X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Ffloat-tran.lisp;h=2ae1e3363ec58de9096748ceb3d67e29c500e760;hb=a189a69454ef7635149319ae213b337f17c50d20;hp=e42674749029bb350704a685184e67af2a26d8be;hpb=dec94b039e8ec90baf21463df839a6181de606f6;p=sbcl.git diff --git a/src/compiler/float-tran.lisp b/src/compiler/float-tran.lisp index e426747..2ae1e33 100644 --- a/src/compiler/float-tran.lisp +++ b/src/compiler/float-tran.lisp @@ -15,80 +15,144 @@ ;;;; coercions -(defknown %single-float (real) single-float (movable foldable flushable)) -(defknown %double-float (real) double-float (movable foldable flushable)) +(defknown %single-float (real) single-float + (movable foldable)) +(defknown %double-float (real) double-float + (movable foldable)) -(deftransform float ((n &optional f) (* &optional single-float) * :when :both) +(deftransform float ((n f) (* single-float) *) '(%single-float n)) -(deftransform float ((n f) (* double-float) * :when :both) +(deftransform float ((n f) (* double-float) *) '(%double-float n)) -(deftransform %single-float ((n) (single-float) * :when :both) +(deftransform float ((n) *) + '(if (floatp n) + n + (%single-float n))) + +(deftransform %single-float ((n) (single-float) *) 'n) -(deftransform %double-float ((n) (double-float) * :when :both) +(deftransform %double-float ((n) (double-float) *) 'n) ;;; RANDOM (macrolet ((frob (fun type) - `(deftransform random ((num &optional state) - (,type &optional *) * - :when :both) - "Use inline float operations." - '(,fun num (or state *random-state*))))) + `(deftransform random ((num &optional state) + (,type &optional *) *) + "Use inline float operations." + '(,fun num (or state *random-state*))))) (frob %random-single-float single-float) (frob %random-double-float double-float)) -;;; Mersenne Twister RNG -;;; -;;; FIXME: It's unpleasant to have RANDOM functionality scattered -;;; through the code this way. It would be nice to move this into the -;;; same file as the other RANDOM definitions. +;;; Return an expression to generate an integer of N-BITS many random +;;; bits, using the minimal number of random chunks possible. +(defun generate-random-expr-for-power-of-2 (n-bits state) + (declare (type (integer 1 #.sb!vm:n-word-bits) n-bits)) + (multiple-value-bind (n-chunk-bits chunk-expr) + (cond ((<= n-bits n-random-chunk-bits) + (values n-random-chunk-bits `(random-chunk ,state))) + ((<= n-bits (* 2 n-random-chunk-bits)) + (values (* 2 n-random-chunk-bits) `(big-random-chunk ,state))) + (t + (error "Unexpectedly small N-RANDOM-CHUNK-BITS"))) + (if (< n-bits n-chunk-bits) + `(logand ,(1- (ash 1 n-bits)) ,chunk-expr) + chunk-expr))) + +;;; This transform for compile-time constant word-sized integers +;;; generates an accept-reject loop to achieve equidistribution of the +;;; returned values. Several optimizations are done: If NUM is a power +;;; of two no loop is needed. If the random chunk size is half the word +;;; size only one chunk is used where sufficient. For values of NUM +;;; where it is possible and results in faster code, the rejection +;;; probability is reduced by accepting all values below the largest +;;; multiple of the limit that fits into one or two chunks and and doing +;;; a division to get the random value into the desired range. (deftransform random ((num &optional state) - ((integer 1 #.(expt 2 32)) &optional *)) - ;; FIXME: I almost conditionalized this as #!+sb-doc. Find some way - ;; of automatically finding #!+sb-doc in proximity to DEFTRANSFORM - ;; to let me scan for places that I made this mistake and didn't - ;; catch myself. - "use inline (UNSIGNED-BYTE 32) operations" - (let ((num-high (numeric-type-high (continuation-type num)))) - (when (null num-high) - (give-up-ir1-transform)) - (cond ((constant-continuation-p num) - ;; Check the worst case sum absolute error for the random number - ;; expectations. - (let ((rem (rem (expt 2 32) num-high))) - (unless (< (/ (* 2 rem (- num-high rem)) num-high (expt 2 32)) - (expt 2 (- sb!kernel::random-integer-extra-bits))) - (give-up-ir1-transform - "The random number expectations are inaccurate.")) - (if (= num-high (expt 2 32)) - '(random-chunk (or state *random-state*)) - #!-x86 '(rem (random-chunk (or state *random-state*)) num) - #!+x86 - ;; Use multiplication, which is faster. - '(values (sb!bignum::%multiply - (random-chunk (or state *random-state*)) - num))))) - ((> num-high random-fixnum-max) - (give-up-ir1-transform - "The range is too large to ensure an accurate result.")) - #!+x86 - ((< num-high (expt 2 32)) - '(values (sb!bignum::%multiply (random-chunk (or state - *random-state*)) - num))) - (t - '(rem (random-chunk (or state *random-state*)) num))))) + ((constant-arg (integer 1 #.(expt 2 sb!vm:n-word-bits))) + &optional *) + * + :policy (and (> speed compilation-speed) + (> speed space))) + "optimize to inlined RANDOM-CHUNK operations" + (let ((num (lvar-value num))) + (if (= num 1) + 0 + (flet ((chunk-n-bits-and-expr (n-bits) + (cond ((<= n-bits n-random-chunk-bits) + (values n-random-chunk-bits + '(random-chunk (or state *random-state*)))) + ((<= n-bits (* 2 n-random-chunk-bits)) + (values (* 2 n-random-chunk-bits) + '(big-random-chunk (or state *random-state*)))) + (t + (error "Unexpectedly small N-RANDOM-CHUNK-BITS"))))) + (if (zerop (logand num (1- num))) + ;; NUM is a power of 2. + (let ((n-bits (integer-length (1- num)))) + (multiple-value-bind (n-chunk-bits chunk-expr) + (chunk-n-bits-and-expr n-bits) + (if (< n-bits n-chunk-bits) + `(logand ,(1- (ash 1 n-bits)) ,chunk-expr) + chunk-expr))) + ;; Generate an accept-reject loop. + (let ((n-bits (integer-length num))) + (multiple-value-bind (n-chunk-bits chunk-expr) + (chunk-n-bits-and-expr n-bits) + (if (or (> (* num 3) (expt 2 n-chunk-bits)) + (logbitp (- n-bits 2) num)) + ;; Division can't help as the quotient is below 3, + ;; or is too costly as the rejection probability + ;; without it is already small (namely at most 1/4 + ;; with the given test, which is experimentally a + ;; reasonable threshold and cheap to test for). + `(loop + (let ((bits ,(generate-random-expr-for-power-of-2 + n-bits '(or state *random-state*)))) + (when (< bits num) + (return bits)))) + (let ((d (truncate (expt 2 n-chunk-bits) num))) + `(loop + (let ((bits ,chunk-expr)) + (when (< bits ,(* num d)) + (return (values (truncate bits ,d))))))))))))))) + ;;;; float accessors (defknown make-single-float ((signed-byte 32)) single-float - (movable foldable flushable)) + (movable flushable)) (defknown make-double-float ((signed-byte 32) (unsigned-byte 32)) double-float - (movable foldable flushable)) + (movable flushable)) + +#-sb-xc-host +(deftransform make-single-float ((bits) + ((signed-byte 32))) + "Conditional constant folding" + (unless (constant-lvar-p bits) + (give-up-ir1-transform)) + (let* ((bits (lvar-value bits)) + (float (make-single-float bits))) + (when (float-nan-p float) + (give-up-ir1-transform)) + float)) + +#-sb-xc-host +(deftransform make-double-float ((hi lo) + ((signed-byte 32) (unsigned-byte 32))) + "Conditional constant folding" + (unless (and (constant-lvar-p hi) + (constant-lvar-p lo)) + (give-up-ir1-transform)) + (let* ((hi (lvar-value hi)) + (lo (lvar-value lo)) + (float (make-double-float hi lo))) + (when (float-nan-p float) + (give-up-ir1-transform)) + float)) (defknown single-float-bits (single-float) (signed-byte 32) (movable foldable flushable)) @@ -100,19 +164,19 @@ (movable foldable flushable)) (deftransform float-sign ((float &optional float2) - (single-float &optional single-float) *) + (single-float &optional single-float) *) (if float2 (let ((temp (gensym))) - `(let ((,temp (abs float2))) - (if (minusp (single-float-bits float)) (- ,temp) ,temp))) + `(let ((,temp (abs float2))) + (if (minusp (single-float-bits float)) (- ,temp) ,temp))) '(if (minusp (single-float-bits float)) -1f0 1f0))) (deftransform float-sign ((float &optional float2) - (double-float &optional double-float) *) + (double-float &optional double-float) *) (if float2 (let ((temp (gensym))) - `(let ((,temp (abs float2))) - (if (minusp (double-float-high-bits float)) (- ,temp) ,temp))) + `(let ((,temp (abs float2))) + (if (minusp (double-float-high-bits float)) (- ,temp) ,temp))) '(if (minusp (double-float-high-bits float)) -1d0 1d0))) ;;;; DECODE-FLOAT, INTEGER-DECODE-FLOAT, and SCALE-FLOAT @@ -133,35 +197,35 @@ (values double-float-significand double-float-int-exponent (integer -1 1)) (movable foldable flushable)) -(defknown scale-single-float (single-float fixnum) single-float +(defknown scale-single-float (single-float integer) single-float (movable foldable flushable)) -(defknown scale-double-float (double-float fixnum) double-float +(defknown scale-double-float (double-float integer) double-float (movable foldable flushable)) -(deftransform decode-float ((x) (single-float) * :when :both) +(deftransform decode-float ((x) (single-float) *) '(decode-single-float x)) -(deftransform decode-float ((x) (double-float) * :when :both) +(deftransform decode-float ((x) (double-float) *) '(decode-double-float x)) -(deftransform integer-decode-float ((x) (single-float) * :when :both) +(deftransform integer-decode-float ((x) (single-float) *) '(integer-decode-single-float x)) -(deftransform integer-decode-float ((x) (double-float) * :when :both) +(deftransform integer-decode-float ((x) (double-float) *) '(integer-decode-double-float x)) -(deftransform scale-float ((f ex) (single-float *) * :when :both) +(deftransform scale-float ((f ex) (single-float *) *) (if (and #!