X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Ffloat-tran.lisp;h=49b9cc7adc3cd073e65e951d5425e59ad10db556;hb=1e9966d5f24709d227e20911b4e1ddd27c87a00e;hp=e42674749029bb350704a685184e67af2a26d8be;hpb=dec94b039e8ec90baf21463df839a6181de606f6;p=sbcl.git diff --git a/src/compiler/float-tran.lisp b/src/compiler/float-tran.lisp index e426747..49b9cc7 100644 --- a/src/compiler/float-tran.lisp +++ b/src/compiler/float-tran.lisp @@ -18,23 +18,27 @@ (defknown %single-float (real) single-float (movable foldable flushable)) (defknown %double-float (real) double-float (movable foldable flushable)) -(deftransform float ((n &optional f) (* &optional single-float) * :when :both) +(deftransform float ((n f) (* single-float) *) '(%single-float n)) -(deftransform float ((n f) (* double-float) * :when :both) +(deftransform float ((n f) (* double-float) *) '(%double-float n)) -(deftransform %single-float ((n) (single-float) * :when :both) +(deftransform float ((n) *) + '(if (floatp n) + n + (%single-float n))) + +(deftransform %single-float ((n) (single-float) *) 'n) -(deftransform %double-float ((n) (double-float) * :when :both) +(deftransform %double-float ((n) (double-float) *) 'n) ;;; RANDOM (macrolet ((frob (fun type) `(deftransform random ((num &optional state) - (,type &optional *) * - :when :both) + (,type &optional *) *) "Use inline float operations." '(,fun num (or state *random-state*))))) (frob %random-single-float single-float) @@ -52,10 +56,10 @@ ;; to let me scan for places that I made this mistake and didn't ;; catch myself. "use inline (UNSIGNED-BYTE 32) operations" - (let ((num-high (numeric-type-high (continuation-type num)))) + (let ((num-high (numeric-type-high (lvar-type num)))) (when (null num-high) (give-up-ir1-transform)) - (cond ((constant-continuation-p num) + (cond ((constant-lvar-p num) ;; Check the worst case sum absolute error for the random number ;; expectations. (let ((rem (rem (expt 2 32) num-high))) @@ -139,28 +143,28 @@ (defknown scale-double-float (double-float fixnum) double-float (movable foldable flushable)) -(deftransform decode-float ((x) (single-float) * :when :both) +(deftransform decode-float ((x) (single-float) *) '(decode-single-float x)) -(deftransform decode-float ((x) (double-float) * :when :both) +(deftransform decode-float ((x) (double-float) *) '(decode-double-float x)) -(deftransform integer-decode-float ((x) (single-float) * :when :both) +(deftransform integer-decode-float ((x) (single-float) *) '(integer-decode-single-float x)) -(deftransform integer-decode-float ((x) (double-float) * :when :both) +(deftransform integer-decode-float ((x) (double-float) *) '(integer-decode-double-float x)) -(deftransform scale-float ((f ex) (single-float *) * :when :both) +(deftransform scale-float ((f ex) (single-float *) *) (if (and #!+x86 t #!-x86 nil - (csubtypep (continuation-type ex) + (csubtypep (lvar-type ex) (specifier-type '(signed-byte 32)))) '(coerce (%scalbn (coerce f 'double-float) ex) 'single-float) '(scale-single-float f ex))) -(deftransform scale-float ((f ex) (double-float *) * :when :both) +(deftransform scale-float ((f ex) (double-float *) *) (if (and #!+x86 t #!-x86 nil - (csubtypep (continuation-type ex) + (csubtypep (lvar-type ex) (specifier-type '(signed-byte 32)))) '(%scalbn f ex) '(scale-double-float f ex))) @@ -250,11 +254,11 @@ (defun ,aux-name (num) ;; When converting a number to a float, the limits are ;; the same. - (let* ((lo (bound-func #'(lambda (x) - (coerce x ',type)) + (let* ((lo (bound-func (lambda (x) + (coerce x ',type)) (numeric-type-low num))) - (hi (bound-func #'(lambda (x) - (coerce x ',type)) + (hi (bound-func (lambda (x) + (coerce x ',type)) (numeric-type-high num)))) (specifier-type `(,',type ,(or lo '*) ,(or hi '*))))) @@ -270,10 +274,10 @@ ;;; rational arithmetic, or different float types, and