X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Flocall.lisp;h=bf6507b29d60c3f3806fc739bf00ea127b4fe6e5;hb=57e21c4b62e8c1a1ee7ef59ed2abb0c864fb06bc;hp=155afd19a18bfc4d49860f8779d02708870d1c50;hpb=de201aeb12169d0bd377eca4da6116c2797a66ad;p=sbcl.git diff --git a/src/compiler/locall.lisp b/src/compiler/locall.lisp index 155afd1..bf6507b 100644 --- a/src/compiler/locall.lisp +++ b/src/compiler/locall.lisp @@ -21,55 +21,54 @@ (in-package "SB!C") -;;; This function propagates information from the variables in the function -;;; Fun to the actual arguments in Call. This is also called by the VALUES IR1 -;;; optimizer when it sleazily converts MV-BINDs to LETs. +;;; This function propagates information from the variables in the +;;; function FUN to the actual arguments in CALL. This is also called +;;; by the VALUES IR1 optimizer when it sleazily converts MV-BINDs to +;;; LETs. ;;; -;;; We flush all arguments to Call that correspond to unreferenced variables -;;; in Fun. We leave NILs in the Combination-Args so that the remaining args -;;; still match up with their vars. +;;; We flush all arguments to CALL that correspond to unreferenced +;;; variables in FUN. We leave NILs in the COMBINATION-ARGS so that +;;; the remaining args still match up with their vars. ;;; ;;; We also apply the declared variable type assertion to the argument -;;; continuations. +;;; lvars. (defun propagate-to-args (call fun) (declare (type combination call) (type clambda fun)) - (do ((args (basic-combination-args call) (cdr args)) - (vars (lambda-vars fun) (cdr vars))) - ((null args)) - (let ((arg (car args)) - (var (car vars))) - (cond ((leaf-refs var) - (assert-continuation-type arg (leaf-type var))) - (t - (flush-dest arg) - (setf (car args) nil))))) - + (loop with policy = (lexenv-policy (node-lexenv call)) + for args on (basic-combination-args call) + and var in (lambda-vars fun) + do (assert-lvar-type (car args) (leaf-type var) policy) + do (unless (leaf-refs var) + (flush-dest (car args)) + (setf (car args) nil))) (values)) -;;; This function handles merging the tail sets if Call is potentially -;;; tail-recursive, and is a call to a function with a different TAIL-SET than -;;; Call's Fun. This must be called whenever we alter IR1 so as to place a -;;; local call in what might be a TR context. Note that any call which returns -;;; its value to a RETURN is considered potentially TR, since any implicit -;;; MV-PROG1 might be optimized away. +;;; This function handles merging the tail sets if CALL is potentially +;;; tail-recursive, and is a call to a function with a different +;;; TAIL-SET than CALL's FUN. This must be called whenever we alter +;;; IR1 so as to place a local call in what might be a tail-recursive +;;; context. Note that any call which returns its value to a RETURN is +;;; considered potentially tail-recursive, since any implicit MV-PROG1 +;;; might be optimized away. ;;; -;;; We destructively modify the set for the calling function to represent both, -;;; and then change all the functions in callee's set to reference the first. -;;; If we do merge, we reoptimize the RETURN-RESULT continuation to cause -;;; IR1-OPTIMIZE-RETURN to recompute the tail set type. +;;; We destructively modify the set for the calling function to +;;; represent both, and then change all the functions in callee's set +;;; to reference the first. If we do merge, we reoptimize the +;;; RETURN-RESULT lvar to cause IR1-OPTIMIZE-RETURN to recompute the +;;; tail set type. (defun merge-tail-sets (call &optional (new-fun (combination-lambda call))) (declare (type basic-combination call) (type clambda new-fun)) - (let ((return (continuation-dest (node-cont call)))) + (let ((return (node-dest call))) (when (return-p return) (let ((call-set (lambda-tail-set (node-home-lambda call))) (fun-set (lambda-tail-set new-fun))) (unless (eq call-set fun-set) - (let ((funs (tail-set-functions fun-set))) + (let ((funs (tail-set-funs fun-set))) (dolist (fun funs) (setf (lambda-tail-set fun) call-set)) - (setf (tail-set-functions call-set) - (nconc (tail-set-functions call-set) funs))) - (reoptimize-continuation (return-result return)) + (setf (tail-set-funs call-set) + (nconc (tail-set-funs call-set) funs))) + (reoptimize-lvar (return-result return)) t))))) ;;; Convert a combination into a local call. We PROPAGATE-TO-ARGS, set @@ -88,17 +87,21 @@ (declare (type ref ref) (type combination call) (type clambda fun)) (propagate-to-args call fun) (setf (basic-combination-kind call) :local) - (pushnew fun (lambda-calls (node-home-lambda call))) + (unless (call-full-like-p call) + (dolist (arg (basic-combination-args call)) + (when arg + (flush-lvar-externally-checkable-type arg)))) + (pushnew fun (lambda-calls-or-closes (node-home-lambda call))) (merge-tail-sets call fun) (change-ref-leaf ref fun) (values)) ;;;; external entry point creation -;;; Return a Lambda form that can be used as the definition of the XEP +;;; Return a LAMBDA form that can be used as the definition of the XEP ;;; for FUN. ;;; -;;; If FUN is a lambda, then we check the number of arguments +;;; If FUN is a LAMBDA, then we check the number of arguments ;;; (conditional on policy) and call FUN with all the arguments. ;;; ;;; If FUN is an OPTIONAL-DISPATCH, then we dispatch off of the number @@ -106,11 +109,11 @@ ;;; calling the entry with the appropriate prefix of the passed ;;; arguments. ;;; -;;; If there is a more arg, then there are a couple of optimizations +;;; If there is a &MORE arg, then there are a couple of optimizations ;;; that we make (more for space than anything else): -;;; -- If MIN-ARGS is 0, then we make the more entry a T clause, since +;;; -- If MIN-ARGS is 0, then we make the more entry a T clause, since ;;; no argument count error is possible. -;;; -- We can omit the = clause for the last entry-point, allowing the +;;; -- We can omit the = clause for the last entry-point, allowing the ;;; case of 0 more args to fall through to the more entry. ;;; ;;; We don't bother to policy conditionalize wrong arg errors in @@ -118,10 +121,10 @@ ;;; compared to the cost of everything else going on. ;;; ;;; Note that if policy indicates it, argument type declarations in -;;; Fun will be verified. Since nothing is known about the type of the +;;; FUN will be verified. Since nothing is known about the type of the ;;; XEP arg vars, type checks will be emitted when the XEP's arg vars ;;; are passed to the actual function. -(defun make-xep-lambda (fun) +(defun make-xep-lambda-expression (fun) (declare (type functional fun)) (etypecase fun (clambda @@ -130,10 +133,12 @@ (temps (make-gensym-list (length (lambda-vars fun))))) `(lambda (,n-supplied ,@temps) (declare (type index ,n-supplied)) - ,(if (policy nil (zerop safety)) + ,(if (policy *lexenv* (zerop verify-arg-count)) `(declare (ignore ,n-supplied)) - `(%verify-argument-count ,n-supplied ,nargs)) - (%funcall ,fun ,@temps)))) + `(%verify-arg-count ,n-supplied ,nargs)) + (locally + (declare (optimize (merge-tail-calls 3))) + (%funcall ,fun ,@temps))))) (optional-dispatch (let* ((min (optional-dispatch-min-args fun)) (max (optional-dispatch-max-args fun)) @@ -141,11 +146,12 @@ (n-supplied (gensym)) (temps (make-gensym-list max))) (collect ((entries)) - (do ((eps (optional-dispatch-entry-points fun) (rest eps)) - (n min (1+ n))) - ((null eps)) - (entries `((= ,n-supplied ,n) - (%funcall ,(first eps) ,@(subseq temps 0 n))))) + ;; Force convertion of all entries + (optional-dispatch-entry-point-fun fun 0) + (loop for ep in (optional-dispatch-entry-points fun) + and n from min + do (entries `((= ,n-supplied ,n) + (%funcall ,(force ep) ,@(subseq temps 0 n))))) `(lambda (,n-supplied ,@temps) ;; FIXME: Make sure that INDEX type distinguishes between ;; target and host. (Probably just make the SB!XC:DEFTYPE @@ -159,79 +165,83 @@ (n-count (gensym))) `(multiple-value-bind (,n-context ,n-count) (%more-arg-context ,n-supplied ,max) - (%funcall ,more ,@temps ,n-context ,n-count)))))) + (locally + (declare (optimize (merge-tail-calls 3))) + (%funcall ,more ,@temps ,n-context ,n-count))))))) (t - (%argument-count-error ,n-supplied))))))))) + (%arg-count-error ,n-supplied))))))))) ;;; Make an external entry point (XEP) for FUN and return it. We ;;; convert the result of MAKE-XEP-LAMBDA in the correct environment, ;;; then associate this lambda with FUN as its XEP. After the ;;; conversion, we iterate over the function's associated lambdas, ;;; redoing local call analysis so that the XEP calls will get -;;; converted. We also bind *LEXENV* to change the compilation policy -;;; over to the interface policy. +;;; converted. ;;; ;;; We set REANALYZE and REOPTIMIZE in the component, just in case we ;;; discover an XEP after the initial local call analyze pass. -(defun make-external-entry-point (fun) +(defun make-xep (fun) (declare (type functional fun)) - (aver (not (functional-entry-function fun))) - (with-ir1-environment (lambda-bind (main-entry fun)) - (let* ((*lexenv* (make-lexenv :policy (make-interface-policy *lexenv*))) - (res (ir1-convert-lambda (make-xep-lambda fun)))) - (setf (functional-kind res) :external) - (setf (leaf-ever-used res) t) - (setf (functional-entry-function res) fun) - (setf (functional-entry-function fun) res) - (setf (component-reanalyze *current-component*) t) - (setf (component-reoptimize *current-component*) t) + (aver (null (functional-entry-fun fun))) + (with-ir1-environment-from-node (lambda-bind (main-entry fun)) + (let ((res (ir1-convert-lambda (make-xep-lambda-expression fun) + :debug-name (debug-namify + "XEP for ~A" + (leaf-debug-name fun))))) + (setf (functional-kind res) :external + (leaf-ever-used res) t + (functional-entry-fun res) fun + (functional-entry-fun fun) res + (component-reanalyze *current-component*) t + (component-reoptimize *current-component*) t) (etypecase fun - (clambda (local-call-analyze-1 fun)) + (clambda + (locall-analyze-fun-1 fun)) (optional-dispatch (dolist (ep (optional-dispatch-entry-points fun)) - (local-call-analyze-1 ep)) + (locall-analyze-fun-1 (force ep))) (when (optional-dispatch-more-entry fun) - (local-call-analyze-1 (optional-dispatch-more-entry fun))))) + (locall-analyze-fun-1 (optional-dispatch-more-entry fun))))) res))) -;;; Notice a Ref that is not in a local-call context. If the Ref is +;;; Notice a REF that is not in a local-call context. If the REF is ;;; already to an XEP, then do nothing, otherwise change it to the ;;; XEP, making an XEP if necessary. ;;; -;;; If Ref is to a special :Cleanup or :Escape function, then we treat -;;; it as though it was not an XEP reference (i.e. leave it alone.) +;;; If REF is to a special :CLEANUP or :ESCAPE function, then we treat +;;; it as though it was not an XEP reference (i.e. leave it alone). (defun reference-entry-point (ref) (declare (type ref ref)) (let ((fun (ref-leaf ref))) - (unless (or (external-entry-point-p fun) + (unless (or (xep-p fun) (member (functional-kind fun) '(:escape :cleanup))) - (change-ref-leaf ref (or (functional-entry-function fun) - (make-external-entry-point fun)))))) + (change-ref-leaf ref (or (functional-entry-fun fun) + (make-xep fun)))))) -;;; Attempt to convert all references to Fun to local calls. The -;;; reference must be the function for a call, and the function -;;; continuation must be used only once, since otherwise we cannot be -;;; sure what function is to be called. The call continuation would be -;;; multiply used if there is hairy stuff such as conditionals in the -;;; expression that computes the function. +;;; Attempt to convert all references to FUN to local calls. The +;;; reference must be the function for a call, and the function lvar +;;; must be used only once, since otherwise we cannot be sure what +;;; function is to be called. The call lvar would be multiply used if +;;; there is hairy stuff such as conditionals in the expression that +;;; computes the function. ;;; ;;; If we cannot convert a reference, then we mark the referenced ;;; function as an entry-point, creating a new XEP if necessary. We ;;; don't try to convert calls that are in error (:ERROR kind.) ;;; -;;; This is broken off from Local-Call-Analyze so that people can -;;; force analysis of newly introduced calls. Note that we don't do -;;; LET conversion here. -(defun local-call-analyze-1 (fun) +;;; This is broken off from LOCALL-ANALYZE-COMPONENT so that people +;;; can force analysis of newly introduced calls. Note that we don't +;;; do LET conversion here. +(defun locall-analyze-fun-1 (fun) (declare (type functional fun)) (let ((refs (leaf-refs fun)) (first-time t)) (dolist (ref refs) - (let* ((cont (node-cont ref)) - (dest (continuation-dest cont))) + (let* ((lvar (node-lvar ref)) + (dest (when lvar (lvar-dest lvar)))) (cond ((and (basic-combination-p dest) - (eq (basic-combination-fun dest) cont) - (eq (continuation-use cont) ref)) + (eq (basic-combination-fun dest) lvar) + (eq (lvar-uses lvar) ref)) (convert-call-if-possible ref dest) @@ -243,90 +253,138 @@ (values)) -;;; We examine all New-Functions in component, attempting to convert +;;; We examine all NEW-FUNCTIONALS in COMPONENT, attempting to convert ;;; calls into local calls when it is legal. We also attempt to -;;; convert each lambda to a LET. LET conversion is also triggered by +;;; convert each LAMBDA to a LET. LET conversion is also triggered by ;;; deletion of a function reference, but functions that start out ;;; eligible for conversion must be noticed sometime. ;;; ;;; Note that there is a lot of action going on behind the scenes ;;; here, triggered by reference deletion. In particular, the -;;; COMPONENT-LAMBDAS are being hacked to remove newly deleted and let -;;; converted lambdas, so it is important that the lambda is added to +;;; COMPONENT-LAMBDAS are being hacked to remove newly deleted and LET +;;; converted LAMBDAs, so it is important that the LAMBDA is added to ;;; the COMPONENT-LAMBDAS when it is. Also, the -;;; COMPONENT-NEW-FUNCTIONS may contain all sorts of drivel, since it -;;; is not updated when we delete functions, etc. Only +;;; COMPONENT-NEW-FUNCTIONALS may contain all sorts of drivel, since +;;; it is not updated when we delete functions, etc. Only ;;; COMPONENT-LAMBDAS is updated. ;;; -;;; COMPONENT-REANALYZE-FUNCTIONS