X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fir1tran.lisp;h=8b2bee0ce2f62ce176aa99291907d55cbfb714c7;hb=771b864c8f32af7734bc0550aeaf1539fc4df194;hp=3faf0a148c9e3117b1a7803622f63cd833fbbf3b;hpb=d40a76606c86722b0aef8179155f9f2840739b72;p=sbcl.git diff --git a/src/compiler/ir1tran.lisp b/src/compiler/ir1tran.lisp index 3faf0a1..8b2bee0 100644 --- a/src/compiler/ir1tran.lisp +++ b/src/compiler/ir1tran.lisp @@ -48,12 +48,21 @@ to optimize code which uses those definitions? Setting this true gives non-ANSI, early-CMU-CL behavior. It can be useful for improving the efficiency of stable code.") + +(defvar *fun-names-in-this-file* nil) ;;;; namespace management utilities +(defun fun-lexically-notinline-p (name) + (let ((fun (lexenv-find name funs :test #'equal))) + ;; a declaration will trump a proclamation + (if (and fun (defined-fun-p fun)) + (eq (defined-fun-inlinep fun) :notinline) + (eq (info :function :inlinep name) :notinline)))) + ;;; Return a GLOBAL-VAR structure usable for referencing the global ;;; function NAME. -(defun find-free-really-function (name) +(defun find-free-really-fun (name) (unless (info :function :kind name) (setf (info :function :kind name) :function) (setf (info :function :where-from name) :assumed)) @@ -67,44 +76,24 @@ ;; definedness at runtime, which is what matters. #-sb-xc-host (not (fboundp name))) (note-undefined-reference name :function)) - (make-global-var :kind :global-function - :%source-name name - :type (if (or *derive-function-types* - (eq where :declared)) - (info :function :type name) - (specifier-type 'function)) - :where-from where))) - -;;; Return a SLOT-ACCESSOR structure usable for referencing the slot -;;; accessor NAME. CLASS is the structure class. -(defun find-structure-slot-accessor (class name) - (declare (type sb!xc:class class)) - (let* ((info (layout-info - (or (info :type :compiler-layout (sb!xc:class-name class)) - (class-layout class)))) - (accessor-name (if (listp name) (cadr name) name)) - (slot (find accessor-name (dd-slots info) - :key #'sb!kernel:dsd-accessor-name)) - (type (dd-name info)) - (slot-type (dsd-type slot))) - (unless slot - (error "can't find slot ~S" type)) - (make-slot-accessor + (make-global-var + :kind :global-function :%source-name name - :type (specifier-type - (if (listp name) - `(function (,slot-type ,type) ,slot-type) - `(function (,type) ,slot-type))) - :for class - :slot slot))) - -;;; Has the *FREE-FUNCTIONS* entry FREE-FUNCTION become invalid? + :type (if (or *derive-function-types* + (eq where :declared) + (and (member name *fun-names-in-this-file* :test #'equal) + (not (fun-lexically-notinline-p name)))) + (info :function :type name) + (specifier-type 'function)) + :where-from where))) + +;;; Has the *FREE-FUNS* entry FREE-FUN become invalid? ;;; ;;; In CMU CL, the answer was implicitly always true, so this ;;; predicate didn't exist. ;;; ;;; This predicate was added to fix bug 138 in SBCL. In some obscure -;;; circumstances, it was possible for a *FREE-FUNCTIONS* to contain a +;;; circumstances, it was possible for a *FREE-FUNS* entry to contain a ;;; DEFINED-FUN whose DEFINED-FUN-FUNCTIONAL object contained IR1 ;;; stuff (NODEs, BLOCKs...) referring to an already compiled (aka ;;; "dead") component. When this IR1 stuff was reused in a new @@ -113,43 +102,45 @@ ;;; *CURRENT-COMPONENT*. At that point things got all confused, since ;;; IR1 conversion was sending code to a component which had already ;;; been compiled and would never be compiled again. -(defun invalid-free-function-p (free-function) - ;; There might be other reasons that *FREE-FUNCTION* entries could +(defun invalid-free-fun-p (free-fun) + ;; There might be other reasons that *FREE-FUN* entries could ;; become invalid, but the only one we've been bitten by so far ;; (sbcl-0.pre7.118) is this one: - (and (defined-fun-p free-function) - (let ((functional (defined-fun-functional free-function))) - (and (lambda-p functional) - (or - ;; (The main reason for this first test is to bail out - ;; early in cases where the LAMBDA-COMPONENT call in - ;; the second test would fail because links it needs - ;; are uninitialized or invalid.) - ;; - ;; If the BIND node for this LAMBDA is null, then - ;; according to the slot comments, the LAMBDA has been - ;; deleted or its call has been deleted. In that case, - ;; it seems rather questionable to reuse it, and - ;; certainly it shouldn't be necessary to reuse it, so - ;; we cheerfully declare it invalid. - (null (lambda-bind functional)) - ;; If this IR1 stuff belongs to a dead component, then - ;; we can't reuse it without getting into bizarre - ;; confusion. - (eql (component-info (lambda-component functional)) :dead)))))) - -;;; If NAME already has a valid entry in *FREE-FUNCTIONS*, then return + (and (defined-fun-p free-fun) + (let ((functional (defined-fun-functional free-fun))) + (or (and functional + (eql (functional-kind functional) :deleted)) + (and (lambda-p functional) + (or + ;; (The main reason for this first test is to bail + ;; out early in cases where the LAMBDA-COMPONENT + ;; call in the second test would fail because links + ;; it needs are uninitialized or invalid.) + ;; + ;; If the BIND node for this LAMBDA is null, then + ;; according to the slot comments, the LAMBDA has + ;; been deleted or its call has been deleted. In + ;; that case, it seems rather questionable to reuse + ;; it, and certainly it shouldn't be necessary to + ;; reuse it, so we cheerfully declare it invalid. + (null (lambda-bind functional)) + ;; If this IR1 stuff belongs to a dead component, + ;; then we can't reuse it without getting into + ;; bizarre confusion. + (eql (component-info (lambda-component functional)) + :dead))))))) + +;;; If NAME already has a valid entry in *FREE-FUNS*, then return ;;; the value. Otherwise, make a new GLOBAL-VAR using information from -;;; the global environment and enter it in *FREE-FUNCTIONS*. If NAME +;;; the global environment and enter it in *FREE-FUNS*. If NAME ;;; names a macro or special form, then we error out using the ;;; supplied context which indicates what we were trying to do that ;;; demanded a function. -(defun find-free-function (name context) - (declare (string context)) - (declare (values global-var)) - (or (let ((old-free-function (gethash name *free-functions*))) - (and (not (invalid-free-function-p old-free-function)) - old-free-function)) +(declaim (ftype (sfunction (t string) global-var) find-free-fun)) +(defun find-free-fun (name context) + (or (let ((old-free-fun (gethash name *free-funs*))) + (and (not (invalid-free-fun-p old-free-fun)) + old-free-fun)) (ecase (info :function :kind name) ;; FIXME: The :MACRO and :SPECIAL-FORM cases could be merged. (:macro @@ -160,52 +151,62 @@ context)) ((:function nil) (check-fun-name name) - (note-if-setf-function-and-macro name) + (note-if-setf-fun-and-macro name) (let ((expansion (fun-name-inline-expansion name)) (inlinep (info :function :inlinep name))) - (setf (gethash name *free-functions*) + (setf (gethash name *free-funs*) (if (or expansion inlinep) (make-defined-fun :%source-name name :inline-expansion expansion :inlinep inlinep :where-from (info :function :where-from name) - :type (info :function :type name)) - (find-free-really-function name)))))))) + :type (if (eq inlinep :notinline) + (specifier-type 'function) + (info :function :type name))) + (find-free-really-fun name)))))))) ;;; Return the LEAF structure for the lexically apparent function ;;; definition of NAME. -(declaim (ftype (function (t string) leaf) find-lexically-apparent-function)) -(defun find-lexically-apparent-function (name context) - (let ((var (lexenv-find name functions :test #'equal))) +(declaim (ftype (sfunction (t string) leaf) find-lexically-apparent-fun)) +(defun find-lexically-apparent-fun (name context) + (let ((var (lexenv-find name funs :test #'equal))) (cond (var (unless (leaf-p var) (aver (and (consp var) (eq (car var) 'macro))) (compiler-error "found macro name ~S ~A" name context)) var) (t - (find-free-function name context))))) + (find-free-fun name context))))) ;;; Return the LEAF node for a global variable reference to NAME. If -;;; NAME is already entered in *FREE-VARIABLES*, then we just return -;;; the corresponding value. Otherwise, we make a new leaf using +;;; NAME is already entered in *FREE-VARS*, then we just return the +;;; corresponding value. Otherwise, we make a new leaf using ;;; information from the global environment and enter it in -;;; *FREE-VARIABLES*. If the variable is unknown, then we emit a -;;; warning. -(defun find-free-variable (name) - (declare (values (or leaf heap-alien-info))) +;;; *FREE-VARS*. If the variable is unknown, then we emit a warning. +(declaim (ftype (sfunction (t) (or leaf cons heap-alien-info)) find-free-var)) +(defun find-free-var (name) (unless (symbolp name) (compiler-error "Variable name is not a symbol: ~S." name)) - (or (gethash name *free-variables*) + (or (gethash name *free-vars*) (let ((kind (info :variable :kind name)) (type (info :variable :type name)) (where-from (info :variable :where-from name))) (when (and (eq where-from :assumed) (eq kind :global)) (note-undefined-reference name :variable)) - (setf (gethash name *free-variables*) + (setf (gethash name *free-vars*) (case kind (:alien (info :variable :alien-info name)) + ;; FIXME: The return value in this case should really be + ;; of type SB!C::LEAF. I don't feel too badly about it, + ;; because the MACRO idiom is scattered throughout this + ;; file, but it should be cleaned up so we're not + ;; throwing random conses around. --njf 2002-03-23 + (:macro + (let ((expansion (info :variable :macro-expansion name)) + (type (type-specifier (info :variable :type name)))) + `(MACRO . (the ,type ,expansion)))) (:constant (let ((value (info :variable :constant-value name))) (make-constant :value value @@ -223,9 +224,9 @@ ;;; CONSTANT might be circular. We also check that the constant (and ;;; any subparts) are dumpable at all. (eval-when (:compile-toplevel :load-toplevel :execute) - ;; The EVAL-WHEN is necessary for #.(1+ LIST-TO-HASH-TABLE-THRESHOLD) + ;; The EVAL-WHEN is necessary for #.(1+ LIST-TO-HASH-TABLE-THRESHOLD) ;; below. -- AL 20010227 - (defconstant list-to-hash-table-threshold 32)) + (def!constant list-to-hash-table-threshold 32)) (defun maybe-emit-make-load-forms (constant) (let ((things-processed nil) (count 0)) @@ -297,41 +298,32 @@ ;;;; some flow-graph hacking utilities ;;; This function sets up the back link between the node and the -;;; continuation which continues at it. -(defun link-node-to-previous-continuation (node cont) - (declare (type node node) (type continuation cont)) - (aver (not (continuation-next cont))) - (setf (continuation-next cont) node) - (setf (node-prev node) cont)) - -;;; This function is used to set the continuation for a node, and thus -;;; determine what receives the value and what is evaluated next. If -;;; the continuation has no block, then we make it be in the block -;;; that the node is in. If the continuation heads its block, we end -;;; our block and link it to that block. If the continuation is not -;;; currently used, then we set the DERIVED-TYPE for the continuation -;;; to that of the node, so that a little type propagation gets done. -;;; -;;; We also deal with a bit of THE's semantics here: we weaken the -;;; assertion on CONT to be no stronger than the assertion on CONT in -;;; our scope. See the IR1-CONVERT method for THE. -#!