X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fconstraint.lisp;h=9f1e1f030690bf91300ddfba95388275b56679ac;hb=3c9981c71f4d0d2c5b5830486c4b9a35ab50a240;hp=47a96c1a87ad3a4b446a06549708e8117f628a4f;hpb=a530bbe337109d898d5b4a001fc8f1afa3b5dc39;p=sbcl.git diff --git a/src/compiler/constraint.lisp b/src/compiler/constraint.lisp index 47a96c1..9f1e1f0 100644 --- a/src/compiler/constraint.lisp +++ b/src/compiler/constraint.lisp @@ -11,72 +11,105 @@ ;;;; provided with absolutely no warranty. See the COPYING and CREDITS ;;;; files for more information. +;;; TODO: +;;; +;;; -- documentation +;;; +;;; -- MV-BIND, :ASSIGNMENT + +;;; Problems: +;;; +;;; -- Constraint propagation badly interacts with bottom-up type +;;; inference. Consider +;;; +;;; (defun foo (n &aux (i 42)) +;;; (declare (optimize speed)) +;;; (declare (fixnum n) +;;; #+nil (type (integer 0) i)) +;;; (tagbody +;;; (setq i 0) +;;; :loop +;;; (when (>= i n) (go :exit)) +;;; (setq i (1+ i)) +;;; (go :loop) +;;; :exit)) +;;; +;;; In this case CP cannot even infer that I is of class INTEGER. +;;; +;;; -- In the above example if we place the check after SETQ, CP will +;;; fail to infer (< I FIXNUM): it does not understand that this +;;; constraint follows from (TYPEP I (INTEGER 0 0)). + (in-package "SB!C") -(file-comment - "$Header$") +(deftype constraint-y () '(or ctype lvar lambda-var constant)) (defstruct (constraint - (:include sset-element) - (:constructor make-constraint (number kind x y not-p))) - ;; The kind of constraint we have: + (:include sset-element) + (:constructor make-constraint (number kind x y not-p)) + (:copier nil)) + ;; the kind of constraint we have: ;; ;; TYPEP - ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is + ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is ;; constrained to be of type Y. ;; - ;; >, < - ;; X is a lambda-var and Y is a CTYPE. The relation holds + ;; > or < + ;; X is a lambda-var and Y is a CTYPE. The relation holds ;; between X and some object of type Y. ;; ;; EQL - ;; X is a LAMBDA-VAR Y is a LAMBDA-VAR or a CONSTANT. The - ;; relation is asserted to hold. + ;; X is a LAMBDA-VAR and Y is a LVAR, a LAMBDA-VAR or a CONSTANT. + ;; The relation is asserted to hold. (kind nil :type (member typep < > eql)) ;; The operands to the relation. (x nil :type lambda-var) - (y nil :type (or ctype lambda-var constant)) - ;; If true, negates the sense of the constraint, so the relation + (y nil :type constraint-y) + ;; If true, negates the sense of the constraint, so the relation ;; does *not* hold. (not-p nil :type boolean)) (defvar *constraint-number*) +(declaim (type (integer 0) *constraint-number*)) + +(defun find-constraint (kind x y not-p) + (declare (type lambda-var x) (type constraint-y y) (type boolean not-p)) + (etypecase y + (ctype + (do-sset-elements (con (lambda-var-constraints x) nil) + (when (and (eq (constraint-kind con) kind) + (eq (constraint-not-p con) not-p) + (type= (constraint-y con) y)) + (return con)))) + ((or lvar constant) + (do-sset-elements (con (lambda-var-constraints x) nil) + (when (and (eq (constraint-kind con) kind) + (eq (constraint-not-p con) not-p) + (eq (constraint-y con) y)) + (return con)))) + (lambda-var + (do-sset-elements (con (lambda-var-constraints x) nil) + (when (and (eq (constraint-kind con) kind) + (eq (constraint-not-p con) not-p) + (let ((cx (constraint-x con))) + (eq (if (eq cx x) + (constraint-y con) + cx) + y))) + (return con)))))) ;;; Return a constraint for the specified arguments. We only create a ;;; new constraint if there isn't already an equivalent old one, ;;; guaranteeing that all equivalent constraints are EQ. This ;;; shouldn't be called on LAMBDA-VARs with no CONSTRAINTS set. -(defun find-constraint (kind x y not-p) - (declare (type lambda-var x) (type (or constant lambda-var ctype) y) - (type boolean not-p)) - (or (etypecase y - (ctype - (do-sset-elements (con (lambda-var-constraints x) nil) - (when (and (eq (constraint-kind con) kind) - (eq (constraint-not-p con) not-p) - (type= (constraint-y con) y)) - (return con)))) - (constant - (do-sset-elements (con (lambda-var-constraints x) nil) - (when (and (eq (constraint-kind con) kind) - (eq (constraint-not-p con) not-p) - (eq (constraint-y con) y)) - (return con)))) - (lambda-var - (do-sset-elements (con (lambda-var-constraints x) nil) - (when (and (eq (constraint-kind con) kind) - (eq (constraint-not-p con) not-p) - (let ((cx (constraint-x con))) - (eq (if (eq cx x) - (constraint-y