+x86 t #!-x86 nil - (csubtypep (continuation-type ex) - (specifier-type '(signed-byte 32)))) + (csubtypep (lvar-type ex) + (specifier-type '(signed-byte 32)))) '(coerce (%scalbn (coerce f 'double-float) ex) 'single-float) '(scale-single-float f ex))) -(deftransform scale-float ((f ex) (double-float *) * :when :both) +(deftransform scale-float ((f ex) (double-float *) *) (if (and #!+x86 t #!-x86 nil - (csubtypep (continuation-type ex) - (specifier-type '(signed-byte 32)))) + (csubtypep (lvar-type ex) + (specifier-type '(signed-byte 32)))) '(%scalbn f ex) '(scale-double-float f ex))) @@ -207,74 +271,110 @@ (defun scale-float-derive-type-aux (f ex same-arg) (declare (ignore same-arg)) (flet ((scale-bound (x n) - ;; We need to be a bit careful here and catch any overflows - ;; that might occur. We can ignore underflows which become - ;; zeros. - (set-bound - (handler-case - (scale-float (type-bound-number x) n) - (floating-point-overflow () - nil)) - (consp x)))) + ;; We need to be a bit careful here and catch any overflows + ;; that might occur. We can ignore underflows which become + ;; zeros. + (set-bound + (handler-case + (scale-float (type-bound-number x) n) + (floating-point-overflow () + nil)) + (consp x)))) (when (and (numeric-type-p f) (numeric-type-p ex)) (let ((f-lo (numeric-type-low f)) - (f-hi (numeric-type-high f)) - (ex-lo (numeric-type-low ex)) - (ex-hi (numeric-type-high ex)) - (new-lo nil) - (new-hi nil)) - (when (and f-hi ex-hi) - (setf new-hi (scale-bound f-hi ex-hi))) - (when (and f-lo ex-lo) - (setf new-lo (scale-bound f-lo ex-lo))) - (make-numeric-type :class (numeric-type-class f) - :format (numeric-type-format f) - :complexp :real - :low new-lo - :high new-hi))))) + (f-hi (numeric-type-high f)) + (ex-lo (numeric-type-low ex)) + (ex-hi (numeric-type-high ex)) + (new-lo nil) + (new-hi nil)) + (when f-hi + (if (< (float-sign (type-bound-number f-hi)) 0.0) + (when ex-lo + (setf new-hi (scale-bound f-hi ex-lo))) + (when ex-hi + (setf new-hi (scale-bound f-hi ex-hi))))) + (when f-lo + (if (< (float-sign (type-bound-number f-lo)) 0.0) + (when ex-hi + (setf new-lo (scale-bound f-lo ex-hi))) + (when ex-lo + (setf new-lo (scale-bound f-lo ex-lo))))) + (make-numeric-type :class (numeric-type-class f) + :format (numeric-type-format f) + :complexp :real + :low new-lo + :high new-hi))))) (defoptimizer (scale-single-float derive-type) ((f ex)) (two-arg-derive-type f ex #'scale-float-derive-type-aux - #'scale-single-float t)) + #'scale-single-float t)) (defoptimizer (scale-double-float derive-type) ((f ex)) (two-arg-derive-type f ex #'scale-float-derive-type-aux - #'scale-double-float t)) + #'scale-double-float t)) ;;; DEFOPTIMIZERs for %SINGLE-FLOAT and %DOUBLE-FLOAT. This makes the ;;; FLOAT function return the correct ranges if the input has some ;;; defined range. Quite useful if we want to convert some type of ;;; bounded integer into a float. (macrolet - ((frob (fun type) + ((frob (fun type most-negative most-positive) (let ((aux-name (symbolicate fun "-DERIVE-TYPE-AUX"))) - `(progn - (defun ,aux-name (num) - ;; When converting a number to a float, the limits are - ;; the same. - (let* ((lo (bound-func #'(lambda (x) - (coerce x ',type)) - (numeric-type-low num))) - (hi (bound-func #'(lambda (x) - (coerce x ',type)) - (numeric-type-high num)))) - (specifier-type `(,',type ,(or lo '*) ,(or hi '*))))) - - (defoptimizer (,fun derive-type) ((num)) - (one-arg-derive-type num #',aux-name #',fun)))))) - (frob %single-float single-float) - (frob %double-float double-float)) -) ; PROGN + `(progn + (defun ,aux-name (num) + ;; When converting a number to a float, the limits are + ;; the same. + (let* ((lo (bound-func (lambda (x) + (if (< x ,most-negative) + ,most-negative + (coerce x ',type))) + (numeric-type-low num) + nil)) + (hi (bound-func (lambda (x) + (if (< ,most-positive x ) + ,most-positive + (coerce x ',type))) + (numeric-type-high num) + nil))) + (specifier-type `(,',type ,(or lo '*) ,(or hi '*))))) + + (defoptimizer (,fun derive-type) ((num)) + (handler-case + (one-arg-derive-type num #',aux-name #',fun) + (type-error () + nil))))))) + (frob %single-float single-float + most-negative-single-float most-positive-single-float) + (frob %double-float double-float + most-negative-double-float most-positive-double-float)) +) ; PROGN ;;;; float contagion +(defun safe-ctype-for-single-coercion-p (x) + ;; See comment in SAFE-SINGLE-COERCION-P -- this deals with the same + ;; problem, but in the context of evaluated and compiled (+ ) + ;; giving different result if we fail to check for this. + (or (not (csubtypep x (specifier-type 'integer))) + #!+x86 + (csubtypep x (specifier-type `(integer ,most-negative-exactly-single-float-fixnum + ,most-positive-exactly-single-float-fixnum))) + #!-x86 + (csubtypep x (specifier-type 'fixnum)))) + ;;; Do some stuff to recognize when the loser is doing mixed float and ;;; rational arithmetic, or different float types, and fix it up. If ;;; we don't, he won't even get so much as an efficiency note. (deftransform float-contagion-arg1 ((x y) * * :defun-only t :node node) - `(,(continuation-function-name (basic-combination-fun node)) - (float x y) y)) + (if (or (not (types-equal-or-intersect (lvar-type y) (specifier-type 'single-float))) + (safe-ctype-for-single-coercion-p (lvar-type x))) + `(,(lvar-fun-name (basic-combination-fun node)) + (float x y) y) + (give-up-ir1-transform))) (deftransform float-contagion-arg2 ((x y) * * :defun-only t :node node) - `(,(continuation-function-name (basic-combination-fun node)) - x (float y x))) + (if (or (not (types-equal-or-intersect (lvar-type x) (specifier-type 'single-float))) + (safe-ctype-for-single-coercion-p (lvar-type y))) + `(,(lvar-fun-name (basic-combination-fun node)) + x (float y x)) + (give-up-ir1-transform))) (dolist (x '(+ * / -)) (%deftransform x '(function (rational float) *) #'float-contagion-arg1) @@ -282,9 +382,76 @@ (dolist (x '(= < > + * / -)) (%deftransform x '(function (single-float double-float) *) - #'float-contagion-arg1) + #'float-contagion-arg1) (%deftransform x '(function (double-float single-float) *) - #'float-contagion-arg2)) + #'float-contagion-arg2)) + +(macrolet ((def (type &rest args) + `(deftransform * ((x y) (,type (constant-arg (member ,@args))) * + ;; Beware the SNaN! + :policy (zerop float-accuracy)) + "optimize multiplication by one" + (let ((y (lvar-value y))) + (if (minusp y) + '(%negate x) + 'x))))) + (def single-float 1.0 -1.0) + (def double-float 1.0d0 -1.0d0)) + +;;; Return the reciprocal of X if it can be represented exactly, NIL otherwise. +(defun maybe-exact-reciprocal (x) + (unless (zerop x) + (handler-case + (multiple-value-bind (significand exponent sign) + (integer-decode-float x) + ;; only powers of 2 can be inverted exactly + (unless (zerop (logand significand (1- significand))) + (return-from maybe-exact-reciprocal nil)) + (let ((expected (/ sign significand (expt 2 exponent))) + (reciprocal (/ x))) + (multiple-value-bind (significand exponent sign) + (integer-decode-float reciprocal) + ;; Denorms can't be inverted safely. + (and (eql expected (* sign significand (expt 2 exponent))) + reciprocal)))) + (error () (return-from maybe-exact-reciprocal nil))))) + +;;; Replace constant division by multiplication with exact reciprocal, +;;; if one exists. +(macrolet ((def (type) + `(deftransform / ((x y) (,type (constant-arg ,type)) * + :node node) + "convert to multiplication by reciprocal" + (let ((n (lvar-value y))) + (if (policy node (zerop float-accuracy)) + `(* x ,(/ n)) + (let ((r (maybe-exact-reciprocal n))) + (if r + `(* x ,r) + (give-up-ir1-transform + "~S does not have an exact reciprocal" + n)))))))) + (def single-float) + (def double-float)) + +;;; Optimize addition and subtraction of zero +(macrolet ((def (op type &rest args) + `(deftransform ,op ((x y) (,type (constant-arg (member ,@args))) * + ;; Beware the SNaN! + :policy (zerop float-accuracy)) + 'x))) + ;; No signed zeros, thanks. + (def + single-float 0 0.0) + (def - single-float 0 0.0) + (def + double-float 0 0.0 0.0d0) + (def - double-float 0 0.0 0.0d0)) + +;;; On most platforms (+ x x) is faster than (* x 2) +(macrolet ((def (type &rest args) + `(deftransform * ((x y) (,type (constant-arg (member ,@args)))) + '(+ x x)))) + (def single-float 2 2.0) + (def double-float 2 2.0 2.0d0)) ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in ;;; general float rational args to comparison, since Common Lisp @@ -292,17 +459,17 @@ ;;; do it for any rational that has a precise representation as a ;;; float (such as 0). (macrolet ((frob (op) - `(deftransform ,op ((x y) (float rational) * :when :both) - "open-code FLOAT to RATIONAL comparison" - (unless (constant-continuation-p y) - (give-up-ir1-transform - "The RATIONAL value isn't known at compile time.")) - (let ((val (continuation-value y))) - (unless (eql (rational (float val)) val) - (give-up-ir1-transform - "~S doesn't have a precise float representation." - val))) - `(,',op x (float y x))))) + `(deftransform ,op ((x y) (float rational) *) + "open-code FLOAT to RATIONAL comparison" + (unless (constant-lvar-p y) + (give-up-ir1-transform + "The RATIONAL value isn't known at compile time.")) + (let ((val (lvar-value y))) + (unless (eql (rational (float val)) val) + (give-up-ir1-transform + "~S doesn't have a precise float representation." + val))) + `(,',op x (float y x))))) (frob <) (frob >) (frob =)) @@ -313,33 +480,33 @@ ;;; appropriate domain. #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (dolist (stuff '((asin (real -1.0 1.0)) - (acos (real -1.0 1.0)) - (acosh (real 1.0)) - (atanh (real -1.0 1.0)) - (sqrt (real 0.0)))) + (acos (real -1.0 1.0)) + (acosh (real 1.0)) + (atanh (real -1.0 1.0)) + (sqrt (real 0.0)))) (destructuring-bind (name type) stuff (let ((type (specifier-type type))) - (setf (function-info-derive-type (function-info-or-lose name)) - (lambda (call) - (declare (type combination call)) - (when (csubtypep (continuation-type - (first (combination-args call))) - type) - (specifier-type 'float))))))) + (setf (fun-info-derive-type (fun-info-or-lose name)) + (lambda (call) + (declare (type combination call)) + (when (csubtypep (lvar-type + (first (combination-args call))) + type) + (specifier-type 'float))))))) #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (log derive-type) ((x &optional y)) - (when (and (csubtypep (continuation-type x) - (specifier-type '(real 0.0))) - (or (null y) - (csubtypep (continuation-type y) - (specifier-type '(real 0.0))))) + (when (and (csubtypep (lvar-type x) + (specifier-type '(real 0.0))) + (or (null y) + (csubtypep (lvar-type y) + (specifier-type '(real 0.0))))) (specifier-type 'float))) ;;;; irrational transforms (defknown (%tan %sinh %asinh %atanh %log %logb %log10 %tan-quick) - (double-float) double-float + (double-float) double-float (movable foldable flushable)) (defknown (%sin %cos %tanh %sin-quick %cos-quick) @@ -347,11 +514,13 @@ (movable foldable flushable)) (defknown (%asin %atan) - (double-float) (double-float #.(- (/ pi 2)) #.(/ pi 2)) + (double-float) + (double-float #.(coerce (- (/ pi 2)) 'double-float) + #.(coerce (/ pi 2) 'double-float)) (movable foldable flushable)) (defknown (%acos) - (double-float) (double-float 0.0d0 #.pi) + (double-float) (double-float 0.0d0 #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%cosh) @@ -375,7 +544,9 @@ (movable foldable flushable)) (defknown (%atan2) - (double-float double-float) (double-float #.(- pi) #.pi) + (double-float double-float) + (double-float #.(coerce (- pi) 'double-float) + #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%scalb) @@ -390,75 +561,77 @@ (double-float) double-float (movable foldable flushable)) -(dolist (stuff '((exp %exp *) - (log %log float) - (sqrt %sqrt float) - (asin %asin float) - (acos %acos float) - (atan %atan *) - (sinh %sinh *) - (cosh %cosh *) - (tanh %tanh *) - (asinh %asinh *) - (acosh %acosh float) - (atanh %atanh float))) - (destructuring-bind (name prim rtype) stuff - (deftransform name ((x) '(single-float) rtype :eval-name t) - `(coerce (,prim (coerce x 'double-float)) 'single-float)) - (deftransform name ((x) '(double-float) rtype :eval-name t :when :both) - `(,prim x)))) +(macrolet ((def (name prim rtype) + `(progn + (deftransform ,name ((x) (single-float) ,rtype) + `(coerce (,',prim (coerce x 'double-float)) 'single-float)) + (deftransform ,name ((x) (double-float) ,rtype) + `(,',prim x))))) + (def exp %exp *) + (def log %log float) + (def sqrt %sqrt float) + (def asin %asin float) + (def acos %acos float) + (def atan %atan *) + (def sinh %sinh *) + (def cosh %cosh *) + (def tanh %tanh *) + (def asinh %asinh *) + (def acosh %acosh float) + (def atanh %atanh float)) ;;; The argument range is limited on the x86 FP trig. functions. A ;;; post-test can detect a failure (and load a suitable result), but ;;; this test is avoided if possible. -(dolist (stuff '((sin %sin %sin-quick) - (cos %cos %cos-quick) - (tan %tan %tan-quick))) - (destructuring-bind (name prim prim-quick) stuff - (declare (ignorable prim-quick)) - (deftransform name ((x) '(single-float) '* :eval-name t) - #!+x86 (cond ((csubtypep (continuation-type x) - (specifier-type '(single-float - (#.(- (expt 2f0 64))) - (#.(expt 2f0 64))))) - `(coerce (,prim-quick (coerce x 'double-float)) - 'single-float)) - (t - (compiler-note - "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" - (type-specifier (continuation-type x))) - `(coerce (,prim (coerce x 'double-float)) 'single-float))) - #!-x86 `(coerce (,prim (coerce x 'double-float)) 'single-float)) - (deftransform name ((x) '(double-float) '* :eval-name t :when :both) - #!+x86 (cond ((csubtypep (continuation-type x) - (specifier-type '(double-float - (#.(- (expt 2d0 64))) - (#.(expt 2d0 64))))) - `(,prim-quick x)) - (t - (compiler-note - "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" - (type-specifier (continuation-type x))) - `(,prim x))) - #!-x86 `(,prim x)))) +(macrolet ((def (name prim prim-quick) + (declare (ignorable prim-quick)) + `(progn + (deftransform ,name ((x) (single-float) *) + #!+x86 (cond ((csubtypep (lvar-type x) + (specifier-type '(single-float + (#.(- (expt 2f0 63))) + (#.(expt 2f0 63))))) + `(coerce (,',prim-quick (coerce x 'double-float)) + 'single-float)) + (t + (compiler-notify + "unable to avoid inline argument range check~@ + because the argument range (~S) was not within 2^63" + (type-specifier (lvar-type x))) + `(coerce (,',prim (coerce x 'double-float)) 'single-float))) + #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float)) + (deftransform ,name ((x) (double-float) *) + #!+x86 (cond ((csubtypep (lvar-type x) + (specifier-type '(double-float + (#.(- (expt 2d0 63))) + (#.(expt 2d0 63))))) + `(,',prim-quick x)) + (t + (compiler-notify + "unable to avoid inline argument range check~@ + because the argument range (~S) was not within 2^63" + (type-specifier (lvar-type x))) + `(,',prim x))) + #!-x86 `(,',prim x))))) + (def sin %sin %sin-quick) + (def cos %cos %cos-quick) + (def tan %tan %tan-quick)) (deftransform atan ((x y) (single-float single-float) *) `(coerce (%atan2 (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform atan ((x y) (double-float double-float) * :when :both) +(deftransform atan ((x y) (double-float double-float) *) `(%atan2 x y)) (deftransform expt ((x y) ((single-float 0f0) single-float) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform expt ((x y) ((double-float 0d0) double-float) * :when :both) +(deftransform expt ((x y) ((double-float 0d0) double-float) *) `(%pow x y)) (deftransform expt ((x y) ((single-float 0f0) (signed-byte 32)) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) * :when :both) +(deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *) `(%pow x (coerce y 'double-float))) ;;; ANSI says log with base zero returns zero. @@ -467,23 +640,23 @@ ;;; Handle some simple transformations. -(deftransform abs ((x) ((complex double-float)) double-float :when :both) +(deftransform abs ((x) ((complex double-float)) double-float) '(%hypot (realpart x) (imagpart x))) (deftransform abs ((x) ((complex single-float)) single-float) '(coerce (%hypot (coerce (realpart x) 'double-float) - (coerce (imagpart x) 'double-float)) - 'single-float)) + (coerce (imagpart x) 'double-float)) + 'single-float)) -(deftransform phase ((x) ((complex double-float)) double-float :when :both) +(deftransform phase ((x) ((complex double-float)) double-float) '(%atan2 (imagpart x) (realpart x))) (deftransform phase ((x) ((complex single-float)) single-float) '(coerce (%atan2 (coerce (imagpart x) 'double-float) - (coerce (realpart x) 'double-float)) - 'single-float)) + (coerce (realpart x) 'double-float)) + 'single-float)) -(deftransform phase ((x) ((float)) float :when :both) +(deftransform phase ((x) ((float)) float) '(if (minusp (float-sign x)) (float pi x) (float 0 x))) @@ -498,8 +671,8 @@ (defun coerce-numeric-bound (bound type) (when bound (if (consp bound) - (list (coerce (car bound) type)) - (coerce bound type)))) + (list (coerce (car bound) type)) + (coerce bound type)))) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn @@ -514,9 +687,9 @@ (defun complex-float-type (arg) (declare (type numeric-type arg)) (let* ((format (case (numeric-type-class arg) - ((integer rational) 'single-float) - (t (numeric-type-format arg)))) - (float-type (or format 'float))) + ((integer rational) 'single-float) + (t (numeric-type-format arg)))) + (float-type (or format 'float))) (specifier-type `(complex ,float-type)))) ;;; Compute a specifier like '(OR FLOAT (COMPLEX FLOAT)), except float @@ -525,54 +698,66 @@ (defun float-or-complex-float-type (arg &optional lo hi) (declare (type numeric-type arg)) (let* ((format (case (numeric-type-class arg) - ((integer rational) 'single-float) - (t (numeric-type-format arg)))) - (float-type (or format 'float)) - (lo (coerce-numeric-bound lo float-type)) - (hi (coerce-numeric-bound hi float-type))) + ((integer rational) 'single-float) + (t (numeric-type-format arg)))) + (float-type (or format 'float)) + (lo (coerce-numeric-bound lo float-type)) + (hi (coerce-numeric-bound hi float-type))) (specifier-type `(or (,float-type ,(or lo '*) ,(or hi '*)) - (complex ,float-type))))) + (complex ,float-type))))) + +) ; PROGN -;;; Test whether the numeric-type ARG is within in domain specified by +(eval-when (:compile-toplevel :execute) + ;; So the problem with this hack is that it's actually broken. If + ;; the host does not have long floats, then setting *R-D-F-F* to + ;; LONG-FLOAT doesn't actually buy us anything. FIXME. + (setf *read-default-float-format* + #!+long-float 'long-float #!