; Might be *. (Note: currently this is never true, because the type + ;; derivation infers the rank from the call to ARRAY-IN-BOUNDS-P, but + ;; let's keep this future proof.) + (when (eq '* dimensions) + (give-up-ir1-transform "array bounds unknown")) + ;; shortcut for zero dimensions + (when (some (lambda (dim) + (and (bound-known-p dim) (zerop dim))) + dimensions) + (return nil)) + ;; we first collect the subscripts LVARs' bounds and see whether + ;; we can already decide on the result of the optimization without + ;; even taking a look at the dimensions. + (flet ((subscript-bounds (subscript) + (let* ((type1 (lvar-type subscript)) + (type2 (if (csubtypep type1 (specifier-type 'integer)) + (weaken-integer-type type1 :range-only t) + (give-up))) + (low (if (integer-type-p type2) + (numeric-type-low type2) + (give-up))) + (high (numeric-type-high type2))) + (cond + ((and (or (not (bound-known-p low)) (minusp low)) + (or (not (bound-known-p high)) (not (minusp high)))) + ;; can't be sure about the lower bound and the upper bound + ;; does not give us a definite clue either. + (give-up)) + ((and (bound-known-p high) (minusp high)) + (return nil)) ; definitely below lower bound (zero). + (t + (cons low high)))))) + (let* ((subscripts-bounds (mapcar #'subscript-bounds subscripts)) + (subscripts-lower-bound (mapcar #'car subscripts-bounds)) + (subscripts-upper-bound (mapcar #'cdr subscripts-bounds)) + (in-bounds 0)) + (mapcar (lambda (low high dim) + (cond + ;; first deal with infinite bounds + ((some (complement #'bound-known-p) (list low high dim)) + (when (and (bound-known-p dim) (bound-known-p low) (<= dim low)) + (return nil))) + ;; now we know all bounds + ((>= low dim) + (return nil)) + ((< high dim) + (aver (not (minusp low))) + (incf in-bounds)) + (t + (give-up)))) + subscripts-lower-bound + subscripts-upper-bound + dimensions) + (if (eql in-bounds (length dimensions)) + t + (give-up)))))))) + (defoptimizer (aref derive-type) ((array &rest indices) node) (assert-array-rank array (length indices)) - (extract-upgraded-element-type array)) + (derive-aref-type array)) -(defoptimizer (%aset derive-type) ((array &rest stuff)) - (assert-array-rank array (1- (length stuff))) - (assert-new-value-type (car (last stuff)) array)) +(defoptimizer ((setf aref) derive-type) ((new-value array &rest subscripts)) + (assert-array-rank array (length subscripts)) + (assert-new-value-type new-value array)) (macrolet ((define (name) `(defoptimizer (,name derive-type) ((array index)) - (extract-upgraded-element-type array)))) + (derive-aref-type array)))) (define hairy-data-vector-ref) (define hairy-data-vector-ref/check-bounds) (define data-vector-ref)) #!+(or x86 x86-64) (defoptimizer (data-vector-ref-with-offset derive-type) ((array index offset)) - (extract-upgraded-element-type array)) + (derive-aref-type array)) (macrolet ((define (name) `(defoptimizer (,name derive-type) ((array index new-value)) @@ -153,7 +275,7 @@ *universal-type*) (defoptimizer (row-major-aref derive-type) ((array index)) - (extract-upgraded-element-type array)) + (derive-aref-type array)) (defoptimizer (%set-row-major-aref derive-type) ((array index new-value)) (assert-new-value-type new-value array)) @@ -161,67 +283,45 @@ (defoptimizer (make-array derive-type) ((dims &key initial-element element-type initial-contents adjustable fill-pointer displaced-index-offset displaced-to)) - (let ((simple (and (unsupplied-or-nil adjustable) - (unsupplied-or-nil displaced-to) - (unsupplied-or-nil fill-pointer)))) - (or (careful-specifier-type - `(,(if simple 'simple-array 'array) - ,(cond ((not element-type) t) - ((constant-lvar-p element-type) - (let ((ctype (careful-specifier-type - (lvar-value element-type)))) - (cond - ((or (null ctype) (unknown-type-p ctype)) '*) - (t (sb!xc:upgraded-array-element-type - (lvar-value element-type)))))) - (t - '*)) - ,(cond ((constant-lvar-p dims) - (let* ((val (lvar-value dims)) - (cdims (if (listp val) val (list val)))) - (if simple - cdims - (length cdims)))) - ((csubtypep (lvar-type dims) - (specifier-type 'integer)) - '(*)) - (t - '*)))) - (specifier-type 'array)))) - -;;; Complex array operations should assert that their array argument -;;; is complex. In SBCL, vectors with fill-pointers are complex. -(defoptimizer (fill-pointer derive-type) ((vector)) - (assert-array-complex