X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Ffloat-tran.lisp;h=a1184e12ae59221f26aa7c22738b823fe6ca8253;hb=49e8403800426f37a54d9b87353a31af36e7af40;hp=681aa48868c8fd2904e340e78ff34f6db506baeb;hpb=07ab1e4811ab16f95a9a5e8d767426a0787f22c0;p=sbcl.git diff --git a/src/compiler/float-tran.lisp b/src/compiler/float-tran.lisp index 681aa48..a1184e1 100644 --- a/src/compiler/float-tran.lisp +++ b/src/compiler/float-tran.lisp @@ -15,8 +15,10 @@ ;;;; coercions -(defknown %single-float (real) single-float (movable foldable)) -(defknown %double-float (real) double-float (movable foldable)) +(defknown %single-float (real) single-float + (movable foldable)) +(defknown %double-float (real) double-float + (movable foldable)) (deftransform float ((n f) (* single-float) *) '(%single-float n)) @@ -332,6 +334,68 @@ (%deftransform x '(function (double-float single-float) *) #'float-contagion-arg2)) +(macrolet ((def (type &rest args) + `(deftransform * ((x y) (,type (constant-arg (member ,@args))) * + ;; Beware the SNaN! + :policy (zerop float-accuracy)) + "optimize multiplication by one" + (let ((y (lvar-value y))) + (if (minusp y) + '(%negate x) + 'x))))) + (def * single-float 1.0 -1.0) + (def * double-float 1.0d0 -1.0d0)) + +;;; Return the reciprocal of X if it can be represented exactly, NIL otherwise. +(defun maybe-exact-reciprocal (x) + (unless (zerop x) + (multiple-value-bind (significand exponent sign) + ;; Signals an error for NaNs and infinities. + (handler-case (integer-decode-float x) + (error () (return-from maybe-exact-reciprocal nil))) + (let ((expected (/ sign significand (expt 2 exponent)))) + (let ((reciprocal (/ 1 x))) + (multiple-value-bind (significand exponent sign) (integer-decode-float reciprocal) + (when (eql expected (* sign significand (expt 2 exponent))) + reciprocal))))))) + +;;; Replace constant division by multiplication with exact reciprocal, +;;; if one exists. +(macrolet ((def (type) + `(deftransform / ((x y) (,type (constant-arg ,type)) * + :node node) + "convert to multiplication by reciprocal" + (let ((n (lvar-value y))) + (if (policy node (zerop float-accuracy)) + `(* x ,(/ n)) + (let ((r (maybe-exact-reciprocal n))) + (if r + `(* x ,r) + (give-up-ir1-transform + "~S does not have an exact reciprocal" + n)))))))) + (def single-float) + (def double-float)) + +;;; Optimize addition and subsctraction of zero +(macrolet ((def (op type &rest args) + `(deftransform ,op ((x y) (,type (constant-arg (member ,@args))) * + ;; Beware the SNaN! + :policy (zerop float-accuracy)) + 'x))) + ;; No signed zeros, thanks. + (def + single-float 0 0.0) + (def - single-float 0 0.0) + (def + double-float 0 0.0 0.0d0) + (def - double-float 0 0.0 0.0d0)) + +;;; On most platforms (+ x x) is faster than (* x 2) +(macrolet ((def (type &rest args) + `(deftransform * ((x y) (,type (constant-arg (member ,@args)))) + '(+ x x)))) + (def single-float 2 2.0) + (def double-float 2 2.0 2.0d0)) + ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in ;;; general float rational args to comparison, since Common Lisp ;;; semantics says we are supposed to compare as rationals, but we can @@ -1178,27 +1242,45 @@ ;;; of complex operation VOPs. (macrolet ((frob (type) `(progn + (deftransform complex ((r) (,type)) + '(complex r ,(coerce 0 type))) + (deftransform complex ((r i) (,type (and real (not ,type)))) + '(complex r (truly-the ,type (coerce i ',type)))) + (deftransform complex ((r i) ((and real (not ,type)) ,type)) + '(complex (truly-the ,type (coerce r ',type)) i)) ;; negation + #!