fix it up. If ;;; we don't, he won't even get so much as an efficiency note. (deftransform float-contagion-arg1 ((x y) * * :defun-only t :node node) - `(,(continuation-function-name (basic-combination-fun node)) + `(,(lvar-fun-name (basic-combination-fun node)) (float x y) y)) (deftransform float-contagion-arg2 ((x y) * * :defun-only t :node node) - `(,(continuation-function-name (basic-combination-fun node)) + `(,(lvar-fun-name (basic-combination-fun node)) x (float y x))) (dolist (x '(+ * / -)) @@ -292,12 +296,12 @@ ;;; do it for any rational that has a precise representation as a ;;; float (such as 0). (macrolet ((frob (op) - `(deftransform ,op ((x y) (float rational) * :when :both) + `(deftransform ,op ((x y) (float rational) *) "open-code FLOAT to RATIONAL comparison" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform "The RATIONAL value isn't known at compile time.")) - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (eql (rational (float val)) val) (give-up-ir1-transform "~S doesn't have a precise float representation." @@ -319,20 +323,20 @@ (sqrt (real 0.0)))) (destructuring-bind (name type) stuff (let ((type (specifier-type type))) - (setf (function-info-derive-type (function-info-or-lose name)) + (setf (fun-info-derive-type (fun-info-or-lose name)) (lambda (call) (declare (type combination call)) - (when (csubtypep (continuation-type + (when (csubtypep (lvar-type (first (combination-args call))) type) (specifier-type 'float))))))) #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (log derive-type) ((x &optional y)) - (when (and (csubtypep (continuation-type x) + (when (and (csubtypep (lvar-type x) (specifier-type '(real 0.0))) (or (null y) - (csubtypep (continuation-type y) + (csubtypep (lvar-type y) (specifier-type '(real 0.0))))) (specifier-type 'float))) @@ -347,11 +351,13 @@ (movable foldable flushable)) (defknown (%asin %atan) - (double-float) (double-float #.(- (/ pi 2)) #.(/ pi 2)) + (double-float) + (double-float #.(coerce (- (/ pi 2)) 'double-float) + #.(coerce (/ pi 2) 'double-float)) (movable foldable flushable)) (defknown (%acos) - (double-float) (double-float 0.0d0 #.pi) + (double-float) (double-float 0.0d0 #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%cosh) @@ -375,7 +381,9 @@ (movable foldable flushable)) (defknown (%atan2) - (double-float double-float) (double-float #.(- pi) #.pi) + (double-float double-float) + (double-float #.(coerce (- pi) 'double-float) + #.(coerce pi 'double-float)) (movable foldable flushable)) (defknown (%scalb) @@ -390,75 +398,77 @@ (double-float) double-float (movable foldable flushable)) -(dolist (stuff '((exp %exp *) - (log %log float) - (sqrt %sqrt float) - (asin %asin float) - (acos %acos float) - (atan %atan *) - (sinh %sinh *) - (cosh %cosh *) - (tanh %tanh *) - (asinh %asinh *) - (acosh %acosh float) - (atanh %atanh float))) - (destructuring-bind (name prim rtype) stuff - (deftransform name ((x) '(single-float) rtype :eval-name t) - `(coerce (,prim (coerce x 'double-float)) 'single-float)) - (deftransform name ((x) '(double-float) rtype :eval-name t :when :both) - `(,prim x)))) +(macrolet ((def (name prim rtype) + `(progn + (deftransform ,name ((x) (single-float) ,rtype) + `(coerce (,',prim (coerce x 'double-float)) 'single-float)) + (deftransform ,name ((x) (double-float) ,rtype) + `(,',prim x))))) + (def exp %exp *) + (def log %log float) + (def sqrt %sqrt float) + (def asin %asin float) + (def acos %acos float) + (def atan %atan *) + (def sinh %sinh *) + (def cosh %cosh *) + (def tanh %tanh *) + (def asinh %asinh *) + (def acosh %acosh float) + (def atanh %atanh float)) ;;; The argument range is limited on the x86 FP trig. functions. A ;;; post-test can detect a failure (and load a suitable result), but ;;; this test is avoided if possible. -(dolist (stuff '((sin %sin %sin-quick) - (cos %cos %cos-quick) - (tan %tan %tan-quick))) - (destructuring-bind (name prim prim-quick) stuff - (declare (ignorable prim-quick)) - (deftransform name ((x) '(single-float) '* :eval-name t) - #!