is treated similarly to -;;; NEW-FUNCTIONS, but we don't add lambdas to the LAMBDAS. -(defun local-call-analyze (component) +;;; COMPONENT-REANALYZE-FUNCTIONALS is treated similarly to +;;; COMPONENT-NEW-FUNCTIONALS, but we don't add lambdas to the +;;; LAMBDAS. +(defun locall-analyze-component (component) (declare (type component component)) + (aver-live-component component) (loop - (let* ((new (pop (component-new-functions component))) - (fun (or new (pop (component-reanalyze-functions component))))) - (unless fun (return)) - (let ((kind (functional-kind fun))) - (cond ((member kind '(:deleted :let :mv-let :assignment))) - ((and (null (leaf-refs fun)) (eq kind nil) - (not (functional-entry-function fun))) - (delete-functional fun)) + (let* ((new-functional (pop (component-new-functionals component))) + (functional (or new-functional + (pop (component-reanalyze-functionals component))))) + (unless functional + (return)) + (let ((kind (functional-kind functional))) + (cond ((or (functional-somewhat-letlike-p functional) + (eql kind :deleted)) + (values)) ; nothing to do + ((and (null (leaf-refs functional)) (eq kind nil) + (not (functional-entry-fun functional))) + (delete-functional functional)) (t - (when (and new (lambda-p fun)) - (push fun (component-lambdas component))) - (local-call-analyze-1 fun) - (when (lambda-p fun) - (maybe-let-convert fun))))))) + ;; Fix/check FUNCTIONAL's relationship to COMPONENT-LAMDBAS. + (cond ((not (lambda-p functional)) + ;; Since FUNCTIONAL isn't a LAMBDA, this doesn't + ;; apply: no-op. + (values)) + (new-functional ; FUNCTIONAL came from + ; NEW-FUNCTIONALS, hence is new. + ;; FUNCTIONAL becomes part of COMPONENT-LAMBDAS now. + (aver (not (member functional + (component-lambdas component)))) + (push functional (component-lambdas component))) + (t ; FUNCTIONAL is old. + ;; FUNCTIONAL should be in COMPONENT-LAMBDAS already. + (aver (member functional (component-lambdas + component))))) + (locall-analyze-fun-1 functional) + (when (lambda-p functional) + (maybe-let-convert functional))))))) + (values)) +(defun locall-analyze-clambdas-until-done (clambdas) + (loop + (let ((did-something nil)) + (dolist (clambda clambdas) + (let* ((component (lambda-component clambda)) + (*all-components* (list component))) + ;; The original CMU CL code seemed to implicitly assume that + ;; COMPONENT is the only one here. Let's make that explicit. + (aver (= 1 (length (functional-components clambda)))) + (aver (eql component (first (functional-components clambda)))) + (when (or (component-new-functionals component) + (component-reanalyze-functionals component)) + (setf did-something t) + (locall-analyze-component component)))) + (unless did-something + (return)))) (values)) -;;; If policy is auspicious, CALL is not in an XEP, and we don't seem +;;; If policy is auspicious and CALL is not in an XEP and we don't seem ;;; to be in an infinite recursive loop, then change the reference to ;;; reference a fresh copy. We return whichever function we decide to ;;; reference. -(defun maybe-expand-local-inline (fun ref call) +(defun maybe-expand-local-inline (original-functional ref call) (if (and (policy call - (and (>= speed space) (>= speed compilation-speed))) + (and (>= speed space) + (>= speed compilation-speed))) (not (eq (functional-kind (node-home-lambda call)) :external)) - (not *converting-for-interpreter*) (inline-expansion-ok call)) - (with-ir1-environment call - (let* ((*lexenv* (functional-lexenv fun)) - (won nil) - (res (catch 'local-call-lossage - (prog1 - (ir1-convert-lambda (functional-inline-expansion - fun)) - (setq won t))))) - (cond (won - (change-ref-leaf ref res) - res) - (t - (let ((*compiler-error-context* call)) - (compiler-note "couldn't inline expand because expansion ~ - calls this let-converted local function:~ - ~% ~S" - (leaf-name res))) - fun)))) - fun)) - -;;; Dispatch to the appropriate function to attempt to convert a call. Ref -;;; most be a reference to a FUNCTIONAL. This is called in IR1 optimize as -;;; well as in local call analysis. If the call is is already :Local, we do -;;; nothing. If the call is already scheduled for deletion, also do nothing -;;; (in addition to saving time, this also avoids some problems with optimizing -;;; collections of functions that are partially deleted.) + (let* ((end (component-last-block (node-component call))) + (pred (block-prev end))) + (multiple-value-bind (losing-local-functional converted-lambda) + (catch 'locall-already-let-converted + (with-ir1-environment-from-node call + (let ((*lexenv* (functional-lexenv original-functional))) + (values nil + (ir1-convert-lambda + (functional-inline-expansion original-functional) + :debug-name (debug-namify + "local inline ~A" + (leaf-debug-name + original-functional))))))) + (cond (losing-local-functional + (let ((*compiler-error-context* call)) + (compiler-notify "couldn't inline expand because expansion ~ + calls this LET-converted local function:~ + ~% ~S" + (leaf-debug-name losing-local-functional))) + (loop for block = (block-next pred) then (block-next block) + until (eq block end) + do (setf (block-delete-p block) t)) + (loop for block = (block-next pred) then (block-next block) + until (eq block end) + do (delete-block block t)) + original-functional) + (t + (change-ref-leaf ref converted-lambda) + converted-lambda)))) + original-functional)) + +;;; Dispatch to the appropriate function to attempt to convert a call. +;;; REF must be a reference to a FUNCTIONAL. This is called in IR1 +;;; optimization as well as in local call analysis. If the call is is +;;; already :LOCAL, we do nothing. If the call is already scheduled +;;; for deletion, also do nothing (in addition to saving time, this +;;; also avoids some problems with optimizing collections of functions +;;; that are partially deleted.) ;;; -;;; This is called both before and after FIND-INITIAL-DFO runs. When called -;;; on a :INITIAL component, we don't care whether the caller and callee are in -;;; the same component. Afterward, we must stick with whatever component -;;; division we have chosen. +;;; This is called both before and after FIND-INITIAL-DFO runs. When +;;; called on a :INITIAL component, we don't care whether the caller +;;; and callee are in the same component. Afterward, we must stick +;;; with whatever component division we have chosen. ;;; -;;; Before attempting to convert a call, we see whether the function is -;;; supposed to be inline expanded. Call conversion proceeds as before -;;; after any expansion. +;;; Before attempting to convert a call, we see whether the function +;;; is supposed to be inline expanded. Call conversion proceeds as +;;; before after any expansion. ;;; -;;; We bind *Compiler-Error-Context* to the node for the call so that +;;; We bind *COMPILER-ERROR-CONTEXT* to the node for the call so that ;;; warnings will get the right context. (defun convert-call-if-possible (ref call) (declare (type ref ref) (type basic-combination call)) @@ -338,14 +396,14 @@ (block-delete-p block) (eq (functional-kind (block-home-lambda block)) :deleted) (member (functional-kind