con) - cx) - y))) - (return con))))) +(defun find-or-create-constraint (kind x y not-p) + (declare (type lambda-var x) (type constraint-y y) (type boolean not-p)) + (or (find-constraint kind x y not-p) (let ((new (make-constraint (incf *constraint-number*) kind x y not-p))) - (sset-adjoin new (lambda-var-constraints x)) - (when (lambda-var-p y) - (sset-adjoin new (lambda-var-constraints y))) - new))) + (sset-adjoin new (lambda-var-constraints x)) + (when (lambda-var-p y) + (sset-adjoin new (lambda-var-constraints y))) + new))) ;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow ;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL. @@ -85,144 +118,149 @@ (declare (type ref ref)) (let ((leaf (ref-leaf ref))) (when (and (lambda-var-p leaf) - (lambda-var-constraints leaf)) + (lambda-var-constraints leaf)) leaf))) -;;; If CONT's USE is a REF, then return OK-REF-LAMBDA-VAR of the USE, -;;; otherwise NIL. -#!-sb-fluid (declaim (inline ok-cont-lambda-var)) -(defun ok-cont-lambda-var (cont) - (declare (type continuation cont)) - (let ((use (continuation-use cont))) - (when (ref-p use) - (ok-ref-lambda-var use)))) - -;;; Add the indicated test constraint to BLOCK, marking the block as -;;; having a new assertion when the constriant was not already -;;; present. We don't add the constraint if the block has multiple -;;; predecessors, since it only holds on this particular path. -(defun add-test-constraint (block fun x y not-p) - (unless (rest (block-pred block)) - (let ((con (find-constraint fun x y not-p)) - (old (or (block-test-constraint block) - (setf (block-test-constraint block) (make-sset))))) - (when (sset-adjoin con old) - (setf (block-type-asserted block) t)))) +;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL +;;; according to CONSTRAINTS. Return LAMBDA-VAR if so. +(defun ok-lvar-lambda-var (lvar constraints) + (declare (type lvar lvar)) + (let ((use (lvar-uses lvar))) + (cond ((ref-p use) + (let ((lambda-var (ok-ref-lambda-var use))) + (when lambda-var + (let ((constraint (find-constraint 'eql lambda-var lvar nil))) + (when (and constraint (sset-member constraint constraints)) + lambda-var))))) + ((cast-p use) + (ok-lvar-lambda-var (cast-value use) constraints))))) + +(defmacro do-eql-vars ((symbol (var constraints) &optional result) &body body) + (once-only ((var var)) + `(let ((,symbol ,var)) + (flet ((body-fun () + ,@body)) + (body-fun) + (do-sset-elements (con ,constraints ,result) + (let ((other (and (eq (constraint-kind con) 'eql) + (eq (constraint-not-p con) nil) + (cond ((eq ,var (constraint-x con)) + (constraint-y con)) + ((eq ,var (constraint-y con)) + (constraint-x con)) + (t + nil))))) + (when other + (setq ,symbol other) + (when (lambda-var-p ,symbol) + (body-fun))))))))) + +;;;; Searching constraints + +;;; Add the indicated test constraint to BLOCK. We don't add the +;;; constraint if the block has multiple predecessors, since it only +;;; holds on this particular path. +(defun add-test-constraint (fun x y not-p constraints target) + (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p)) + (add-eql-var-var-constraint x y constraints target)) + (t + (do-eql-vars (x (x constraints)) + (let ((con (find-or-create-constraint fun x y not-p))) + (sset-adjoin con target))))) (values)) ;;; Add complementary constraints to the consequent and alternative ;;; blocks of IF. We do nothing if X is NIL. -#!-sb-fluid (declaim (inline add-complement-constraints)) -(defun add-complement-constraints (if fun x y not-p) +(defun add-complement-constraints (fun x y not-p constraints + consequent-constraints + alternative-constraints) (when x - (add-test-constraint (if-consequent if) fun x y not-p) - (add-test-constraint (if-alternative if) fun x y (not not-p))) + (add-test-constraint fun x y not-p constraints + consequent-constraints) + (add-test-constraint fun x y (not not-p) constraints + alternative-constraints)) (values)) ;;; Add test constraints to the consequent and alternative blocks of ;;; the test represented by USE. -(defun add-test-constraints (use if) +(defun add-test-constraints (use if constraints) (declare (type node use) (type cif if)) - (typecase use - (ref - (add-complement-constraints if 'typep (ok-ref-lambda-var use) - (specifier-type 'null) t)) - (combination - (let ((name (continuation-function-name - (basic-combination-fun use))) - (args (basic-combination-args use))) - (case name - ((%typep %instance-typep) - (let ((type (second args))) - (when (constant-continuation-p type) - (let ((val (continuation-value type))) - (add-complement-constraints if 'typep - (ok-cont-lambda-var (first args)) - (if (ctype-p val) - val - (specifier-type val)) - nil))))) - ((eq eql) - (let* ((var1 (ok-cont-lambda-var (first args))) - (arg2 (second args)) - (var2 (ok-cont-lambda-var arg2))) - (cond ((not var1)) - (var2 - (add-complement-constraints if 'eql var1 var2 nil)) - ((constant-continuation-p arg2) - (add-complement-constraints if 'eql var1 - (ref-leaf - (continuation-use arg2)) - nil))))) - ((< >) - (let* ((arg1 (first args)) - (var1 (ok-cont-lambda-var arg1)) - (arg2 (second args)) - (var2 (ok-cont-lambda-var arg2))) - (when var1 - (add-complement-constraints if name var1 (continuation-type arg2) - nil)) - (when var2 - (add-complement-constraints if (if (eq name '<) '> '<) - var2 (continuation-type arg1) - nil)))) - (t - (let ((ptype (gethash name *backend-predicate-types*))) - (when ptype - (add-complement-constraints if 'typep - (ok-cont-lambda-var (first args)) - ptype nil)))))))) - (values)) - -;;; Set the TEST-CONSTRAINT in the successors of BLOCK according to -;;; the condition it tests. -(defun find-test-constraints (block) - (declare (type cblock block)) - (let ((last (block-last block))) - (when (if-p last) - (let ((use (continuation-use (if-test last)))) - (when use - (add-test-constraints use last))))) - - (setf (block-test-modified block) nil) - (values)) - -;;; Compute the initial flow analysis sets for BLOCK: -;;; -- For any lambda-var ref with a type check, add that constraint. -;;; -- For any lambda-var set, delete all constraints on that var, and add -;;; those constraints to the set nuked by this block. -(defun find-block-type-constraints (block) - (declare (type cblock block)) - (let ((gen (make-sset))) - (collect ((kill nil adjoin)) - - (let ((test (block-test-constraint block))) - (when test - (sset-union gen test))) - - (do-nodes (node cont block) - (typecase node - (ref - (when (continuation-type-check cont) - (let ((var (ok-ref-lambda-var node))) - (when var - (let* ((atype (continuation-derived-type cont)) - (con (find-constraint 'typep var atype nil))) - (sset-adjoin con gen)))))) - (cset - (let ((var (set-var node))) - (when (lambda-var-p var) - (kill var) - (let ((cons (lambda-var-constraints var))) - (when cons - (sset-difference gen cons)))))))) - - (setf (block-in block) nil) - (setf (block-gen block) gen) - (setf (block-kill block) (kill)) - (setf (block-out block) (copy-sset gen)) - (setf (block-type-asserted block) nil) - (values)))) + ;; Note: Even if we do (IF test exp exp) => (PROGN test exp) + ;; optimization, the *MAX-OPTIMIZE-ITERATIONS* cutoff means that we + ;; can't guarantee that the optimization will be done, so we still + ;; need to avoid barfing on this case. + (unless (eq (if-consequent if) (if-alternative if)) + (let ((consequent-constraints (make-sset)) + (alternative-constraints (make-sset))) + (macrolet ((add (fun x y not-p) + `(add-complement-constraints ,fun ,x ,y ,not-p + constraints + consequent-constraints + alternative-constraints))) + (typecase use + (ref + (add 'typep (ok-lvar-lambda-var (ref-lvar use) constraints) + (specifier-type 'null) t)) + (combination + (unless (eq (combination-kind use) + :error) + (let ((name (lvar-fun-name + (basic-combination-fun use))) + (args (basic-combination-args use))) + (case name + ((%typep %instance-typep) + (let ((type (second args))) + (when (constant-lvar-p type) + (let ((val (lvar-value type))) + (add 'typep + (ok-lvar-lambda-var (first args) constraints) + (if (ctype-p val) + val + (specifier-type val)) + nil))))) + ((eq eql) + (let* ((arg1 (first args)) + (var1 (ok-lvar-lambda-var arg1 constraints)) + (arg2 (second args)) + (var2 (ok-lvar-lambda-var arg2 constraints))) + ;; The code below assumes that the constant is the + ;; second argument in case of variable to constant + ;; comparision which is sometimes true (see source + ;; transformations for EQ, EQL and CHAR=). Fixing + ;; that would result in more constant substitutions + ;; which is not a universally good thing, thus the + ;; unnatural asymmetry of the tests. + (cond ((not var1) + (when var2 + (add-test-constraint 'typep var2 (lvar-type arg1) + nil constraints + consequent-constraints))) + (var2 + (add 'eql var1 var2 nil)) + ((constant-lvar-p arg2) + (add 'eql var1 (ref-leaf (principal-lvar-use arg2)) + nil)) + (t + (add-test-constraint 'typep var1 (lvar-type arg2) + nil constraints + consequent-constraints))))) + ((< >) + (let* ((arg1 (first args)) + (var1 (ok-lvar-lambda-var arg1 constraints)) + (arg2 (second args)) + (var2 (ok-lvar-lambda-var arg2 constraints))) + (when var1 + (add name var1 (lvar-type arg2) nil)) + (when var2 + (add (if (eq name '<) '> '<) var2 (lvar-type arg1) nil)))) + (t + (let ((ptype (gethash name *backend-predicate-types*))) + (when ptype + (add 'typep (ok-lvar-lambda-var (first args) constraints) + ptype nil)))))))))) + (values consequent-constraints alternative-constraints)))) + +;;;; Applying constraints ;;; Return true if X is an integer NUMERIC-TYPE. (defun integer-type-p (x) @@ -242,28 +280,21 @@ (defun constrain-integer-type (x y greater or-equal) (declare (type numeric-type x y)) (flet ((exclude (x) - (cond ((not x) nil) - (or-equal x) - (greater (1+ x)) - (t (1- x)))) - (bound (x) - (if greater (numeric-type-low x) (numeric-type-high x))) - (validate (x) - (if (and (numeric-type-low x) (numeric-type-high x) - (> (numeric-type-low x) (numeric-type-high x))) - *empty-type* - x))) + (cond ((not x) nil) + (or-equal x) + (greater (1+ x)) + (t (1- x)))) + (bound (x) + (if greater (numeric-type-low x) (numeric-type-high x)))) (let* ((x-bound (bound x)) - (y-bound (exclude (bound y))) - (new-bound (cond ((not x-bound) y-bound) - ((not y-bound) x-bound) - (greater (max x-bound y-bound)) - (t (min x-bound y-bound)))) - (res (copy-numeric-type x))) + (y-bound (exclude (bound y))) + (new-bound (cond ((not x-bound) y-bound) + ((not y-bound) x-bound) + (greater (max x-bound y-bound)) + (t (min x-bound y-bound))))) (if greater - (setf (numeric-type-low res) new-bound) - (setf (numeric-type-high res) new-bound)) - (validate res)))) + (modified-numeric-type x :low new-bound) + (modified-numeric-type x :high new-bound))))) ;;; Return true if X is a float NUMERIC-TYPE. (defun float-type-p (x) @@ -275,63 +306,46 @@ ;;; Exactly the same as CONSTRAIN-INTEGER-TYPE, but for float numbers. (defun constrain-float-type (x y greater or-equal) (declare (type numeric-type x y)) - ;; Unless :PROPAGATE-FLOAT-TYPE is in target features, then - ;; SB!C::BOUND-VALUE (used in the code below) is not defined, so we - ;; just return X without trying to calculate additional constraints. - #!-propagate-float-type (declare (ignore y greater or-equal)) - #!-propagate-float-type x - #!+propagate-float-type + (declare (ignorable x y greater or-equal)) ; for CROSS-FLOAT-INFINITY-KLUDGE + + (aver (eql (numeric-type-class x) 'float)) + (aver (eql (numeric-type-class y) 'float)) + #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) + x + #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (labels ((exclude (x) - (cond ((not x) nil) - (or-equal x) - (greater - (if (consp x) - (car x) - x)) - (t - (if (consp x) - x - (list x))))) - (bound (x) - (if greater (numeric-type-low x) (numeric-type-high x))) - (max-lower-bound (x y) - ;; Both x and y are not null. Find the max. - (let ((res (max (bound-value x) (bound-value y)))) - ;; An open lower bound is greater than a close - ;; lower bound because the open bound doesn't - ;; contain the bound, so choose an open lower - ;; bound. - (set-bound res (or (consp x) (consp y))))) - (min-upper-bound (x y) - ;; Same as above, but for the min of upper bounds - ;; Both x and y are not null. Find the min. - (let ((res (min (bound-value x) (bound-value y)))) - ;; An open upper bound is less than a closed - ;; upper bound because the open bound doesn't - ;; contain the bound, so choose an open lower - ;; bound. - (set-bound res (or (consp x) (consp y))))) - (validate (x) - (let ((x-lo (numeric-type-low x)) - (x-hi (numeric-type-high x))) - (if (and x-lo x-hi (> (bound-value x-lo) (bound-value x-hi))) - *empty-type* - x)))) + (cond ((not x) nil) + (or-equal x) + (t + (if (consp x) + x + (list x))))) + (bound (x) + (if greater (numeric-type-low x) (numeric-type-high x))) + (tighter-p (x ref) + (cond ((null x) nil) + ((null ref) t) + ((and or-equal + (= (type-bound-number x) (type-bound-number ref))) + ;; X is tighter if REF is not an open bound and X is + (and (not (consp ref)) (consp x))) + (greater + (< (type-bound-number ref) (type-bound-number x))) + (t + (> (type-bound-number ref) (type-bound-number x)))))) (let* ((x-bound (bound x)) - (y-bound (exclude (bound y))) - (new-bound (cond ((not x-bound) - y-bound) - ((not y-bound) - x-bound) - (greater - (max-lower-bound x-bound y-bound)) - (t - (min-upper-bound x-bound y-bound)))) - (res (copy-numeric-type x))) + (y-bound (exclude (bound y))) + (new-bound (cond ((not x-bound) + y-bound) + ((not y-bound) + x-bound) + ((tighter-p y-bound x-bound) + y-bound) + (t + x-bound)))) (if greater - (setf (numeric-type-low res) new-bound) - (setf (numeric-type-high res) new-bound)) - (validate res)))) + (modified-numeric-type x :low new-bound) + (modified-numeric-type x :high new-bound))))) ;;; Given the set of CONSTRAINTS for a variable and the current set of ;;; restrictions from flow analysis IN, set the type for REF @@ -341,103 +355,231 @@ (let ((var-cons (copy-sset constraints))) (sset-intersection var-cons in) (let ((res (single-value-type (node-derived-type ref))) - (not-res *empty-type*) - (leaf (ref-leaf ref))) + (not-res *empty-type*) + (leaf (ref-leaf ref))) (do-sset-elements (con var-cons) - (let* ((x (constraint-x con)) - (y (constraint-y con)) - (not-p (constraint-not-p con)) - (other (if (eq x leaf) y x)) - (kind (constraint-kind con))) - (case kind - (typep - (if not-p - (setq not-res (type-union not-res other)) - (setq res (type-intersection res other)))) - (eql - (let ((other-type (leaf-type other))) - (if not-p - (when (and (constant-p other) - (member-type-p other-type)) - (setq not-res (type-union not-res other-type))) - (let ((leaf-type (leaf-type leaf))) - (when (or (constant-p other) - (and (csubtypep other-type leaf-type) - (not (type= other-type leaf-type)))) - (change-ref-leaf ref other) - (when (constant-p other) (return))))))) - ((< >) - (cond ((and (integer-type-p res) (integer-type-p y)) - (let ((greater (eq kind '>))) - (let ((greater (if not-p (not greater) greater))) - (setq res - (constrain-integer-type res y greater not-p))))) - #!+constrain-float-type - ((and (float-type-p res) (float-type-p y)) - (let ((greater (eq kind '>))) - (let ((greater (if not-p (not greater) greater))) - (setq res - (constrain-float-type res y greater not-p))))) - ))))) - - (let* ((cont (node-cont ref)) - (dest (continuation-dest cont))) - (cond ((and (if-p dest) - (csubtypep (specifier-type 'null) not-res) - (eq (continuation-asserted-type cont) *wild-type*)) - (setf (node-derived-type ref) *wild-type*) - (change-ref-leaf ref (find-constant 't))) - (t - (derive-node-type ref (or (type-difference res not-res) - res))))))) + (let* ((x (constraint-x con)) + (y (constraint-y con)) + (not-p (constraint-not-p con)) + (other (if (eq x leaf) y x)) + (kind (constraint-kind con))) + (case kind + (typep + (if not-p + (setq not-res (type-union not-res other)) + (setq res (type-approx-intersection2 res other)))) + (eql + (unless (lvar-p other) + (let ((other-type (leaf-type other))) + (if not-p + (when (and (constant-p other) + (member-type-p other-type)) + (setq not-res (type-union not-res other-type))) + (let ((leaf-type (leaf-type leaf))) + (cond + ((or (constant-p other) + (and (leaf-refs other) ; protect from + ; deleted vars + (csubtypep other-type leaf-type) + (not (type= other-type leaf-type)))) + (change-ref-leaf ref other) + (when (constant-p other) (return))) + (t + (setq res (type-approx-intersection2 + res other-type))))))))) + ((< >) + (cond + ((and (integer-type-p res) (integer-type-p y)) + (let ((greater (eq kind '>))) + (let ((greater (if not-p (not greater) greater))) + (setq res + (constrain-integer-type res y greater not-p))))) + ((and (float-type-p res) (float-type-p y)) + (let ((greater (eq kind '>))) + (let ((greater (if not-p (not greater) greater))) + (setq res + (constrain-float-type res y greater not-p)))))))))) + (cond ((and (if-p (node-dest ref)) + (csubtypep (specifier-type 'null) not-res)) + (setf (node-derived-type ref) *wild-type*) + (change-ref-leaf ref (find-constant t))) + (t + (derive-node-type ref + (make-single-value-type + (or (type-difference res not-res) + res))) + (maybe-terminate-block ref nil))))) (values)) +;;;; Flow analysis + +(defun maybe-add-eql-var-lvar-constraint (ref gen) + (let ((lvar (ref-lvar ref)) + (leaf (ref-leaf ref))) + (when (and (lambda-var-p leaf) lvar) + (sset-adjoin (find-or-create-constraint 'eql leaf lvar nil) + gen)))) + +;;; Copy all CONSTRAINTS involving FROM-VAR to VAR except the (EQL VAR +;;; LVAR) ones. +(defun inherit-constraints (var from-var constraints target) + (do-sset-elements (con constraints) + (let ((eq-x (eq from-var (constraint-x con))) + (eq-y (eq from-var (constraint-y con)))) + ;; Constant substitution is controversial. + (unless (constant-p (constraint-y con)) + (when (or (and eq-x (not (lvar-p (constraint-y con)))) + eq-y) + (sset-adjoin (find-or-create-constraint + (constraint-kind con) + (if eq-x var (constraint-x con)) + (if eq-y var (constraint-y con)) + (constraint-not-p con)) + target)))))) + +;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and +;; inherit each other's constraints. +(defun add-eql-var-var-constraint (var1 var2 constraints + &optional (target constraints)) + (let ((con (find-or-create-constraint 'eql var1 var2 nil))) + (when (sset-adjoin con target) + (do-eql-vars (var2 (var2 constraints)) + (inherit-constraints var1 var2 constraints target)) + (do-eql-vars (var1 (var1 constraints)) + (inherit-constraints var2 var1 constraints target)) + t))) + +;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's +;; LAMBDA-VAR if possible. +(defun maybe-add-eql-var-var-constraint (var lvar constraints + &optional (target constraints)) + (declare (type lambda-var var) (type lvar lvar)) + (let ((lambda-var (ok-lvar-lambda-var lvar constraints))) + (when lambda-var + (add-eql-var-var-constraint var lambda-var constraints target)))) + +;;; Local propagation +;;; -- [TODO: For any LAMBDA-VAR ref with a type check, add that +;;; constraint.] +;;; -- For any LAMBDA-VAR set, delete all constraints on that var; add +;;; a type constraint based on the new value type. +(declaim (ftype (function (cblock sset + &key (:ref-preprocessor (or null function)) + (:set-preprocessor (or null function))) + sset) + constraint-propagate-in-block)) +(defun constraint-propagate-in-block + (block gen &key ref-preprocessor set-preprocessor) + + (do-nodes (node lvar block) + (typecase node + (bind + (let ((fun (bind-lambda node))) + (when (eq (functional-kind fun) :let) + (loop with call = (lvar-dest (node-lvar (first (lambda-refs fun)))) + for var in (lambda-vars fun) + and val in (combination-args call) + when (and val (lambda-var-constraints var)) + do (let* ((type (lvar-type val)) + (con (find-or-create-constraint 'typep var type + nil))) + (sset-adjoin con gen)) + (maybe-add-eql-var-var-constraint var val gen))))) + (ref + (when (ok-ref-lambda-var node) + (maybe-add-eql-var-lvar-constraint node gen) + (when ref-preprocessor + (funcall ref-preprocessor node gen)))) + (cast + (let ((lvar (cast-value node))) + (let ((var (ok-lvar-lambda-var lvar gen))) + (when var + (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME + (do-eql-vars (var (var gen)) + (let ((con (find-or-create-constraint 'typep var atype nil))) + (sset-adjoin con gen)))))))) + (cset + (binding* ((var (set-var node)) + (nil (lambda-var-p var) :exit-if-null) + (cons (lambda-var-constraints var) :exit-if-null)) + (when set-preprocessor + (funcall set-preprocessor var)) + (sset-difference gen cons) + (let* ((type (single-value-type (node-derived-type node))) + (con (find-or-create-constraint 'typep var type nil))) + (sset-adjoin con gen)) + (maybe-add-eql-var-var-constraint var (set-value node) gen))))) + + gen) + +(defun constraint-propagate-if (block gen) + (let ((node (block-last block))) + (when (if-p node) + (let ((use (lvar-uses (if-test node)))) + (when (node-p use) + (add-test-constraints use node gen)))))) + +(defun constrain-node (node cons) + (let* ((var (ref-leaf node)) + (con (lambda-var-constraints var))) + (constrain-ref-type node con cons))) + +;;; Starting from IN compute OUT and (consequent/alternative +;;; constraints if the block ends with and IF). Return the list of +;;; successors that may need to be recomputed. +(defun find-block-type-constraints (block &key final-pass-p) + (declare (type cblock block)) + (let ((gen (constraint-propagate-in-block + block + (if final-pass-p + (block-in block) + (copy-sset (block-in block))) + :ref-preprocessor (if final-pass-p #'constrain-node nil)))) + (setf (block-gen block) gen) + (multiple-value-bind (consequent-constraints alternative-constraints) + (constraint-propagate-if block gen) + (if consequent-constraints + (let* ((node (block-last block)) + (old-consequent-constraints (if-consequent-constraints node)) + (old-alternative-constraints (if-alternative-constraints node)) + (succ ())) + ;; Add the consequent and alternative constraints to GEN. + (cond ((sset-empty consequent-constraints) + (setf (if-consequent-constraints node) gen) + (setf (if-alternative-constraints node) gen)) + (t + (setf (if-consequent-constraints node) (copy-sset gen)) + (sset-union (if-consequent-constraints node) + consequent-constraints) + (setf (if-alternative-constraints