vector)) -(defoptimizer (%set-fill-pointer derive-type) ((vector index)) - (declare (ignorable index)) - (assert-array-complex vector)) - -(defoptimizer (vector-push derive-type) ((object vector)) - (declare (ignorable object)) - (assert-array-complex vector)) -(defoptimizer (vector-push-extend derive-type) - ((object vector &optional index)) - (declare (ignorable object index)) - (assert-array-complex vector)) -(defoptimizer (vector-pop derive-type) ((vector)) - (assert-array-complex vector)) + (let* ((simple (and (unsupplied-or-nil adjustable) + (unsupplied-or-nil displaced-to) + (unsupplied-or-nil fill-pointer))) + (spec + (or `(,(if simple 'simple-array 'array) + ,(cond ((not element-type) t) + ((constant-lvar-p element-type) + (let ((ctype (careful-specifier-type + (lvar-value element-type)))) + (cond + ((or (null ctype) (unknown-type-p ctype)) '*) + (t (sb!xc:upgraded-array-element-type + (lvar-value element-type)))))) + (t + '*)) + ,(cond ((constant-lvar-p dims) + (let* ((val (lvar-value dims)) + (cdims (if (listp val) val (list val)))) + (if simple + cdims + (length cdims)))) + ((csubtypep (lvar-type dims) + (specifier-type 'integer)) + '(*)) + (t + '*))) + 'array))) + (if (and (not simple) + (or (supplied-and-true adjustable) + (supplied-and-true displaced-to) + (supplied-and-true fill-pointer))) + (careful-specifier-type `(and ,spec (not simple-array))) + (careful-specifier-type spec)))) ;;;; constructors -;;; Convert VECTOR into a MAKE-ARRAY followed by SETFs of all the -;;; elements. +;;; Convert VECTOR into a MAKE-ARRAY. (define-source-transform vector (&rest elements) - (let ((len (length elements)) - (n -1)) - (once-only ((n-vec `(make-array ,len))) - `(progn - ,@(mapcar (lambda (el) - (once-only ((n-val el)) - `(locally (declare (optimize (safety 0))) - (setf (svref ,n-vec ,(incf n)) ,n-val)))) - elements) - ,n-vec)))) + `(make-array ,(length elements) :initial-contents (list ,@elements))) ;;; Just convert it into a MAKE-ARRAY. (deftransform make-string ((length &key @@ -233,6 +333,194 @@ ,@(when initial-element '(:initial-element initial-element))))) +(defun rewrite-initial-contents (rank initial-contents env) + (if (plusp rank) + (if (and (consp initial-contents) + (member (car initial-contents) '(list vector sb!impl::backq-list))) + `(list ,@(mapcar (lambda (dim) + (rewrite-initial-contents (1- rank) dim env)) + (cdr initial-contents))) + initial-contents) + ;; This is the important bit: once we are past the level of + ;; :INITIAL-CONTENTS that relates to the array structure, reinline LIST + ;; and VECTOR so that nested DX isn't screwed up. + `(locally (declare (inline list vector)) + ,initial-contents))) + +;;; Prevent open coding DIMENSION and :INITIAL-CONTENTS arguments, so that we +;;; can pick them apart in the DEFTRANSFORMS, and transform '(3) style +;;; dimensions to integer args directly. +(define-source-transform make-array (dimensions &rest keyargs &environment env) + (if (or (and (fun-lexically-notinline-p 'list) + (fun-lexically-notinline-p 'vector)) + (oddp (length keyargs))) + (values nil t) + (multiple-value-bind (new-dimensions rank) + (flet ((constant-dims (dimensions) + (let* ((dims (constant-form-value dimensions env)) + (canon (if (listp dims) dims (list dims))) + (rank (length canon))) + (values (if (= rank 1) + (list 'quote (car canon)) + (list 'quote canon)) + rank)))) + (cond ((sb!xc:constantp dimensions env) + (constant-dims dimensions)) + ((and (consp dimensions) (eq 'list dimensions)) + (values dimensions (length (cdr dimensions)))) + (t + (values dimensions nil)))) + (let ((initial-contents (getf keyargs :initial-contents))) + (when (and initial-contents rank) + (setf keyargs (copy-list keyargs) + (getf keyargs :initial-contents) + (rewrite-initial-contents rank initial-contents env)))) + `(locally (declare (notinline list vector)) + (make-array ,new-dimensions ,@keyargs))))) + +;;; This baby is a bit of a monster, but it takes care of any MAKE-ARRAY +;;; call which creates a vector with a known element type -- and tries +;;; to do a good job with all the different ways it can happen. +(defun transform-make-array-vector (length element-type initial-element + initial-contents call) + (aver (or (not element-type) (constant-lvar-p element-type))) + (let* ((c-length (when (constant-lvar-p length) + (lvar-value