-complex-float-vops (deftransform %negate ((z) ((complex ,type)) *) '(complex (%negate (realpart z)) (%negate (imagpart z)))) ;; complex addition and subtraction + #!-complex-float-vops (deftransform + ((w z) ((complex ,type) (complex ,type)) *) '(complex (+ (realpart w) (realpart z)) (+ (imagpart w) (imagpart z)))) + #!-complex-float-vops (deftransform - ((w z) ((complex ,type) (complex ,type)) *) '(complex (- (realpart w) (realpart z)) (- (imagpart w) (imagpart z)))) ;; Add and subtract a complex and a real. + #!-complex-float-vops (deftransform + ((w z) ((complex ,type) real) *) - '(complex (+ (realpart w) z) (imagpart w))) + `(complex (+ (realpart w) z) + (+ (imagpart w) ,(coerce 0 ',type)))) + #!-complex-float-vops (deftransform + ((z w) (real (complex ,type)) *) - '(complex (+ (realpart w) z) (imagpart w))) + `(complex (+ (realpart w) z) + (+ (imagpart w) ,(coerce 0 ',type)))) ;; Add and subtract a real and a complex number. + #!-complex-float-vops (deftransform - ((w z) ((complex ,type) real) *) - '(complex (- (realpart w) z) (imagpart w))) + `(complex (- (realpart w) z) + (- (imagpart w) ,(coerce 0 ',type)))) + #!-complex-float-vops (deftransform - ((z w) (real (complex ,type)) *) - '(complex (- z (realpart w)) (- (imagpart w)))) + `(complex (- z (realpart w)) + (- ,(coerce 0 ',type) (imagpart w)))) ;; Multiply and divide two complex numbers. + #!-complex-float-vops (deftransform * ((x y) ((complex ,type) (complex ,type)) *) '(let* ((rx (realpart x)) (ix (imagpart x)) @@ -1207,39 +1289,81 @@ (complex (- (* rx ry) (* ix iy)) (+ (* rx iy) (* ix ry))))) (deftransform / ((x y) ((complex ,type) (complex ,type)) *) + #!-complex-float-vops '(let* ((rx (realpart x)) (ix (imagpart x)) (ry (realpart y)) (iy (imagpart y))) (if (> (abs ry) (abs iy)) (let* ((r (/ iy ry)) - (dn (* ry (+ 1 (* r r))))) + (dn (+ ry (* r iy)))) (complex (/ (+ rx (* ix r)) dn) (/ (- ix (* rx r)) dn))) (let* ((r (/ ry iy)) - (dn (* iy (+ 1 (* r r))))) + (dn (+ iy (* r ry)))) (complex (/ (+ (* rx r) ix) dn) - (/ (- (* ix r) rx) dn)))))) + (/ (- (* ix r) rx) dn))))) + #!+complex-float-vops + `(let* ((cs (conjugate (sb!vm::swap-complex x))) + (ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (/ (+ x (* cs r)) dn)) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (/ (+ (* x r) cs) dn))))) ;; Multiply a complex by a real or vice versa. + #!-complex-float-vops (deftransform * ((w z) ((complex ,type) real) *) '(complex (* (realpart w) z) (* (imagpart w) z))) + #!-complex-float-vops (deftransform * ((z w) (real (complex ,type)) *) '(complex (* (realpart w) z) (* (imagpart w) z))) - ;; Divide a complex by a real. + ;; Divide a complex by a real or vice versa. + #!-complex-float-vops (deftransform / ((w z) ((complex ,type) real) *) '(complex (/ (realpart w) z) (/ (imagpart w) z))) + (deftransform / ((x y) (,type (complex ,type)) *) + #!-complex-float-vops + '(let* ((ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (complex (/ x dn) + (/ (- (* x r)) dn))) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (complex (/ (* x r) dn) + (/ (- x) dn))))) + #!