-sb-fluid (declaim (inline use-continuation)) -(defun use-continuation (node cont) - (declare (type node node) (type continuation cont)) - (let ((node-block (continuation-block (node-prev node)))) - (case (continuation-kind cont) - (:unused - (setf (continuation-block cont) node-block) - (setf (continuation-kind cont) :inside-block) - (setf (continuation-use cont) node) - (setf (node-cont node) cont)) - (t - (%use-continuation node cont))))) -(defun %use-continuation (node cont) - (declare (type node node) (type continuation cont) (inline member)) - (let ((block (continuation-block cont)) - (node-block (continuation-block (node-prev node)))) - (aver (eq (continuation-kind cont) :block-start)) +;;; ctran which continues at it. +(defun link-node-to-previous-ctran (node ctran) + (declare (type node node) (type ctran ctran)) + (aver (not (ctran-next ctran))) + (setf (ctran-next ctran) node) + (setf (node-prev node) ctran)) + +;;; This function is used to set the ctran for a node, and thus +;;; determine what is evaluated next. If the ctran has no block, then +;;; we make it be in the block that the node is in. If the ctran heads +;;; its block, we end our block and link it to that block. +#!-sb-fluid (declaim (inline use-ctran)) +(defun use-ctran (node ctran) + (declare (type node node) (type ctran ctran)) + (if (eq (ctran-kind ctran) :unused) + (let ((node-block (ctran-block (node-prev node)))) + (setf (ctran-block ctran) node-block) + (setf (ctran-kind ctran) :inside-block) + (setf (ctran-use ctran) node) + (setf (node-next node) ctran)) + (%use-ctran node ctran))) +(defun %use-ctran (node ctran) + (declare (type node node) (type ctran ctran) (inline member)) + (let ((block (ctran-block ctran)) + (node-block (ctran-block (node-prev node)))) + (aver (eq (ctran-kind ctran) :block-start)) (when (block-last node-block) (error "~S has already ended." node-block)) (setf (block-last node-block) node) @@ -340,15 +332,29 @@ (setf (block-succ node-block) (list block)) (when (memq node-block (block-pred block)) (error "~S is already a predecessor of ~S." node-block block)) - (push node-block (block-pred block)) - (add-continuation-use node cont) - (unless (eq (continuation-asserted-type cont) *wild-type*) - (let ((new (values-type-union (continuation-asserted-type cont) - (or (lexenv-find cont type-restrictions) - *wild-type*)))) - (when (type/= new (continuation-asserted-type cont)) - (setf (continuation-asserted-type cont) new) - (reoptimize-continuation cont)))))) + (push node-block (block-pred block)))) + +;;; This function is used to set the ctran for a node, and thus +;;; determine what receives the value. +(defun use-lvar (node lvar) + (declare (type valued-node node) (type (or lvar null) lvar)) + (aver (not (node-lvar node))) + (when lvar + (setf (node-lvar node) lvar) + (cond ((null (lvar-uses lvar)) + (setf (lvar-uses lvar) node)) + ((listp (lvar-uses lvar)) + (aver (not (memq node (lvar-uses lvar)))) + (push node (lvar-uses lvar))) + (t + (aver (neq node (lvar-uses lvar))) + (setf (lvar-uses lvar) (list node (lvar-uses lvar))))) + (reoptimize-lvar lvar))) + +#!-sb-fluid(declaim (inline use-continuation)) +(defun use-continuation (node ctran lvar) + (use-ctran node ctran) + (use-lvar node lvar)) ;;;; exported functions @@ -379,13 +385,14 @@ (declare (list path)) (let* ((*current-path* path) (component (make-empty-component)) - (*current-component* component)) + (*current-component* component) + (*allow-instrumenting* t)) (setf (component-name component) "initial component") (setf (component-kind component) :initial) (let* ((forms (if for-value `(,form) `(,form nil))) (res (ir1-convert-lambda-body forms () - :debug-name (debug-namify "top level form ~S" form)))) + :debug-name (debug-namify "top level form " form)))) (setf (functional-entry-fun res) res (functional-arg-documentation res) () (functional-kind res) :toplevel) @@ -435,207 +442,242 @@ ;;;; IR1-CONVERT, macroexpansion and special form dispatching +(declaim (ftype (sfunction (ctran ctran (or lvar null) t) (values)) + ir1-convert)) (macrolet (;; Bind *COMPILER-ERROR-BAILOUT* to a function that throws - ;; out of the body and converts a proxy form instead. - (ir1-error-bailout ((start - cont - form - &optional - (proxy ``(error "execution of a form compiled with errors:~% ~S" - ',,form))) - &body body) - (let ((skip (gensym "SKIP"))) - `(block ,skip - (catch 'ir1-error-abort + ;; out of the body and converts a condition signalling form + ;; instead. The source form is converted to a string since it + ;; may contain arbitrary non-externalizable objects. + (ir1-error-bailout ((start next result form) &body body) + (with-unique-names (skip condition) + `(block ,skip + (let ((,condition (catch 'ir1-error-abort (let ((*compiler-error-bailout* - (lambda () - (throw 'ir1-error-abort nil)))) + (lambda (&optional e) + (throw 'ir1-error-abort e)))) ,@body - (return-from ,skip nil))) - (ir1-convert ,start ,cont ,proxy))))) + (return-from ,skip nil))))) + (ir1-convert ,start ,next ,result + (make-compiler-error-form ,condition ,form))))))) ;; Translate FORM into IR1. The code is inserted as the NEXT of the - ;; continuation START. CONT is the continuation which receives the - ;; value of the FORM to be translated. The translators call this - ;; function recursively to translate their subnodes. + ;; CTRAN START. RESULT is the LVAR which receives the value of the + ;; FORM to be translated. The translators call this function + ;; recursively to translate their subnodes. ;; ;; As a special hack to make life easier in the compiler, a LEAF ;; IR1-converts into a reference to that LEAF structure. This allows ;; the creation using backquote of forms that contain leaf ;; references, without having to introduce dummy names into the ;; namespace. - (declaim (ftype (function (continuation continuation t) (values)) ir1-convert)) - (defun ir1-convert (start cont form) - (ir1-error-bailout (start cont form) + (defun ir1-convert (start next result form) + (ir1-error-bailout (start next result form) (let ((*current-path* (or (gethash form *source-paths*) (cons form *current-path*)))) - (if (atom form) - (cond ((and (symbolp form) (not (keywordp form))) - (ir1-convert-variable start cont form)) - ((leaf-p form) - (reference-leaf start cont form)) - (t - (reference-constant start cont form))) - (let ((opname (car form))) - (cond ((symbolp opname) - (let ((lexical-def (lexenv-find opname functions))) - (typecase lexical-def - (null (ir1-convert-global-functoid start cont form)) - (functional - (ir1-convert-local-combination start - cont - form - lexical-def)) - (global-var - (ir1-convert-srctran start cont lexical-def form)) - (t - (aver (and (consp lexical-def) - (eq (car lexical-def) 'macro))) - (ir1-convert start cont - (careful-expand-macro (cdr lexical-def) - form)))))) - ((or (atom opname) (not (eq (car opname) 'lambda))) - (compiler-error "illegal function call")) - (t - ;; implicitly (LAMBDA ..) because the LAMBDA - ;; expression is the CAR of an executed form - (ir1-convert-combination start - cont - form - (ir1-convert-lambda - opname - :debug-name (debug-namify - "LAMBDA CAR ~S" - opname))))))))) + (cond ((step-form-p form) + (ir1-convert-step start next result form)) + ((atom form) + (cond ((and (symbolp form) (not (keywordp form))) + (ir1-convert-var start next result form)) + ((leaf-p form) + (reference-leaf start next result form)) + (t + (reference-constant start next result form)))) + (t + (let ((opname (car form))) + (cond ((or (symbolp opname) (leaf-p opname)) + (let ((lexical-def (if (leaf-p opname) + opname + (lexenv-find opname funs)))) + (typecase lexical-def + (null + (ir1-convert-global-functoid start next result + form)) + (functional + (ir1-convert-local-combination start next result + form + lexical-def)) + (global-var + (ir1-convert-srctran start next result + lexical-def form)) + (t + (aver (and (consp lexical-def) + (eq (car lexical-def) 'macro))) + (ir1-convert start next result + (careful-expand-macro (cdr lexical-def) + form)))))) + ((or (atom opname) (not (eq (car opname) 'lambda))) + (compiler-error "illegal function call")) + (t + ;; implicitly (LAMBDA ..) because the LAMBDA + ;; expression is the CAR of an executed form + (ir1-convert-combination start next result + form + (ir1-convert-lambda + opname + :debug-name (debug-namify + "LAMBDA CAR " + opname)))))))))) (values)) ;; Generate a reference to a manifest constant, creating a new leaf ;; if necessary. If we are producing a fasl file, make sure that ;; MAKE-LOAD-FORM gets used on any parts of the constant that it ;; needs to be. - (defun reference-constant (start cont value) - (declare (type continuation start cont) + (defun reference-constant (start next result value) + (declare (type ctran start next) + (type (or lvar null) result) (inline find-constant)) - (ir1-error-bailout - (start cont value '(error "attempt to reference undumpable constant")) + (ir1-error-bailout (start next result value) (when (producing-fasl-file) (maybe-emit-make-load-forms value)) (let* ((leaf (find-constant value)) - (res (make-ref (leaf-type leaf) leaf))) + (res (make-ref leaf))) (push res (leaf-refs leaf)) - (link-node-to-previous-continuation res start) - (use-continuation res cont))) + (link-node-to-previous-ctran res start) + (use-continuation res next result))) (values))) -;;; Add FUN to the COMPONENT-REANALYZE-FUNS, unless it's some trivial -;;; type for which reanalysis is a trivial no-op, or unless it doesn't -;;; belong in this component at all. +;;; Add FUNCTIONAL to the COMPONENT-REANALYZE-FUNCTIONALS, unless it's +;;; some trivial type for which reanalysis is a trivial no-op, or +;;; unless it doesn't belong in this component at all. ;;; -;;; FUN is returned. -(defun maybe-reanalyze-fun (fun) - (declare (type functional fun)) +;;; FUNCTIONAL is returned. +(defun maybe-reanalyze-functional (functional) + (aver (not (eql (functional-kind functional) :deleted))) ; bug 148 (aver-live-component *current-component*) - ;; When FUN is of a type for which reanalysis isn't a trivial no-op - (when (typep fun '(or optional-dispatch clambda)) + ;; When FUNCTIONAL is of a type for which reanalysis isn't a trivial + ;; no-op + (when (typep functional '(or optional-dispatch clambda)) - ;; When FUN knows its component - (when (lambda-p fun) - (aver (eql (lambda-component fun) *current-component*))) + ;; When FUNCTIONAL knows its component + (when (lambda-p functional) + (aver (eql (lambda-component