X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Ffloat-tran.lisp;h=2ae1e3363ec58de9096748ceb3d67e29c500e760;hb=711f75f20284c41f53485fda882fc7cc9e8e930f;hp=dc2cadc311940bbcc7ba73bf11b8634db4c75295;hpb=fa464c0810199b91ffdf7f3dfab932239210a044;p=sbcl.git diff --git a/src/compiler/float-tran.lisp b/src/compiler/float-tran.lisp index dc2cadc..2ae1e33 100644 --- a/src/compiler/float-tran.lisp +++ b/src/compiler/float-tran.lisp @@ -15,8 +15,10 @@ ;;;; coercions -(defknown %single-float (real) single-float (movable foldable)) -(defknown %double-float (real) double-float (movable foldable)) +(defknown %single-float (real) single-float + (movable foldable)) +(defknown %double-float (real) double-float + (movable foldable)) (deftransform float ((n f) (* single-float) *) '(%single-float n)) @@ -44,66 +46,113 @@ (frob %random-single-float single-float) (frob %random-double-float double-float)) -;;; Mersenne Twister RNG -;;; -;;; FIXME: It's unpleasant to have RANDOM functionality scattered -;;; through the code this way. It would be nice to move this into the -;;; same file as the other RANDOM definitions. +;;; Return an expression to generate an integer of N-BITS many random +;;; bits, using the minimal number of random chunks possible. +(defun generate-random-expr-for-power-of-2 (n-bits state) + (declare (type (integer 1 #.sb!vm:n-word-bits) n-bits)) + (multiple-value-bind (n-chunk-bits chunk-expr) + (cond ((<= n-bits n-random-chunk-bits) + (values n-random-chunk-bits `(random-chunk ,state))) + ((<= n-bits (* 2 n-random-chunk-bits)) + (values (* 2 n-random-chunk-bits) `(big-random-chunk ,state))) + (t + (error "Unexpectedly small N-RANDOM-CHUNK-BITS"))) + (if (< n-bits n-chunk-bits) + `(logand ,(1- (ash 1 n-bits)) ,chunk-expr) + chunk-expr))) + +;;; This transform for compile-time constant word-sized integers +;;; generates an accept-reject loop to achieve equidistribution of the +;;; returned values. Several optimizations are done: If NUM is a power +;;; of two no loop is needed. If the random chunk size is half the word +;;; size only one chunk is used where sufficient. For values of NUM +;;; where it is possible and results in faster code, the rejection +;;; probability is reduced by accepting all values below the largest +;;; multiple of the limit that fits into one or two chunks and and doing +;;; a division to get the random value into the desired range. (deftransform random ((num &optional state) - ((integer 1 #.(expt 2 sb!vm::n-word-bits)) &optional *)) - ;; FIXME: I almost conditionalized this as #!+sb-doc. Find some way - ;; of automatically finding #!+sb-doc in proximity to DEFTRANSFORM - ;; to let me scan for places that I made this mistake and didn't - ;; catch myself. - "use inline (UNSIGNED-BYTE 32) operations" - (let ((type (lvar-type num)) - (limit (expt 2 sb!vm::n-word-bits)) - (random-chunk (ecase sb!vm::n-word-bits - (32 'random-chunk) - (64 'sb!kernel::big-random-chunk)))) - (if (numeric-type-p type) - (let ((num-high (numeric-type-high (lvar-type num)))) - (aver num-high) - (cond ((constant-lvar-p num) - ;; Check the worst case sum absolute error for the - ;; random number expectations. - (let ((rem (rem limit num-high))) - (unless (< (/ (* 2 rem (- num-high rem)) - num-high limit) - (expt 2 (- sb!kernel::random-integer-extra-bits))) - (give-up-ir1-transform - "The random number expectations are inaccurate.")) - (if (= num-high limit) - `(,random-chunk (or state *random-state*)) - #!-(or x86 x86-64) - `(rem (,random-chunk (or state *random-state*)) num) - #!+(or x86 x86-64) - ;; Use multiplication, which is faster. - `(values (sb!bignum::%multiply - (,random-chunk (or state *random-state*)) - num))))) - ((> num-high random-fixnum-max) - (give-up-ir1-transform - "The range is too large to ensure an accurate result.")) - #!