node) gen) + (sset-union (if-alternative-constraints node) + alternative-constraints))) + ;; Has the consequent been changed? + (unless (and old-consequent-constraints + (sset= (if-consequent-constraints node) + old-consequent-constraints)) + (push (if-consequent node) succ)) + ;; Has the alternative been changed? + (unless (and old-alternative-constraints + (sset= (if-alternative-constraints node) + old-alternative-constraints)) + (push (if-alternative node) succ)) + succ) + ;; There is no IF. + (unless (and (block-out block) + (sset= gen (block-out block))) + (setf (block-out block) gen) + (block-succ block)))))) + ;;; Deliver the results of constraint propagation to REFs in BLOCK. ;;; During this pass, we also do local constraint propagation by -;;; adding in constraints as we seem them during the pass through the +;;; adding in constraints as we see them during the pass through the ;;; block. (defun use-result-constraints (block) (declare (type cblock block)) - (let ((in (block-in block))) - - (let ((test (block-test-constraint block))) - (when test - (sset-union in test))) - - (do-nodes (node cont block) - (typecase node - (ref - (let ((var (ref-leaf node))) - (when (lambda-var-p var) - (let ((con (lambda-var-constraints var))) - (when con - (constrain-ref-type node con in) - (when (continuation-type-check cont) - (sset-adjoin - (find-constraint 'typep var - (continuation-asserted-type cont) - nil) - in))))))) - (cset - (let ((var (set-var node))) - (when (lambda-var-p var) - (let ((cons (lambda-var-constraints var))) - (when cons - (sset-difference in cons)))))))))) - -;;; Return true if VAR would have to be closed over if environment -;;; analysis ran now (i.e. if there are any uses that have a different -;;; home lambda than VAR's home.) -(defun closure-var-p (var) - (declare (type lambda-var var)) - (let ((home (lambda-home (lambda-var-home var)))) - (flet ((frob (l) - (dolist (node l nil) - (unless (eq (node-home-lambda node) home) - (return t))))) - (or (frob (leaf-refs var)) - (frob (basic-var-sets var)))))) + (constraint-propagate-in-block block (block-in block) + :ref-preprocessor #'constrain-node)) ;;; Give an empty constraints set to any var that doesn't have one and ;;; isn't a set closure var. Since a var that we previously rejected @@ -447,86 +589,132 @@ (declare (type component component)) (dolist (fun (component-lambdas component)) (flet ((frob (x) - (dolist (var (lambda-vars x)) - (unless (lambda-var-constraints var) - (when (or (null (lambda-var-sets var)) - (not (closure-var-p var))) - (setf (lambda-var-constraints var) (make-sset))))))) + (dolist (var (lambda-vars x)) + (unless (lambda-var-constraints var) + (when (or (null (lambda-var-sets var)) + (not (closure-var-p var))) + (setf (lambda-var-constraints var) (make-sset))))))) (frob fun) (dolist (let (lambda-lets fun)) - (frob let))))) - -;;; BLOCK-IN becomes the intersection of the OUT of the prececessors. -;;; Our OUT is: -;;; out U (in - kill) + (frob let))))) + +;;; Return the constraints that flow from PRED to SUCC. This is +;;; BLOCK-OUT unless PRED ends with and IF and test constraints were +;;; added. +(defun block-out-for-successor (pred succ) + (declare (type cblock pred succ)) + (let ((last (block-last pred))) + (or (when (if-p last) + (cond ((eq succ (if-consequent last)) + (if-consequent-constraints last)) + ((eq succ (if-alternative last)) + (if-alternative-constraints last)))) + (block-out pred)))) + +(defun compute-block-in (block) + (let ((in nil)) + (dolist (pred (block-pred block)) + ;; If OUT has not been calculated, assume it to be the universal + ;; set. + (let ((out (block-out-for-successor pred block))) + (when out + (if in + (sset-intersection in out) + (setq in (copy-sset out)))))) + (or in (make-sset)))) + +(defun update-block-in (block) + (let ((in (compute-block-in block))) + (cond ((and (block-in block) (sset= in (block-in block))) + nil) + (t + (setf (block-in block) in))))) + +;;; Return two lists: one of blocks that precede all loops and +;;; therefore require only one constraint propagation pass and the +;;; rest. This implementation does not find all such blocks. +;;; +;;; A more complete implementation would be: +;;; +;;; (do-blocks (block component) +;;; (if (every #'(lambda (pred) +;;; (or (member pred leading-blocks) +;;; (eq pred head))) +;;; (block-pred block)) +;;; (push block leading-blocks) +;;; (push block rest-of-blocks))) ;;; -;;; BLOCK-KILL is just a list of the