X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fconstraint.lisp;h=b30ecd212a1226a39e6ba028253c97a7394d72d2;hb=11dc847696f9c5441c409ce5b7fdf77cf27746c5;hp=27f2feb087eb35f9d0f0c597eccea793d797f4d2;hpb=8f31e3b32926c61b13240c447637d4bb9af10cdc;p=sbcl.git diff --git a/src/compiler/constraint.lisp b/src/compiler/constraint.lisp index 27f2feb..b30ecd2 100644 --- a/src/compiler/constraint.lisp +++ b/src/compiler/constraint.lisp @@ -153,37 +153,6 @@ (min 0 :type fixnum) (max 0 :type fixnum)) - (defmacro do-conset-elements ((constraint conset &optional result) &body body) - (with-unique-names (vector index start end - #-sb-xc-host ignore - #-sb-xc-host constraint-universe-end) - (let* ((constraint-universe #+sb-xc-host '*constraint-universe* - #-sb-xc-host (sb!xc:gensym "UNIVERSE")) - (with-array-data - #+sb-xc-host '(progn) - #-sb-xc-host `(with-array-data - ((,constraint-universe *constraint-universe*) - (,ignore 0) (,constraint-universe-end nil) - :check-fill-pointer t) - (declare (ignore ,ignore)) - (aver (<= ,end ,constraint-universe-end))))) - `(let* ((,vector (conset-vector ,conset)) - (,start (conset-min ,conset)) - (,end (min (conset-max ,conset) (length ,vector)))) - (,@with-array-data - (do ((,index ,start (1+ ,index))) ((>= ,index ,end) ,result) - (when (plusp (sbit ,vector ,index)) - (let ((,constraint (elt ,constraint-universe ,index))) - ,@body)))))))) - - ;; Oddly, iterating just between the maximum of the two sets' minima - ;; and the minimum of the sets' maxima slowed down CP. - (defmacro do-conset-intersection - ((constraint conset1 conset2 &optional result) &body body) - `(do-conset-elements (,constraint ,conset1 ,result) - (when (conset-member ,constraint ,conset2) - ,@body))) - (defun conset-empty (conset) (or (= (conset-min conset) (conset-max conset)) ;; TODO: I bet FIND on bit-vectors can be optimized, if it @@ -227,14 +196,13 @@ (plusp (sbit vector number))))) (defun conset-adjoin (constraint conset) - (prog1 - (not (conset-member constraint conset)) - (let ((number (%constraint-number constraint))) - (conset-grow conset (1+ number)) - (setf (sbit (conset-vector conset) number) 1) - (setf (conset-min conset) (min number (conset-min conset))) - (when (>= number (conset-max conset)) - (setf (conset-max conset) (1+ number)))))) + (let ((number (%constraint-number constraint))) + (conset-grow conset (1+ number)) + (setf (sbit (conset-vector conset) number) 1) + (setf (conset-min conset) (min number (conset-min conset))) + (when (>= number (conset-max conset)) + (setf (conset-max conset) (1+ number)))) + conset) (defun conset= (conset1 conset2) (let* ((vector1 (conset-vector conset1)) @@ -325,7 +293,6 @@ ;;; to over-approximate and then linear search through the potential hits. ;;; LVARs can only be found in EQL (not-p = NIL) constraints, while constant ;;; and lambda-vars can only be found in EQL constraints. - (defun find-constraint (kind x y not-p) (declare (type lambda-var x) (type constraint-y y) (type boolean not-p)) (etypecase y @@ -359,7 +326,10 @@ ;;; Lambda-var -- lvar EQL constraints only serve one purpose: remember whether ;;; an lvar is (only) written to by a ref to that lambda-var, and aren't ever ;;; propagated. - +;;; +;;; Finally, the lambda-var conset is only used to track the whole set of +;;; constraints associated with a given lambda-var, and thus easily delete +;;; such constraints from a conset. (defun register-constraint (x con y) (declare (type lambda-var x) (type constraint con) (type constraint-y y)) (conset-adjoin con (lambda-var-constraints x)) @@ -410,33 +380,43 @@ (when (lambda-var-p y) (register-constraint y new x)) new))) - -;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow -;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL. -#!