+(or x86 x86-64) - ((< num-high limit) - `(values (sb!bignum::%multiply - (,random-chunk (or state *random-state*)) - num))) - (t - `(rem (,random-chunk (or state *random-state*)) num)))) - ;; KLUDGE: a relatively conservative treatment, but better - ;; than a bug (reported by PFD sbcl-devel towards the end of - ;; 2004-11. - '(rem (random-chunk (or state *random-state*)) num)))) + ((constant-arg (integer 1 #.(expt 2 sb!vm:n-word-bits))) + &optional *) + * + :policy (and (> speed compilation-speed) + (> speed space))) + "optimize to inlined RANDOM-CHUNK operations" + (let ((num (lvar-value num))) + (if (= num 1) + 0 + (flet ((chunk-n-bits-and-expr (n-bits) + (cond ((<= n-bits n-random-chunk-bits) + (values n-random-chunk-bits + '(random-chunk (or state *random-state*)))) + ((<= n-bits (* 2 n-random-chunk-bits)) + (values (* 2 n-random-chunk-bits) + '(big-random-chunk (or state *random-state*)))) + (t + (error "Unexpectedly small N-RANDOM-CHUNK-BITS"))))) + (if (zerop (logand num (1- num))) + ;; NUM is a power of 2. + (let ((n-bits (integer-length (1- num)))) + (multiple-value-bind (n-chunk-bits chunk-expr) + (chunk-n-bits-and-expr n-bits) + (if (< n-bits n-chunk-bits) + `(logand ,(1- (ash 1 n-bits)) ,chunk-expr) + chunk-expr))) + ;; Generate an accept-reject loop. + (let ((n-bits (integer-length num))) + (multiple-value-bind (n-chunk-bits chunk-expr) + (chunk-n-bits-and-expr n-bits) + (if (or (> (* num 3) (expt 2 n-chunk-bits)) + (logbitp (- n-bits 2) num)) + ;; Division can't help as the quotient is below 3, + ;; or is too costly as the rejection probability + ;; without it is already small (namely at most 1/4 + ;; with the given test, which is experimentally a + ;; reasonable threshold and cheap to test for). + `(loop + (let ((bits ,(generate-random-expr-for-power-of-2 + n-bits '(or state *random-state*)))) + (when (< bits num) + (return bits)))) + (let ((d (truncate (expt 2 n-chunk-bits) num))) + `(loop + (let ((bits ,chunk-expr)) + (when (< bits ,(* num d)) + (return (values (truncate bits ,d))))))))))))))) + ;;;; float accessors (defknown make-single-float ((signed-byte 32)) single-float - (movable foldable flushable)) + (movable flushable)) (defknown make-double-float ((signed-byte 32) (unsigned-byte 32)) double-float - (movable foldable flushable)) + (movable flushable)) + +#-sb-xc-host +(deftransform make-single-float ((bits) + ((signed-byte 32))) + "Conditional constant folding" + (unless (constant-lvar-p bits) + (give-up-ir1-transform)) + (let* ((bits (lvar-value bits)) + (float (make-single-float bits))) + (when (float-nan-p float) + (give-up-ir1-transform)) + float)) + +#-sb-xc-host +(deftransform make-double-float ((hi lo) + ((signed-byte 32) (unsigned-byte 32))) + "Conditional constant folding" + (unless (and (constant-lvar-p hi) + (constant-lvar-p lo)) + (give-up-ir1-transform)) + (let* ((hi (lvar-value hi)) + (lo (lvar-value lo)) + (float (make-double-float hi lo))) + (when (float-nan-p float) + (give-up-ir1-transform)) + float)) (defknown single-float-bits (single-float) (signed-byte 32) (movable foldable flushable)) @@ -277,12 +326,14 @@ (if (< x ,most-negative) ,most-negative (coerce x ',type))) - (numeric-type-low num))) + (numeric-type-low num) + nil)) (hi (bound-func (lambda (x) (if (< ,most-positive x ) ,most-positive (coerce x ',type))) - (numeric-type-high num)))) + (numeric-type-high num) + nil))) (specifier-type `(,',type ,(or lo '*) ,(or hi '*))))) (defoptimizer (,fun derive-type) ((num)) @@ -303,8 +354,11 @@ ;; problem, but in the context of evaluated and compiled (+ ) ;; giving different result if we fail to check for this. (or (not (csubtypep x (specifier-type 'integer))) + #!+x86 (csubtypep x (specifier-type `(integer ,most-negative-exactly-single-float-fixnum - ,most-positive-exactly-single-float-fixnum))))) + ,most-positive-exactly-single-float-fixnum))) + #!