+x86 (cond ((csubtypep (continuation-type x) - (specifier-type '(single-float - (#.(- (expt 2f0 64))) - (#.(expt 2f0 64))))) - `(coerce (,prim-quick (coerce x 'double-float)) - 'single-float)) - (t - (compiler-note - "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" - (type-specifier (continuation-type x))) - `(coerce (,prim (coerce x 'double-float)) 'single-float))) - #!-x86 `(coerce (,prim (coerce x 'double-float)) 'single-float)) - (deftransform name ((x) '(double-float) '* :eval-name t :when :both) - #!+x86 (cond ((csubtypep (continuation-type x) - (specifier-type '(double-float - (#.(- (expt 2d0 64))) - (#.(expt 2d0 64))))) - `(,prim-quick x)) - (t - (compiler-note - "unable to avoid inline argument range check~@ - because the argument range (~S) was not within 2^64" - (type-specifier (continuation-type x))) - `(,prim x))) - #!-x86 `(,prim x)))) +(macrolet ((def (name prim prim-quick) + (declare (ignorable prim-quick)) + `(progn + (deftransform ,name ((x) (single-float) *) + #!+x86 (cond ((csubtypep (lvar-type x) + (specifier-type '(single-float + (#.(- (expt 2f0 64))) + (#.(expt 2f0 64))))) + `(coerce (,',prim-quick (coerce x 'double-float)) + 'single-float)) + (t + (compiler-notify + "unable to avoid inline argument range check~@ + because the argument range (~S) was not within 2^64" + (type-specifier (lvar-type x))) + `(coerce (,',prim (coerce x 'double-float)) 'single-float))) + #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float)) + (deftransform ,name ((x) (double-float) *) + #!+x86 (cond ((csubtypep (lvar-type x) + (specifier-type '(double-float + (#.(- (expt 2d0 64))) + (#.(expt 2d0 64))))) + `(,',prim-quick x)) + (t + (compiler-notify + "unable to avoid inline argument range check~@ + because the argument range (~S) was not within 2^64" + (type-specifier (lvar-type x))) + `(,',prim x))) + #!-x86 `(,',prim x))))) + (def sin %sin %sin-quick) + (def cos %cos %cos-quick) + (def tan %tan %tan-quick)) (deftransform atan ((x y) (single-float single-float) *) `(coerce (%atan2 (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform atan ((x y) (double-float double-float) * :when :both) +(deftransform atan ((x y) (double-float double-float) *) `(%atan2 x y)) (deftransform expt ((x y) ((single-float 0f0) single-float) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform expt ((x y) ((double-float 0d0) double-float) * :when :both) +(deftransform expt ((x y) ((double-float 0d0) double-float) *) `(%pow x y)) (deftransform expt ((x y) ((single-float 0f0) (signed-byte 32)) *) `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float)) 'single-float)) -(deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) * :when :both) +(deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *) `(%pow x (coerce y 'double-float))) ;;; ANSI says log with base zero returns zero. @@ -467,7 +477,7 @@ ;;; Handle some simple transformations. -(deftransform abs ((x) ((complex double-float)) double-float :when :both) +(deftransform abs ((x) ((complex double-float)) double-float) '(%hypot (realpart x) (imagpart x))) (deftransform abs ((x) ((complex single-float)) single-float) @@ -475,7 +485,7 @@ (coerce (imagpart x) 'double-float)) 'single-float)) -(deftransform phase ((x) ((complex double-float)) double-float :when :both) +(deftransform phase ((x) ((complex double-float)) double-float) '(%atan2 (imagpart x) (realpart x))) (deftransform phase ((x) ((complex single-float)) single-float) @@ -483,7 +493,7 @@ (coerce (realpart x) 'double-float)) 'single-float)) -(deftransform phase ((x) ((float)) float :when :both) +(deftransform phase ((x) ((float)) float) '(if (minusp (float-sign x)) (float pi x) (float 0 x))) @@ -533,11 +543,18 @@ (specifier-type `(or (,float-type ,(or lo '*) ,(or hi '*)) (complex ,float-type))))) +) ; PROGN + +(eval-when (:compile-toplevel :execute) + ;; So the problem with this hack is that it's actually broken. If + ;; the host does not have long floats, then setting *R-D-F-F* to + ;; LONG-FLOAT doesn't actually buy us anything. FIXME. + (setf *read-default-float-format* + #!