functional) *current-component*))) - (pushnew fun (component-reanalyze-funs *current-component*))) + (pushnew functional + (component-reanalyze-functionals *current-component*))) - fun) + functional) ;;; Generate a REF node for LEAF, frobbing the LEAF structure as ;;; needed. If LEAF represents a defined function which has already ;;; been converted, and is not :NOTINLINE, then reference the ;;; functional instead. -(defun reference-leaf (start cont leaf) - (declare (type continuation start cont) (type leaf leaf)) - (let* ((leaf (or (and (defined-fun-p leaf) - (not (eq (defined-fun-inlinep leaf) - :notinline)) - (let ((fun (defined-fun-functional leaf))) - (when (and fun (not (functional-kind fun))) - (maybe-reanalyze-fun fun)))) - leaf)) - (res (make-ref (or (lexenv-find leaf type-restrictions) - (leaf-type leaf)) - leaf))) - (push res (leaf-refs leaf)) +(defun reference-leaf (start next result leaf) + (declare (type ctran start next) (type (or lvar null) result) (type leaf leaf)) + (when (functional-p leaf) + (assure-functional-live-p leaf)) + (let* ((type (lexenv-find leaf type-restrictions)) + (leaf (or (and (defined-fun-p leaf) + (not (eq (defined-fun-inlinep leaf) + :notinline)) + (let ((functional (defined-fun-functional leaf))) + (when (and functional + (not (functional-kind functional))) + (maybe-reanalyze-functional functional)))) + (when (and (lambda-p leaf) + (memq (functional-kind leaf) + '(nil :optional))) + (maybe-reanalyze-functional leaf)) + leaf)) + (ref (make-ref leaf))) + (push ref (leaf-refs leaf)) (setf (leaf-ever-used leaf) t) - (link-node-to-previous-continuation res start) - (use-continuation res cont))) + (link-node-to-previous-ctran ref start) + (cond (type (let* ((ref-ctran (make-ctran)) + (ref-lvar (make-lvar)) + (cast (make-cast ref-lvar + (make-single-value-type type) + (lexenv-policy *lexenv*)))) + (setf (lvar-dest ref-lvar) cast) + (use-continuation ref ref-ctran ref-lvar) + (link-node-to-previous-ctran cast ref-ctran) + (use-continuation cast next result))) + (t (use-continuation ref next result))))) ;;; Convert a reference to a symbolic constant or variable. If the -;;; symbol is entered in the LEXENV-VARIABLES we use that definition, +;;; symbol is entered in the LEXENV-VARS we use that definition, ;;; otherwise we find the current global definition. This is also ;;; where we pick off symbol macro and alien variable references. -(defun ir1-convert-variable (start cont name) - (declare (type continuation start cont) (symbol name)) - (let ((var (or (lexenv-find name variables) (find-free-variable name)))) +(defun ir1-convert-var (start next result name) + (declare (type ctran start next) (type (or lvar null) result) (symbol name)) + (let ((var (or (lexenv-find name vars) (find-free-var name)))) (etypecase var (leaf (when (lambda-var-p var) - (let ((home (continuation-home-lambda-or-null start))) + (let ((home (ctran-home-lambda-or-null start))) (when home (pushnew var (lambda-calls-or-closes home)))) (when (lambda-var-ignorep var) ;; (ANSI's specification for the IGNORE declaration requires ;; that this be a STYLE-WARNING, not a full WARNING.) - (compiler-style-warn "reading an ignored variable: ~S" name))) - (reference-leaf start cont var)) + #-sb-xc-host + (compiler-style-warn "reading an ignored variable: ~S" name) + ;; there's no need for us to accept ANSI's lameness when + ;; processing our own code, though. + #+sb-xc-host + (warn "reading an ignored variable: ~S" name))) + (reference-leaf start next result var)) (cons (aver (eq (car var) 'MACRO)) - (ir1-convert start cont (cdr var))) + ;; FIXME: [Free] type declarations. -- APD, 2002-01-26 + (ir1-convert start next result (cdr var))) (heap-alien-info - (ir1-convert start cont `(%heap-alien ',var))))) + (ir1-convert start next result `(%heap-alien ',var))))) (values)) ;;; Convert anything that looks like a special form, global function -;;; or macro call. -(defun ir1-convert-global-functoid (start cont form) - (declare (type continuation start cont) (list form)) - (let* ((fun (first form)) - (translator (info :function :ir1-convert fun)) - (cmacro (info :function :compiler-macro-function fun))) - (cond (translator (funcall translator start cont form)) - ((and cmacro - (not (eq (info :function :inlinep fun) - :notinline))) - (let ((res (careful-expand-macro cmacro form))) +;;; or compiler-macro call. +(defun ir1-convert-global-functoid (start next result form) + (declare (type ctran start next) (type (or lvar null) result) (list form)) + (let* ((fun-name (first form)) + (translator (info :function :ir1-convert fun-name)) + (cmacro-fun (sb!xc:compiler-macro-function fun-name *lexenv*))) + (cond (translator + (when cmacro-fun + (compiler-warn "ignoring compiler macro for special form")) + (funcall translator start next result form)) + ((and cmacro-fun + ;; gotcha: If you look up the DEFINE-COMPILER-MACRO + ;; macro in the ANSI spec, you might think that + ;; suppressing compiler-macro expansion when NOTINLINE + ;; is some pre-ANSI hack. However, if you look up the + ;; NOTINLINE declaration, you'll find that ANSI + ;; requires this behavior after all. + (not (eq (info :function :inlinep fun-name) :notinline))) + (let ((res (careful-expand-macro cmacro-fun form))) (if (eq res form) - (ir1-convert-global-functoid-no-cmacro start cont form fun) - (ir1-convert start cont res)))) + (ir1-convert-global-functoid-no-cmacro + start next result form fun-name) + (ir1-convert start next result res)))) (t - (ir1-convert-global-functoid-no-cmacro start cont form fun))))) + (ir1-convert-global-functoid-no-cmacro start next result + form fun-name))))) ;;; Handle the case of where the call was not a compiler macro, or was ;;; a compiler macro and passed. -(defun ir1-convert-global-functoid-no-cmacro (start cont form fun) - (declare (type continuation start cont) (list form)) +(defun ir1-convert-global-functoid-no-cmacro (start next result form fun) + (declare (type ctran start next) (type (or lvar null) result) + (list form)) ;; FIXME: Couldn't all the INFO calls here be converted into ;; standard CL functions, like MACRO-FUNCTION or something? ;; And what happens with lexically-defined (MACROLET) macros ;; here, anyway? (ecase (info :function :kind fun) (:macro - (ir1-convert start - cont + (ir1-convert start next result (careful-expand-macro (info :function :macro-function fun) form))) ((nil :function) - (ir1-convert-srctran start - cont - (find-free-function fun - "shouldn't happen! (no-cmacro)") + (ir1-convert-srctran start next result + (find-free-fun fun "shouldn't happen! (no-cmacro)") form)))) (defun muffle-warning-or-die () (muffle-warning) - (error "internal error -- no MUFFLE-WARNING restart")) + (bug "no MUFFLE-WARNING restart")) ;;; Expand FORM using the macro whose MACRO-FUNCTION is FUN, trapping ;;; errors which occur during the macroexpansion. @@ -656,27 +698,12 @@ ;; or the cross-compiler which encountered the problem?" #+sb-xc-host "(in cross-compiler macroexpansion of ~S)" form)))) - (handler-bind (;; When cross-compiling, we can get style warnings - ;; about e.g. undefined functions. An unhandled - ;; CL:STYLE-WARNING (as opposed to a - ;; SB!C::COMPILER-NOTE) would cause FAILURE-P to be - ;; set on the return from #'SB!XC:COMPILE-FILE, which - ;; would falsely indicate an error sufficiently - ;; serious that we should stop the build process. To - ;; avoid this, we translate CL:STYLE-WARNING - ;; conditions from the host Common Lisp into - ;; cross-compiler SB!C::COMPILER-NOTE calls. (It - ;; might be cleaner to just make Python use - ;; CL:STYLE-WARNING internally, so that the - ;; significance of any host Common Lisp - ;; CL:STYLE-WARNINGs is understood automatically. But - ;; for now I'm not motivated to do this. -- WHN - ;; 19990412) - (style-warning (lambda (c) - (compiler-note "~@<~A~:@_~A~:@_~A~:>" - (wherestring) hint c) - (muffle-warning-or-die))) - ;; KLUDGE: CMU CL in its wisdom (version 2.4.6 for + (handler-bind ((style-warning (lambda (c) + (compiler-style-warn + "~@<~A~:@_~A~@:_~A~:>" + (wherestring) hint c) + (muffle-warning-or-die))) + ;; KLUDGE: CMU CL in its wisdom (version 2.4.6 for ;; Debian Linux, anyway) raises a CL:WARNING ;; condition (not a CL:STYLE-WARNING) for undefined ;; symbols when converting interpreted functions, @@ -691,9 +718,9 @@ ;; and this code does so, by crudely suppressing all ;; warnings in cross-compilation macroexpansion. -- ;; WHN 19990412 - #+cmu + #+(and cmu sb-xc-host) (warning (lambda (c) - (compiler-note + (compiler-notify "~@<~A~:@_~ ~A~:@_~ ~@<(KLUDGE: That was a non-STYLE WARNING. ~ @@ -708,6 +735,11 @@ (wherestring) c) (muffle-warning-or-die))) + #-(and cmu sb-xc-host) + (warning (lambda (c) + (warn "~@<~A~:@_~A~@:_~A~:>" + (wherestring) hint c) + (muffle-warning-or-die))) (error (lambda (c) (compiler-error "~@<~A~:@_~A~@:_~A~:>" (wherestring) hint c)))) @@ -717,57 +749,59 @@ ;;; Convert a bunch of forms, discarding all the values except the ;;; last. If there aren't any forms, then translate a NIL. -(declaim (ftype (function (continuation continuation list) (values)) +(declaim (ftype (sfunction (ctran ctran (or lvar null) list) (values)) ir1-convert-progn-body)) -(defun ir1-convert-progn-body (start cont body) +(defun ir1-convert-progn-body (start next result body) (if (endp body) - (reference-constant start cont nil) + (reference-constant start next result nil) (let ((this-start start) (forms body)) (loop (let ((form (car forms))) (when (endp (cdr forms)) - (ir1-convert this-start cont form) + (ir1-convert this-start next result form) (return)) - (let ((this-cont (make-continuation))) - (ir1-convert this-start this-cont form) - (setq this-start this-cont + (let ((this-ctran (make-ctran))) + (ir1-convert this-start this-ctran nil form) + (setq this-start this-ctran forms (cdr forms))))))) (values)) ;;;; converting combinations -;;; Convert a function call where the function (i.e. the FUN argument) -;;; is a LEAF. We return the COMBINATION node so that the caller can -;;; poke at it if it wants to. -(declaim (ftype (function (continuation continuation list leaf) combination) +;;; Convert a function call where the function FUN is a LEAF. FORM is +;;; the source for the call. We return the COMBINATION node so that +;;; the caller can poke at it if it wants to. +(declaim (ftype (sfunction (ctran ctran (or lvar null) list leaf) combination) ir1-convert-combination)) -(defun ir1-convert-combination (start cont form fun) - (let ((fun-cont (make-continuation))) - (reference-leaf start fun-cont fun) - (ir1-convert-combination-args fun-cont cont (cdr form)))) - -;;; Convert the arguments to a call and make the COMBINATION node. -;;; FUN-CONT is the continuation which yields the function to call. -;;; FORM is the source for the call. ARGS is the list of arguments for -;;; the call, which defaults to the cdr of source. We return the -;;; COMBINATION node. -(defun ir1-convert-combination-args (fun-cont cont args) - (declare (type continuation