+complex-float-vops + '(let* ((ry (realpart y)) + (iy (imagpart y))) + (if (> (abs ry) (abs iy)) + (let* ((r (/ iy ry)) + (dn (+ ry (* r iy)))) + (/ (complex x (- (* x r))) dn)) + (let* ((r (/ ry iy)) + (dn (+ iy (* r ry)))) + (/ (complex (* x r) (- x)) dn))))) ;; conjugate of complex number + #!-complex-float-vops (deftransform conjugate ((z) ((complex ,type)) *) '(complex (realpart z) (- (imagpart z)))) ;; CIS (deftransform cis ((z) ((,type)) *) '(complex (cos z) (sin z))) ;; comparison + #!-complex-float-vops (deftransform = ((w z) ((complex ,type) (complex ,type)) *) '(and (= (realpart w) (realpart z)) (= (imagpart w) (imagpart z)))) + #!-complex-float-vops (deftransform = ((w z) ((complex ,type) real) *) '(and (= (realpart w) z) (zerop (imagpart w)))) + #!-complex-float-vops (deftransform = ((w z) (real (complex ,type)) *) '(and (= (realpart z) w) (zerop (imagpart z))))))) @@ -1370,15 +1494,48 @@ (define-frobs truncate %unary-truncate) (define-frobs round %unary-round)) -;;; Convert (TRUNCATE x y) to the obvious implementation. We only want -;;; this when under certain conditions and let the generic TRUNCATE -;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y -;;; should be removed by other DEFTRANSFORMs.) -(deftransform truncate ((x &optional y) - (float &optional (or float integer))) - (let ((defaulted-y (if y 'y 1))) - `(let ((res (%unary-truncate (/ x ,defaulted-y)))) - (values res (- x (* ,defaulted-y res)))))) +(deftransform %unary-truncate ((x) (single-float)) + `(%unary-truncate/single-float x)) +(deftransform %unary-truncate ((x) (double-float)) + `(%unary-truncate/double-float x)) + +;;; Convert (TRUNCATE x y) to the obvious implementation. +;;; +;;; ...plus hair: Insert explicit coercions to appropriate float types: Python +;;; is reluctant it generate explicit integer->float coercions due to +;;; precision issues (see SAFE-SINGLE-COERCION-P &co), but this is not an +;;; issue here as there is no DERIVE-TYPE optimizer on specialized versions of +;;; %UNARY-TRUNCATE, so the derived type of TRUNCATE remains the best we can +;;; do here -- which is fine. Also take care not to add unnecassary division +;;; or multiplication by 1, since we are not able to always eliminate them, +;;; depending on FLOAT-ACCURACY. Finally, leave out the secondary value when +;;; we know it is unused: COERCE is not flushable. +(macrolet ((def (type other-float-arg-types) + (let ((unary (symbolicate "%UNARY-TRUNCATE/" type)) + (coerce (symbolicate "%" type))) + `(deftransform truncate ((x &optional y) + (,type + &optional (or ,type ,@other-float-arg-types integer)) + * :result result) + (let ((result-type (lvar-derived-type result))) + (if (or (not y) + (and (constant-lvar-p y) (= 1 (lvar-value y)))) + (if (values-type-p result-type) + `(let ((res (,',unary x))) + (values res (- x (,',coerce res)))) + `(let ((res (,',unary x))) + ;; Dummy secondary value! + (values res x))) + (if (values-type-p result-type) + `(let* ((f (,',coerce y)) + (res (,',unary (/ x f)))) + (values res (- x (* f (,',coerce res))))) + `(let* ((f (,',coerce y)) + (res (,',unary (/ x f)))) + ;; Dummy secondary value! + (values res x))))))))) + (def single-float ()) + (def double-float (single-float))) (deftransform floor ((number &optional divisor) (float &optional (or integer float)))