-x86 + (csubtypep x (specifier-type 'fixnum)))) ;;; Do some stuff to recognize when the loser is doing mixed float and ;;; rational arithmetic, or different float types, and fix it up. If @@ -332,6 +386,73 @@ (%deftransform x '(function (double-float single-float) *) #'float-contagion-arg2)) +(macrolet ((def (type &rest args) + `(deftransform * ((x y) (,type (constant-arg (member ,@args))) * + ;; Beware the SNaN! + :policy (zerop float-accuracy)) + "optimize multiplication by one" + (let ((y (lvar-value y))) + (if (minusp y) + '(%negate x) + 'x))))) + (def single-float 1.0 -1.0) + (def double-float 1.0d0 -1.0d0)) + +;;; Return the reciprocal of X if it can be represented exactly, NIL otherwise. +(defun maybe-exact-reciprocal (x) + (unless (zerop x) + (handler-case + (multiple-value-bind (significand exponent sign) + (integer-decode-float x) + ;; only powers of 2 can be inverted exactly + (unless (zerop (logand significand (1- significand))) + (return-from maybe-exact-reciprocal nil)) + (let ((expected (/ sign significand (expt 2 exponent))) + (reciprocal (/ x))) + (multiple-value-bind (significand exponent sign) + (integer-decode-float reciprocal) + ;; Denorms can't be inverted safely. + (and (eql expected (* sign significand (expt 2 exponent))) + reciprocal)))) + (error () (return-from maybe-exact-reciprocal nil))))) + +;;; Replace constant division by multiplication with exact reciprocal, +;;; if one exists. +(macrolet ((def (type) + `(deftransform / ((x y) (,type (constant-arg ,type)) * + :node node) + "convert to multiplication by reciprocal" + (let ((n (lvar-value y))) + (if (policy node (zerop float-accuracy)) + `(* x ,(/ n)) + (let ((r (maybe-exact-reciprocal n))) + (if r + `(* x ,r) + (give-up-ir1-transform + "~S does not have an exact reciprocal" + n)))))))) + (def single-float) + (def double-float)) + +;;; Optimize addition and subtraction of zero +(macrolet ((def (op type &rest args) + `(deftransform ,op ((x y) (,type (constant-arg (member ,@args))) * + ;; Beware the SNaN! + :policy (zerop float-accuracy)) + 'x))) + ;; No signed zeros, thanks. + (def + single-float 0 0.0) + (def - single-float 0 0.0) + (def + double-float 0 0.0 0.0d0) + (def - double-float 0 0.0 0.0d0)) + +;;; On most platforms (+ x x) is faster than (* x 2) +(macrolet ((def (type &rest args) + `(deftransform * ((x y) (,type (constant-arg (member ,@args)))) + '(+ x x)))) + (def single-float 2 2.0) + (def double-float 2 2.0 2.0d0)) + ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in ;;; general float rational args to comparison, since Common Lisp ;;; semantics says we are supposed to compare as rationals, but we can @@ -468,27 +589,27 @@ (deftransform ,name ((x) (single-float) *) #!+x86 (cond ((csubtypep (lvar-type x) (specifier-type '(single-float - (#.(- (expt 2f0 64))) - (#.(expt 2f0 64))))) + (#.(- (expt 2f0 63))) + (#.(expt 2f0 63))))) `(coerce (,',prim-quick (coerce x 'double-float)) 'single-float)) (t (compiler-notify "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" + because the argument range (~S) was not within 2^63" (type-specifier (lvar-type x))) `(coerce (,',prim (coerce x 'double-float)) 'single-float))) #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float)) (deftransform ,name ((x) (double-float) *) #!+x86 (cond ((csubtypep (lvar-type x) (specifier-type '(double-float - (#.(- (expt 2d0 64))) - (#.(expt 2d0 64))))) + (#.(- (expt 2d0 63))) + (#.(expt 2d0 63))))) `(,',prim-quick x)) (t (compiler-notify "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" + because the argument range (~S) was not within 2^63" (type-specifier (lvar-type x))) `(,',prim x))) #!-x86 `(,',prim x))))) @@ -512,8 +633,6 @@ 'single-float)) (deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *) `(%pow x (coerce y 'double-float))) -(deftransform expt ((x y) ((integer -1 -1) integer) *) - `(if (evenp y) 1 -1)) ;;; ANSI says log with base zero returns zero. (deftransform log ((x y) (float float) float) @@ -595,7 +714,7 @@ ;; LONG-FLOAT doesn't actually buy us anything. FIXME. (setf *read-default-float-format* #!