-long-float 'double-float)) +;;; Test whether the numeric-type ARG is within the domain specified by ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to -;;; be distinct as for the :NEGATIVE-ZERO-IS-NOT-ZERO feature. With -;;; the :NEGATIVE-ZERO-IS-NOT-ZERO feature this could be handled by -;;; the numeric subtype code in type.lisp. +;;; be distinct. +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defun domain-subtypep (arg domain-low domain-high) (declare (type numeric-type arg) - (type (or real null) domain-low domain-high)) + (type (or real null) domain-low domain-high)) (let* ((arg-lo (numeric-type-low arg)) - (arg-lo-val (type-bound-number arg-lo)) - (arg-hi (numeric-type-high arg)) - (arg-hi-val (type-bound-number arg-hi))) + (arg-lo-val (type-bound-number arg-lo)) + (arg-hi (numeric-type-high arg)) + (arg-hi-val (type-bound-number arg-hi))) ;; Check that the ARG bounds are correctly canonicalized. (when (and arg-lo (floatp arg-lo-val) (zerop arg-lo-val) (consp arg-lo) - (minusp (float-sign arg-lo-val))) - (compiler-note "float zero bound ~S not correctly canonicalized?" arg-lo) - (setq arg-lo '(0l0) arg-lo-val 0l0)) + (minusp (float-sign arg-lo-val))) + (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-lo) + (setq arg-lo 0e0 arg-lo-val arg-lo)) (when (and arg-hi (zerop arg-hi-val) (floatp arg-hi-val) (consp arg-hi) - (plusp (float-sign arg-hi-val))) - (compiler-note "float zero bound ~S not correctly canonicalized?" arg-hi) - (setq arg-hi '(-0l0) arg-hi-val -0l0)) - (and (or (null domain-low) - (and arg-lo (>= arg-lo-val domain-low) - (not (and (zerop domain-low) (floatp domain-low) - (plusp (float-sign domain-low)) - (zerop arg-lo-val) (floatp arg-lo-val) - (if (consp arg-lo) - (plusp (float-sign arg-lo-val)) - (minusp (float-sign arg-lo-val))))))) - (or (null domain-high) - (and arg-hi (<= arg-hi-val domain-high) - (not (and (zerop domain-high) (floatp domain-high) - (minusp (float-sign domain-high)) - (zerop arg-hi-val) (floatp arg-hi-val) - (if (consp arg-hi) - (minusp (float-sign arg-hi-val)) - (plusp (float-sign arg-hi-val)))))))))) + (plusp (float-sign arg-hi-val))) + (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-hi) + (setq arg-hi (ecase *read-default-float-format* + (double-float (load-time-value (make-unportable-float :double-float-negative-zero))) + #!+long-float + (long-float (load-time-value (make-unportable-float :long-float-negative-zero)))) + arg-hi-val arg-hi)) + (flet ((fp-neg-zero-p (f) ; Is F -0.0? + (and (floatp f) (zerop f) (minusp (float-sign f)))) + (fp-pos-zero-p (f) ; Is F +0.0? + (and (floatp f) (zerop f) (plusp (float-sign f))))) + (and (or (null domain-low) + (and arg-lo (>= arg-lo-val domain-low) + (not (and (fp-pos-zero-p domain-low) + (fp-neg-zero-p arg-lo))))) + (or (null domain-high) + (and arg-hi (<= arg-hi-val domain-high) + (not (and (fp-neg-zero-p domain-high) + (fp-pos-zero-p arg-hi))))))))) +(eval-when (:compile-toplevel :execute) + (setf *read-default-float-format* 'single-float)) + +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) +(progn ;;; Handle monotonic functions of a single variable whose domain is -;;; possibly part of the real line. ARG is the variable, FCN is the +;;; possibly part of the real line. ARG is the variable, FUN is the ;;; function, and DOMAIN is a specifier that gives the (real) domain ;;; of the function. If ARG is a subset of the DOMAIN, we compute the ;;; bounds directly. Otherwise, we compute the bounds for the @@ -580,79 +765,76 @@ ;;; result, which occurs for the parts of ARG not in the DOMAIN. ;;; ;;; Negative and positive zero are considered distinct within -;;; DOMAIN-LOW and DOMAIN-HIGH, as for the :negative-zero-is-not-zero -;;; feature. +;;; DOMAIN-LOW and DOMAIN-HIGH. ;;; ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we -;;; can't compute the bounds using FCN. -(defun elfun-derive-type-simple (arg fcn domain-low domain-high - default-low default-high - &optional (increasingp t)) +;;; can't compute the bounds using FUN. +(defun elfun-derive-type-simple (arg fun domain-low domain-high + default-low default-high + &optional (increasingp t)) (declare (type (or null real) domain-low domain-high)) (etypecase arg (numeric-type (cond ((eq (numeric-type-complexp arg) :complex) - (make-numeric-type :class (numeric-type-class arg) - :format (numeric-type-format arg) - :complexp :complex)) - ((numeric-type-real-p arg) - ;; The argument is real, so let's find the intersection - ;; between the argument and the domain of the function. - ;; We compute the bounds on the intersection, and for - ;; everything else, we return a complex number of the - ;; appropriate type. - (multiple-value-bind (intersection difference) - (interval-intersection/difference (numeric-type->interval arg) - (make-interval - :low domain-low - :high domain-high)) - (cond - (intersection - ;; Process the intersection. - (let* ((low (interval-low intersection)) - (high (interval-high intersection)) - (res-lo (or (bound-func fcn (if increasingp low high)) - default-low)) - (res-hi (or (bound-func fcn (if increasingp high low)) - default-high)) - (format (case (numeric-type-class arg) - ((integer rational) 'single-float) - (t (numeric-type-format arg)))) - (bound-type (or format 'float)) - (result-type - (make-numeric-type - :class 'float - :format format - :low (coerce-numeric-bound res-lo bound-type) - :high (coerce-numeric-bound res-hi bound-type)))) - ;; If the ARG is a subset of the domain, we don't - ;; have to worry about the difference, because that - ;; can't occur. - (if (or (null difference) - ;; Check whether the arg is within the domain. - (domain-subtypep arg domain-low domain-high)) - result-type - (list result-type - (specifier-type `(complex ,bound-type)))))) - (t - ;; No intersection so the result must be purely complex. - (complex-float-type arg))))) - (t - (float-or-complex-float-type arg default-low default-high)))))) + (complex-float-type arg)) + ((numeric-type-real-p arg) + ;; The argument is real, so let's find the intersection + ;; between the argument and the domain of the function. + ;; We compute the bounds on the intersection, and for + ;; everything else, we return a complex number of the + ;; appropriate type. + (multiple-value-bind (intersection difference) + (interval-intersection/difference (numeric-type->interval arg) + (make-interval + :low domain-low + :high domain-high)) + (cond + (intersection + ;; Process the intersection. + (let* ((low (interval-low intersection)) + (high (interval-high intersection)) + (res-lo (or (bound-func fun (if increasingp low high) nil) + default-low)) + (res-hi (or (bound-func fun (if increasingp high low) nil) + default-high)) + (format (case (numeric-type-class arg) + ((integer rational) 'single-float) + (t (numeric-type-format arg)))) + (bound-type (or format 'float)) + (result-type + (make-numeric-type + :class 'float + :format format + :low (coerce-numeric-bound res-lo bound-type) + :high (coerce-numeric-bound res-hi bound-type)))) + ;; If the ARG is a subset of the domain, we don't + ;; have to worry about the difference, because that + ;; can't occur. + (if (or (null difference) + ;; Check whether the arg is within the domain. + (domain-subtypep arg domain-low domain-high)) + result-type + (list result-type + (specifier-type `(complex ,bound-type)))))) + (t + ;; No intersection so the result must be purely complex. + (complex-float-type arg))))) + (t + (float-or-complex-float-type arg default-low default-high)))))) (macrolet ((frob (name domain-low domain-high def-low-bnd def-high-bnd - &key (increasingp t)) + &key (increasingp t)) (let ((num (gensym))) - `(defoptimizer (,name derive-type) ((,num)) - (one-arg-derive-type - ,num - #'(lambda (arg) - (elfun-derive-type-simple arg #',name - ,domain-low ,domain-high - ,def-low-bnd ,def-high-bnd - ,increasingp)) - #',name))))) + `(defoptimizer (,name derive-type) ((,num)) + (one-arg-derive-type + ,num + (lambda (arg) + (elfun-derive-type-simple arg #',name + ,domain-low ,domain-high + ,def-low-bnd ,def-high-bnd + ,increasingp)) + #',name))))) ;; These functions are easy because they are defined for the whole ;; real line. (frob exp nil nil 0 nil) @@ -670,231 +852,242 @@ (frob atanh -1d0 1d0 -1 1) ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that ;; includes -0.0. - (frob sqrt -0d0 nil 0 nil)) + (frob sqrt (load-time-value (make-unportable-float :double-float-negative-zero)) nil 0 nil)) ;;; Compute bounds for (expt x y). This should be easy since (expt x ;;; y) = (exp (* y (log x))). However, computations done this way ;;; have too much roundoff. Thus we have to do it the hard way. (defun safe-expt (x y) (handler-case - (expt x y) + (when (< (abs y) 10000) + (expt x y)) (error () nil))) ;;; Handle the case when x >= 1. (defun interval-expt-> (x y) (case (sb!c::interval-range-info y 0d0) - ('+ + (+ ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is ;; obviously non-negative. We just have to be careful for ;; infinite bounds (given by nil). (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x)) - (type-bound-number (sb!c::interval-low y)))) - (hi (safe-expt (type-bound-number (sb!c::interval-high x)) - (type-bound-number (sb!c::interval-high y))))) + (type-bound-number (sb!c::interval-low y)))) + (hi (safe-expt (type-bound-number (sb!c::interval-high x)) + (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 1) :high hi)))) - ('- + (- ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is ;; obviously [0, 1]. However, underflow (nil) means 0 is the ;; result. (let ((lo (safe-expt (type-bound-number (sb!c::interval-high x)) - (type-bound-number (sb!c::interval-low y)))) - (hi (safe-expt (type-bound-number (sb!c::interval-low x)) - (type-bound-number (sb!c::interval-high y))))) + (type-bound-number (sb!c::interval-low y)))) + (hi (safe-expt (type-bound-number (sb!c::interval-low x)) + (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) (t ;; Split the interval in half. (destructuring-bind (y- y+) - (sb!c::interval-split 0 y t) + (sb!c::interval-split 0 y t) (list (interval-expt-> x y-) - (interval-expt-> x y+)))))) + (interval-expt-> x y+)))))) ;;; Handle the case when x <= 1 (defun interval-expt-< (x y) (case (sb!c::interval-range-info x 0d0) - ('+ + (+ ;; The case of 0 <= x <= 1 is easy (case (sb!c::interval-range-info y) - ('+ - ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is - ;; obviously [0, 1]. We just have to be careful for infinite bounds - ;; (given by nil). - (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x)) - (type-bound-number (sb!c::interval-high y)))) - (hi (safe-expt (type-bound-number (sb!c::interval-high x)) - (type-bound-number (sb!c::interval-low y))))) - (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) - ('- - ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is - ;; obviously [1, inf]. - (let ((hi (safe-expt (type-bound-number (sb!c::interval-low x)) - (type-bound-number (sb!c::interval-low y)))) - (lo (safe-expt (type-bound-number (sb!c::interval-high x)) - (type-bound-number (sb!c::interval-high y))))) - (list (sb!c::make-interval :low (or lo 1) :high hi)))) + (+ + ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is + ;; obviously [0, 1]. We just have to be careful for infinite bounds + ;; (given by nil). + (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x)) + (type-bound-number (sb!c::interval-high y)))) + (hi (safe-expt (type-bound-number (sb!c::interval-high x)) + (type-bound-number (sb!c::interval-low y))))) + (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) + (- + ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is + ;; obviously [1, inf]. + (let ((hi (safe-expt (type-bound-number (sb!c::interval-low x)) + (type-bound-number (sb!c::interval-low y)))) + (lo (safe-expt (type-bound-number (sb!c::interval-high x)) + (type-bound-number (sb!c::interval-high y))))) + (list (sb!c::make-interval :low (or lo 1) :high hi)))) (t - ;; Split the interval in half - (destructuring-bind (y- y+) - (sb!c::interval-split 0 y t) - (list (interval-expt-< x y-) - (interval-expt-< x y+)))))) - ('- + ;; Split the interval in half + (destructuring-bind (y- y+) + (sb!c::interval-split 0 y t) + (list (interval-expt-< x y-) + (interval-expt-< x y+)))))) + (- ;; The case where x <= 0. Y MUST be an INTEGER for this to work! ;; The calling function must insure this! For now we'll just ;; return the appropriate unbounded float type. (list (sb!c::make-interval :low nil :high nil))) (t (destructuring-bind (neg pos) - (interval-split 0 x t t) + (interval-split 0 x t t) (list (interval-expt-< neg y) - (interval-expt-< pos y)))))) + (interval-expt-< pos y)))))) ;;; Compute bounds for (expt x y). (defun interval-expt (x y) (case (interval-range-info x 1) - ('+ + (+ ;; X >= 1 - (interval-expt-> x y)) - ('- + (interval-expt-> x y)) + (- ;; X <= 1 (interval-expt-< x y)) (t (destructuring-bind (left right) - (interval-split 1 x t t) + (interval-split 1 x t t) (list (interval-expt left y) - (interval-expt right y)))))) + (interval-expt right y)))))) (defun fixup-interval-expt (bnd x-int y-int x-type y-type) (declare (ignore x-int)) ;; Figure out what the return type should be, given the argument ;; types and bounds and the result type and bounds. (cond ((csubtypep x-type (specifier-type 'integer)) - ;; an integer to some power - (case (numeric-type-class y-type) - (integer - ;; Positive integer to an integer power is either an - ;; integer or a rational. - (let ((lo (or (interval-low bnd) '*)) - (hi (or (interval-high bnd) '*))) - (if (and (interval-low y-int) - (>= (type-bound-number (interval-low y-int)) 0)) - (specifier-type `(integer ,lo ,hi)) - (specifier-type `(rational ,lo ,hi))))) - (rational - ;; Positive integer to rational power is either a rational - ;; or a single-float. - (let* ((lo (interval-low bnd)) - (hi (interval-high bnd)) - (int-lo (if lo - (floor (type-bound-number lo)) - '*)) - (int-hi (if hi - (ceiling (type-bound-number hi)) - '*)) - (f-lo (if lo - (bound-func #'float lo) - '*)) - (f-hi (if hi - (bound-func #'float hi) - '*))) - (specifier-type `(or (rational ,int-lo ,int-hi) - (single-float ,f-lo, f-hi))))) - (float - ;; A positive integer to a float power is a float. - (modified-numeric-type y-type - :low (interval-low bnd) - :high (interval-high bnd))) - (t - ;; A positive integer to a number is a number (for now). - (specifier-type 'number)))) - ((csubtypep x-type (specifier-type 'rational)) - ;; a rational to some power - (case (numeric-type-class y-type) - (integer - ;; A positive rational to an integer power is always a rational. - (specifier-type `(rational ,(or (interval-low bnd) '*) - ,(or (interval-high bnd) '*)))) - (rational - ;; A positive rational to rational power is either a rational - ;; or a single-float. - (let* ((lo (interval-low bnd)) - (hi (interval-high bnd)) - (int-lo (if lo - (floor (type-bound-number lo)) - '*)) - (int-hi (if hi - (ceiling (type-bound-number hi)) - '*)) - (f-lo (if lo - (bound-func #'float lo) - '*)) - (f-hi (if hi - (bound-func #'float hi) - '*))) - (specifier-type `(or (rational ,int-lo ,int-hi) - (single-float ,f-lo, f-hi))))) - (float - ;; A positive rational to a float power is a float. - (modified-numeric-type y-type - :low (interval-low bnd) - :high (interval-high bnd))) - (t - ;; A positive rational to a number is a number (for now). - (specifier-type 'number)))) - ((csubtypep x-type (specifier-type 'float)) - ;; a float to some power - (case (numeric-type-class y-type) - ((or integer rational) - ;; A positive float to an integer or rational power is - ;; always a float. - (make-numeric-type - :class 'float - :format (numeric-type-format x-type) - :low (interval-low bnd) - :high (interval-high bnd))) - (float - ;; A positive float to a float power is a float of the - ;; higher type. - (make-numeric-type - :class 'float - :format (float-format-max (numeric-type-format x-type) - (numeric-type-format y-type)) - :low (interval-low bnd) - :high (interval-high bnd))) - (t - ;; A positive float to a number is a number (for now) - (specifier-type 'number)))) - (t - ;; A number to some power is a number. - (specifier-type 'number)))) + ;; an integer to some power + (case (numeric-type-class y-type) + (integer + ;; Positive integer to an integer power is either an + ;; integer or a rational. + (let ((lo (or (interval-low bnd) '*)) + (hi (or (interval-high bnd) '*))) + (if (and (interval-low y-int) + (>= (type-bound-number (interval-low y-int)) 0)) + (specifier-type `(integer ,lo ,hi)) + (specifier-type `(rational ,lo ,hi))))) + (rational + ;; Positive integer to rational power is either a rational + ;; or a single-float. + (let* ((lo (interval-low bnd)) + (hi (interval-high bnd)) + (int-lo (if lo + (floor (type-bound-number lo)) + '*)) + (int-hi (if hi + (ceiling (type-bound-number hi)) + '*)) + (f-lo (or (bound-func #'float lo nil) + '*)) + (f-hi (or (bound-func #'float hi nil) + '*))) + (specifier-type `(or (rational ,int-lo ,int-hi) + (single-float ,f-lo, f-hi))))) + (float + ;; A positive integer to a float power is a float. + (let ((format (numeric-type-format y-type))) + (aver format) + (modified-numeric-type + y-type + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) + (t + ;; A positive integer to a number is a number (for now). + (specifier-type 'number)))) + ((csubtypep x-type (specifier-type 'rational)) + ;; a rational to some power + (case (numeric-type-class y-type) + (integer + ;; A positive rational to an integer power is always a rational. + (specifier-type `(rational ,(or (interval-low bnd) '*) + ,(or (interval-high bnd) '*)))) + (rational + ;; A positive rational to rational power is either a rational + ;; or a single-float. + (let* ((lo (interval-low bnd)) + (hi (interval-high bnd)) + (int-lo (if lo + (floor (type-bound-number lo)) + '*)) + (int-hi (if hi + (ceiling (type-bound-number hi)) + '*)) + (f-lo (or (bound-func #'float lo nil) + '*)) + (f-hi (or (bound-func #'float hi nil) + '*))) + (specifier-type `(or (rational ,int-lo ,int-hi) + (single-float ,f-lo, f-hi))))) + (float + ;; A positive rational to a float power is a float. + (let ((format (numeric-type-format y-type))) + (aver format) + (modified-numeric-type + y-type + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) + (t + ;; A positive rational to a number is a number (for now). + (specifier-type 'number)))) + ((csubtypep x-type (specifier-type 'float)) + ;; a float to some power + (case (numeric-type-class y-type) + ((or integer rational) + ;; A positive float to an integer or rational power is + ;; always a float. + (let ((format (numeric-type-format x-type))) + (aver format) + (make-numeric-type + :class 'float + :format format + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) + (float + ;; A positive float to a float power is a float of the + ;; higher type. + (let ((format (float-format-max (numeric-type-format x-type) + (numeric-type-format y-type)))) + (aver format) + (make-numeric-type + :class 'float + :format format + :low (coerce-numeric-bound (interval-low bnd) format) + :high (coerce-numeric-bound (interval-high bnd) format)))) + (t + ;; A positive float to a number is a number (for now) + (specifier-type 'number)))) + (t + ;; A number to some power is a number. + (specifier-type 