fun-cont cont) (list args)) - (let ((node (make-combination fun-cont))) - (setf (continuation-dest fun-cont) node) - (assert-continuation-type fun-cont - (specifier-type '(or function symbol))) - (collect ((arg-conts)) - (let ((this-start fun-cont)) +(defun ir1-convert-combination (start next result form fun) + (let ((ctran (make-ctran)) + (fun-lvar (make-lvar))) + (ir1-convert start ctran fun-lvar `(the (or function symbol) ,fun)) + (ir1-convert-combination-args fun-lvar ctran next result (cdr form)))) + +;;; Convert the arguments to a call and make the COMBINATION +;;; node. FUN-LVAR yields the function to call. ARGS is the list of +;;; arguments for the call, which defaults to the cdr of source. We +;;; return the COMBINATION node. +(defun ir1-convert-combination-args (fun-lvar start next result args) + (declare (type ctran start next) + (type lvar fun-lvar) + (type (or lvar null) result) + (list args)) + (let ((node (make-combination fun-lvar))) + (setf (lvar-dest fun-lvar) node) + (collect ((arg-lvars)) + (let ((this-start start)) (dolist (arg args) - (let ((this-cont (make-continuation node))) - (ir1-convert this-start this-cont arg) - (setq this-start this-cont) - (arg-conts this-cont))) - (link-node-to-previous-continuation node this-start) - (use-continuation node cont) - (setf (combination-args node) (arg-conts)))) + (let ((this-ctran (make-ctran)) + (this-lvar (make-lvar node))) + (ir1-convert this-start this-ctran this-lvar arg) + (setq this-start this-ctran) + (arg-lvars this-lvar))) + (link-node-to-previous-ctran node this-start) + (use-continuation node next result) + (setf (combination-args node) (arg-lvars)))) node)) ;;; Convert a call to a global function. If not :NOTINLINE, then we do @@ -775,36 +809,40 @@ ;;; expansion, but is :INLINE, then give an efficiency note (unless a ;;; known function which will quite possibly be open-coded.) Next, we ;;; go to ok-combination conversion. -(defun ir1-convert-srctran (start cont var form) - (declare (type continuation start cont) (type global-var var)) +(defun ir1-convert-srctran (start next result var form) + (declare (type ctran start next) (type (or lvar null) result) + (type global-var var)) (let ((inlinep (when (defined-fun-p var) (defined-fun-inlinep var)))) (if (eq inlinep :notinline) - (ir1-convert-combination start cont form var) + (ir1-convert-combination start next result form var) (let ((transform (info :function :source-transform (leaf-source-name var)))) - (if transform - (multiple-value-bind (result pass) (funcall transform form) - (if pass - (ir1-convert-maybe-predicate start cont form var) - (ir1-convert start cont result))) - (ir1-convert-maybe-predicate start cont form var)))))) - -;;; If the function has the PREDICATE attribute, and the CONT's DEST + (if transform + (multiple-value-bind (transformed pass) (funcall transform form) + (if pass + (ir1-convert-maybe-predicate start next result form var) + (ir1-convert start next result transformed))) + (ir1-convert-maybe-predicate start next result form var)))))) + +;;; If the function has the PREDICATE attribute, and the RESULT's DEST ;;; isn't an IF, then we convert (IF
T NIL), ensuring that a ;;; predicate always appears in a conditional context. ;;; ;;; If the function isn't a predicate, then we call ;;; IR1-CONVERT-COMBINATION-CHECKING-TYPE. -(defun ir1-convert-maybe-predicate (start cont form var) - (declare (type continuation start cont) (list form) (type global-var var)) +(defun ir1-convert-maybe-predicate (start next result form var) + (declare (type ctran start next) + (type (or lvar null) result) + (list form) + (type global-var var)) (let ((info (info :function :info (leaf-source-name var)))) (if (and info - (ir1-attributep (function-info-attributes info) predicate) - (not (if-p (continuation-dest cont)))) - (ir1-convert start cont `(if ,form t nil)) - (ir1-convert-combination-checking-type start cont form var)))) + (ir1-attributep (fun-info-attributes info) predicate) + (not (if-p (and result (lvar-dest result))))) + (ir1-convert start next result `(if ,form t nil)) + (ir1-convert-combination-checking-type start next result form var)))) ;;; Actually really convert a global function call that we are allowed ;;; to early-bind. @@ -817,29 +855,32 @@ ;;; call is legal. ;;; ;;; If the call is legal, we also propagate type assertions from the -;;; function type to the arg and result continuations. We do this now -;;; so that IR1 optimize doesn't have to redundantly do the check -;;; later so that it can do the type propagation. -(defun ir1-convert-combination-checking-type (start cont form var) - (declare (type continuation start cont) (list form) (type leaf var)) - (let* ((node (ir1-convert-combination start cont form var)) - (fun-cont (basic-combination-fun node)) +;;; function type to the arg and result lvars. We do this now so that +;;; IR1 optimize doesn't have to redundantly do the check later so +;;; that it can do the type propagation. +(defun ir1-convert-combination-checking-type (start next result form var) + (declare (type ctran start next) (type (or lvar null) result) + (list form) + (type leaf var)) + (let* ((node (ir1-convert-combination start next result form var)) + (fun-lvar (basic-combination-fun node)) (type (leaf-type var))) (when (validate-call-type node type t) - (setf (continuation-%derived-type fun-cont) type) - (setf (continuation-reoptimize fun-cont) nil) - (setf (continuation-%type-check fun-cont) nil))) + (setf (lvar-%derived-type fun-lvar) + (make-single-value-type type)) + (setf (lvar-reoptimize fun-lvar) nil))) (values)) -;;; Convert a call to a local function. If the function has already -;;; been LET converted, then throw FUN to LOCAL-CALL-LOSSAGE. This -;;; should only happen when we are converting inline expansions for -;;; local functions during optimization. -(defun ir1-convert-local-combination (start cont form fun) - (if (functional-kind fun) - (throw 'local-call-lossage fun) - (ir1-convert-combination start cont form - (maybe-reanalyze-fun fun)))) +;;; Convert a call to a local function, or if the function has already +;;; been LET converted, then throw FUNCTIONAL to +;;; LOCALL-ALREADY-LET-CONVERTED. The THROW should only happen when we +;;; are converting inline expansions for local functions during +;;; optimization. +(defun ir1-convert-local-combination (start next result form functional) + (assure-functional-live-p functional) + (ir1-convert-combination start next result + form + (maybe-reanalyze-functional functional))) ;;;; PROCESS-DECLS @@ -847,7 +888,7 @@ ;;; LAMBDA-VAR for that name, or NIL if it isn't found. We return the ;;; *last* variable with that name, since LET* bindings may be ;;; duplicated, and declarations always apply to the last. -(declaim (ftype (function (list symbol) (or lambda-var list)) +(declaim (ftype (sfunction (list symbol) (or lambda-var list)) find-in-bindings)) (defun find-in-bindings (vars name) (let ((found nil)) @@ -865,42 +906,57 @@ (setf found (cdr var))))) found)) -;;; Called by Process-Decls to deal with a variable type declaration. -;;; If a lambda-var being bound, we intersect the type with the vars -;;; type, otherwise we add a type-restriction on the var. If a symbol +;;; Called by PROCESS-DECLS to deal with a variable type declaration. +;;; If a LAMBDA-VAR being bound, we intersect the type with the var's +;;; type, otherwise we add a type restriction on the var. If a symbol ;;; macro, we just wrap a THE around the expansion. (defun process-type-decl (decl res vars) (declare (list decl vars) (type lexenv res)) - (let ((type (specifier-type (first decl)))) + (let ((type (compiler-specifier-type (first decl)))) (collect ((restr nil cons) - (new-vars nil cons)) + (new-vars nil cons)) (dolist (var-name (rest decl)) + (when (boundp var-name) + (compiler-assert-symbol-home-package-unlocked + var-name "declaring the type of ~A")) (let* ((bound-var (find-in-bindings vars var-name)) (var (or bound-var - (lexenv-find var-name variables) - (find-free-variable var-name)))) + (lexenv-find var-name vars) + (find-free-var var-name)))) (etypecase var (leaf - (let* ((old-type (or (lexenv-find var type-restrictions) - (leaf-type var))) - (int (if (or (fun-type-p type) - (fun-type-p old-type)) - type - (type-approx-intersection2 old-type type)))) - (cond ((eq int *empty-type*) - (unless (policy *lexenv* (= inhibit-warnings 3)) - (compiler-warn - "The type declarations ~S and ~S for ~S conflict." - (type-specifier old-type) (type-specifier type) - var-name))) - (bound-var (setf (leaf-type bound-var) int)) - (t - (restr (cons var int)))))) + (flet + ((process-var (var bound-var) + (let* ((old-type (or (lexenv-find var type-restrictions) + (leaf-type var))) + (int (if (or (fun-type-p type) + (fun-type-p old-type)) + type + (type-approx-intersection2 + old-type type)))) + (cond ((eq int *empty-type*) + (unless (policy *lexenv* (= inhibit-warnings 3)) + (warn + 'type-warning + :format-control + "The type declarations ~S and ~S for ~S conflict." + :format-arguments + (list + (type-specifier old-type) + (type-specifier type) + var-name)))) + (bound-var (setf (leaf-type bound-var) int)) + (t + (restr (cons var int))))))) + (process-var var bound-var) + (awhen (and (lambda-var-p var) + (lambda-var-specvar var)) + (process-var it nil)))) (cons ;; FIXME: non-ANSI weirdness (aver (eq (car var) 'MACRO)) (new-vars `(,var-name . (MACRO . (the ,(first decl) - ,(cdr var)))))) + ,(cdr var)))))) (heap-alien-info (compiler-error "~S is an alien variable, so its type can't be declared." @@ -909,7 +965,7 @@ (if (or (restr) (new-vars)) (make-lexenv :default res :type-restrictions (restr) - :variables (new-vars)) + :vars (new-vars)) res)))) ;;; This is somewhat similar to PROCESS-TYPE-DECL, but handles @@ -918,10 +974,14 @@ ;;; declarations that constrain the type of lexically apparent ;;; functions. (defun process-ftype-decl (spec res names fvars) - (declare (list spec names fvars) (type lexenv res)) - (let ((type (specifier-type spec))) + (declare (type list names fvars) + (type lexenv res)) + (let ((type (compiler-specifier-type spec))) (collect ((res nil cons)) (dolist (name names) + (when (fboundp name) + (compiler-assert-symbol-home-package-unlocked name + "declaring the ftype of ~A")) (let ((found (find name fvars :key #'leaf-source-name :test #'equal))) @@ -929,10 +989,10 @@ (found (setf (leaf-type found) type) (assert-definition-type found type - :unwinnage-fun #'compiler-note + :unwinnage-fun #'compiler-notify :where "FTYPE declaration")) (t - (res (cons (find-lexically-apparent-function + (res (cons (find-lexically-apparent-fun name "in a function type declaration") type)))))) (if (res) @@ -946,6 +1006,7 @@ (declare (list spec vars) (type lexenv res)) (collect ((new-venv nil cons)) (dolist (name (cdr spec)) + (compiler-assert-symbol-home-package-unlocked name "declaring ~A special") (let ((var (find-in-bindings vars name))) (etypecase var (cons @@ -966,16 +1027,20 @@ (unless (assoc name (new-venv) :test #'eq) (new-venv (cons name (specvar-for-binding name)))))))) (if (new-venv) - (make-lexenv :default res :variables (new-venv)) + (make-lexenv :default res :vars (new-venv)) res))) -;;; Return a DEFINED-FUN which copies a GLOBAL-VAR but for its INLINEP. +;;; Return a DEFINED-FUN which copies a GLOBAL-VAR but for its INLINEP +;;; (and TYPE if notinline). (defun make-new-inlinep (var inlinep) (declare (type global-var var) (type inlinep inlinep)) (let ((res (make-defined-fun :%source-name (leaf-source-name var) :where-from (leaf-where-from var) - :type (leaf-type var) + :type (if (and (eq inlinep :notinline) + (not (eq (leaf-where-from var) :declared))) + (specifier-type 'function) + (leaf-type var)) :inlinep inlinep))) (when (defined-fun-p var) (setf (defined-fun-inline-expansion res) @@ -996,23 +1061,23 @@ (if fvar (setf (functional-inlinep fvar) sense) (let ((found - (find-lexically-apparent-function + (find-lexically-apparent-fun name "in an inline or notinline declaration"))) (etypecase found (functional (when (policy *lexenv* (>= speed inhibit-warnings)) - (compiler-note "ignoring ~A declaration not at ~ - definition of local function:~% ~S" - sense name))) + (compiler-notify "ignoring ~A declaration not at ~ + definition of local function:~% ~S" + sense name))) (global-var (push (cons name (make-new-inlinep found sense)) new-fenv))))))) (if new-fenv - (make-lexenv :default res :functions new-fenv) + (make-lexenv :default res :funs new-fenv) res))) -;;; Like FIND-IN-BINDINGS, but looks for #'foo in the fvars. +;;; like FIND-IN-BINDINGS, but looks for #'FOO in the FVARS (defun find-in-bindings-or-fbindings (name vars fvars) (declare (list vars fvars)) (if (consp name) @@ -1036,12 +1101,12 @@ (compiler-style-warn "declaring unknown variable ~S to be ignored" name)) ;; FIXME: This special case looks like non-ANSI weirdness. - ((and (consp var) (consp (cdr var)) (eq (cadr var) 'macro)) + ((and (consp var) (eq (car var) 'macro)) ;; Just ignore the IGNORE decl. ) ((functional-p var) (setf (leaf-ever-used var) t)) - ((lambda-var-specvar var) + ((and (lambda-var-specvar var) (eq (first spec) 'ignore)) ;; ANSI's definition for "Declaration IGNORE, IGNORABLE" ;; requires that this be a STYLE-WARNING, not a full WARNING. (compiler-style-warn "declaring special variable ~S to be ignored" @@ -1052,6 +1117,38 @@ (setf (lambda-var-ignorep var) t))))) (values)) +(defun process-dx-decl (names vars) + (flet ((maybe-notify (control &rest args) + (when (policy *lexenv* (> speed inhibit-warnings)) + (apply #'compiler-notify control args)))) + (if (policy *lexenv* (= stack-allocate-dynamic-extent 3)) + (dolist (name names) + (cond + ((symbolp name) + (let* ((bound-var (find-in-bindings vars name)) + (var (or bound-var + (lexenv-find name vars) + (find-free-var name)))) + (etypecase var + (leaf + (if bound-var + (setf (leaf-dynamic-extent var) t) + (maybe-notify + "ignoring DYNAMIC-EXTENT declaration for free ~S" + name))) + (cons + (compiler-error "DYNAMIC-EXTENT on symbol-macro: ~S" name)) + (heap-alien-info + (compiler-error "DYNAMIC-EXTENT on heap-alien-info: ~S" + name))))) + ((and (consp name) + (eq (car name) 'function) + (null (cddr name)) + (valid-function-name-p (cadr name))) + (maybe-notify "ignoring DYNAMIC-EXTENT declaration for ~S" name)) + (t (compiler-error "DYNAMIC-EXTENT on a weird thing: ~S" name)))) + (maybe-notify "ignoring DYNAMIC-EXTENT declarations for ~S" names)))) + ;;; FIXME: This is non-ANSI, so the default should be T, or it should ;;; go away, I think. (defvar *suppress-values-declaration* nil @@ -1059,68 +1156,108 @@ "If true, processing of the VALUES declaration is inhibited.") ;;; Process a single declaration spec, augmenting the specified LEXENV -;;; RES and returning it as a result. VARS and FVARS are as described in +;;; RES. Return RES and result type. VARS and FVARS are as described ;;; PROCESS-DECLS. -(defun process-1-decl (raw-spec res vars fvars cont) +(defun process-1-decl (raw-spec res vars fvars) (declare (type list raw-spec vars fvars)) (declare (type lexenv res)) - (declare (type continuation cont)) - (let ((spec (canonized-decl-spec raw-spec))) - (case (first spec) - (special (process-special-decl spec res vars)) - (ftype - (unless (cdr spec) - (compiler-error "No type specified in FTYPE declaration: ~S" spec)) - (process-ftype-decl (second spec) res (cddr spec) fvars)) - ((inline notinline maybe-inline) - (process-inline-decl spec res fvars)) - ((ignore ignorable) - (process-ignore-decl spec vars fvars) - res) - (optimize - (make-lexenv - :default res - :policy (process-optimize-decl spec (lexenv-policy res)))) - (type - (process-type-decl (cdr spec) res vars)) - (values - (if *suppress-values-declaration* - res - (let ((types (cdr spec))) - (do-the-stuff (if (eql (length types) 1) - (car types) - `(values ,@types)) - cont res 'values)))) - (dynamic-extent - (when (policy *lexenv* (> speed inhibit-warnings)) - (compiler-note - "compiler limitation: ~ - ~% There's no special support for DYNAMIC-EXTENT (so it's ignored).")) - res) - (t - (unless (info :declaration :recognized (first spec)) - (compiler-warn "unrecognized declaration ~S" raw-spec)) - res)))) + (let ((spec (canonized-decl-spec raw-spec)) + (result-type *wild-type*)) + (values + (case (first spec) + (special (process-special-decl spec res vars)) + (ftype + (unless (cdr spec) + (compiler-error "no type specified in FTYPE declaration: ~S" spec)) + (process-ftype-decl (second spec) res (cddr spec) fvars)) + ((inline notinline maybe-inline) + (process-inline-decl spec res fvars)) + ((ignore ignorable) + (process-ignore-decl spec vars fvars) + res) + (optimize + (make-lexenv + :default res + :policy (process-optimize-decl spec (lexenv-policy res)))) + (muffle-conditions + (make-lexenv + :default res + :handled-conditions (process-muffle-conditions-decl + spec (lexenv-handled-conditions res)))) + (unmuffle-conditions + (make-lexenv + :default res + :handled-conditions (process-unmuffle-conditions-decl + spec (lexenv-handled-conditions res)))) + (type + (process-type-decl (cdr spec) res vars)) + (values + (unless *suppress-values-declaration* + (let ((types (cdr spec))) + (setq result-type + (compiler-values-specifier-type + (if (singleton-p types) + (car types) + `(values ,@types))))) + res)) + (dynamic-extent + (process-dx-decl (cdr spec) vars) + res) + ((disable-package-locks enable-package-locks) + (make-lexenv + :default res + :disabled-package-locks (process-package-lock-decl + spec (lexenv-disabled-package-locks res)))) + (t + (unless (info :declaration :recognized (first spec)) + (compiler-warn "unrecognized declaration ~S" raw-spec)) + res)) + result-type))) ;;; Use a list of DECLARE forms to annotate the lists of LAMBDA-VAR ;;; and FUNCTIONAL structures which are being bound. In addition to -;;; filling in slots in the leaf structures, we return a new LEXENV +;;; filling in slots in the leaf structures, we return a new LEXENV, ;;; which reflects pervasive special and function type declarations, -;;; (NOT)INLINE declarations and OPTIMIZE declarations. CONT is the -;;; continuation affected by VALUES declarations. +;;; (NOT)INLINE declarations and OPTIMIZE declarations, and type of +;;; VALUES declarations. ;;; ;;; This is also called in main.lisp when PROCESS-FORM handles a use ;;; of LOCALLY. -(defun process-decls (decls vars fvars cont &optional (env *lexenv*)) - (declare (list decls vars fvars) (type continuation cont)) - (dolist (decl decls) - (dolist (spec (rest decl)) - (unless (consp spec) - (compiler-error "malformed declaration specifier ~S in ~S" - spec - decl)) - (setq env (process-1-decl spec env vars fvars cont)))) - env) +(defun process-decls (decls vars fvars &optional (env *lexenv*)) + (declare (list decls vars fvars)) + (let ((result-type *wild-type*)) + (dolist (decl decls) + (dolist (spec (rest decl)) + (unless (consp spec) + (compiler-error "malformed declaration specifier ~S in ~S" spec decl)) + (multiple-value-bind (new-env new-result-type) + (process-1-decl spec env vars fvars) + (setq env new-env) + (unless (eq new-result-type *wild-type*) + (setq result-type + (values-type-intersection result-type new-result-type)))))) + (values env result-type))) + +(defun %processing-decls (decls vars fvars ctran lvar fun) + (multiple-value-bind (*lexenv* result-type) + (process-decls decls vars fvars) + (cond ((eq result-type *wild-type*) + (funcall fun ctran lvar)) + (t + (let ((value-ctran (make-ctran)) + (value-lvar (make-lvar))) + (multiple-value-prog1 + (funcall fun value-ctran value-lvar) + (let ((cast (make-cast value-lvar result-type + (lexenv-policy *lexenv*)))) + (link-node-to-previous-ctran cast value-ctran) + (setf (lvar-dest value-lvar) cast) + (use-continuation cast ctran lvar)))))))) +(defmacro processing-decls ((decls vars fvars ctran lvar) &body forms) + (check-type ctran symbol) + (check-type lvar symbol) + `(%processing-decls ,decls ,vars ,fvars ,ctran ,lvar + (lambda (,ctran ,lvar) ,@forms))) ;;; Return the SPECVAR for NAME to use when we see a local SPECIAL ;;; declaration. If there is a global variable of that name, then @@ -1128,7 +1265,7 @@ ;;; anonymous GLOBAL-VAR. (defun specvar-for-binding (name) (cond ((not (eq (info :variable :where-from name) :assumed)) - (let ((found (find-free-variable name))) + (let ((found (find-free-var name))) (when (heap-alien-info-p found) (compiler-error "~S is an alien variable and so can't be declared special." @@ -1142,964 +1279,3 @@ (make-global-var :kind :special :%source-name name :where-from :declared)))) - -;;;; LAMBDA hackery - -;;;; Note: Take a look at the compiler-overview.tex section on "Hairy -;;;; function representation" before you seriously mess with this -;;;; stuff. - -;;; Verify that a thing is a legal name for a variable and return a -;;; Var structure for it, filling in info if it is globally special. -;;; If it is losing, we punt with a Compiler-Error. Names-So-Far is an -;;; alist of names which have previously been bound. If the name is in -;;; this list, then we error out. -(declaim (ftype (function (t list) lambda-var) varify-lambda-arg)) -(defun varify-lambda-arg (name names-so-far) - (declare (inline member)) - (unless (symbolp name) - (compiler-error "The lambda-variable ~S is not a symbol." name)) - (when (member name names-so-far :test #'eq) - (compiler-error "The variable ~S occurs more than once in the lambda-list." - name)) - (let ((kind (info :variable :kind name))) - (when (or (keywordp name) (eq kind :constant)) - (compiler-error "The name of the lambda-variable ~S is a constant." - name)) - (cond ((eq kind :special) - (let ((specvar (find-free-variable name))) - (make-lambda-var :%source-name name - :type (leaf-type specvar) - :where-from (leaf-where-from specvar) - :specvar specvar))) - (t - (note-lexical-binding name) - (make-lambda-var :%source-name name))))) - -;;; Make the default keyword for a &KEY arg, checking that the keyword -;;; isn't already used by one