-sb-fluid (declaim (inline ok-ref-lambda-var)) -(defun ok-ref-lambda-var (ref) - (declare (type ref ref)) - (let ((leaf (ref-leaf ref))) - (when (and (lambda-var-p leaf) - (lambda-var-constraints leaf)) - leaf))) - -;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL -;;; according to CONSTRAINTS. Return LAMBDA-VAR if so. -(defun ok-lvar-lambda-var (lvar constraints) - (declare (type lvar lvar)) - (let ((use (lvar-uses lvar))) - (cond ((ref-p use) - (let ((lambda-var (ok-ref-lambda-var use))) - (when lambda-var - (let ((constraint (find-constraint 'eql lambda-var lvar nil))) - (when (and constraint (conset-member constraint constraints)) - lambda-var))))) - ((cast-p use) - (ok-lvar-lambda-var (cast-value use) constraints))))) - + +;;; Actual conset interface +;;; +;;; Constraint propagation needs to iterate over the set of lambda-vars known to +;;; be EQL to a given variable (including itself), via DO-EQL-VARS. +;;; +;;; It also has to iterate through constraints that are inherited by EQL variables +;;; (DO-INHERITABLE-CONSTRAINTS), and through constraints used by +;;; CONSTRAIN-REF-TYPE (to derive the type of a REF to a lambda-var). +;;; +;;; Consets must keep track of which lvars are EQL to a given lambda-var (result +;;; from a REF to the lambda-var): CONSET-LVAR-LAMBDA-VAR-EQL-P and +;;; CONSET-ADD-LVAR-LAMBDA-VAR-EQL. This, as all other constraints, must of +;;; course be cleared when a lambda-var's constraints are dropped because of +;;; assignment. +;;; +;;; Consets must be able to add constraints to a given lambda-var +;;; (CONSET-ADD-CONSTRAINT), and to the set of variables EQL to a given +;;; lambda-var (CONSET-ADD-CONSTRAINT-TO-EQL). +;;; +;;; When a lambda-var is assigned to, all the constraints involving that variable +;;; must be dropped: constraint propagation is flow-sensitive, so the constraints +;;; relate to the variable at a given range of program point. In such cases, +;;; constraint propagation calls CONSET-CLEAR-LAMBDA-VAR. +;;; +;;; Finally, one of the main strengths of constraint propagation in SBCL is the +;;; tracking of EQL variables to help constraint propagation. When two variables +;;; are known to be EQL (e.g. after a branch), ADD-EQL-VAR-VAR-CONSTRAINT is +;;; called to add the EQL constraint, but also have each equality class inherit +;;; the other's (inheritable) constraints. +;;; +;;; On top of that, we have the usual bulk set operations: intersection, copy, +;;; equality or emptiness testing. There's also union, but that's only an +;;; optimisation to avoid useless copies in ADD-TEST-CONSTRAINTS and +;;; FIND-BLOCK-TYPE-CONSTRAINTS. (defmacro do-conset-constraints-intersection ((symbol (conset constraints) &optional result) - &body body) + &body body) (let ((min (gensym "MIN")) (max (gensym "MAX"))) (once-only ((conset conset) @@ -447,6 +427,7 @@ (when ,constraints (let ((,min (conset-min ,conset)) (,max (conset-max ,conset))) + (declare (optimize speed)) (map nil (lambda (constraint) (declare (type constraint constraint)) (let ((number (constraint-number constraint))) @@ -499,32 +480,133 @@ (do-conset-constraints-intersection (con (,conset (lambda-var-inheritable-constraints ,variable)) ,result) (body-fun con)))))) + +(declaim (inline conset-lvar-lambda-var-eql-p conset-add-lvar-lambda-var-eql)) +(defun conset-lvar-lambda-var-eql-p (conset lvar lambda-var) + (let ((constraint (find-constraint 'eql lambda-var lvar nil))) + (and constraint + (conset-member constraint conset)))) + +(defun conset-add-lvar-lambda-var-eql (conset lvar lambda-var) + (let ((constraint (find-or-create-constraint 'eql lambda-var lvar