'number)))) (defun merged-interval-expt (x y) (let* ((x-int (numeric-type->interval x)) - (y-int (numeric-type->interval y))) + (y-int (numeric-type->interval y))) (mapcar (lambda (type) - (fixup-interval-expt type x-int y-int x y)) - (flatten-list (interval-expt x-int y-int))))) + (fixup-interval-expt type x-int y-int x y)) + (flatten-list (interval-expt x-int y-int))))) (defun expt-derive-type-aux (x y same-arg) (declare (ignore same-arg)) (cond ((or (not (numeric-type-real-p x)) - (not (numeric-type-real-p y))) - ;; Use numeric contagion if either is not real. - (numeric-contagion x y)) - ((csubtypep y (specifier-type 'integer)) - ;; A real raised to an integer power is well-defined. - (merged-interval-expt x y)) - (t - ;; A real raised to a non-integral power can be a float or a - ;; complex number. - (cond ((or (csubtypep x (specifier-type '(rational 0))) - (csubtypep x (specifier-type '(float (0d0))))) - ;; But a positive real to any power is well-defined. - (merged-interval-expt x y)) - (t - ;; a real to some power. The result could be a real - ;; or a complex. - (float-or-complex-float-type (numeric-contagion x y))))))) + (not (numeric-type-real-p y))) + ;; Use numeric contagion if either is not real. + (numeric-contagion x y)) + ((csubtypep y (specifier-type 'integer)) + ;; A real raised to an integer power is well-defined. + (merged-interval-expt x y)) + ;; A real raised to a non-integral power can be a float or a + ;; complex number. + ((or (csubtypep x (specifier-type '(rational 0))) + (csubtypep x (specifier-type '(float (0d0))))) + ;; But a positive real to any power is well-defined. + (merged-interval-expt x y)) + ((and (csubtypep x (specifier-type 'rational)) + (csubtypep y (specifier-type 'rational))) + ;; A rational to the power of a rational could be a rational + ;; or a possibly-complex single float + (specifier-type '(or rational single-float (complex single-float)))) + (t + ;; a real to some power. The result could be a real or a + ;; complex. + (float-or-complex-float-type (numeric-contagion x y))))) (defoptimizer (expt derive-type) ((x y)) (two-arg-derive-type x y #'expt-derive-type-aux #'expt)) @@ -906,13 +1099,13 @@ (defun log-derive-type-aux-2 (x y same-arg) (let ((log-x (log-derive-type-aux-1 x)) - (log-y (log-derive-type-aux-1 y)) - (accumulated-list nil)) + (log-y (log-derive-type-aux-1 y)) + (accumulated-list nil)) ;; LOG-X or LOG-Y might be union types. We need to run through ;; the union types ourselves because /-DERIVE-TYPE-AUX doesn't. (dolist (x-type (prepare-arg-for-derive-type log-x)) (dolist (y-type (prepare-arg-for-derive-type log-y)) - (push (/-derive-type-aux x-type y-type same-arg) accumulated-list))) + (push (/-derive-type-aux x-type y-type same-arg) accumulated-list))) (apply #'type-union (flatten-list accumulated-list)))) (defoptimizer (log derive-type) ((x &optional y)) @@ -928,21 +1121,21 @@ ;; The hard case with two args. We just return the max bounds. (let ((result-type (numeric-contagion y x))) (cond ((and (numeric-type-real-p x) - (numeric-type-real-p y)) - (let* (;; FIXME: This expression for FORMAT seems to - ;; appear multiple times, and should be factored out. - (format (case (numeric-type-class result-type) - ((integer rational) 'single-float) - (t (numeric-type-format result-type)))) - (bound-format (or format 'float))) - (make-numeric-type :class 'float - :format format - :complexp :real - :low (coerce (- pi) bound-format) - :high (coerce pi bound-format)))) - (t - ;; The result is a float or a complex number - (float-or-complex-float-type result-type))))) + (numeric-type-real-p y)) + (let* (;; FIXME: This expression for FORMAT seems to + ;; appear multiple times, and should be factored out. + (format (case (numeric-type-class result-type) + ((integer rational) 'single-float) + (t (numeric-type-format result-type)))) + (bound-format (or format 'float))) + (make-numeric-type :class 'float + :format format + :complexp :real + :low (coerce (- pi) bound-format) + :high (coerce pi bound-format)))) + (t + ;; The result is a float or a complex number + (float-or-complex-float-type result-type))))) (defoptimizer (atan derive-type) ((y &optional x)) (if x @@ -962,47 +1155,47 @@ (defun phase-derive-type-aux (arg) (let* ((format (case (numeric-type-class arg) - ((integer rational) 'single-float) - (t (numeric-type-format arg)))) - (bound-type (or format 'float))) + ((integer rational) 'single-float) + (t (numeric-type-format arg)))) + (bound-type (or format 'float))) (cond ((numeric-type-real-p arg) - (case (interval-range-info (numeric-type->interval arg) 0.0) - ('+ - ;; The number is positive, so the phase is 0. - (make-numeric-type :class 'float - :format format - :complexp :real - :low (coerce 0 bound-type) - :high (coerce 0 bound-type))) - ('- - ;; The number is always negative, so the phase is pi. - (make-numeric-type :class 'float - :format format - :complexp :real - :low (coerce pi bound-type) - :high (coerce pi bound-type))) - (t - ;; We can't tell. The result is 0 or pi. Use a union - ;; type for this. - (list - (make-numeric-type :class 'float - :format format - :complexp :real - :low (coerce 0 bound-type) - :high (coerce 0 bound-type)) - (make-numeric-type :class 'float - :format format - :complexp :real - :low (coerce pi bound-type) - :high (coerce pi bound-type)))))) - (t - ;; We have a complex number. The answer is the range -pi - ;; to pi. (-pi is included because we have -0.) - (make-numeric-type :class 'float - :format format - :complexp :real - :low (coerce (- pi) bound-type) - :high (coerce pi bound-type)))))) + (case (interval-range-info (numeric-type->interval arg) 0.0) + (+ + ;; The number is positive, so the phase is 0. + (make-numeric-type :class 'float + :format format + :complexp :real + :low (coerce 0 bound-type) + :high (coerce 0 bound-type))) + (- + ;; The number is always negative, so the phase is pi. + (make-numeric-type :class 'float + :format format + :complexp :real + :low (coerce pi bound-type) + :high (coerce pi bound-type))) + (t + ;; We can't tell. The result is 0 or pi. Use a union + ;; type for this. + (list + (make-numeric-type :class 'float + :format format + :complexp :real + :low (coerce 0 bound-type) + :high (coerce 0 bound-type)) + (make-numeric-type :class 'float + :format format + :complexp :real + :low (coerce pi bound-type) + :high (coerce pi bound-type)))))) + (t + ;; We have a complex number. The answer is the range -pi + ;; to pi. (-pi is included because we have -0.) + (make-numeric-type :class 'float + :format format + :complexp :real + :low (coerce (- pi) bound-type) + :high (coerce pi bound-type)))))) (defoptimizer (phase derive-type) ((num)) (one-arg-derive-type num #'phase-derive-type-aux #'phase)) @@ -1018,68 +1211,69 @@ ;;; should help a lot in optimized code. (defun realpart-derive-type-aux (type) (let ((class (numeric-type-class type)) - (format (numeric-type-format type))) + (format (numeric-type-format type))) (cond ((numeric-type-real-p type) - ;; The realpart of a real has the same type and range as - ;; the input. - (make-numeric-type :class class - :format format - :complexp :real - :low (numeric-type-low type) - :high (numeric-type-high type))) - (t - ;; We have a complex number. The result has the same type - ;; as the real part, except that it's real, not complex, - ;; obviously. - (make-numeric-type :class class - :format format - :complexp :real - :low (numeric-type-low type) - :high (numeric-type-high type)))))) -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) + ;; The realpart of a real has the same type and range as + ;; the input. + (make-numeric-type :class class + :format format + :complexp :real + :low (numeric-type-low type) + :high (numeric-type-high type))) + (t + ;; We have a complex number. The result has the same type + ;; as the real part, except that it's real, not complex, + ;; obviously. + (make-numeric-type :class class + :format format + :complexp :real + :low (numeric-type-low type) + :high (numeric-type-high type)))))) + (defoptimizer (realpart derive-type) ((num)) (one-arg-derive-type num #'realpart-derive-type-aux #'realpart)) + (defun imagpart-derive-type-aux (type) (let ((class (numeric-type-class type)) - (format (numeric-type-format type))) + (format (numeric-type-format type))) (cond ((numeric-type-real-p type) - ;; The imagpart of a real has the same type as the input, - ;; except that it's zero. - (let ((bound-format (or format class 'real))) - (make-numeric-type :class class - :format format - :complexp :real - :low (coerce 0 bound-format) - :high (coerce 0 bound-format)))) - (t - ;; We have a complex number. The result has the same type as - ;; the imaginary part, except that it's real, not complex, - ;; obviously. - (make-numeric-type :class class - :format format - :complexp :real - :low (numeric-type-low type) - :high (numeric-type-high type)))))) -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) + ;; The imagpart of a real has the same type as the input, + ;; except that it's zero. + (let ((bound-format (or format class 'real))) + (make-numeric-type :class class + :format format + :complexp :real + :low (coerce 0 bound-format) + :high (coerce 0 bound-format)))) + (t + ;; We have a complex number. The result has the same type as + ;; the imaginary part, except that it's real, not complex, + ;; obviously. + (make-numeric-type :class class + :format format + :complexp :real + :low (numeric-type-low type) + :high (numeric-type-high type)))))) + (defoptimizer (imagpart derive-type) ((num)) (one-arg-derive-type num #'imagpart-derive-type-aux #'imagpart)) (defun complex-derive-type-aux-1 (re-type) (if (numeric-type-p re-type) (make-numeric-type :class (numeric-type-class re-type) - :format (numeric-type-format re-type) - :complexp (if (csubtypep re-type - (specifier-type 'rational)) - :real - :complex) - :low (numeric-type-low re-type) - :high (numeric-type-high re-type)) + :format (numeric-type-format re-type) + :complexp (if (csubtypep re-type + (specifier-type 'rational)) + :real + :complex) + :low (numeric-type-low re-type) + :high (numeric-type-high re-type)) (specifier-type 'complex))) (defun complex-derive-type-aux-2 (re-type im-type same-arg) (declare (ignore same-arg)) (if (and (numeric-type-p re-type) - (numeric-type-p im-type)) + (numeric-type-p im-type)) ;; Need to check to make sure numeric-contagion returns the ;; right type for what we want here. @@ -1089,17 +1283,17 @@ ;; arguments are rational, we make it a union type of (or ;; rational (complex rational)). (let* ((element-type (numeric-contagion re-type im-type)) - (rat-result-p (csubtypep element-type - (specifier-type 'rational)))) - (if rat-result-p - (type-union element-type - (specifier-type - `(complex ,(numeric-type-class element-type)))) - (make-numeric-type :class (numeric-type-class element-type) - :format (numeric-type-format element-type) - :complexp (if rat-result-p - :real - :complex)))) + (rat-result-p (csubtypep element-type + (specifier-type 'rational)))) + (if rat-result-p + (type-union element-type + (specifier-type + `(complex ,(numeric-type-class element-type)))) + (make-numeric-type :class (numeric-type-class element-type) + :format (numeric-type-format element-type) + :complexp (if rat-result-p + :real + :complex)))) (specifier-type 'complex))) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) @@ -1111,71 +1305,131 @@ ;;; Define some transforms for complex operations. We do this in lieu ;;; of complex operation VOPs. (macrolet ((frob (type) - `(progn - ;; negation - (deftransform %negate ((z) ((complex ,type)) *) - '(complex (%negate (realpart z)) (%negate (imagpart z)))) - ;; complex addition and subtraction - (deftransform + ((w z) ((complex ,type) (complex ,type)) *) - '(complex (+ (realpart w) (realpart z)) - (+ (imagpart w) (imagpart z)))) - (deftransform - ((w z) ((complex ,type) (complex ,type)) *) - '(complex (- (realpart w) (realpart z)) - (- (imagpart w) (imagpart z)))) - ;; Add and subtract a complex and a real. - (deftransform + ((w z) ((complex ,type) real) *) - '(complex (+ (realpart w) z) (imagpart w))) - (deftransform + ((z w) (real (complex ,type)) *) - '(complex (+ (realpart w) z) (imagpart w))) - ;; Add and subtract a real and a complex number. - (deftransform - ((w z) ((complex ,type) real) *) - '(complex (- (realpart w) z) (imagpart w))) - (deftransform - ((z w) (real (complex ,type)) *) - '(complex (- z (realpart w)) (- (imagpart w)))) - ;; Multiply and divide two complex numbers. - (deftransform * ((x y) ((complex ,type) (complex ,type)) *) - '(let* ((rx (realpart x)) - (ix (imagpart x)) - (ry (realpart y)) - (iy (imagpart y))) - (complex (- (* rx ry) (* ix iy)) - (+ (* rx iy) (* ix ry))))) - (deftransform / ((x y) ((complex ,type) (complex ,type)) *) - '(let* ((rx (realpart x)) - (ix (imagpart x)) - (ry (realpart y)) - (iy (imagpart y))) - (if (> (abs ry) (abs iy)) - (let* ((r (/ iy ry)) - (dn (* ry (+ 1 (* r r))))) - (complex (/ (+ rx (* ix r)) dn) - (/ (- ix (* rx r)) dn))) - (let* ((r (/ ry iy)) - (dn (* iy (+ 1 (* r r))))) - (complex (/ (+ (* rx r) ix) dn) - (/ (- (* ix r) rx) dn)))))) - ;; Multiply a complex by a real or vice versa. - (deftransform * ((w z) ((complex ,type) real) *) - '(complex (* (realpart w) z) (* (imagpart w) z))) - (deftransform * ((z w) (real (complex ,type)) *) - '(complex (* (realpart w) z) (* (imagpart w) z))) - ;; Divide a complex by a real. - (deftransform / ((w z) ((complex ,type) real) *) - '(complex (/ (realpart w) z) (/ (imagpart w) z))) - ;; conjugate of complex number - (deftransform conjugate ((z) ((complex ,type)) *) - '(complex (realpart z) (- (imagpart z)))) - ;; CIS - (deftransform cis ((z) ((,type)) *) - '(complex (cos z) (sin z))) - ;; comparison - (deftransform = ((w z) ((complex ,type) (complex ,type)) *) - '(and (= (realpart w) (realpart z)) - (= (imagpart w) (imagpart z)))) - (deftransform = ((w z) ((complex ,type) real) *) - '(and (= (realpart w) z) (zerop (imagpart w)))) - (deftransform = ((w z) (real (complex ,type)) *) - '(and (= (realpart z) w) (zerop (imagpart z))))))) + `(progn + (deftransform complex ((r) (,type)) + '(complex r ,(coerce 0 type))) + (deftransform complex ((r i) (,type (and real (not ,type)))) + '(complex r (truly-the ,type (coerce i ',type)))) + (deftransform complex ((r i) ((and real (not ,type)) ,type)) + '(complex (truly-the ,type (coerce r ',type)) i)) + ;; negation + #!-complex-float-vops + (deftransform %negate ((z) ((complex ,type)) *) + '(complex (%negate (realpart z)) (%negate (imagpart z)))) + ;; complex addition and subtraction + #!-complex-float-vops + (deftransform + ((w z) ((complex ,type) (complex ,type)) *) + '(complex (+ (realpart w) (realpart z)) + (+ (imagpart w) (imagpart z)))) + #!-complex-float-vops + (deftransform - ((w z) ((complex ,type) (complex ,type)) *) + '(complex (- (realpart w) (realpart z)) + (- (imagpart w) (imagpart z)))) + ;; Add and subtract a complex and a real. + #!-complex-float-vops + (deftransform + ((w z) ((complex ,type) real) *) + `(complex (+ (realpart w) z) + (+ (imagpart w) ,(coerce 0 ',type)))) + #!-complex-float-vops + (deftransform + ((z w) (real (complex ,type)) *) + `(complex (+ (realpart w) z) + (+ (imagpart w) ,(coerce 0 ',type)))) + ;; Add and subtract a real and a complex number. + #!-complex-float-vops + (deftransform - ((w z) ((complex ,type) real) *) + `(complex (- (realpart w) z) + (- (imagpart w) ,(coerce 0 ',type)))) + #!-complex-float-vops + (deftransform - ((z w) (real (complex ,type)) *) + `(complex (- z (realpart w)) + (- ,(coerce 0 ',type) (imagpart w)))) + ;; Multiply and divide two complex numbers. + #!-complex-float-vops + (deftransform * ((x y) ((complex ,type) (complex ,type)) *) + '(let* ((rx (realpart x)) + (ix (imagpart x)) + (ry (realpart y)) + (iy (imagpart y))) + (complex (- (* rx ry) (* ix iy)) + (+ (* rx iy) (* ix ry))))) + (deftransform / ((x y) ((complex ,type) (complex ,type)) *) + #!-complex-float-vops + '(let* ((rx (realpart x)) + (ix (imagpart x)) + (ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (complex (/ (+ rx (* ix r)) dn) + (/ (- ix (* rx r)) dn))) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (complex (/ (+ (* rx r) ix) dn) + (/ (- (* ix r) rx) dn))))) + #!+complex-float-vops + `(let* ((cs (conjugate (sb!vm::swap-complex x))) + (ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (/ (+ x (* cs r)) dn)) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (/ (+ (* x r) cs) dn))))) + ;; Multiply a complex by a real or vice versa. + #!-complex-float-vops + (deftransform * ((w z) ((complex ,type) real) *) + '(complex (* (realpart w) z) (* (imagpart w) z))) + #!-complex-float-vops + (deftransform * ((z w) (real (complex ,type)) *) + '(complex (* (realpart w) z) (* (imagpart w) z))) + ;; Divide a complex by a real or vice versa. + #!-complex-float-vops + (deftransform / ((w z) ((complex ,type) real) *) + '(complex (/ (realpart w) z) (/ (imagpart w) z))) + (deftransform / ((x y) (,type (complex ,type)) *) + #!-complex-float-vops + '(let* ((ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (complex (/ x dn) + (/ (- (* x r)) dn))) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (complex (/ (* x r) dn) + (/ (- x) dn))))) + #!+complex-float-vops + '(let* ((ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (/ (complex x (- (* x r))) dn)) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (/ (complex (* x r) (- x)) dn))))) + ;; conjugate of complex number + #!-complex-float-vops + (deftransform conjugate ((z) ((complex ,type)) *) + '(complex (realpart z) (- (imagpart z)))) + ;; CIS + (deftransform cis ((z) ((,type)) *) + '(complex (cos z) (sin z))) + ;; comparison + #!-complex-float-vops + (deftransform = ((w z) ((complex ,type) (complex ,type)) *) + '(and (= (realpart w) (realpart z)) + (= (imagpart w) (imagpart z)))) + #!-complex-float-vops + (deftransform = ((w z) ((complex ,type) real) *) + '(and (= (realpart w) z) (zerop (imagpart w)))) + #!