original-fun) - '(:top-level-xep :deleted)) + '(:toplevel-xep :deleted)) (not (or (eq (component-kind component) :initial) (eq (block-component (node-block (lambda-bind (main-entry original-fun)))) component)))) - (let ((fun (if (external-entry-point-p original-fun) - (functional-entry-function original-fun) + (let ((fun (if (xep-p original-fun) + (functional-entry-fun original-fun) original-fun)) (*compiler-error-context* call)) @@ -365,9 +423,9 @@ (values)) ;;; Attempt to convert a multiple-value call. The only interesting -;;; case is a call to a function that Looks-Like-An-MV-Bind, has +;;; case is a call to a function that LOOKS-LIKE-AN-MV-BIND, has ;;; exactly one reference and no XEP, and is called with one values -;;; continuation. +;;; lvar. ;;; ;;; We change the call to be to the last optional entry point and ;;; change the call to be local. Due to our preconditions, the call @@ -376,25 +434,28 @@ ;;; optional defaulting code. ;;; ;;; We also use variable types for the called function to construct an -;;; assertion for the values continuation. +;;; assertion for the values lvar. ;;; ;;; See CONVERT-CALL for additional notes on MERGE-TAIL-SETS, etc. (defun convert-mv-call (ref call fun) (declare (type ref ref) (type mv-combination call) (type functional fun)) (when (and (looks-like-an-mv-bind fun) - (not (functional-entry-function fun)) - (= (length (leaf-refs fun)) 1) - (= (length (basic-combination-args call)) 1)) - (let ((ep (car (last (optional-dispatch-entry-points fun))))) + (not (functional-entry-fun fun)) + (singleton-p (leaf-refs fun)) + (singleton-p (basic-combination-args call))) + (let* ((*current-component* (node-component ref)) + (ep (optional-dispatch-entry-point-fun + fun (optional-dispatch-max-args fun)))) + (aver (= (optional-dispatch-min-args fun) 0)) (setf (basic-combination-kind call) :local) - (pushnew ep (lambda-calls (node-home-lambda call))) + (pushnew ep (lambda-calls-or-closes (node-home-lambda call))) (merge-tail-sets call ep) (change-ref-leaf ref ep) - (assert-continuation-type + (assert-lvar-type (first (basic-combination-args call)) - (make-values-type :optional (mapcar #'leaf-type (lambda-vars ep)) - :rest *universal-type*)))) + (make-short-values-type (mapcar #'leaf-type (lambda-vars ep))) + (lexenv-policy (node-lexenv call))))) (values)) ;;; Attempt to convert a call to a lambda. If the number of args is @@ -404,8 +465,8 @@ (defun convert-lambda-call (ref call fun) (declare (type ref ref) (type combination call) (type clambda fun)) (let ((nargs (length (lambda-vars fun))) - (call-args (length (combination-args call)))) - (cond ((= call-args nargs) + (n-call-args (length (combination-args call)))) + (cond ((= n-call-args nargs) (convert-call ref call fun)) (t ;; FIXME: ANSI requires in "3.2.5 Exceptional Situations in the @@ -425,12 +486,12 @@ ;; wrong. And we're in locall.lisp here, so it's probably ;; (haven't checked this..) a call to something in the same ;; file. So maybe it deserves a full warning anyway. - (compiler-warning + (compiler-warn "function called with ~R argument~:P, but wants exactly ~R" - call-args nargs) + n-call-args nargs) (setf (basic-combination-kind call) :error))))) -;;;; optional, more and keyword calls +;;;; &OPTIONAL, &MORE and &KEYWORD calls ;;; This is similar to CONVERT-LAMBDA-CALL, but deals with ;;; OPTIONAL-DISPATCHes. If only fixed args are supplied, then convert @@ -446,48 +507,52 @@ (cond ((< call-args min-args) ;; FIXME: See FIXME note at the previous ;; wrong-number-of-arguments warnings in this file. - (compiler-warning + (compiler-warn "function called with ~R argument~:P, but wants at least ~R" call-args min-args) (setf (basic-combination-kind call) :error)) ((<= call-args max-args) (convert-call ref call - (elt (optional-dispatch-entry-points fun) - (- call-args min-args)))) + (let ((*current-component* (node-component ref))) + (optional-dispatch-entry-point-fun + fun (- call-args min-args))))) ((optional-dispatch-more-entry fun) (convert-more-call ref call fun)) (t ;; FIXME: See FIXME note at the previous ;; wrong-number-of-arguments warnings in this file. - (compiler-warning + (compiler-warn "function called with ~R argument~:P, but wants at most ~R" call-args max-args) (setf (basic-combination-kind call) :error)))) (values)) -;;; This function is used to convert a call to an entry point when complex -;;; transformations need to be done on the original arguments. Entry is the -;;; entry point function that we are calling. Vars is a list of variable names -;;; which are bound to the original call arguments. Ignores is the subset of -;;; Vars which are ignored. Args is the list of arguments to the entry point -;;; function. +;;; This function is used to convert a call to an entry point when +;;; complex transformations need to be done on the original arguments. +;;; ENTRY is the entry point function that we are calling. VARS is a +;;; list of variable names which are bound to the original call +;;; arguments. IGNORES is the subset of VARS which are ignored. ARGS +;;; is the list of arguments to the entry point function. ;;; -;;; In order to avoid gruesome graph grovelling, we introduce a new function -;;; that rearranges the arguments and calls the entry point. We analyze the -;;; new function and the entry point immediately so that everything gets -;;; converted during the single pass. +;;; In order to avoid gruesome graph grovelling, we introduce a new +;;; function that rearranges the arguments and calls the entry point. +;;; We analyze the new function and the entry point immediately so +;;; that everything gets converted during the single pass. (defun convert-hairy-fun-entry (ref call entry vars ignores args) (declare (list vars ignores args) (type ref ref) (type combination call) (type clambda entry)) (let ((new-fun - (with-ir1-environment call + (with-ir1-environment-from-node call (ir1-convert-lambda `(lambda ,vars - (declare (ignorable . ,ignores)) - (%funcall ,entry . ,args)))))) + (declare (ignorable ,@ignores)) + (%funcall ,entry ,@args)) + :debug-name (debug-namify "hairy function entry ~S" + (lvar-fun-name + (basic-combination-fun call))))))) (convert-call ref call new-fun) (dolist (ref (leaf-refs entry)) - (convert-call-if-possible ref (continuation-dest (node-cont ref)))))) + (convert-call-if-possible ref (lvar-dest (node-lvar ref)))))) ;;; Use CONVERT-HAIRY-FUN-ENTRY to convert a &MORE-arg call to a known ;;; function into a local call to the MAIN-ENTRY. @@ -513,6 +578,8 @@ (flame (policy call (or (> speed inhibit-warnings) (> space inhibit-warnings)))) (loser nil) + (allowp nil) + (allow-found nil) (temps (make-gensym-list max)) (more-temps (make-gensym-list (length more)))) (collect ((ignores) @@ -527,14 +594,14 @@ (key-vars var)) ((:rest :optional)) ((:more-context :more-count) - (compiler-warning "can't local-call functions with &MORE args") + (compiler-warn "can't local-call functions with &MORE args") (setf (basic-combination-kind call) :error) (return-from convert-more-call)))))) (when (optional-dispatch-keyp fun) (when (oddp (length more)) - (compiler-warning "function called with odd