nil))) + (conset-adjoin constraint conset))) + +(declaim (inline conset-add-constraint conset-add-constraint-to-eql)) +(defun conset-add-constraint (conset kind x y not-p) + (declare (type conset conset) + (type lambda-var x)) + (conset-adjoin (find-or-create-constraint kind x y not-p) + conset)) + +(defun conset-add-constraint-to-eql (conset kind x y not-p &optional (target conset)) + (declare (type conset target conset) + (type lambda-var x)) + (do-eql-vars (x (x conset)) + (conset-add-constraint target kind x y not-p))) + +(declaim (inline conset-clear-lambda-var)) +(defun conset-clear-lambda-var (conset var) + (conset-difference conset (lambda-var-constraints var))) + +;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR +;;; LVAR) ones - to all of the variables in the VARS list. +(defun inherit-constraints (vars from-var constraints target) + (do-inheritable-constraints (con (constraints from-var)) + (let ((eq-x (eq from-var (constraint-x con))) + (eq-y (eq from-var (constraint-y con)))) + (dolist (var vars) + (conset-add-constraint target + (constraint-kind con) + (if eq-x var (constraint-x con)) + (if eq-y var (constraint-y con)) + (constraint-not-p con)))))) + +;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and +;; inherit each other's constraints. +(defun add-eql-var-var-constraint (var1 var2 constraints + &optional (target constraints)) + (let ((constraint (find-or-create-constraint 'eql var1 var2 nil))) + (unless (conset-member constraint target) + (conset-adjoin constraint target) + (collect ((eql1) (eql2)) + (do-eql-vars (var1 (var1 constraints)) + (eql1 var1)) + (do-eql-vars (var2 (var2 constraints)) + (eql2 var2)) + (inherit-constraints (eql1) var2 constraints target) + (inherit-constraints (eql2) var1 constraints target)) + t))) + +;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow +;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL. +#!-sb-fluid (declaim (inline ok-ref-lambda-var)) +(defun ok-ref-lambda-var (ref) + (declare (type ref ref)) + (let ((leaf (ref-leaf ref))) + (when (and (lambda-var-p leaf) + (lambda-var-constraints leaf)) + leaf))) + +;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL +;;; according to CONSTRAINTS. Return LAMBDA-VAR if so. +(defun ok-lvar-lambda-var (lvar constraints) + (declare (type lvar lvar)) + (let ((use (lvar-uses lvar))) + (cond ((ref-p use) + (let ((lambda-var (ok-ref-lambda-var use))) + (and lambda-var + (conset-lvar-lambda-var-eql-p constraints lvar lambda-var) + lambda-var))) + ((cast-p use) + (ok-lvar-lambda-var (cast-value use) constraints))))) ;;;; Searching constraints ;;; Add the indicated test constraint to BLOCK. We don't add the ;;; constraint if the block has multiple predecessors, since it only ;;; holds on this particular path. -(defun add-test-constraint (fun x y not-p constraints target) - (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p)) - (add-eql-var-var-constraint x y constraints target)) - (t - (do-eql-vars (x (x constraints)) - (let ((con (find-or-create-constraint fun x y not-p))) - (conset-adjoin con target))))) +(defun precise-add-test-constraint (fun x y not-p constraints target) + (if (and (eq 'eql fun) (lambda-var-p y) (not not-p)) + (add-eql-var-var-constraint x y constraints target) + (conset-add-constraint-to-eql constraints fun x y not-p target)) (values)) +(defun add-test-constraint (quick-p fun x y not-p constraints target) + (cond (quick-p + (conset-add-constraint target fun x y not-p)) + (t + (precise-add-test-constraint fun x y not-p constraints target)))) ;;; Add complementary constraints to the consequent and alternative ;;; blocks of IF. We do nothing if X is NIL. -(defun add-complement-constraints (fun x y