-complex-float-vops + (deftransform = ((w z) (real (complex ,type)) *) + '(and (= (realpart z) w) (zerop (imagpart z))))))) (frob single-float) (frob double-float)) @@ -1187,43 +1441,43 @@ ;;; inputs are union types. #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn -(defun trig-derive-type-aux (arg domain fcn - &optional def-lo def-hi (increasingp t)) +(defun trig-derive-type-aux (arg domain fun + &optional def-lo def-hi (increasingp t)) (etypecase arg (numeric-type (cond ((eq (numeric-type-complexp arg) :complex) - (make-numeric-type :class (numeric-type-class arg) - :format (numeric-type-format arg) - :complexp :complex)) - ((numeric-type-real-p arg) - (let* ((format (case (numeric-type-class arg) - ((integer rational) 'single-float) - (t (numeric-type-format arg)))) - (bound-type (or format 'float))) - ;; If the argument is a subset of the "principal" domain - ;; of the function, we can compute the bounds because - ;; the function is monotonic. We can't do this in - ;; general for these periodic functions because we can't - ;; (and don't want to) do the argument reduction in - ;; exactly the same way as the functions themselves do - ;; it. - (if (csubtypep arg domain) - (let ((res-lo (bound-func fcn (numeric-type-low arg))) - (res-hi (bound-func fcn (numeric-type-high arg)))) - (unless increasingp - (rotatef res-lo res-hi)) - (make-numeric-type - :class 'float - :format format - :low (coerce-numeric-bound res-lo bound-type) - :high (coerce-numeric-bound res-hi bound-type))) - (make-numeric-type - :class 'float - :format format - :low (and def-lo (coerce def-lo bound-type)) - :high (and def-hi (coerce def-hi bound-type)))))) - (t - (float-or-complex-float-type arg def-lo def-hi)))))) + (make-numeric-type :class (numeric-type-class arg) + :format (numeric-type-format arg) + :complexp :complex)) + ((numeric-type-real-p arg) + (let* ((format (case (numeric-type-class arg) + ((integer rational) 'single-float) + (t (numeric-type-format arg)))) + (bound-type (or format 'float))) + ;; If the argument is a subset of the "principal" domain + ;; of the function, we can compute the bounds because + ;; the function is monotonic. We can't do this in + ;; general for these periodic functions because we can't + ;; (and don't want to) do the argument reduction in + ;; exactly the same way as the functions themselves do + ;; it. + (if (csubtypep arg domain) + (let ((res-lo (bound-func fun (numeric-type-low arg) nil)) + (res-hi (bound-func fun (numeric-type-high arg) nil))) + (unless increasingp + (rotatef res-lo res-hi)) + (make-numeric-type + :class 'float + :format format + :low (coerce-numeric-bound res-lo bound-type) + :high (coerce-numeric-bound res-hi bound-type))) + (make-numeric-type + :class 'float + :format format + :low (and def-lo (coerce def-lo bound-type)) + :high (and def-hi (coerce def-hi bound-type)))))) + (t + (float-or-complex-float-type arg def-lo def-hi)))))) (defoptimizer (sin derive-type) ((num)) (one-arg-derive-type @@ -1243,10 +1497,10 @@ (lambda (arg) ;; Derive the bounds if the arg is in [0, pi]. (trig-derive-type-aux arg - (specifier-type `(float 0d0 ,pi)) - #'cos - -1 1 - nil)) + (specifier-type `(float 0d0 ,pi)) + #'cos + -1 1 + nil)) #'cos)) (defoptimizer (tan derive-type) ((num)) @@ -1255,68 +1509,172 @@ (lambda (arg) ;; Derive the bounds if the arg is in [-pi/2, pi/2]. (trig-derive-type-aux arg - (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2))) - #'tan - nil nil)) + (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2))) + #'tan + nil nil)) #'tan)) -;;; CONJUGATE always returns the same type as the input type. -;;; -;;; FIXME: ANSI allows any subtype of REAL for the components of COMPLEX. -;;; So what if the input type is (COMPLEX (SINGLE-FLOAT 0 1))? (defoptimizer (conjugate derive-type) ((num)) - (continuation-type num)) + (one-arg-derive-type num + (lambda (arg) + (flet ((most-negative-bound (l h) + (and l h + (if (< (type-bound-number l) (- (type-bound-number h))) + l + (set-bound (- (type-bound-number h)) (consp h))))) + (most-positive-bound (l h) + (and l h + (if (> (type-bound-number h) (- (type-bound-number l))) + h + (set-bound (- (type-bound-number l)) (consp l)))))) + (if (numeric-type-real-p arg) + (lvar-type num) + (let ((low (numeric-type-low arg)) + (high (numeric-type-high arg))) + (let ((new-low (most-negative-bound low high)) + (new-high (most-positive-bound low high))) + (modified-numeric-type arg :low new-low :high new-high)))))) + #'conjugate)) (defoptimizer (cis derive-type) ((num)) (one-arg-derive-type num - #'(lambda (arg) - (sb!c::specifier-type - `(complex ,(or (numeric-type-format arg) 'float)))) - #'cis)) + (lambda (arg) + (sb!c::specifier-type + `(complex ,(or (numeric-type-format arg) 'float)))) + #'cis)) ) ; PROGN ;;;; TRUNCATE, FLOOR, CEILING, and ROUND (macrolet ((define-frobs (fun ufun) - `(progn - (defknown ,ufun (real) integer (movable foldable flushable)) - (deftransform ,fun ((x &optional by) - (* &optional - (constant-argument (member 1)))) - '(let ((res (,ufun x))) - (values res (- x res))))))) + `(progn + (defknown ,ufun (real) integer (movable foldable flushable)) + (deftransform ,fun ((x &optional by) + (* &optional + (constant-arg (member 1)))) + '(let ((res (,ufun x))) + (values res (- x res))))))) (define-frobs truncate %unary-truncate) (define-frobs round %unary-round)) -;;; Convert (TRUNCATE x y) to the obvious implementation. We only want -;;; this when under certain conditions and let the generic TRUNCATE -;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y -;;; should be removed by other DEFTRANSFORMs.) -(deftransform truncate ((x &optional y) - (float &optional (or float integer))) - (let ((defaulted-y (if y 'y 1))) - `(let ((res (%unary-truncate (/ x ,defaulted-y)))) - (values res (- x (* ,defaulted-y res)))))) +(deftransform %unary-truncate ((x) (single-float)) + `(%unary-truncate/single-float x)) +(deftransform %unary-truncate ((x) (double-float)) + `(%unary-truncate/double-float x)) + +;;; Convert (TRUNCATE x y) to the obvious implementation. +;;; +;;; ...plus hair: Insert explicit coercions to appropriate float types: Python +;;; is reluctant it generate explicit integer->float coercions due to +;;; precision issues (see SAFE-SINGLE-COERCION-P &co), but this is not an +;;; issue here as there is no DERIVE-TYPE optimizer on specialized versions of +;;; %UNARY-TRUNCATE, so the derived type of TRUNCATE remains the best we can +;;; do here -- which is fine. Also take care not to add unnecassary division +;;; or multiplication by 1, since we are not able to always eliminate them, +;;; depending on FLOAT-ACCURACY. Finally, leave out the secondary value when +;;; we know it is unused: COERCE is not flushable. +(macrolet ((def (type other-float-arg-types) + (let ((unary (symbolicate "%UNARY-TRUNCATE/" type)) + (coerce (symbolicate "%" type))) + `(deftransform truncate ((x &optional y) + (,type + &optional (or ,type ,@other-float-arg-types integer)) + * :result result) + (let* ((result-type (and result + (lvar-derived-type result))) + (compute-all (and (values-type-p result-type) + (not (type-single-value-p result-type))))) + (if (or (not y) + (and (constant-lvar-p y) (= 1 (lvar-value y)))) + (if compute-all + `(let ((res (,',unary x))) + (values res (- x (,',coerce res)))) + `(let ((res (,',unary x))) + ;; Dummy secondary value! + (values res x))) + (if compute-all + `(let* ((f (,',coerce y)) + (res (,',unary (/ x f)))) + (values res (- x (* f (,',coerce res))))) + `(let* ((f (,',coerce y)) + (res (,',unary (/ x f)))) + ;; Dummy secondary value! + (values res x))))))))) + (def single-float ()) + (def double-float (single-float))) (deftransform floor ((number &optional divisor) (float &optional (or integer float))) (let ((defaulted-divisor (if divisor 'divisor 1))) `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor) (if (and (not (zerop rem)) - (if (minusp ,defaulted-divisor) - (plusp number) - (minusp number))) - (values (1- tru) (+ rem ,defaulted-divisor)) - (values tru rem))))) + (if (minusp ,defaulted-divisor) + (plusp number) + (minusp number))) + (values (1- tru) (+ rem ,defaulted-divisor)) + (values tru rem))))) (deftransform ceiling ((number &optional divisor) (float &optional (or integer float))) (let ((defaulted-divisor (if divisor 'divisor 1))) `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor) (if (and (not (zerop rem)) - (if (minusp ,defaulted-divisor) - (minusp number) - (plusp number))) - (values (1+ tru) (- rem ,defaulted-divisor)) - (values tru rem))))) + (if (minusp ,defaulted-divisor) + (minusp number) + (plusp number))) + (values (1+ tru) (- rem ,defaulted-divisor)) + (values tru rem))))) + +(defknown %unary-ftruncate (real) float (movable foldable flushable)) +(defknown %unary-ftruncate/single (single-float) single-float + (movable foldable flushable)) +(defknown %unary-ftruncate/double (double-float) double-float + (movable foldable flushable)) + +(defun %unary-ftruncate/single (x) + (declare (type single-float x)) + (declare (optimize speed (safety 0))) + (let* ((bits (single-float-bits x)) + (exp (ldb sb!vm:single-float-exponent-byte bits)) + (biased (the single-float-exponent + (- exp sb!vm:single-float-bias)))) + (declare (type (signed-byte 32) bits)) + (cond + ((= exp sb!vm:single-float-normal-exponent-max) x) + ((<= biased 0) (* x 0f0)) + ((>= biased (float-digits x)) x) + (t + (let ((frac-bits (- (float-digits x) biased))) + (setf bits (logandc2 bits (- (ash 1 frac-bits) 1))) + (make-single-float bits)))))) + +(defun %unary-ftruncate/double (x) + (declare (type double-float x)) + (declare (optimize speed (safety 0))) + (let* ((high (double-float-high-bits x)) + (low (double-float-low-bits x)) + (exp (ldb sb!vm:double-float-exponent-byte high)) + (biased (the double-float-exponent + (- exp sb!vm:double-float-bias)))) + (declare (type (signed-byte 32) high) + (type (unsigned-byte 32) low)) + (cond + ((= exp sb!vm:double-float-normal-exponent-max) x) + ((<= biased 0) (* x 0d0)) + ((>= biased (float-digits x)) x) + (t + (let ((frac-bits (- (float-digits x) biased))) + (cond ((< frac-bits 32) + (setf low (logandc2 low (- (ash 1 frac-bits) 1)))) + (t + (setf low 0) + (setf high (logandc2 high (- (ash 1 (- frac-bits 32)) 1))))) + (make-double-float high low)))))) + +(macrolet + ((def (float-type fun) + `(deftransform %unary-ftruncate ((x) (,float-type)) + '(,fun x)))) + (def single-float %unary-ftruncate/single) + (def double-float %unary-ftruncate/double))