number of ~ - arguments in keyword portion") + (compiler-warn "function called with odd number of ~ + arguments in keyword portion") (setf (basic-combination-kind call) :error) (return-from convert-more-call)) @@ -542,36 +609,47 @@ (do ((key more (cddr key)) (temp more-temps (cddr temp))) ((null key)) - (let ((cont (first key))) - (unless (constant-continuation-p cont) + (let ((lvar (first key))) + (unless (constant-lvar-p lvar) (when flame - (compiler-note "non-constant keyword in keyword call")) + (compiler-notify "non-constant keyword in keyword call")) (setf (basic-combination-kind call) :error) (return-from convert-more-call)) - (let ((name (continuation-value cont)) + (let ((name (lvar-value lvar)) (dummy (first temp)) (val (second temp))) + ;; FIXME: check whether KEY was supplied earlier + (when (and (eq name :allow-other-keys) (not allow-found)) + (let ((val (second key))) + (cond ((constant-lvar-p val) + (setq allow-found t + allowp (lvar-value val))) + (t (when flame + (compiler-notify "non-constant :ALLOW-OTHER-KEYS value")) + (setf (basic-combination-kind call) :error) + (return-from convert-more-call))))) (dolist (var (key-vars) (progn (ignores dummy val) - (setq loser name))) + (unless (eq name :allow-other-keys) + (setq loser name)))) (let ((info (lambda-var-arg-info var))) (when (eq (arg-info-key info) name) (ignores dummy) (supplied (cons var val)) (return))))))) - (when (and loser (not (optional-dispatch-allowp fun))) - (compiler-warning "function called with unknown argument keyword ~S" - loser) + (when (and loser (not (optional-dispatch-allowp fun)) (not allowp)) + (compiler-warn "function called with unknown argument keyword ~S" + loser) (setf (basic-combination-kind call) :error) (return-from convert-more-call))) (collect ((call-args)) (do ((var arglist (cdr var)) (temp temps (cdr temp))) - (()) + ((null var)) (let ((info (lambda-var-arg-info (car var)))) (if info (ecase (arg-info-kind info) @@ -609,11 +687,11 @@ ;;;; corresponding combination node, making the control transfer ;;;; explicit and allowing LETs to be mashed together into a single ;;;; block. The value of the LET is delivered directly to the -;;;; original continuation for the call,eliminating the need to -;;;; propagate information from the dummy result continuation. +;;;; original lvar for the call, eliminating the need to +;;;; propagate information from the dummy result lvar. ;;;; -- As far as IR1 optimization is concerned, it is interesting in ;;;; that there is only one expression that the variable can be bound -;;;; to, and this is easily substitited for. +;;;; to, and this is easily substituted for. ;;;; -- LETs are interesting to environment analysis and to the back ;;;; end because in most ways a LET can be considered to be "the ;;;; same function" as its home function. @@ -622,122 +700,168 @@ ;;;; control transfer, cleanup code must be emitted to remove ;;;; dynamic bindings that are no longer in effect. -;;; Set up the control transfer to the called lambda. We split the -;;; call block immediately after the call, and link the head of FUN to -;;; the call block. The successor block after splitting (where we -;;; return to) is returned. +;;; Set up the control transfer to the called CLAMBDA. We split the +;;; call block immediately after the call, and link the head of +;;; CLAMBDA to the call block. The successor block after splitting +;;; (where we return to) is returned. ;;; ;;; If the lambda is is a different component than the call, then we ;;; call JOIN-COMPONENTS. This only happens in block compilation ;;; before FIND-INITIAL-DFO. -(defun insert-let-body (fun call) - (declare (type clambda fun) (type basic-combination call)) +(defun insert-let-body (clambda call) + (declare (type clambda clambda) (type basic-combination call)) (let* ((call-block (node-block call)) - (bind-block (node-block (lambda-bind fun))) + (bind-block (node-block (lambda-bind clambda))) (component (block-component call-block))) - (let ((fun-component (block-component bind-block))) - (unless (eq fun-component component) + (aver-live-component component) + (let ((clambda-component (block-component bind-block))) + (unless (eq clambda-component component) (aver (eq (component-kind component) :initial)) - (join-components component fun-component))) - + (join-components component clambda-component))) (let ((*current-component* component)) (node-ends-block call)) - ;; FIXME: Use PROPER-LIST-OF-LENGTH-P here, and look for other - ;; uses of '=.*length' which could also be converted to use - ;; PROPER-LIST-OF-LENGTH-P. - (aver (= (length (block-succ call-block)) 1)) - (let ((next-block (first (block-succ call-block)))) + (destructuring-bind (next-block) + (block-succ call-block) (unlink-blocks call-block next-block) (link-blocks call-block bind-block) next-block))) -;;; Handle the environment semantics of LET conversion. We add the -;;; lambda and its LETs to lets for the CALL's home function. We merge -;;; the calls for FUN with the calls for the home function, removing -;;; FUN in the process. We also merge the Entries. +;;; Remove CLAMBDA from the tail set of anything it used to be in the +;;; same set as; but leave CLAMBDA with a valid tail set value of +;;; its own, for the benefit of code which might try to pull +;;; something out of it (e.g. return type). +(defun depart-from-tail-set (clambda) + ;; Until sbcl-0.pre7.37.flaky5.2, we did + ;; (LET ((TAILS (LAMBDA-TAIL-SET CLAMBDA))) + ;; (SETF (TAIL-SET-FUNS TAILS) + ;; (DELETE CLAMBDA (TAIL-SET-FUNS TAILS)))) + ;; (SETF (LAMBDA-TAIL-SET CLAMBDA) NIL) + ;; here. Apparently the idea behind the (SETF .. NIL) was that since + ;; TAIL-SET-FUNS no longer thinks we're in the tail set, it's + ;; inconsistent, and perhaps unsafe, for us to think we're in the + ;; tail set. Unfortunately.. + ;; + ;; The (SETF .. NIL) caused problems in sbcl-0.pre7.37.flaky5.2 when + ;; I was trying to get Python to emit :EXTERNAL LAMBDAs directly + ;; (instead of only being able to emit funny little :TOPLEVEL stubs + ;; which you called in order to get the address of an external LAMBDA): + ;; the external function was defined in terms of internal function, + ;; which was LET-converted, and then things blew up downstream when + ;; FINALIZE-XEP-DEFINITION tried to find out its DEFINED-TYPE from + ;; the now-NILed-out TAIL-SET. So.. + ;; + ;; To deal with this problem, we no longer NIL out + ;; (LAMBDA-TAIL-SET CLAMBDA) here. Instead: + ;; * If we're the only function in TAIL-SET-FUNS, it should + ;; be safe to leave ourself linked to it, and it to you. + ;; * If there are other functions in TAIL-SET-FUNS, then we're + ;; afraid of future optimizations on those functions causing + ;; the TAIL-SET object no longer to be valid to describe our + ;; return value. Thus, we delete ourselves from that object; + ;; but we save a newly-allocated tail-set, derived from the old + ;; one, for ourselves, for the use of later code (e.g. + ;; FINALIZE-XEP-DEFINITION) which might want to + ;; know about our return type. + (let* ((old-tail-set (lambda-tail-set clambda)) + (old-tail-set-funs (tail-set-funs old-tail-set))) + (unless (= 1 (length old-tail-set-funs)) + (setf (tail-set-funs old-tail-set) + (delete clambda old-tail-set-funs)) + (let ((new-tail-set (copy-tail-set old-tail-set))) + (setf (lambda-tail-set clambda) new-tail-set + (tail-set-funs new-tail-set) (list clambda))))) + ;; The documentation on TAIL-SET-INFO doesn't tell whether it could + ;; remain valid in this case, so we nuke it on the theory that + ;; missing information tends to be less dangerous than incorrect + ;; information. + (setf (tail-set-info (lambda-tail-set clambda)) nil)) + +;;; Handle the PHYSENV semantics of LET conversion. We add CLAMBDA and +;;; its LETs to LETs for the CALL's home function. We merge the calls +;;; for CLAMBDA with the calls for the home function, removing CLAMBDA +;;; in the process. We also merge the ENTRIES. ;;; ;;; We also unlink the function head from the component head and set ;;; COMPONENT-REANALYZE to true to indicate that the DFO should be ;;; recomputed. -(defun merge-lets (fun call) - (declare (type clambda fun) (type basic-combination call)) - (let ((component (block-component (node-block call)))) - (unlink-blocks (component-head component) (node-block (lambda-bind fun))) +(defun merge-lets (clambda call) + + (declare (type clambda clambda) (type basic-combination call)) + + (let ((component (node-component call))) + (unlink-blocks (component-head component) (lambda-block clambda)) (setf (component-lambdas component) - (delete fun (component-lambdas component))) + (delete clambda (component-lambdas component))) (setf (component-reanalyze component) t)) - (setf (lambda-call-lexenv fun) (node-lexenv call)) - (let ((tails (lambda-tail-set fun))) - (setf (tail-set-functions tails) - (delete fun (tail-set-functions tails)))) - (setf (lambda-tail-set fun) nil) + (setf (lambda-call-lexenv clambda) (node-lexenv call)) + + (depart-from-tail-set clambda) + (let* ((home (node-home-lambda call)) - (home-env (lambda-environment home))) - (push fun (lambda-lets home)) - (setf (lambda-home fun) home) - (setf (lambda-environment fun) home-env) + (home-physenv (lambda-physenv home))) - (let ((lets (lambda-lets fun))) - (dolist (let lets) - (setf (lambda-home let) home) - (setf (lambda-environment let) home-env)) + (aver (not (eq home clambda))) - (setf (lambda-lets home) (nconc lets (lambda-lets home))) - (setf (lambda-lets fun) ())) + ;; CLAMBDA belongs to HOME now. + (push clambda (lambda-lets home)) + (setf (lambda-home clambda) home) + (setf (lambda-physenv clambda) home-physenv) - (setf (lambda-calls home) - (delete fun (nunion (lambda-calls fun) (lambda-calls home)))) - (setf (lambda-calls fun) ()) + ;; All of CLAMBDA's LETs belong to HOME now. + (let ((lets (lambda-lets clambda))) + (dolist (let lets) + (setf (lambda-home let) home) + (setf (lambda-physenv let) home-physenv)) + (setf (lambda-lets home) (nconc lets (lambda-lets home)))) + ;; CLAMBDA no longer has an independent existence as an entity + ;; which has LETs. + (setf (lambda-lets clambda) nil) + ;; HOME no longer calls CLAMBDA, and owns all of CLAMBDA's old + ;; DFO dependencies. + (setf (lambda-calls-or-closes home) + (delete clambda + (nunion (lambda-calls-or-closes clambda) + (lambda-calls-or-closes home)))) + ;; CLAMBDA no longer has an independent existence as an entity + ;; which calls things or has DFO dependencies. + (setf (lambda-calls-or-closes clambda) nil) + + ;; All of CLAMBDA's ENTRIES belong to HOME now. (setf (lambda-entries home) - (nconc (lambda-entries fun) (lambda-entries home))) - (setf (lambda-entries fun) ())) + (nconc (lambda-entries clambda) + (lambda-entries home))) + ;; CLAMBDA no longer has an independent existence as an entity + ;; with ENTRIES. + (setf (lambda-entries clambda) nil)) + (values)) ;;; Handle the value semantics of LET conversion. Delete FUN's return ;;; node, and change the control flow to transfer to NEXT-BLOCK -;;; instead. Move all the uses of the result continuation to CALL's -;;; CONT. -;;; -;;; If the actual continuation is only used by the LET call, then we -;;; intersect the type assertion on the dummy continuation with the -;;; assertion for the actual continuation; in all other cases -;;; assertions on the dummy continuation are lost. -;;; -;;; We also intersect the derived type of the CALL with the derived -;;; type of all the dummy continuation's uses. This serves mainly to -;;; propagate TRULY-THE through LETs. +;;; instead. Move all the uses of the result lvar to CALL's lvar. (defun move-return-uses (fun call next-block) (declare (type clambda fun) (type basic-combination call) (type cblock next-block)) (let* ((return (lambda-return fun)) - (return-block (node-block return))) + (return-block (progn + (ensure-block-start (node-prev return)) + (node-block return)))) (unlink-blocks return-block (component-tail (block-component return-block))) (link-blocks return-block next-block) (unlink-node return) (delete-return return) (let ((result (return-result return)) - (cont (node-cont call)) - (call-type (node-derived-type call))) - (when (eq (continuation-use cont) call) - (assert-continuation-type cont (continuation-asserted-type result))) + (lvar (if (node-tail-p call) + (return-result (lambda-return (node-home-lambda call))) + (node-lvar call))) + (call-type (node-derived-type call))) (unless (eq call-type *wild-type*) - (do-uses (use result) - (derive-node-type use call-type))) - (substitute-continuation-uses cont result))) - (values)) - -;;; Change all CONT for all the calls to FUN to be the start -;;; continuation for the bind node. This allows the blocks to be -;;; joined if the caller count ever goes to one. -(defun move-let-call-cont (fun) - (declare (type clambda fun)) - (let ((new-cont (node-prev (lambda-bind fun)))) - (dolist (ref (leaf-refs fun)) - (let ((dest (continuation-dest (node-cont ref)))) - (delete-continuation-use dest) - (add-continuation-use dest new-cont)))) + ;; FIXME: Replace the call with unsafe CAST. -- APD, 2003-01-26 + (do-uses (use result) + (derive-node-type use call-type))) + (substitute-lvar-uses lvar result))) (values)) ;;; We are converting FUN to be a LET when the call is in a non-tail @@ -746,29 +870,30 @@ ;;; NEXT-BLOCK (FUN's return point.) We can't do this by DO-USES on ;;; the RETURN-RESULT, because the return might have been deleted (if ;;; all calls were TR.) -;;; -;;; The called function might be an assignment in the case where we -;;; are currently converting that function. In steady-state, -;;; assignments never appear in the lambda-calls. (defun unconvert-tail-calls (fun call next-block) - (dolist (called (lambda-calls fun)) - (dolist (ref (leaf-refs called)) - (let ((this-call (continuation-dest (node-cont ref)))) - (when (and (node-tail-p this-call) - (eq (node-home-lambda this-call) fun)) - (setf (node-tail-p this-call) nil) - (ecase (functional-kind called) - ((nil :cleanup :optional) - (let ((block (node-block this-call)) - (cont (node-cont call))) - (ensure-block-start cont) - (unlink-blocks block (first (block-succ block))) - (link-blocks block next-block) - (delete-continuation-use this-call) - (add-continuation-use this-call cont))) - (:deleted) - (:assignment - (aver (eq called fun)))))))) + (dolist (called (lambda-calls-or-closes fun)) + (when (lambda-p called) + (dolist (ref (leaf-refs called)) + (let ((this-call (node-dest ref))) + (when (and this-call + (node-tail-p this-call) + (eq (node-home-lambda this-call) fun)) + (setf (node-tail-p this-call) nil) + (ecase (functional-kind called) + ((nil :cleanup :optional) + (let ((block (node-block this-call)) + (lvar (node-lvar call))) + (unlink-blocks block (first (block-succ block))) + (link-blocks block next-block) + (aver (not (node-lvar this-call))) + (add-lvar-use this-call lvar))) + (:deleted) + ;; The called function might be an assignment in the + ;; case where we are currently converting that function. + ;; In steady-state, assignments never appear as a called + ;; function. + (:assignment + (aver (eq called fun))))))))) (values)) ;;; Deal with returning from a LET or assignment that we are @@ -785,14 +910,15 @@ ;;; We do different things depending on whether the caller and callee ;;; have returns left: -;;; -- If the callee has no return we just do MOVE-LET-CALL-CONT. Either -;;; the function doesn't return, or all returns are via tail-recursive -;;; local calls. -;;; -- If CALL is a non-tail call, or if both have returns, then we -;;; delete the callee's return, move its uses to the call's result -;;; continuation, and transfer control to the appropriate return point. -;;; -- If the callee has a return, but the caller doesn't, then we move the -;;; return to the caller. +;;; -- If the callee has no return we just do MOVE-LET-CALL-CONT. +;;; Either the function doesn't return, or all returns are via +;;; tail-recursive local calls. +;;; -- If CALL is a non-tail call, or if both have returns, then +;;; we delete the callee's return, move its uses to the call's +;;; result lvar, and transfer control to the appropriate +;;; return point. +;;; -- If the callee has a return, but the caller doesn't, then we +;;; move the return to the caller. (defun move-return-stuff (fun call next-block) (declare (type clambda fun) (type basic-combination call) (type (or cblock null) next-block)) @@ -801,24 +927,32 @@ (let* ((return (lambda-return fun)) (call-fun (node-home-lambda call)) (call-return (lambda-return call-fun))) + (when (and call-return + (block-delete-p (node-block call-return))) + (delete-return call-return) + (unlink-node call-return) + (setq call-return nil)) (cond ((not return)) ((or next-block call-return) (unless (block-delete-p (node-block return)) - (move-return-uses fun call - (or next-block (node-block call-return))))) + (unless next-block + (ensure-block-start (node-prev call-return)) + (setq next-block (node-block call-return))) + (move-return-uses fun call next-block))) (t (aver (node-tail-p call)) (setf (lambda-return call-fun) return) - (setf (return-lambda return) call-fun)))) - (move-let-call-cont fun) + (setf (return-lambda return) call-fun) + (setf (lambda-return fun) nil)))) + (%delete-lvar-use call) ; LET call does not have value semantics (values)) ;;; Actually do LET conversion. We call subfunctions to do most of the -;;; work. We change the CALL's cont to be the continuation heading the -;;; bind block, and also do REOPTIMIZE-CONTINUATION on the args and -;;; Cont so that let-specific IR1 optimizations get a chance. We blow -;;; away any entry for the function in *FREE-FUNCTIONS* so that nobody -;;; will create new reference to it. +;;; work. We change the CALL's CONT to be the continuation heading the +;;; BIND block, and also do REOPTIMIZE-LVAR on the args and +;;; CONT so that LET-specific IR1 optimizations get a chance. We blow +;;; away any entry for the function in *FREE-FUNS* so that nobody +;;; will create new references to it. (defun let-convert (fun call) (declare (type clambda fun) (type basic-combination call)) (let ((next-block (if (node-tail-p call) @@ -827,68 +961,92 @@ (move-return-stuff fun call next-block) (merge-lets fun call))) -;;; Reoptimize all of Call's args and its result. +;;; Reoptimize all of CALL's args and its result. (defun reoptimize-call (call) (declare (type basic-combination call)) (dolist (arg (basic-combination-args call)) (when arg - (reoptimize-continuation arg))) - (reoptimize-continuation (node-cont call)) + (reoptimize-lvar arg))) + (reoptimize-lvar (node-lvar call)) (values)) +;;; Are there any declarations in force to say CLAMBDA shouldn't be +;;; LET converted? +(defun declarations-suppress-let-conversion-p (clambda) + ;; From the user's point of view, LET-converting something that + ;; has a name is inlining it. (The user can't see what we're doing + ;; with anonymous things, and suppressing inlining + ;; for such things can easily give Python acute indigestion, so + ;; we don't.) + (when (leaf-has-source-name-p clambda) + ;; ANSI requires that explicit NOTINLINE be respected. + (or (eq (lambda-inlinep clambda) :notinline) + ;; If (= LET-CONVERTION 0) we can guess that inlining + ;; generally won't be appreciated, but if the user + ;; specifically requests inlining, that takes precedence over + ;; our general guess. + (and (policy clambda (= let-convertion 0)) + (not (eq (lambda-inlinep clambda) :inline)))))) + ;;; We also don't convert calls to named functions which appear in the ;;; initial component, delaying this until optimization. This -;;; minimizes the likelyhood that we well let-convert a function which -;;; may have references added due to later local inline expansion +;;; minimizes the likelihood that we will LET-convert a function which +;;; may have references added due to later local inline expansion. (defun ok-initial-convert-p (fun) - (not (and (leaf-name fun) - (eq (component-kind - (block-component - (node-block (lambda-bind fun)))) - :initial)))) + (not (and (leaf-has-source-name-p fun) + (or (declarations-suppress-let-conversion-p fun) + (eq (component-kind (lambda-component fun)) + :initial))))) ;;; This function is called when there is some reason to believe that -;;; the lambda Fun might be converted into a let. This is done after -;;; local call analysis, and also when a reference is deleted. We only -;;; convert to a let when the function is a normal local function, has -;;; no XEP, and is referenced in exactly one local call. Conversion is -;;; also inhibited if the only reference is in a block about to be -;;; deleted. We return true if we converted. -;;; -;;; These rules may seem unnecessarily restrictive, since there are -;;; some cases where we could do the return with a jump that don't -;;; satisfy these requirements. The reason for doing things this way -;;; is that it makes the concept of a LET much more useful at the -;;; level of IR1 semantics. The :ASSIGNMENT function kind provides -;;; another way to optimize calls to single-return/multiple call -;;; functions. -;;; -;;; We don't attempt to convert calls to functions that have an XEP, -;;; since we might be embarrassed later when we want to convert a -;;; newly discovered local call. Also, see OK-INITIAL-CONVERT-P. -(defun maybe-let-convert (fun) - (declare (type clambda fun)) - (let ((refs (leaf-refs fun))) - (when (and refs - (null (rest refs)) - (member (functional-kind fun) '(nil :assignment)) - (not (functional-entry-function fun))) - (let* ((ref-cont (node-cont (first refs))) - (dest (continuation-dest ref-cont))) - (when (and (basic-combination-p dest) - (eq (basic-combination-fun dest) ref-cont) - (eq (basic-combination-kind dest) :local) - (not (block-delete-p (node-block dest))) - (cond ((ok-initial-convert-p fun) t) - (t - (reoptimize-continuation ref-cont) - nil))) - (unless (eq (functional-kind fun) :assignment) - (let-convert fun dest)) - (reoptimize-call dest) - (setf (functional-kind fun) - (if (mv-combination-p dest) :mv-let :let)))) - t))) +;;; CLAMBDA might be converted into a LET. This is done after local +;;; call analysis, and also when a reference is deleted. We return +;;; true if we converted. +(defun maybe-let-convert (clambda) + (declare (type clambda clambda)) + (unless (declarations-suppress-let-conversion-p clambda) + ;; We only convert to a LET when the function is a normal local + ;; function, has no XEP, and is referenced in exactly one local + ;; call. Conversion is also inhibited if the only reference is in + ;; a block about to be deleted. + ;; + ;; These rules limiting LET conversion may seem unnecessarily + ;; restrictive, since there are some cases where we could do the + ;; return with a jump that don't satisfy these requirements. The + ;; reason for doing things this way is that it makes the concept + ;; of a LET much more useful at the level of IR1 semantics. The + ;; :ASSIGNMENT function kind provides another way to optimize + ;; calls to single-return/multiple call functions. + ;; + ;; We don't attempt to convert calls to functions that have an + ;; XEP, since we might be embarrassed later when we want to + ;; convert a newly discovered local call. Also, see + ;; OK-INITIAL-CONVERT-P. + (let ((refs (leaf-refs clambda))) + (when (and refs + (null (rest refs)) + (memq (functional-kind clambda) '(nil :assignment)) + (not (functional-entry-fun clambda))) + (binding* ((ref (first refs)) + (ref-lvar (node-lvar ref) :exit-if-null) + (dest (lvar-dest ref-lvar))) + (when (and (basic-combination-p dest) + (eq (basic-combination-fun dest) ref-lvar) + (eq (basic-combination-kind dest) :local) + (not (block-delete-p (node-block dest))) + (cond ((ok-initial-convert-p clambda) t) + (t + (reoptimize-lvar ref-lvar) + nil))) + (when (eq clambda (node-home-lambda dest)) + (delete-lambda clambda) + (return-from maybe-let-convert nil)) + (unless (eq (functional-kind clambda) :assignment) + (let-convert clambda dest)) + (reoptimize-call dest) + (setf (functional-kind clambda) + (if (mv-combination-p dest) :mv-let :let)))) + t)))) ;;;; tail local calls and assignments @@ -912,36 +1070,35 @@ ;;; If a potentially TR local call really is TR, then convert it to ;;; jump directly to the called function. We also call ;;; MAYBE-CONVERT-TO-ASSIGNMENT. The first value is true if we -;;; tail-convert. The second is the value of M-C-T-A. We can switch -;;; the succesor (potentially deleting the RETURN node) unless: -;;; -- The call has already been converted. -;;; -- The call isn't TR (some implicit MV PROG1.) -;;; -- The call is in an XEP (thus we might decide to make it non-tail -;;; so that we can use known return inside the component.) -;;; -- There is a change in the cleanup between the call in the return, -;;; so we might need to introduce cleanup code. +;;; tail-convert. The second is the value of M-C-T-A. (defun maybe-convert-tail-local-call (call) (declare (type combination call)) - (let ((return (continuation-dest (node-cont call)))) + (let ((return (lvar-dest (node-lvar call)))) (aver (return-p return)) - (when (and (not (node-tail-p call)) + (when (and (not (node-tail-p call)) ; otherwise already converted + ;; this is a tail call (immediately-used-p (return-result return) call) - (not (eq (functional-kind (node-home-lambda call)) - :external)) (only-harmless-cleanups (node-block call) - (node-block return))) + (node-block return)) + ;; If the call is in an XEP, we might decide to make it + ;; non-tail so that we can use known return inside the + ;; component. + (not (eq (functional-kind (node-home-lambda call)) + :external))) (node-ends-block call) (let ((block (node-block call)) (fun (combination-lambda call))) (setf (node-tail-p call) t) (unlink-blocks block (first (block-succ block))) - (link-blocks block (node-block (lambda-bind fun))) + (link-blocks block (lambda-block fun)) + (delete-lvar-use call) (values t (maybe-convert-to-assignment fun)))))) -;;; This is called when we believe it might make sense to convert Fun -;;; to an assignment. All this function really does is determine when -;;; a function with more than one call can still be combined with the -;;; calling function's environment. We can convert when: +;;; This is called when we believe it might make sense to convert +;;; CLAMBDA to an assignment. All this function really does is +;;; determine when a function with more than one call can still be +;;; combined with the calling function's environment. We can convert +;;; when: ;;; -- The function is a normal, non-entry function, and ;;; -- Except for one call, all calls must be tail recursive calls ;;; in the called function (i.e. are self-recursive tail calls) @@ -958,26 +1115,31 @@ ;;; calls as long as they all return to the same place (i.e. have the ;;; same conceptual continuation.) A special case of this would be ;;; when all of the outside calls are tail recursive. -(defun maybe-convert-to-assignment (fun) - (declare (type clambda fun)) - (when (and (not (functional-kind fun)) - (not (functional-entry-function fun))) - (let ((non-tail nil) - (call-fun nil)) - (when (and (dolist (ref (leaf-refs fun) t) - (let ((dest (continuation-dest (node-cont ref)))) - (when (block-delete-p (node-block dest)) (return nil)) +(defun maybe-convert-to-assignment (clambda) + (declare (type clambda clambda)) + (when (and (not (functional-kind clambda)) + (not (functional-entry-fun clambda))) + (let ((outside-non-tail-call nil) + (outside-call nil)) + (when (and (dolist (ref (leaf-refs clambda) t) + (let ((dest (lvar-dest (node-lvar ref)))) + (when (or (not dest) + (block-delete-p (node-block dest))) + (return nil)) (let ((home (node-home-lambda ref))) - (unless (eq home fun) - (when call-fun (return nil)) - (setq call-fun home)) + (unless (eq home clambda) + (when outside-call + (return nil)) + (setq outside-call dest)) (unless (node-tail-p dest) - (when (or non-tail (eq home fun)) (return nil)) - (setq non-tail dest))))) - (ok-initial-convert-p fun)) - (setf (functional-kind fun) :assignment) - (let-convert fun (or non-tail - (continuation-dest - (node-cont (first (leaf-refs fun)))))) - (when non-tail (reoptimize-call non-tail)) - t)))) + (when (or outside-non-tail-call (eq home clambda)) + (return nil)) + (setq outside-non-tail-call dest))))) + (ok-initial-convert-p clambda)) + (cond (outside-call (setf (functional-kind clambda) :assignment) + (let-convert clambda outside-call) + (when outside-non-tail-call + (reoptimize-call outside-non-tail-call)) + t) + (t (delete-lambda clambda) + nil))))))