not-p constraints - consequent-constraints - alternative-constraints) +(declaim (inline precise-add-test-constraint quick-add-complement-constraints)) +(defun precise-add-complement-constraints (fun x y not-p constraints + consequent-constraints + alternative-constraints) + (when x + (precise-add-test-constraint fun x y not-p constraints + consequent-constraints) + (precise-add-test-constraint fun x y (not not-p) constraints + alternative-constraints)) + (values)) + +(defun quick-add-complement-constraints (fun x y not-p + consequent-constraints + alternative-constraints) (when x - (add-test-constraint fun x y not-p constraints - consequent-constraints) - (add-test-constraint fun x y (not not-p) constraints - alternative-constraints)) + (conset-add-constraint consequent-constraints fun x y not-p) + (conset-add-constraint alternative-constraints fun x y (not not-p))) (values)) +(defun add-complement-constraints (quick-p fun x y not-p constraints + consequent-constraints + alternative-constraints) + (if quick-p + (quick-add-complement-constraints fun x y not-p + consequent-constraints + alternative-constraints) + (precise-add-complement-constraints fun x y not-p constraints + consequent-constraints + alternative-constraints))) + ;;; Add test constraints to the consequent and alternative blocks of ;;; the test represented by USE. (defun add-test-constraints (use if constraints) @@ -535,9 +617,11 @@ ;; need to avoid barfing on this case. (unless (eq (if-consequent if) (if-alternative if)) (let ((consequent-constraints (make-conset)) - (alternative-constraints (make-conset))) + (alternative-constraints (make-conset)) + (quick-p (policy if (> compilation-speed speed)))) (macrolet ((add (fun x y not-p) - `(add-complement-constraints ,fun ,x ,y ,not-p + `(add-complement-constraints quick-p + ,fun ,x ,y ,not-p constraints consequent-constraints alternative-constraints))) @@ -570,27 +654,26 @@ (var2 (ok-lvar-lambda-var arg2 constraints))) ;; The code below assumes that the constant is the ;; second argument in case of variable to constant - ;; comparision which is sometimes true (see source + ;; comparison which is sometimes true (see source ;; transformations for EQ, EQL and CHAR=). Fixing ;; that would result in more constant substitutions ;; which is not a universally good thing, thus the ;; unnatural asymmetry of the tests. (cond ((not var1) (when var2 - (add-test-constraint 'typep var2 (lvar-type arg1) + (add-test-constraint quick-p + 'typep var2 (lvar-type arg1) nil constraints consequent-constraints))) (var2 (add 'eql var1 var2 nil)) ((constant-lvar-p arg2) (add 'eql var1 - (let ((use (principal-lvar-use arg2))) - (if (ref-p use) - (ref-leaf use) - (find-constant (lvar-value arg2)))) + (find-constant (lvar-value arg2)) nil)) (t - (add-test-constraint 'typep var1 (lvar-type arg2) + (add-test-constraint quick-p + 'typep var1 (lvar-type arg2) nil constraints consequent-constraints))))) ((< >) @@ -653,6 +736,11 @@ (eq (numeric-type-complexp x) :real))) ;;; Exactly the same as CONSTRAIN-INTEGER-TYPE, but for float numbers. +;;; +;;; In contrast to the integer version, here the input types can have +;;; open bounds in addition to closed ones and we don't increment or +;;; decrement a bound to honor OR-EQUAL being NIL but put an open bound +;;; into the result instead, if appropriate. (defun constrain-float-type (x y greater or-equal) (declare (type numeric-type x y)) (declare (ignorable x y greater or-equal)) ; for CROSS-FLOAT-INFINITY-KLUDGE @@ -674,10 +762,9 @@ (tighter-p (x ref) (cond ((null x) nil) ((null ref) t) - ((and or-equal - (= (type-bound-number x) (type-bound-number ref))) - ;; X is tighter if REF is not an open bound and