lambda-vars killed, so we must -;;; compute the kill set when there are any vars killed. We bum this a -;;; bit by special-casing when only one var is killed, and just using -;;; that var's constraints as the kill set. This set could possibly be -;;; precomputed, but it would have to be invalidated whenever any -;;; constraint is added, which would be a pain. -(defun flow-propagate-constraints (block) - (let* ((pred (block-pred block)) - (in (cond (pred - (let ((res (copy-sset (block-out (first pred))))) - (dolist (b (rest pred)) - (sset-intersection res (block-out b))) - res)) - (t - (when *check-consistency* - (let ((*compiler-error-context* (block-last block))) - (compiler-warning - "*** Unreachable code in constraint ~ - propagation... Bug?"))) - (make-sset)))) - (kill (block-kill block)) - (out (block-out block))) - - (setf (block-in block) in) - (cond ((null kill) - (sset-union (block-out block) in)) - ((null (rest kill)) - (let ((con (lambda-var-constraints (first kill)))) - (if con - (sset-union-of-difference out in con) - (sset-union out in)))) - (t - (let ((kill-set (make-sset))) - (dolist (var kill) - (let ((con (lambda-var-constraints var))) - (when con - (sset-union kill-set con)))) - (sset-union-of-difference (block-out block) in kill-set)))))) +;;; Trailing blocks that succeed all loops could be found and handled +;;; similarly. In practice though, these more complex solutions are +;;; slightly worse performancewise. +(defun leading-component-blocks (component) + (declare (type component component)) + (flet ((loopy-p (block) + (let ((n (block-number block))) + (dolist (pred (block-pred block)) + (unless (< n (block-number pred)) + (return t)))))) + (let ((leading-blocks ()) + (rest-of-blocks ()) + (seen-loop-p ())) + (do-blocks (block component) + (when (and (not seen-loop-p) (loopy-p block)) + (setq seen-loop-p t)) + (if seen-loop-p + (push block rest-of-blocks) + (push block leading-blocks))) + (values (nreverse leading-blocks) (nreverse rest-of-blocks))))) + +;;; Append OBJ to the end of LIST as if by NCONC but only if it is not +;;; a member already. +(defun nconc-new (obj list) + (do ((x list (cdr x)) + (prev nil x)) + ((endp x) (if prev + (progn + (setf (cdr prev) (list obj)) + list) + (list obj))) + (when (eql (car x) obj) + (return-from nconc-new list)))) + +(defun find-and-propagate-constraints (component) + (let ((blocks-to-process ())) + (flet ((enqueue (blocks) + (dolist (block blocks) + (setq blocks-to-process (nconc-new block blocks-to-process))))) + (multiple-value-bind (leading-blocks rest-of-blocks) + (leading-component-blocks component) + ;; Update every block once to account for changes in the + ;; IR1. The constraints of the lead blocks cannot be changed + ;; after the first pass so we might as well use them and skip + ;; USE-RESULT-CONSTRAINTS later. + (dolist (block leading-blocks) + (setf (block-in block) (compute-block-in block)) + (find-block-type-constraints block :final-pass-p t)) + (setq blocks-to-process (copy-list rest-of-blocks)) + ;; The rest of the blocks. + (dolist (block rest-of-blocks) + (aver (eq block (pop blocks-to-process))) + (setf (block-in block) (compute-block-in block)) + (enqueue (find-block-type-constraints block))) + ;; Propagate constraints + (loop for block = (pop blocks-to-process) + while block do + (unless (eq block (component-tail component)) + (when (update-block-in block) + (enqueue (find-block-type-constraints block))))) + rest-of-blocks)))) (defun constraint-propagate (component) (declare (type component component)) (init-var-constraints component) - (do-blocks (block component) - (when (block-test-modified block) - (find-test-constraints block))) - - (do-blocks (block component) - (cond ((block-type-asserted block) - (find-block-type-constraints block)) - (t - (setf (block-in block) nil) - (setf (block-out block) (copy-sset (block-gen block)))))) - - (setf (block-out (component-head component)) (make-sset)) + (unless (block-out (component-head component)) + (setf (block-out (component-head component)) (make-sset))) - (let ((did-something nil)) - (loop - (do-blocks (block component) - (when (flow-propagate-constraints block) - (setq did-something t))) - - (unless did-something (return)) - (setq did-something nil))) - - (do-blocks (block component) - (use-result-constraints block)) + (dolist (block (find-and-propagate-constraints component)) + (unless (block-delete-p block) + (use-result-constraints block))) (values)) -