+long-float 'long-float #!-long-float 'double-float)) -;;; Test whether the numeric-type ARG is within in domain specified by +;;; Test whether the numeric-type ARG is within the domain specified by ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to ;;; be distinct. #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) @@ -674,9 +793,9 @@ ;; Process the intersection. (let* ((low (interval-low intersection)) (high (interval-high intersection)) - (res-lo (or (bound-func fun (if increasingp low high)) + (res-lo (or (bound-func fun (if increasingp low high) nil) default-low)) - (res-hi (or (bound-func fun (if increasingp high low)) + (res-hi (or (bound-func fun (if increasingp high low) nil) default-high)) (format (case (numeric-type-class arg) ((integer rational) 'single-float) @@ -855,19 +974,20 @@ (int-hi (if hi (ceiling (type-bound-number hi)) '*)) - (f-lo (if lo - (bound-func #'float lo) + (f-lo (or (bound-func #'float lo nil) '*)) - (f-hi (if hi - (bound-func #'float hi) + (f-hi (or (bound-func #'float hi nil) '*))) (specifier-type `(or (rational ,int-lo ,int-hi) (single-float ,f-lo, f-hi))))) (float ;; A positive integer to a float power is a float. - (modified-numeric-type y-type - :low (interval-low bnd) - :high (interval-high bnd))) + (let ((format (numeric-type-format y-type))) + (aver format) + (modified-numeric-type + y-type + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) (t ;; A positive integer to a number is a number (for now). (specifier-type 'number)))) @@ -889,19 +1009,20 @@ (int-hi (if hi (ceiling (type-bound-number hi)) '*)) - (f-lo (if lo - (bound-func #'float lo) + (f-lo (or (bound-func #'float lo nil) '*)) - (f-hi (if hi - (bound-func #'float hi) + (f-hi (or (bound-func #'float hi nil) '*))) (specifier-type `(or (rational ,int-lo ,int-hi) (single-float ,f-lo, f-hi))))) (float ;; A positive rational to a float power is a float. - (modified-numeric-type y-type - :low (interval-low bnd) - :high (interval-high bnd))) + (let ((format (numeric-type-format y-type))) + (aver format) + (modified-numeric-type + y-type + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) (t ;; A positive rational to a number is a number (for now). (specifier-type 'number)))) @@ -911,20 +1032,24 @@ ((or integer rational) ;; A positive float to an integer or rational power is ;; always a float. - (make-numeric-type - :class 'float - :format (numeric-type-format x-type) - :low (interval-low bnd) - :high (interval-high bnd))) + (let ((format (numeric-type-format x-type))) + (aver format) + (make-numeric-type + :class 'float + :format format + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) (float ;; A positive float to a float power is a float of the ;; higher type. - (make-numeric-type - :class 'float - :format (float-format-max (numeric-type-format x-type) - (numeric-type-format y-type)) - :low (interval-low bnd) - :high (interval-high bnd))) + (let ((format (float-format-max (numeric-type-format x-type) + (numeric-type-format y-type)))) + (aver format) + (make-numeric-type + :class 'float + :format format + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) (t ;; A positive float to a number is a number (for now) (specifier-type 'number)))) @@ -955,7 +1080,7 @@ ;; But a positive real to any power is well-defined. (merged-interval-expt x y)) ((and (csubtypep x (specifier-type 'rational)) - (csubtypep x (specifier-type 'rational))) + (csubtypep y (specifier-type 'rational))) ;; A rational to the power of a rational could be a rational ;; or a possibly-complex single float (specifier-type '(or rational single-float (complex single-float)))) @@ -1104,9 +1229,10 @@ :complexp :real :low (numeric-type-low type) :high (numeric-type-high