+long-float 'long-float #!-long-float 'double-float)) ;;; Test whether the numeric-type ARG is within in domain specified by ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to -;;; be distinct as for the :NEGATIVE-ZERO-IS-NOT-ZERO feature. With -;;; the :NEGATIVE-ZERO-IS-NOT-ZERO feature this could be handled by -;;; the numeric subtype code in type.lisp. +;;; be distinct. +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defun domain-subtypep (arg domain-low domain-high) (declare (type numeric-type arg) (type (or real null) domain-low domain-high)) @@ -548,28 +565,33 @@ ;; Check that the ARG bounds are correctly canonicalized. (when (and arg-lo (floatp arg-lo-val) (zerop arg-lo-val) (consp arg-lo) (minusp (float-sign arg-lo-val))) - (compiler-note "float zero bound ~S not correctly canonicalized?" arg-lo) - (setq arg-lo '(0l0) arg-lo-val 0l0)) + (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-lo) + (setq arg-lo 0e0 arg-lo-val arg-lo)) (when (and arg-hi (zerop arg-hi-val) (floatp arg-hi-val) (consp arg-hi) (plusp (float-sign arg-hi-val))) - (compiler-note "float zero bound ~S not correctly canonicalized?" arg-hi) - (setq arg-hi '(-0l0) arg-hi-val -0l0)) - (and (or (null domain-low) - (and arg-lo (>= arg-lo-val domain-low) - (not (and (zerop domain-low) (floatp domain-low) - (plusp (float-sign domain-low)) - (zerop arg-lo-val) (floatp arg-lo-val) - (if (consp arg-lo) - (plusp (float-sign arg-lo-val)) - (minusp (float-sign arg-lo-val))))))) - (or (null domain-high) - (and arg-hi (<= arg-hi-val domain-high) - (not (and (zerop domain-high) (floatp domain-high) - (minusp (float-sign domain-high)) - (zerop arg-hi-val) (floatp arg-hi-val) - (if (consp arg-hi) - (minusp (float-sign arg-hi-val)) - (plusp (float-sign arg-hi-val)))))))))) + (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-hi) + (setq arg-hi (ecase *read-default-float-format* + (double-float (load-time-value (make-unportable-float :double-float-negative-zero))) + #!+long-float + (long-float (load-time-value (make-unportable-float :long-float-negative-zero)))) + arg-hi-val arg-hi)) + (flet ((fp-neg-zero-p (f) ; Is F -0.0? + (and (floatp f) (zerop f) (minusp (float-sign f)))) + (fp-pos-zero-p (f) ; Is F +0.0? + (and (floatp f) (zerop f) (plusp (float-sign f))))) + (and (or (null domain-low) + (and arg-lo (>= arg-lo-val domain-low) + (not (and (fp-pos-zero-p domain-low) + (fp-neg-zero-p arg-lo))))) + (or (null domain-high) + (and arg-hi (<= arg-hi-val domain-high) + (not (and (fp-neg-zero-p domain-high) + (fp-pos-zero-p arg-hi))))))))) +(eval-when (:compile-toplevel :execute) + (setf *read-default-float-format* 'single-float)) + +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) +(progn ;;; Handle monotonic functions of a single variable whose domain is ;;; possibly part of the real line. ARG is the variable, FCN is the @@ -580,8 +602,7 @@ ;;; result, which occurs for the parts of ARG not in the DOMAIN. ;;; ;;; Negative and positive zero are considered distinct within -;;; DOMAIN-LOW and DOMAIN-HIGH, as for the :negative-zero-is-not-zero -;;; feature. +;;; DOMAIN-LOW and DOMAIN-HIGH. ;;; ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we ;;; can't compute the bounds using FCN. @@ -647,11 +668,11 @@ `(defoptimizer (,name derive-type) ((,num)) (one-arg-derive-type ,num - #'(lambda (arg) - (elfun-derive-type-simple arg #',name - ,domain-low ,domain-high - ,def-low-bnd ,def-high-bnd - ,increasingp)) + (lambda (arg) + (elfun-derive-type-simple arg #',name + ,domain-low ,domain-high + ,def-low-bnd ,def-high-bnd + ,increasingp)) #',name))))) ;; These functions are easy because they are defined for the whole ;; real line. @@ -670,21 +691,22 @@ (frob atanh -1d0 1d0 -1 1) ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that ;; includes -0.0. - (frob sqrt -0d0 nil 0 nil)) + (frob sqrt (load-time-value (make-unportable-float :double-float-negative-zero)) nil 0 nil)) ;;; Compute bounds for (expt x y). This should be easy since (expt x ;;; y) = (exp (* y (log x))). However, computations done this way ;;; have too much roundoff. Thus we have to do it the hard way. (defun safe-expt (x y) (handler-case - (expt x y) + (when (< (abs y) 10000) + (expt x y)) (error () nil))) ;;; Handle the case when x >= 1. (defun interval-expt-> (x y) (case (sb!c::interval-range-info y 0d0) - ('+ + (+ ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is ;; obviously non-negative. We just have to be careful for ;; infinite bounds (given by nil). @@ -693,7 +715,7 @@ (hi (safe-expt (type-bound-number (sb!c::interval-high x)) (type-bound-number (sb!c::interval-high y))))) (list (sb!c::make-interval :low (or lo 1) :high hi)))) - ('- + (- ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is ;; obviously [0, 1]. However, underflow (nil) means 0 is the ;; result. @@ -712,10 +734,10 @@ ;;; Handle the case when x <= 1 (defun interval-expt-< (x y) (case (sb!c::interval-range-info x 0d0) - ('+ + (+ ;; The case of 0 <= x <= 1 is easy (case (sb!c::interval-range-info y) - ('+ + (+ ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is ;; obviously [0, 1]. We just have to be careful for infinite bounds ;; (given by nil). @@ -724,7 +746,7 @@ (hi (safe-expt (type-bound-number (sb!c::interval-high x)) (type-bound-number (sb!c::interval-low y))))) (list (sb!c::make-interval :low (or lo 0) :high (or hi 1))))) - ('- + (- ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is ;; obviously [1, inf]. (let ((hi (safe-expt (type-bound-number (sb!c::interval-low x)) @@ -738,7 +760,7 @@ (sb!c::interval-split 0 y t) (list (interval-expt-< x y-) (interval-expt-< x y+)))))) - ('- + (- ;; The case where x <= 0. Y MUST be an INTEGER for this to work! ;; The calling function must insure this! For now we'll just ;; return the appropriate unbounded float type. @@ -752,10 +774,10 @@ ;;; Compute bounds for (expt x y). (defun interval-expt (x y) (case (interval-range-info x 1) - ('+ + (+ ;; X >= 1 (interval-expt-> x y)) - ('- + (- ;; X <= 1 (interval-expt-< x y)) (t @@ -967,14 +989,14 @@ (bound-type (or format 'float))) (cond ((numeric-type-real-p arg) (case (interval-range-info (numeric-type->interval arg) 0.0) - ('+ + (+ ;; The number is positive, so the phase is 0. (make-numeric-type :class 'float :format format :complexp :real :low (coerce 0 bound-type) :high (coerce 0 bound-type))) - ('- + (- ;; The number is always negative, so the phase is pi. (make-numeric-type :class 'float :format format @@ -1265,13 +1287,13 @@ ;;; FIXME: ANSI allows any subtype of REAL for the components of COMPLEX. ;;; So what if the input type is (COMPLEX (SINGLE-FLOAT 0 1))? (defoptimizer (conjugate derive-type) ((num)) - (continuation-type num)) + (lvar-type num)) (defoptimizer (cis derive-type) ((num)) (one-arg-derive-type num - #'(lambda (arg) - (sb!c::specifier-type - `(complex ,(or (numeric-type-format arg) 'float)))) + (lambda (arg) + (sb!c::specifier-type + `(complex ,(or (numeric-type-format arg) 'float)))) #'cis)) ) ; PROGN @@ -1283,7 +1305,7 @@ (defknown ,ufun (real) integer (movable foldable flushable)) (deftransform ,fun ((x &optional by) (* &optional - (constant-argument (member 1)))) + (constant-arg (member 1)))) '(let ((res (,ufun x))) (values res (- x res))))))) (define-frobs truncate %unary-truncate)