X is - (and (not (consp ref)) (consp x))) + ((= (type-bound-number x) (type-bound-number ref)) + ;; X is tighter if X is an open bound and REF is not + (and (consp x) (not (consp ref)))) (greater (< (type-bound-number ref) (type-bound-number x))) (t @@ -807,37 +894,7 @@ (let ((lvar (ref-lvar ref)) (leaf (ref-leaf ref))) (when (and (lambda-var-p leaf) lvar) - (conset-adjoin (find-or-create-constraint 'eql leaf lvar nil) - gen)))) - -;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR -;;; LVAR) ones - to all of the variables in the VARS list. -(defun inherit-constraints (vars from-var constraints target) - (do-inheritable-constraints (con (constraints from-var)) - (let ((eq-x (eq from-var (constraint-x con))) - (eq-y (eq from-var (constraint-y con)))) - (dolist (var vars) - (conset-adjoin (find-or-create-constraint - (constraint-kind con) - (if eq-x var (constraint-x con)) - (if eq-y var (constraint-y con)) - (constraint-not-p con)) - target))))) - -;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and -;; inherit each other's constraints. -(defun add-eql-var-var-constraint (var1 var2 constraints - &optional (target constraints)) - (let ((con (find-or-create-constraint 'eql var1 var2 nil))) - (when (conset-adjoin con target) - (collect ((eql1) (eql2)) - (do-eql-vars (var1 (var1 constraints)) - (eql1 var1)) - (do-eql-vars (var2 (var2 constraints)) - (eql2 var2)) - (inherit-constraints (eql1) var2 constraints target) - (inherit-constraints (eql2) var1 constraints target)) - t))) + (conset-add-lvar-lambda-var-eql gen lvar leaf)))) ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's ;; LAMBDA-VAR if possible. @@ -868,8 +925,7 @@ when (and val (lambda-var-constraints var)) do (let ((type (lvar-type val))) (unless (eq type *universal-type*) - (let ((con (find-or-create-constraint 'typep var type nil))) - (conset-adjoin con gen)))) + (conset-add-constraint gen 'typep var type nil))) (maybe-add-eql-var-var-constraint var val gen))))) (ref (when (ok-ref-lambda-var node) @@ -882,19 +938,23 @@ (when var (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME (unless (eq atype *universal-type*) - (do-eql-vars (var (var gen)) - (let ((con (find-or-create-constraint 'typep var atype nil))) - (conset-adjoin con gen))))))))) + (conset-add-constraint-to-eql gen 'typep var atype nil))))))) (cset (binding* ((var (set-var node)) (nil (lambda-var-p var) :exit-if-null) - (cons (lambda-var-constraints var) :exit-if-null)) - (conset-difference gen cons) + (nil (lambda-var-constraints var) :exit-if-null)) + (when (policy node (and (= speed 3) (> speed compilation-speed))) + (let ((type (lambda-var-type var))) + (unless (eql *universal-type* type) + (do-eql-vars (other (var gen)) + (unless (eql other var) + (conset-add-constraint gen 'typep other type nil)))))) + (conset-clear-lambda-var gen var) (let ((type (single-value-type (node-derived-type node)))) (unless (eq type *universal-type*) - (let ((con (find-or-create-constraint 'typep var type nil))) - (conset-adjoin con gen)))) - (maybe-add-eql-var-var-constraint var (set-value node) gen))))) + (conset-add-constraint gen 'typep var type nil))) + (unless (policy node (> compilation-speed speed)) + (maybe-add-eql-var-var-constraint var (set-value node) gen)))))) gen) (defun constraint-propagate-if (block gen) @@ -905,7 +965,7 @@ (add-test-constraints use node gen)))))) ;;; Starting from IN compute OUT and (consequent/alternative -;;; constraints if the block ends with and IF). Return the list of +;;; constraints if the block ends with an IF). Return the list of ;;; successors that may need to be recomputed. (defun find-block-type-constraints (block final-pass-p) (declare (type cblock block))