type)))))) -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) + (defoptimizer (realpart derive-type) ((num)) (one-arg-derive-type num #'realpart-derive-type-aux #'realpart)) + (defun imagpart-derive-type-aux (type) (let ((class (numeric-type-class type)) (format (numeric-type-format type))) @@ -1128,7 +1254,7 @@ :complexp :real :low (numeric-type-low type) :high (numeric-type-high type)))))) -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) + (defoptimizer (imagpart derive-type) ((num)) (one-arg-derive-type num #'imagpart-derive-type-aux #'imagpart)) @@ -1180,27 +1306,45 @@ ;;; of complex operation VOPs. (macrolet ((frob (type) `(progn + (deftransform complex ((r) (,type)) + '(complex r ,(coerce 0 type))) + (deftransform complex ((r i) (,type (and real (not ,type)))) + '(complex r (truly-the ,type (coerce i ',type)))) + (deftransform complex ((r i) ((and real (not ,type)) ,type)) + '(complex (truly-the ,type (coerce r ',type)) i)) ;; negation + #!-complex-float-vops (deftransform %negate ((z) ((complex ,type)) *) '(complex (%negate (realpart z)) (%negate (imagpart z)))) ;; complex addition and subtraction + #!-complex-float-vops (deftransform + ((w z) ((complex ,type) (complex ,type)) *) '(complex (+ (realpart w) (realpart z)) (+ (imagpart w) (imagpart z)))) + #!-complex-float-vops (deftransform - ((w z) ((complex ,type) (complex ,type)) *) '(complex (- (realpart w) (realpart z)) (- (imagpart w) (imagpart z)))) ;; Add and subtract a complex and a real. + #!-complex-float-vops (deftransform + ((w z) ((complex ,type) real) *) - '(complex (+ (realpart w) z) (imagpart w))) + `(complex (+ (realpart w) z) + (+ (imagpart w) ,(coerce 0 ',type)))) + #!-complex-float-vops (deftransform + ((z w) (real (complex ,type)) *) - '(complex (+ (realpart w) z) (imagpart w))) + `(complex (+ (realpart w) z) + (+ (imagpart w) ,(coerce 0 ',type)))) ;; Add and subtract a real and a complex number. + #!-complex-float-vops (deftransform - ((w z) ((complex ,type) real) *) - '(complex (- (realpart w) z) (imagpart w))) + `(complex (- (realpart w) z) + (- (imagpart w) ,(coerce 0 ',type)))) + #!-complex-float-vops (deftransform - ((z w) (real (complex ,type)) *) - '(complex (- z (realpart w)) (- (imagpart w)))) + `(complex (- z (realpart w)) + (- ,(coerce 0 ',type) (imagpart w)))) ;; Multiply and divide two complex numbers. + #!-complex-float-vops (deftransform * ((x y) ((complex ,type) (complex ,type)) *) '(let* ((rx (realpart x)) (ix (imagpart x)) @@ -1209,39 +1353,81 @@ (complex (- (* rx ry) (* ix iy)) (+ (* rx iy) (* ix ry))))) (deftransform / ((x y) ((complex ,type) (complex ,type)) *) + #!-complex-float-vops '(let* ((rx (realpart x)) (ix (imagpart x)) (ry (realpart y)) (iy (imagpart y))) (if (> (abs ry) (abs iy)) (let* ((r (/ iy ry)) - (dn (* ry (+ 1 (* r r))))) + (dn (+ ry (* r iy)))) (complex (/ (+ rx (* ix r)) dn) (/ (- ix (* rx r)) dn))) (let* ((r (/ ry iy)) - (dn (* iy (+ 1 (* r r))))) + (dn (+ iy (* r ry)))) (complex (/ (+ (* rx r) ix) dn) - (/ (- (* ix r) rx) dn)))))) + (/ (- (* ix r) rx) dn))))) + #!+complex-float-vops + `(let* ((cs (conjugate (sb!vm::swap-complex x))) + (ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (/ (+ x (* cs r)) dn)) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (/ (+ (* x r) cs) dn))))) ;; Multiply a complex by a real or vice versa. + #!-complex-float-vops (deftransform * ((w z) ((complex ,type) real) *) '(complex (* (realpart w) z) (* (imagpart w) z))) + #!-complex-float-vops (deftransform * ((z w) (real (complex ,type)) *) '(complex (* (realpart w) z) (* (imagpart w) z))) - ;; Divide a complex by a real. + ;; Divide a complex by a real or vice versa. + #!-complex-float-vops (deftransform / ((w z) ((complex ,type) real) *) '(complex (/ (realpart w) z) (/ (imagpart w) z))) + (deftransform / ((x y) (,type (complex ,type)) *) + #!