length))) + (elt-spec (if element-type + (lvar-value element-type) + t)) + (elt-ctype (ir1-transform-specifier-type elt-spec)) + (saetp (if (unknown-type-p elt-ctype) + (give-up-ir1-transform "~S is an unknown type: ~S" + :element-type elt-spec) + (find-saetp-by-ctype elt-ctype))) + (default-initial-element (sb!vm:saetp-initial-element-default saetp)) + (n-bits (sb!vm:saetp-n-bits saetp)) + (typecode (sb!vm:saetp-typecode saetp)) + (n-pad-elements (sb!vm:saetp-n-pad-elements saetp)) + (n-words-form + (if c-length + (ceiling (* (+ c-length n-pad-elements) n-bits) + sb!vm:n-word-bits) + (let ((padded-length-form (if (zerop n-pad-elements) + 'length + `(+ length ,n-pad-elements)))) + (cond + ((= n-bits 0) 0) + ((>= n-bits sb!vm:n-word-bits) + `(* ,padded-length-form + ;; i.e., not RATIO + ,(the fixnum (/ n-bits sb!vm:n-word-bits)))) + (t + (let ((n-elements-per-word (/ sb!vm:n-word-bits n-bits))) + (declare (type index n-elements-per-word)) ; i.e., not RATIO + `(ceiling ,padded-length-form ,n-elements-per-word))))))) + (result-spec + `(simple-array ,(sb!vm:saetp-specifier saetp) (,(or c-length '*)))) + (alloc-form + `(truly-the ,result-spec + (allocate-vector ,typecode (the index length) ,n-words-form)))) + (cond ((and initial-element initial-contents) + (abort-ir1-transform "Both ~S and ~S specified." + :initial-contents :initial-element)) + ;; :INITIAL-CONTENTS (LIST ...), (VECTOR ...) and `(1 1 ,x) with a + ;; constant LENGTH. + ((and initial-contents c-length + (lvar-matches initial-contents + :fun-names '(list vector sb!impl::backq-list) + :arg-count c-length)) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-contents initial-contents)))) + (elt-vars (make-gensym-list c-length)) + (lambda-list '(length))) + (splice-fun-args initial-contents :any c-length) + (dolist (p parameters) + (setf lambda-list + (append lambda-list + (if (eq p 'initial-contents) + elt-vars + (list p))))) + `(lambda ,lambda-list + (declare (type ,elt-spec ,@elt-vars) + (ignorable ,@lambda-list)) + (truly-the ,result-spec + (initialize-vector ,alloc-form ,@elt-vars))))) + ;; constant :INITIAL-CONTENTS and LENGTH + ((and initial-contents c-length (constant-lvar-p initial-contents)) + (let ((contents (lvar-value initial-contents))) + (unless (= c-length (length contents)) + (abort-ir1-transform "~S has ~S elements, vector length is ~S." + :initial-contents (length contents) c-length)) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-contents initial-contents))))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + (truly-the ,result-spec + (initialize-vector ,alloc-form + ,@(map 'list (lambda (elt) + `(the ,elt-spec ',elt)) + contents))))))) + ;; any other :INITIAL-CONTENTS + (initial-contents + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-contents initial-contents))))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + (unless (= length (length initial-contents)) + (error "~S has ~S elements, vector length is ~S." + :initial-contents (length initial-contents) length)) + (truly-the ,result-spec + (replace ,alloc-form initial-contents))))) + ;; :INITIAL-ELEMENT, not EQL to the default + ((and initial-element + (or (not (constant-lvar-p initial-element)) + (not (eql default-initial-element (lvar-value initial-element))))) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-element initial-element)))) + (init (if (constant-lvar-p initial-element) + (list 'quote (lvar-value initial-element)) + 'initial-element))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + (truly-the ,result-spec + (fill ,alloc-form (the ,elt-spec ,init)))))) + ;; just :ELEMENT-TYPE, or maybe with :INITIAL-ELEMENT EQL to the + ;; default + (t + #-sb-xc-host + (unless (ctypep default-initial-element elt-ctype) + ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE + ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If + ;; INITIAL-ELEMENT is not supplied, the consequences of later + ;; reading an uninitialized element of new-array are undefined," + ;; so this could be legal code as long as the user plans to + ;; write before he reads, and if he doesn't we're free to do + ;; anything we like. But in case the user doesn't know to write + ;; elements before he reads elements (or to read manuals before + ;; he writes code:-), we'll signal a STYLE-WARNING in case he + ;; didn't realize this. + (if initial-element + (compiler-warn "~S ~S is not a ~S" + :initial-element default-initial-element + elt-spec) + (compiler-style-warn "The default initial element ~S is not a ~S." + default-initial-element + elt-spec))) + (let ((parameters (eliminate-keyword-args + call 1 '((:element-type element-type) + (:initial-element initial-element))))) + `(lambda (length ,@parameters) + (declare (ignorable ,@parameters)) + ,alloc-form)))))) + +;;; IMPORTANT: The order of these three MAKE-ARRAY forms matters: the least +;;; specific must come first, otherwise suboptimal transforms will result for +;;; some forms. + (deftransform make-array ((dims &key initial-element element-type adjustable fill-pointer) (t &rest *)) @@ -289,77 +577,9 @@ `(let ((array ,creation-form)) (multiple-value-bind (vector) (%data-vector-and-index array 0) - (fill vector initial-element)) + (fill vector (the ,(sb!vm:saetp-specifier saetp) initial-element))) array))))) -;;; The integer type restriction on the length ensures that it will be -;;; a vector. The lack of :ADJUSTABLE, :FILL-POINTER, and -;;; :DISPLACED-TO keywords ensures that it will be simple; the lack of -;;; :INITIAL-ELEMENT relies on another transform to deal with that -;;; kind of initialization efficiently. -(deftransform make-array ((length &key element-type) - (integer &rest *)) - (let* ((eltype (cond ((not element-type) t) - ((not (constant-lvar-p element-type)) - (give-up-ir1-transform - "ELEMENT-TYPE is not constant.")) - (t - (lvar-value element-type)))) - (len (if (constant-lvar-p length) - (lvar-value length) - '*)) - (eltype-type (ir1-transform-specifier-type eltype)) - (result-type-spec - `(simple-array - ,(if (unknown-type-p eltype-type) - (give-up-ir1-transform - "ELEMENT-TYPE is an unknown type: ~S" eltype) - (sb!xc:upgraded-array-element-type eltype)) - (,len))) - (saetp (find-if (lambda (saetp) - (csubtypep eltype-type (sb!vm:saetp-ctype saetp))) - sb!vm:*specialized-array-element-type-properties*))) - (unless saetp - (give-up-ir1-transform - "cannot open-code creation of ~S" result-type-spec)) - #-sb-xc-host - (unless (ctypep (sb!vm:saetp-initial-element-default saetp) eltype-type) - ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE - ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If - ;; INITIAL-ELEMENT is not supplied, the consequences of later - ;; reading an uninitialized element of new-array are undefined," - ;; so this could be legal code as long as the user plans to - ;; write before he reads, and if he doesn't we're free to do - ;; anything we like. But in case the user doesn't know to write - ;; elements before he reads elements (or to read manuals before - ;; he writes code:-), we'll signal a STYLE-WARNING in case he - ;; didn't realize this. - (compiler-style-warn "The default initial element ~S is not a ~S." - (sb!vm:saetp-initial-element-default saetp) - eltype)) - (let* ((n-bits-per-element (sb!vm:saetp-n-bits saetp)) - (typecode (sb!vm:saetp-typecode saetp)) - (n-pad-elements (sb!vm:saetp-n-pad-elements saetp)) - (padded-length-form (if (zerop n-pad-elements) - 'length - `(+ length ,n-pad-elements))) - (n-words-form - (cond - ((= n-bits-per-element 0) 0) - ((>= n-bits-per-element sb!vm:n-word-bits) - `(* ,padded-length-form - (the fixnum ; i.e., not RATIO - ,(/ n-bits-per-element sb!vm:n-word-bits)))) - (t - (let ((n-elements-per-word (/ sb!vm:n-word-bits - n-bits-per-element))) - (declare (type index n-elements-per-word)) ; i.e., not RATIO - `(ceiling ,padded-length-form ,n-elements-per-word)))))) - (values - `(truly-the ,result-type-spec - (allocate-vector ,typecode length ,n-words-form)) - '((declare (type index length))))))) - ;;; The list type restriction does not ensure that the result will be a ;;; multi-dimensional array. But the lack of adjustable, fill-pointer, ;;; and displaced-to keywords ensures that it will be simple. @@ -369,49 +589,87 @@ ;;; deal with those? Maybe when the DEFTRANSFORM ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? -- ;;; CSR, 2002-07-01 -(deftransform make-array ((dims &key element-type) - (list &rest *)) - (unless (or (null element-type) (constant-lvar-p element-type)) - (give-up-ir1-transform - "The element-type is not constant; cannot open code array creation.")) - (unless (constant-lvar-p dims) - (give-up-ir1-transform - "The dimension list is not constant; cannot