of the VARS. We also check that the -;;; keyword isn't the magical :ALLOW-OTHER-KEYS. -(declaim (ftype (function (symbol list t) keyword) make-keyword-for-arg)) -(defun make-keyword-for-arg (symbol vars keywordify) - (let ((key (if (and keywordify (not (keywordp symbol))) - (keywordicate symbol) - symbol))) - (when (eq key :allow-other-keys) - (compiler-error "No &KEY arg can be called :ALLOW-OTHER-KEYS.")) - (dolist (var vars) - (let ((info (lambda-var-arg-info var))) - (when (and info - (eq (arg-info-kind info) :keyword) - (eq (arg-info-key info) key)) - (compiler-error - "The keyword ~S appears more than once in the lambda-list." - key)))) - key)) - -;;; Parse a lambda list into a list of VAR structures, stripping off -;;; any &AUX bindings. Each arg name is checked for legality, and -;;; duplicate names are checked for. If an arg is globally special, -;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY, -;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure -;;; which contains the extra information. If we hit something losing, -;;; we bug out with COMPILER-ERROR. These values are returned: -;;; 1. a list of the var structures for each top level argument; -;;; 2. a flag indicating whether &KEY was specified; -;;; 3. a flag indicating whether other &KEY args are allowed; -;;; 4. a list of the &AUX variables; and -;;; 5. a list of the &AUX values. -(declaim (ftype (function (list) (values list boolean boolean list list)) - make-lambda-vars)) -(defun make-lambda-vars (list) - (multiple-value-bind (required optional restp rest keyp keys allowp aux - morep more-context more-count) - (parse-lambda-list list) - (collect ((vars) - (names-so-far) - (aux-vars) - (aux-vals)) - (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args - ;; for optionals and keywords args. - (parse-default (spec info) - (when (consp (cdr spec)) - (setf (arg-info-default info) (second spec)) - (when (consp (cddr spec)) - (let* ((supplied-p (third spec)) - (supplied-var (varify-lambda-arg supplied-p - (names-so-far)))) - (setf (arg-info-supplied-p info) supplied-var) - (names-so-far supplied-p) - (when (> (length (the list spec)) 3) - (compiler-error - "The list ~S is too long to be an arg specifier." - spec))))))) - - (dolist (name required) - (let ((var (varify-lambda-arg name (names-so-far)))) - (vars var) - (names-so-far name))) - - (dolist (spec optional) - (if (atom spec) - (let ((var (varify-lambda-arg spec (names-so-far)))) - (setf (lambda-var-arg-info var) (make-arg-info :kind :optional)) - (vars var) - (names-so-far spec)) - (let* ((name (first spec)) - (var (varify-lambda-arg name (names-so-far))) - (info (make-arg-info :kind :optional))) - (setf (lambda-var-arg-info var) info) - (vars var) - (names-so-far name) - (parse-default spec info)))) - - (when restp - (let ((var (varify-lambda-arg rest (names-so-far)))) - (setf (lambda-var-arg-info var) (make-arg-info :kind :rest)) - (vars var) - (names-so-far rest))) - - (when morep - (let ((var (varify-lambda-arg more-context (names-so-far)))) - (setf (lambda-var-arg-info var) - (make-arg-info :kind :more-context)) - (vars var) - (names-so-far more-context)) - (let ((var (varify-lambda-arg more-count (names-so-far)))) - (setf (lambda-var-arg-info var) - (make-arg-info :kind :more-count)) - (vars var) - (names-so-far more-count))) - - (dolist (spec keys) - (cond - ((atom spec) - (let ((var (varify-lambda-arg spec (names-so-far)))) - (setf (lambda-var-arg-info var) - (make-arg-info :kind :keyword - :key (make-keyword-for-arg spec - (vars) - t))) - (vars var) - (names-so-far spec))) - ((atom (first spec)) - (let* ((name (first spec)) - (var (varify-lambda-arg name (names-so-far))) - (info (make-arg-info - :kind :keyword - :key (make-keyword-for-arg name (vars) t)))) - (setf (lambda-var-arg-info var) info) - (vars var) - (names-so-far name) - (parse-default spec info))) - (t - (let ((head (first spec))) - (unless (proper-list-of-length-p head 2) - (error "malformed &KEY argument specifier: ~S" spec)) - (let* ((name (second head)) - (var (varify-lambda-arg name (names-so-far))) - (info (make-arg-info - :kind :keyword - :key (make-keyword-for-arg (first head) - (vars) - nil)))) - (setf (lambda-var-arg-info var) info) - (vars var) - (names-so-far name) - (parse-default spec info)))))) - - (dolist (spec aux) - (cond ((atom spec) - (let ((var (varify-lambda-arg spec nil))) - (aux-vars var) - (aux-vals nil) - (names-so-far spec))) - (t - (unless (proper-list-of-length-p spec 1 2) - (compiler-error "malformed &AUX binding specifier: ~S" - spec)) - (let* ((name (first spec)) - (var (varify-lambda-arg name nil))) - (aux-vars var) - (aux-vals (second spec)) - (names-so-far name))))) - - (values (vars) keyp allowp (aux-vars) (aux-vals)))))) - -;;; This is similar to IR1-CONVERT-PROGN-BODY except that we -;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before -;;; converting the body. If there are no bindings, just convert the -;;; body, otherwise do one binding and recurse on the rest. -;;; -;;; FIXME: This could and probably should be converted to use -;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings, -;;; so I'm not motivated. Patches will be accepted... -(defun ir1-convert-aux-bindings (start cont body aux-vars aux-vals) - (declare (type continuation start cont) (list body aux-vars aux-vals)) - (if (null aux-vars) - (ir1-convert-progn-body start cont body) - (let ((fun-cont (make-continuation)) - (fun (ir1-convert-lambda-body body - (list (first aux-vars)) - :aux-vars (rest aux-vars) - :aux-vals (rest aux-vals) - :debug-name (debug-namify - "&AUX bindings ~S" - aux-vars)))) - (reference-leaf start fun-cont fun) - (ir1-convert-combination-args fun-cont cont - (list (first aux-vals))))) - (values)) - -;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind -;;; the SPECVAR for each SVAR to the value of the variable is wrapped -;;; around the body. If there are no special bindings, we just convert -;;; the body, otherwise we do one special binding and recurse on the -;;; rest. -;;; -;;; We make a cleanup and introduce it into the lexical environment. -;;; If there are multiple special bindings, the cleanup for the blocks -;;; will end up being the innermost one. We force CONT to start a -;;; block outside of this cleanup, causing cleanup code to be emitted -;;; when the scope is exited. -(defun ir1-convert-special-bindings (start cont body aux-vars aux-vals svars) - (declare (type continuation start cont) - (list body aux-vars aux-vals svars)) - (cond - ((null svars) - (ir1-convert-aux-bindings start cont body aux-vars aux-vals)) - (t - (continuation-starts-block cont) - (let ((cleanup (make-cleanup :kind :special-bind)) - (var (first svars)) - (next-cont (make-continuation)) - (nnext-cont (make-continuation))) - (ir1-convert start next-cont - `(%special-bind ',(lambda-var-specvar var) ,var)) - (setf (cleanup-mess-up cleanup) (continuation-use next-cont)) - (let ((*lexenv* (make-lexenv :cleanup cleanup))) - (ir1-convert next-cont nnext-cont '(%cleanup-point)) - (ir1-convert-special-bindings nnext-cont cont body aux-vars aux-vals - (rest svars)))))) - (values)) - -;;; Create a lambda node out of some code, returning the result. The -;;; bindings are specified by the list of VAR structures VARS. We deal -;;; with adding the names to the LEXENV-VARIABLES for the conversion. -;;; The result is added to the NEW-FUNS in the *CURRENT-COMPONENT* and -;;; linked to the component head and tail. -;;; -;;; We detect special bindings here, replacing the original VAR in the -;;; lambda list with a temporary variable. We then pass a list of the -;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits -;;; the special binding code. -;;; -;;; We ignore any ARG-INFO in the VARS, trusting that someone else is -;;; dealing with &nonsense. -;;; -;;; AUX-VARS is a list of VAR structures for variables that are to be -;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated -;;; to get the initial value for the corresponding AUX-VAR. -(defun ir1-convert-lambda-body (body - vars - &key - aux-vars - aux-vals - result - (source-name '.anonymous.) - debug-name) - (declare (list body vars aux-vars aux-vals) - (type (or continuation null) result)) - - ;; We're about to try to put new blocks into *CURRENT-COMPONENT*. - (aver-live-component *current-component*) - - (let* ((bind (make-bind)) - (lambda (make-lambda :vars vars - :bind bind - :%source-name source-name - :%debug-name debug-name)) - (result (or result (make-continuation)))) - - ;; just to check: This function should fail internal assertions if - ;; we didn't set up a valid debug name above. - ;; - ;; (In SBCL we try to make everything have a debug name, since we - ;; lack the omniscient perspective the original implementors used - ;; to decide which things didn't need one.) - (functional-debug-name lambda) - - (setf (lambda-home lambda) lambda) - (collect ((svars) - (new-venv nil cons)) - - (dolist (var vars) - ;; As far as I can see, LAMBDA-VAR-HOME should never have - ;; been set before. Let's make sure. -- WHN 2001-09-29 - (aver (null (lambda-var-home var))) - (setf (lambda-var-home var) lambda) - (let ((specvar (lambda-var-specvar var))) - (cond (specvar - (svars var) - (new-venv (cons (leaf-source-name specvar) specvar))) - (t - (note-lexical-binding (leaf-source-name var)) - (new-venv (cons (leaf-source-name var) var)))))) - - (let ((*lexenv* (make-lexenv :variables (new-venv) - :lambda lambda - :cleanup nil))) - (setf (bind-lambda bind) lambda) - (setf (node-lexenv bind) *lexenv*) - - (let ((cont1 (make-continuation)) - (cont2 (make-continuation))) - (continuation-starts-block cont1) - (link-node-to-previous-continuation bind cont1) - (use-continuation bind cont2) - (ir1-convert-special-bindings cont2 result body aux-vars aux-vals - (svars))) - - (let ((block (continuation-block result))) - (when block - (let ((return (make-return :result result :lambda lambda)) - (tail-set (make-tail-set :funs (list lambda))) - (dummy (make-continuation))) - (setf (lambda-tail-set lambda) tail-set) - (setf (lambda-return lambda) return) - (setf (continuation-dest result) return) - (setf (block-last block) return) - (link-node-to-previous-continuation return result) - (use-continuation return dummy)) - (link-blocks block (component-tail *current-component*)))))) - - (link-blocks (component-head *current-component*) (node-block bind)) - (push lambda (component-new-funs *current-component*)) - - lambda)) - -;;; Create the actual entry-point function for an optional entry -;;; point. The lambda binds copies of each of the VARS, then calls FUN -;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer -;;; to the VARS by name. The VALS are passed in in reverse order. -;;; -;;; If any of the copies of the vars are referenced more than once, -;;; then we mark the corresponding var as EVER-USED to inhibit -;;; "defined but not read" warnings for arguments that are only used -;;; by default forms. -(defun convert-optional-entry (fun vars vals defaults) - (declare (type clambda fun) (list vars vals defaults)) - (let* ((fvars (reverse vars)) - (arg-vars (mapcar (lambda (var) - (unless (lambda-var-specvar var) - (note-lexical-binding (leaf-source-name var))) - (make-lambda-var - :%source-name (leaf-source-name var) - :type (leaf-type var) - :where-from (leaf-where-from var) - :specvar (lambda-var-specvar var))) - fvars)) - (fun (ir1-convert-lambda-body `((%funcall ,fun - ,@(reverse vals) - ,@defaults)) - arg-vars - :debug-name "&OPTIONAL processor"))) - (mapc (lambda (var arg-var) - (when (cdr (leaf-refs arg-var)) - (setf (leaf-ever-used var) t))) - fvars arg-vars) - fun)) - -;;; This function deals with supplied-p vars in optional arguments. If -;;; the there is no supplied-p arg, then we just call -;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a -;;; optional entry that calls the result. If there is a supplied-p -;;; var, then we add it into the default vars and throw a T into the -;;; entry values. The resulting entry point function is returned. -(defun generate-optional-default-entry (res default-vars default-vals - entry-vars entry-vals - vars supplied-p-p body - aux-vars aux-vals cont - source-name debug-name) - (declare (type optional-dispatch res) - (list default-vars default-vals entry-vars entry-vals vars body - aux-vars aux-vals) - (type (or continuation null) cont)) - (let* ((arg (first vars)) - (arg-name (leaf-source-name arg)) - (info (lambda-var-arg-info arg)) - (supplied-p (arg-info-supplied-p info)) - (ep (if supplied-p - (ir1-convert-hairy-args - res - (list* supplied-p arg default-vars) - (list* (leaf-source-name supplied-p) arg-name default-vals) - (cons arg entry-vars) - (list* t arg-name entry-vals) - (rest vars) t body aux-vars aux-vals cont - source-name debug-name) - (ir1-convert-hairy-args - res - (cons arg default-vars) - (cons arg-name default-vals) - (cons arg entry-vars) - (cons arg-name entry-vals) - (rest vars) supplied-p-p body aux-vars aux-vals cont - source-name debug-name)))) - - (convert-optional-entry ep default-vars default-vals - (if supplied-p - (list (arg-info-default info) nil) - (list (arg-info-default info)))))) - -;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES. -;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is -;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars. -;;; -;;; The most interesting thing that we do is parse keywords. We create -;;; a bunch of temporary variables to hold the result of the parse, -;;; and then loop over the supplied arguments, setting the appropriate -;;; temps for the supplied keyword. Note that it is significant that -;;; we iterate over the keywords in reverse order --- this implements -;;; the CL requirement that (when a keyword appears more than once) -;;; the first value is used. -;;; -;;; If there is no supplied-p var, then we initialize the temp to the -;;; default and just pass the temp into the main entry. Since -;;; non-constant &KEY args are forcibly given a supplied-p var, we -;;; know that the default is constant, and thus safe to evaluate out -;;; of order. -;;; -;;; If there is a supplied-p var, then we create temps for both the -;;; value and the supplied-p, and pass them into the main entry, -;;; letting it worry about defaulting. -;;; -;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors -;;; until we have scanned all the keywords. -(defun convert-more-entry (res entry-vars entry-vals rest morep keys) - (declare (type optional-dispatch res) (list entry-vars entry-vals keys)) - (collect ((arg-vars) - (arg-vals (reverse entry-vals)) - (temps) - (body)) - - (dolist (var (reverse entry-vars)) - (arg-vars (make-lambda-var :%source-name (leaf-source-name var) - :type (leaf-type var) - :where-from (leaf-where-from var)))) - - (let* ((n-context (gensym "N-CONTEXT-")) - (context-temp (make-lambda-var :%source-name n-context)) - (n-count (gensym "N-COUNT-")) - (count-temp (make-lambda-var :%source-name n-count - :type (specifier-type 'index)))) - - (arg-vars context-temp count-temp) - - (when rest - (arg-vals `(%listify-rest-args ,n-context ,n-count))) - (when morep - (arg-vals n-context) - (arg-vals n-count)) - - (when (optional-dispatch-keyp res) - (let ((n-index (gensym "N-INDEX-")) - (n-key (gensym "N-KEY-")) - (n-value-temp (gensym "N-VALUE-TEMP-")) - (n-allowp (gensym "N-ALLOWP-")) - (n-losep (gensym "N-LOSEP-")) - (allowp (or (optional-dispatch-allowp res) - (policy *lexenv* (zerop safety))))) - - (temps `(,n-index (1- ,n-count)) n-key n-value-temp) - (body `(declare (fixnum ,n-index) (ignorable ,n-key ,n-value-temp))) - - (collect ((tests)) - (dolist (key keys) - (let* ((info (lambda-var-arg-info key)) - (default (arg-info-default info)) - (keyword (arg-info-key info)) - (supplied-p (arg-info-supplied-p info)) - (n-value (gensym "N-VALUE-"))) - (temps `(,n-value ,default)) - (cond (supplied-p - (let ((n-supplied (gensym "N-SUPPLIED-"))) - (temps n-supplied) - (arg-vals n-value n-supplied) - (tests `((eq ,n-key ',keyword) - (setq ,n-supplied t) - (setq ,n-value ,n-value-temp))))) - (t - (arg-vals n-value) - (tests `((eq ,n-key ',keyword) - (setq ,n-value ,n-value-temp))))))) - - (unless allowp - (temps n-allowp n-losep) - (tests `((eq ,n-key :allow-other-keys) - (setq ,n-allowp ,n-value-temp))) - (tests `(t - (setq ,n-losep ,n-key)))) - - (body - `(when (oddp ,n-count) - (%odd-key-arguments-error))) - - (body - `(locally - (declare (optimize (safety 0))) - (loop - (when (minusp ,n-index) (return)) - (setf ,n-value-temp (%more-arg ,n-context ,n-index)) - (decf ,n-index) - (setq ,n-key (%more-arg ,n-context ,n-index)) - (decf ,n-index) - (cond ,@(tests))))) - - (unless allowp - (body `(when (and ,n-losep (not ,n-allowp)) - (%unknown-key-argument-error ,n-losep))))))) - - (let ((ep (ir1-convert-lambda-body - `((let ,(temps) - ,@(body) - (%funcall ,(optional-dispatch-main-entry res) - . ,(arg-vals)))) ; FIXME: What is the '.'? ,@? - (arg-vars) - :debug-name (debug-namify "~S processing" '&more)))) - (setf (optional-dispatch-more-entry res) ep)))) - - (values)) - -;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST -;;; or &KEY arg. The arguments are similar to that function, but we -;;; split off any &REST arg and pass it in separately. REST is the -;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of -;;; the &KEY argument vars. -;;; -;;; When there are &KEY arguments, we introduce temporary gensym -;;; variables to hold the values while keyword defaulting is in -;;; progress to get the required sequential binding semantics. -;;; -;;; This gets interesting mainly when there are &KEY arguments with -;;; supplied-p vars or non-constant defaults. In either case, pass in -;;; a supplied-p var. If the default is non-constant, we introduce an -;;; IF in the main entry that tests the supplied-p var and decides -;;; whether to evaluate the default or not. In this case, the real -;;; incoming value is NIL, so we must union NULL with the declared -;;; type when computing the type for the main entry's argument. -(defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals - rest more-context more-count keys supplied-p-p - body aux-vars aux-vals cont - source-name debug-name) - (declare (type optional-dispatch res) - (list default-vars default-vals entry-vars entry-vals keys body - aux-vars aux-vals) - (type (or continuation null) cont)) - (collect ((main-vars (reverse default-vars)) - (main-vals default-vals cons) - (bind-vars) - (bind-vals)) - (when rest - (main-vars rest) - (main-vals '())) - (when more-context - (main-vars more-context) - (main-vals nil) - (main-vars more-count) - (main-vals 0)) - - (dolist (key keys) - (let* ((info (lambda-var-arg-info key)) - (default (arg-info-default info)) - (hairy-default (not (sb!xc:constantp default))) - (supplied-p (arg-info-supplied-p info)) - (n-val (make-symbol (format nil - "~A-DEFAULTING-TEMP" - (leaf-source-name key)))) - (key-type (leaf-type key)) - (val-temp (make-lambda-var - :%source-name n-val - :type (if hairy-default - (type-union key-type (specifier-type 'null)) - key-type)))) - (main-vars val-temp) - (bind-vars key) - (cond ((or hairy-default supplied-p) - (let* ((n-supplied (gensym "N-SUPPLIED-")) - (supplied-temp (make-lambda-var - :%source-name n-supplied))) - (unless supplied-p - (setf (arg-info-supplied-p info) supplied-temp)) - (when hairy-default - (setf (arg-info-default info) nil)) - (main-vars supplied-temp) - (cond (hairy-default - (main-vals nil nil) - (bind-vals `(if ,n-supplied ,n-val ,default))) - (t - (main-vals default nil) - (bind-vals n-val))) - (when supplied-p - (bind-vars supplied-p) - (bind-vals n-supplied)))) - (t - (main-vals (arg-info-default info)) - (bind-vals n-val))))) - - (let* ((main-entry (ir1-convert-lambda-body - body (main-vars) - :aux-vars (append (bind-vars) aux-vars) - :aux-vals (append (bind-vals) aux-vals) - :result cont - :debug-name (debug-namify "varargs entry point for ~A" - (as-debug-name source-name - debug-name)))) - (last-entry (convert-optional-entry main-entry default-vars - (main-vals) ()))) - (setf (optional-dispatch-main-entry res) main-entry) - (convert-more-entry res entry-vars entry-vals rest more-context keys) - - (push (if supplied-p-p - (convert-optional-entry last-entry entry-vars entry-vals ()) - last-entry) - (optional-dispatch-entry-points res)) - last-entry))) - -;;; This function generates the entry point functions for the -;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list -;;; of arguments, analyzing the arglist on the way down and generating -;;; entry points on the way up. -;;; -;;; DEFAULT-VARS is a reversed list of all the argument vars processed -;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the -;;; names of the DEFAULT-VARS. -;;; -;;; ENTRY-VARS is a reversed list of processed argument vars, -;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be -;;; evaluated to get the values for all the vars from the ENTRY-VARS. -;;; It has the var name for each required or optional arg, and has T -;;; for each supplied-p arg. -;;; -;;; VARS is a list of the LAMBDA-VAR structures for arguments that -;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p -;;; argument has already been processed; only in this case are the -;;; DEFAULT-XXX and ENTRY-XXX different. -;;; -;;; The result at each point is a lambda which should be called by the -;;; above level to default the remaining arguments and evaluate the -;;; body. We cause the body to be evaluated by converting it and -;;; returning it as the result when the recursion bottoms out. -;;; -;;; Each level in the recursion also adds its entry point function to -;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting -;;; function and the entry point function will be the same, but when -;;; SUPPLIED-P args are present they may be different. -;;; -;;; When we run into a &REST or &KEY arg, we punt out to -;;; IR1-CONVERT-MORE, which finishes for us in this case. -(defun ir1-convert-hairy-args (res default-vars default-vals - entry-vars entry-vals - vars supplied-p-p body aux-vars - aux-vals cont - source-name debug-name) - (declare (type optional-dispatch res) - (list default-vars default-vals entry-vars entry-vals vars body - aux-vars aux-vals) - (type (or continuation null) cont)) - (cond ((not vars) - (if (optional-dispatch-keyp res) - ;; Handle &KEY with no keys... - (ir1-convert-more res default-vars default-vals - entry-vars entry-vals - nil nil nil vars supplied-p-p body aux-vars - aux-vals cont source-name debug-name) - (let ((fun (ir1-convert-lambda-body - body (reverse default-vars) - :aux-vars aux-vars - :aux-vals aux-vals - :result cont - :debug-name (debug-namify - "hairy arg processor for ~A" - (as-debug-name source-name - debug-name))))) - (setf (optional-dispatch-main-entry res) fun) - (push (if supplied-p-p - (convert-optional-entry fun entry-vars entry-vals ()) - fun) - (optional-dispatch-entry-points res)) - fun))) - ((not (lambda-var-arg-info (first vars))) - (let* ((arg (first vars)) - (nvars (cons arg default-vars)) - (nvals (cons (leaf-source-name arg) default-vals))) - (ir1-convert-hairy-args res nvars nvals nvars nvals - (rest vars) nil body aux-vars aux-vals - cont - source-name debug-name))) - (t - (let* ((arg (first vars)) - (info (lambda-var-arg-info arg)) - (kind (arg-info-kind info))) - (ecase kind - (:optional - (let ((ep (generate-optional-default-entry - res default-vars default-vals - entry-vars entry-vals vars supplied-p-p body - aux-vars aux-vals cont - source-name debug-name))) - (push (if supplied-p-p - (convert-optional-entry ep entry-vars entry-vals ()) - ep) - (optional-dispatch-entry-points res)) - ep)) - (:rest - (ir1-convert-more res default-vars default-vals - entry-vars entry-vals - arg nil nil (rest vars) supplied-p-p body - aux-vars aux-vals cont - source-name debug-name)) - (:more-context - (ir1-convert-more res default-vars default-vals - entry-vars entry-vals - nil arg (second vars) (cddr vars) supplied-p-p - body aux-vars aux-vals cont - source-name debug-name)) - (:keyword - (ir1-convert-more res default-vars default-vals - entry-vars entry-vals - nil nil nil vars supplied-p-p body aux-vars - aux-vals cont source-name debug-name))))))) - -;;; This function deals with the case where we have to make an -;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and -;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we -;;; figure out the MIN-ARGS and MAX-ARGS. -(defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals cont - &key - (source-name '.anonymous.) - (debug-name (debug-namify - "OPTIONAL-DISPATCH ~S" - vars))) - (declare (list body vars aux-vars aux-vals) (type continuation cont)) - (let ((res (make-optional-dispatch :arglist vars - :allowp allowp - :keyp keyp - :%source-name source-name - :%debug-name debug-name)) - (min (or (position-if #'lambda-var-arg-info vars) (length vars)))) - (aver-live-component *current-component*) - (push res (component-new-funs *current-component*)) - (ir1-convert-hairy-args res () () () () vars nil body aux-vars aux-vals - cont source-name debug-name) - (setf (optional-dispatch-min-args res) min) - (setf (optional-dispatch-max-args res) - (+ (1- (length (optional-dispatch-entry-points res))) min)) - - (flet ((frob (ep) - (when ep - (setf (functional-kind ep) :optional) - (setf (leaf-ever-used ep) t) - (setf (lambda-optional-dispatch ep) res)))) - (dolist (ep (optional-dispatch-entry-points res)) (frob ep)) - (frob (optional-dispatch-more-entry res)) - (frob (optional-dispatch-main-entry res))) - - res)) - -;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf. -(defun ir1-convert-lambda (form &key (source-name '.anonymous.) debug-name) - - (unless (consp form) - (compiler-error "A ~S was found when expecting a lambda expression:~% ~S" - (type-of form) - form)) - (unless (eq (car form) 'lambda) - (compiler-error "~S was expected but ~S was found:~% ~S" - 'lambda - (car form) - form)) - (unless (and (consp (cdr form)) (listp (cadr form))) - (compiler-error - "The lambda expression has a missing or non-list lambda list:~% ~S" - form)) - - (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals) - (make-lambda-vars (cadr form)) - (multiple-value-bind (forms decls) (sb!sys:parse-body (cddr form)) - (let* ((result-cont (make-continuation)) - (*lexenv* (process-decls decls - (append aux-vars vars) - nil result-cont)) - (res (if (or (find-if #'lambda-var-arg-info vars) keyp) - (ir1-convert-hairy-lambda forms vars keyp - allow-other-keys - aux-vars aux-vals result-cont - :source-name source-name - :debug-name debug-name) - (ir1-convert-lambda-body forms vars - :aux-vars aux-vars - :aux-vals aux-vals - :result result-cont - :source-name source-name - :debug-name debug-name)))) - (setf (functional-inline-expansion res) form) - (setf (functional-arg-documentation res) (cadr form)) - res)))) - -;;;; defining global functions - -;;; Convert FUN as a lambda in the null environment, but use the -;;; current compilation policy. Note that FUN may be a -;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to -;;; reflect the state at the definition site. -(defun ir1-convert-inline-lambda (fun &key - (source-name '.anonymous.) - debug-name) - (destructuring-bind (decls macros symbol-macros &rest body) - (if (eq (car fun) 'lambda-with-lexenv) - (cdr fun) - `(() () () . ,(cdr fun))) - (let ((*lexenv* (make-lexenv - :default (process-decls decls nil nil - (make-continuation) - (make-null-lexenv)) - :variables (copy-list symbol-macros) - :functions - (mapcar (lambda (x) - `(,(car x) . - (macro . ,(coerce (cdr x) 'function)))) - macros) - :policy (lexenv-policy *lexenv*)))) - (ir1-convert-lambda `(lambda ,@body) - :source-name source-name - :debug-name debug-name)))) - -;;; Get a DEFINED-FUN object for a function we are about to -;;; define. If the function has been forward referenced, then -;;; substitute for the previous references. -(defun get-defined-fun (name) - (proclaim-as-fun-name name) - (let ((found (find-free-function name "shouldn't happen! (defined-fun)"))) - (note-name-defined name :function) - (cond ((not (defined-fun-p found)) - (aver (not (info :function :inlinep name))) - (let* ((where-from (leaf-where-from found)) - (res (make-defined-fun - :%source-name name - :where-from (if (eq where-from :declared) - :declared :defined) - :type (leaf-type found)))) - (substitute-leaf res found) - (setf (gethash name *free-functions*) res))) - ;; If *FREE-FUNCTIONS* has a previously converted definition - ;; for this name, then blow it away and try again. - ((defined-fun-functional found) - (remhash name *free-functions*) - (get-defined-fun name)) - (t found)))) - -;;; Check a new global function definition for consistency with -;;; previous declaration or definition, and assert argument/result -;;; types if appropriate. This assertion is suppressed by the -;;; EXPLICIT-CHECK attribute, which is specified on functions that -;;; check their argument types as a consequence of type dispatching. -;;; This avoids redundant checks such as NUMBERP on the args to +, etc. -(defun assert-new-definition (var fun) - (let ((type (leaf-type var)) - (for-real (eq (leaf-where-from var) :declared)) - (info (info :function :info (leaf-source-name var)))) - (assert-definition-type - fun type - ;; KLUDGE: Common Lisp is such a dynamic language that in general - ;; all we can do here in general is issue a STYLE-WARNING. It - ;; would be nice to issue a full WARNING in the special case of - ;; of type mismatches within a compilation unit (as in section - ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't - ;; keep track of whether the mismatched data came from the same - ;; compilation unit, so we can't do that. -- WHN 2001-02-11 - :lossage-fun #'compiler-style-warn - :unwinnage-fun (cond (info #'compiler-style-warn) - (for-real #'compiler-note) - (t nil)) - :really-assert - (and for-real - (not (and info - (ir1-attributep (function-info-attributes info) - explicit-check)))) - :where (if for-real - "previous declaration" - "previous definition")))) - -;;; Convert a lambda doing all the basic stuff we would do if we were -;;; converting a DEFUN. In the old CMU CL system, this was used both -;;; by the %DEFUN translator and for global inline expansion, but -;;; since sbcl-0.pre7.something %DEFUN does things differently. -;;; FIXME: And now it's probably worth rethinking whether this -;;; function is a good idea. -;;; -;;; Unless a :INLINE function, we temporarily clobber the inline -;;; expansion. This prevents recursive inline expansion of -;;; opportunistic pseudo-inlines. -(defun ir1-convert-lambda-for-defun (lambda var expansion converter) - (declare (cons lambda) (function converter) (type defined-fun var)) - (let ((var-expansion (defined-fun-inline-expansion var))) - (unless (eq (defined-fun-inlinep var) :inline) - (setf (defined-fun-inline-expansion var) nil)) - (let* ((name (leaf-source-name var)) - (fun (funcall converter lambda :source-name name)) - (function-info (info :function :info name))) - (setf (functional-inlinep fun) (defined-fun-inlinep var)) - (assert-new-definition var fun) - (setf (defined-fun-inline-expansion var) var-expansion) - ;; If definitely not an interpreter stub, then substitute for any - ;; old references. - (unless (or (eq (defined-fun-inlinep var) :notinline) - (not *block-compile*) - (and function-info - (or (function-info-transforms function-info) - (function-info-templates function-info) - (function-info-ir2-convert function-info)))) - (substitute-leaf fun var) - ;; If in a simple environment, then we can allow backward - ;; references to this function from following top level forms. - (when expansion (setf (defined-fun-functional var) fun))) - fun))) - -;;; the even-at-compile-time part of DEFUN -;;; -;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is -;;; no inline expansion. -(defun %compiler-defun (name lambda-with-lexenv) - - (let ((defined-fun nil)) ; will be set below if we're in the compiler - - (when (boundp '*lexenv*) ; when in the compiler - (when sb!xc:*compile-print* - (compiler-mumble "~&; recognizing DEFUN ~S~%" name)) - (remhash name *free-functions*) - (setf defined-fun (get-defined-fun name))) - - (become-defined-fun-name name) - - (cond (lambda-with-lexenv - (setf (info :function :inline-expansion-designator name) - lambda-with-lexenv) - (when defined-fun - (setf (defined-fun-inline-expansion defined-fun) - lambda-with-lexenv))) - (t - (clear-info :function :inline-expansion-designator name))) - - ;; old CMU CL comment: - ;; If there is a type from a previous definition, blast it, - ;; since it is obsolete. - (when (and defined-fun - (eq (leaf-where-from defined-fun) :defined)) - (setf (leaf-type defined-fun) - ;; FIXME: If this is a block compilation thing, shouldn't - ;; we be setting the type to the full derived type for the - ;; definition, instead of this most general function type? - (specifier-type 'function)))) - - (values))