-complex-float-vops + '(let* ((ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (complex (/ x dn) + (/ (- (* x r)) dn))) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (complex (/ (* x r) dn) + (/ (- x) dn))))) + #!+complex-float-vops + '(let* ((ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (/ (complex x (- (* x r))) dn)) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (/ (complex (* x r) (- x)) dn))))) ;; conjugate of complex number + #!-complex-float-vops (deftransform conjugate ((z) ((complex ,type)) *) '(complex (realpart z) (- (imagpart z)))) ;; CIS (deftransform cis ((z) ((,type)) *) '(complex (cos z) (sin z))) ;; comparison + #!-complex-float-vops (deftransform = ((w z) ((complex ,type) (complex ,type)) *) '(and (= (realpart w) (realpart z)) (= (imagpart w) (imagpart z)))) + #!-complex-float-vops (deftransform = ((w z) ((complex ,type) real) *) '(and (= (realpart w) z) (zerop (imagpart w)))) + #!-complex-float-vops (deftransform = ((w z) (real (complex ,type)) *) '(and (= (realpart z) w) (zerop (imagpart z))))))) @@ -1276,8 +1462,8 @@ ;; exactly the same way as the functions themselves do ;; it. (if (csubtypep arg domain) - (let ((res-lo (bound-func fun (numeric-type-low arg))) - (res-hi (bound-func fun (numeric-type-high arg)))) + (let ((res-lo (bound-func fun (numeric-type-low arg) nil)) + (res-hi (bound-func fun (numeric-type-high arg) nil))) (unless increasingp (rotatef res-lo res-hi)) (make-numeric-type @@ -1372,15 +1558,51 @@ (define-frobs truncate %unary-truncate) (define-frobs round %unary-round)) -;;; Convert (TRUNCATE x y) to the obvious implementation. We only want -;;; this when under certain conditions and let the generic TRUNCATE -;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y -;;; should be removed by other DEFTRANSFORMs.) -(deftransform truncate ((x &optional y) - (float &optional (or float integer))) - (let ((defaulted-y (if y 'y 1))) - `(let ((res (%unary-truncate (/ x ,defaulted-y)))) - (values res (- x (* ,defaulted-y res)))))) +(deftransform %unary-truncate ((x) (single-float)) + `(%unary-truncate/single-float x)) +(deftransform %unary-truncate ((x) (double-float)) + `(%unary-truncate/double-float x)) + +;;; Convert (TRUNCATE x y) to the obvious implementation. +;;; +;;; ...plus hair: Insert explicit coercions to appropriate float types: Python +;;; is reluctant it generate explicit integer->float coercions due to +;;; precision issues (see SAFE-SINGLE-COERCION-P &co), but this is not an +;;; issue here as there is no DERIVE-TYPE optimizer on specialized versions of +;;; %UNARY-TRUNCATE, so the derived type of TRUNCATE remains the best we can +;;; do here -- which is fine. Also take care not to add unnecassary division +;;; or multiplication by 1, since we are not able to always eliminate them, +;;; depending on FLOAT-ACCURACY. Finally, leave out the secondary value when +;;; we know it is unused: COERCE is not flushable. +(macrolet ((def (type other-float-arg-types) + (let ((unary (symbolicate "%UNARY-TRUNCATE/" type)) + (coerce (symbolicate "%" type))) + `(deftransform truncate ((x &optional y) + (,type + &optional (or ,type ,@other-float-arg-types integer)) + * :result result) + (let* ((result-type (and result + (lvar-derived-type result))) + (compute-all (and (values-type-p result-type) + (not (type-single-value-p result-type))))) + (if (or (not y) + (and (constant-lvar-p y) (= 1 (lvar-value y)))) + (if compute-all + `(let ((res (,',unary x))) + (values res (- x (,',coerce res)))) + `(let ((res (,',unary x))) + ;; Dummy secondary value! + (values res x))) + (if compute-all + `(let* ((f (,',coerce y)) + (res (,',unary (/ x f)))) + (values res (- x (* f (,',coerce res))))) + `(let* ((f (,',coerce y)) + (res (,',unary (/ x f)))) + ;; Dummy secondary value! + (values res x))))))))) + (def single-float ()) + (def double-float (single-float))) (deftransform floor ((number &optional divisor) (float &optional (or integer float)))