open code array creation.")) - (let ((dims (lvar-value dims))) - (unless (every #'integerp dims) +(deftransform make-array ((dims &key + element-type initial-element initial-contents) + (list &key + (:element-type (constant-arg *)) + (:initial-element *) + (:initial-contents *)) + * + :node call) + (block make-array + (when (lvar-matches dims :fun-names '(list) :arg-count 1) + (let ((length (car (splice-fun-args dims :any 1)))) + (return-from make-array + (transform-make-array-vector length + element-type + initial-element + initial-contents + call)))) + (unless (constant-lvar-p dims) (give-up-ir1-transform - "The dimension list contains something other than an integer: ~S" - dims)) - (if (= (length dims) 1) - `(make-array ',(car dims) - ,@(when element-type - '(:element-type element-type))) - (let* ((total-size (reduce #'* dims)) - (rank (length dims)) - (spec `(simple-array - ,(cond ((null element-type) t) - ((and (constant-lvar-p element-type) - (ir1-transform-specifier-type - (lvar-value element-type))) - (sb!xc:upgraded-array-element-type - (lvar-value element-type))) - (t '*)) - ,(make-list rank :initial-element '*)))) - `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank))) - (setf (%array-fill-pointer header) ,total-size) - (setf (%array-fill-pointer-p header) nil) - (setf (%array-available-elements header) ,total-size) - (setf (%array-data-vector header) - (make-array ,total-size - ,@(when element-type - '(:element-type element-type)))) - (setf (%array-displaced-p header) nil) - ,@(let ((axis -1)) - (mapcar (lambda (dim) - `(setf (%array-dimension header ,(incf axis)) - ,dim)) - dims)) - (truly-the ,spec header)))))) + "The dimension list is not constant; cannot open code array creation.")) + (let ((dims (lvar-value dims)) + (element-type-ctype (and (constant-lvar-p element-type) + (ir1-transform-specifier-type + (lvar-value element-type))))) + (when (unknown-type-p element-type-ctype) + (give-up-ir1-transform)) + (unless (every #'integerp dims) + (give-up-ir1-transform + "The dimension list contains something other than an integer: ~S" + dims)) + (if (= (length dims) 1) + `(make-array ',(car dims) + ,@(when element-type + '(:element-type element-type)) + ,@(when initial-element + '(:initial-element initial-element)) + ,@(when initial-contents + '(:initial-contents initial-contents))) + (let* ((total-size (reduce #'* dims)) + (rank (length dims)) + (spec `(simple-array + ,(cond ((null element-type) t) + (element-type-ctype + (sb!xc:upgraded-array-element-type + (lvar-value element-type))) + (t '*)) + ,(make-list rank :initial-element '*)))) + `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank)) + (data (make-array ,total-size + ,@(when element-type + '(:element-type element-type)) + ,@(when initial-element + '(:initial-element initial-element))))) + ,@(when initial-contents + ;; FIXME: This is could be open coded at least a bit too + `((sb!impl::fill-data-vector data ',dims initial-contents))) + (setf (%array-fill-pointer header) ,total-size) + (setf (%array-fill-pointer-p header) nil) + (setf (%array-available-elements header) ,total-size) + (setf (%array-data-vector header) data) + (setf (%array-displaced-p header) nil) + (setf (%array-displaced-from header) nil) + ,@(let ((axis -1)) + (mapcar (lambda (dim) + `(setf (%array-dimension header ,(incf axis)) + ,dim)) + dims)) + (truly-the ,spec header))))))) + +(deftransform make-array ((dims &key element-type initial-element initial-contents) + (integer &key + (:element-type (constant-arg *)) + (:initial-element *) + (:initial-contents *)) + * + :node call) + (transform-make-array-vector dims + element-type + initial-element + initial-contents + call)) ;;;; miscellaneous properties of arrays @@ -423,18 +681,32 @@ ;;; maybe this is just too sloppy for actual type logic. -- CSR, ;;; 2004-02-18 (defun array-type-dimensions-or-give-up (type) - (typecase type - (array-type (array-type-dimensions type)) - (union-type - (let ((types (union-type-types type))) - ;; there are at least two types, right? - (aver (> (length types) 1)) - (let ((result (array-type-dimensions-or-give-up (car types)))) - (dolist (type (cdr types) result) - (unless (equal (array-type-dimensions-or-give-up type) result) - (give-up-ir1-transform)))))) - ;; FIXME: intersection type [e.g. (and (array * (*)) (satisfies foo)) ] - (t (give-up-ir1-transform)))) + (labels ((maybe-array-type-dimensions (type) + (typecase type + (array-type + (array-type-dimensions type)) + (union-type + (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions + (union-type-types type)))) + (result (car types))) + (dolist (other (cdr types) result) + (unless (equal result other) + (give-up-ir1-transform + "~@" + (type-specifier type)))))) + (intersection-type + (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions + (intersection-type-types type)))) + (result (car types))) + (dolist (other (cdr types) result) + (unless (equal result other) + (abort-ir1-transform + "~@" + (type-specifier type))))))))) + (or (maybe-array-type-dimensions type) + (give-up-ir1-transform + "~@" + (type-specifier type))))) (defun conservative-array-type-complexp (type) (typecase type @@ -453,11 +725,14 @@ (deftransform array-rank ((array)) (let ((array-type (lvar-type array))) (let ((dims (array-type-dimensions-or-give-up array-type))) - (if (not (listp dims)) - (give-up-ir1-transform - "The array rank is not known at compile time: ~S" - dims) - (length dims))))) + (cond ((listp dims) + (length dims)) + ((eq t (array-type-complexp array-type)) + '(%array-rank array)) + (t + `(if (array-header-p array) + (%array-rank array) + 1)))))) ;;; If we know the dimensions at compile time, just use it. Otherwise, ;;; if we can tell that the axis is in bounds, convert to @@ -467,7 +742,9 @@ (array index)) (unless (constant-lvar-p axis) (give-up-ir1-transform "The axis is not constant.")) - (let ((array-type (lvar-type array)) + ;; Dimensions may change thanks to ADJUST-ARRAY, so we need the + ;; conservative type. + (let ((array-type (lvar-conservative-type array)) (axis (lvar-value axis))) (let ((dims (array-type-dimensions-or-give-up array-type))) (unless (listp dims) @@ -485,10 +762,11 @@ ((t) '(%array-dimension array 0)) ((nil) - '(length array)) + '(vector-length array)) ((:maybe) - (give-up-ir1-transform - "can't tell whether array is simple")))) + `(if (array-header-p array) + (%array-dimension array axis) + (vector-length array))))) (t '(%array-dimension array axis))))))) @@ -569,22 +847,6 @@ ;;;; WITH-ARRAY-DATA -(defun bounding-index-error (array start end) - (let ((size (array-total-size array))) - (error 'bounding-indices-bad-error - :datum (cons start end) - :expected-type `(cons (integer 0 ,size) - (integer ,start ,size)) - :object array))) - -(defun bounding-index-error/fp (array start end) - (let ((size (length array))) - (error 'bounding-indices-bad-error - :datum (cons start end) - :expected-type `(cons (integer 0 ,size) - (integer ,start ,size)) - :object array))) - ;;; This checks to see whether the array is simple and the start and ;;; end are in bounds. If so, it proceeds with those values. ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA @@ -616,7 +878,7 @@ (once-only ((n-array array) (n-svalue `(the index ,svalue)) (n-evalue `(the (or index null) ,evalue))) - (let ((check-bounds (policy env (= 0 insert-array-bounds-checks)))) + (let ((check-bounds (policy env (plusp insert-array-bounds-checks)))) `(multiple-value-bind (,data-var ,start-var ,end-var @@ -629,12 +891,12 @@ `(array-total-size ,n-array))) (n-end `(or ,n-evalue ,n-len))) (if check-bounds - `(values ,n-array ,n-svalue ,n-end 0) - `(if (<= ,n-svalue ,n-end ,n-len) + `(if (<= 0 ,n-svalue ,n-end ,n-len) (values ,n-array ,n-svalue ,n-end 0) ,(if check-fill-pointer - `(bounding-index-error/fp ,n-array ,n-svalue ,n-evalue) - `(bounding-index-error ,n-array ,n-svalue ,n-evalue)))))) + `(sequence-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue) + `(array-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue))) + `(values ,n-array ,n-svalue ,n-end 0)))) ,(if force-inline `(%with-array-data-macro ,n-array ,n-svalue ,n-evalue :check-bounds ,check-bounds @@ -661,8 +923,8 @@ ,@(when check-bounds `((unless (<= ,start ,defaulted-end ,size) ,(if check-fill-pointer - `(bounding-index-error/fp ,array ,start ,end) - `(bounding-index-error ,array ,start ,end))))) + `(sequence-bounding-indices-bad-error ,array ,start ,end) + `(array-bounding-indices-bad-error ,array ,start ,end))))) (do ((,data ,array (%array-data-vector ,data)) (,cumulative-offset 0 (+ ,cumulative-offset @@ -676,8 +938,10 @@ (defun transform-%with-array-data/muble (array node check-fill-pointer) (let ((element-type (upgraded-element-type-specifier-or-give-up array)) - (type (lvar-type array))) + (type (lvar-type array)) + (check-bounds (policy node (plusp insert-array-bounds-checks)))) (if (and (array-type-p type) + (not (array-type-complexp type)) (listp (array-type-dimensions type)) (not (null (cdr (array-type-dimensions type))))) ;; If it's a simple multidimensional array, then just return @@ -687,15 +951,20 @@ ;; users to use WITH-ARRAY-DATA and we may use it ourselves at ;; some point in the future for optimized libraries or ;; similar. - ;; - ;; FIXME: The return values here don't seem sane, and - ;; bounds-checks are elided! - `(let ((data (truly-the (simple-array ,element-type (*)) - (%array-data-vector array)))) - (values data 0 (length data) 0)) + (if check-bounds + `(let* ((data (truly-the (simple-array ,element-type (*)) + (%array-data-vector array))) + (len (length data)) + (real-end (or end len))) + (unless (<= 0 start data-end lend) + (sequence-bounding-indices-bad-error array start end)) + (values data 0 real-end 0)) + `(let ((data (truly-the (simple-array ,element-type (*)) + (%array-data-vector array)))) + (values data 0 (or end (length data)) 0))) `(%with-array-data-macro array start end :check-fill-pointer ,check-fill-pointer - :check-bounds ,(policy node (< 0 insert-array-bounds-checks)) + :check-bounds ,check-bounds :element-type ,element-type)))) ;; It might very well be reasonable to allow general ARRAY here, I @@ -718,32 +987,68 @@ ;;;; array accessors -;;; We convert all typed array accessors into AREF and %ASET with type +;;; We convert all typed array accessors into AREF and (SETF AREF) with type ;;; assertions on the array. -(macrolet ((define-bit-frob (reffer setter simplep) +(macrolet ((define-bit-frob (reffer simplep) `(progn (define-source-transform ,reffer (a &rest i) `(aref (the (,',(if simplep 'simple-array 'array) bit ,(mapcar (constantly '*) i)) ,a) ,@i)) - (define-source-transform ,setter (a &rest i) - `(%aset (the (,',(if simplep 'simple-array 'array) - bit - ,(cdr (mapcar (constantly '*) i))) - ,a) ,@i))))) - (define-bit-frob sbit %sbitset t) - (define-bit-frob bit %bitset nil)) + (define-source-transform (setf ,reffer) (value a &rest i) + `(setf (aref (the (,',(if simplep 'simple-array 'array) + bit + ,(mapcar (constantly '*) i)) + ,a) ,@i) + ,value))))) + (define-bit-frob sbit t) + (define-bit-frob bit nil)) + (macrolet ((define-frob (reffer setter type) `(progn (define-source-transform ,reffer (a i) `(aref (the ,',type ,a) ,i)) (define-source-transform ,setter (a i v) - `(%aset (the ,',type ,a) ,i ,v))))) - (define-frob svref %svset simple-vector) + `(setf (aref (the ,',type ,a) ,i) ,v))))) (define-frob schar %scharset simple-string) (define-frob char %charset string)) +;;; We transform SVREF and %SVSET directly into DATA-VECTOR-REF/SET: this is +;;; around 100 times faster than going through the general-purpose AREF +;;; transform which ends up doing a lot of work -- and introducing many +;;; intermediate lambdas, each meaning a new trip through the compiler -- to +;;; get the same result. +;;; +;;; FIXME: [S]CHAR, and [S]BIT above would almost certainly benefit from a similar +;;; treatment. +(define-source-transform svref (vector index) + (let ((elt-type (or (when (symbolp vector) + (let ((var (lexenv-find vector vars))) + (when (lambda-var-p var) + (type-specifier + (array-type-declared-element-type (lambda-var-type var)))))) + t))) + (with-unique-names (n-vector) + `(let ((,n-vector ,vector)) + (the ,elt-type (data-vector-ref + (the simple-vector ,n-vector) + (%check-bound ,n-vector (length ,n-vector) ,index))))))) + +(define-source-transform %svset (vector index value) + (let ((elt-type (or (when (symbolp vector) + (let ((var (lexenv-find vector vars))) + (when (lambda-var-p var) + (type-specifier + (array-type-declared-element-type (lambda-var-type var)))))) + t))) + (with-unique-names (n-vector) + `(let ((,n-vector ,vector)) + (truly-the ,elt-type (data-vector-set + (the simple-vector ,n-vector) + (%check-bound ,n-vector (length ,n-vector) ,index) + (the ,elt-type ,value))))))) + (macrolet (;; This is a handy macro for computing the row-major index ;; given a set of indices. We wrap each index with a call ;; to %CHECK-BOUND to ensure that everything works out @@ -758,8 +1063,9 @@ (push (make-symbol (format nil "DIM-~D" i)) dims)) (setf n-indices (nreverse n-indices)) (setf dims (nreverse dims)) - `(lambda (,',array ,@n-indices - ,@',(when new-value (list new-value))) + `(lambda (,@',(when new-value (list new-value)) + ,',array ,@n-indices) + (declare (ignorable ,',array)) (let* (,@(let ((,index -1)) (mapcar (lambda (name) `(,name (array-dimension @@ -792,38 +1098,41 @@ (with-row-major-index (array indices index) index)) - ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or + ;; Convert AREF and (SETF AREF) into a HAIRY-DATA-VECTOR-REF (or ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an ;; expression for the row major index. (deftransform aref ((array &rest indices)) (with-row-major-index (array indices index) (hairy-data-vector-ref array index))) - (deftransform %aset ((array &rest stuff)) - (let ((indices (butlast stuff))) - (with-row-major-index (array indices index new-value) - (hairy-data-vector-set array index new-value))))) + (deftransform (setf aref) ((new-value array &rest subscripts)) + (with-row-major-index (array subscripts index new-value) + (hairy-data-vector-set array index new-value)))) ;; For AREF of vectors we do the bounds checking in the callee. This ;; lets us do a significantly more efficient check for simple-arrays ;; without bloating the code. If we already know the type of the array ;; with sufficient precision, skip directly to DATA-VECTOR-REF. (deftransform aref ((array index) (t t) * :node node) - (let ((type (lvar-type array))) - (cond ((and (array-type-p type) - (null (array-type-complexp type)) - (not (eql (extract-upgraded-element-type array) - *wild-type*)) - (eql (length (array-type-dimensions type)) 1)) - `(data-vector-ref array (%check-bound array - (array-dimension array 0) - index))) - ((policy node (zerop insert-array-bounds-checks)) - `(hairy-data-vector-ref array index)) - (t - `(hairy-data-vector-ref/check-bounds array index))))) + (let* ((type (lvar-type array)) + (element-ctype (array-type-upgraded-element-type type))) + (cond + ((and (array-type-p type) + (null (array-type-complexp type)) + (not (eql element-ctype *wild-type*)) + (eql (length (array-type-dimensions type)) 1)) + (let* ((declared-element-ctype (array-type-declared-element-type type)) + (bare-form + `(data-vector-ref array + (%check-bound array (array-dimension array 0) index)))) + (if (type= declared-element-ctype element-ctype) + bare-form + `(the ,(type-specifier declared-element-ctype) ,bare-form)))) + ((policy node (zerop insert-array-bounds-checks)) + `(hairy-data-vector-ref array index)) + (t `(hairy-data-vector-ref/check-bounds array index))))) -(deftransform %aset ((array index new-value) (t t t) * :node node) +(deftransform (setf aref) ((new-value array index) (t t t) * :node node) (if (policy node (zerop insert-array-bounds-checks)) `(hairy-data-vector-set array index new-value) `(hairy-data-vector-set/check-bounds array index new-value))) @@ -832,9 +1141,12 @@ ;;; available, switch back to the normal one to give other transforms ;;; a stab at it. (macrolet ((define (name transform-to extra extra-type) + (declare (ignore extra-type)) `(deftransform ,name ((array index ,@extra)) - (let ((type (lvar-type array)) - (element-type (extract-upgraded-element-type array))) + (let* ((type (lvar-type array)) + (element-type (array-type-upgraded-element-type type)) + (declared-type (type-specifier + (array-type-declared-element-type type)))) ;; If an element type has been declared, we want to ;; use that information it for type checking (even ;; if the access can't be optimized due to the array @@ -849,12 +1161,19 @@ ;; to inline the access completely. (not (null (array-type-complexp type)))) (give-up-ir1-transform - "Upgraded element type of array is not known at compile time.")))) - `(,',transform-to array - (%check-bound array - (array-dimension array 0) - index) - ,@',extra)))) + "Upgraded element type of array is not known at compile time."))) + ,(if extra + ``(truly-the ,declared-type + (,',transform-to array + (%check-bound array + (array-dimension array 0) + index) + (the ,declared-type ,@',extra))) + ``(the ,declared-type + (,',transform-to array + (%check-bound array + (array-dimension array 0) + index)))))))) (define hairy-data-vector-ref/check-bounds hairy-data-vector-ref nil nil) (define hairy-data-vector-set/check-bounds