X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Flocall.lisp;h=d796d01276a43ba194b2905987847f241638258b;hb=34dd23563d2f5cf05c72b971da0d0b065a09bf2a;hp=ac1f0e0b505b1432bc40bf8e811a5d814ef574bb;hpb=80304981972c91c1b3f3fca75f36dacf1fecf307;p=sbcl.git diff --git a/src/compiler/locall.lisp b/src/compiler/locall.lisp index ac1f0e0..d796d01 100644 --- a/src/compiler/locall.lisp +++ b/src/compiler/locall.lisp @@ -177,7 +177,7 @@ ;;; discover an XEP after the initial local call analyze pass. (defun make-xep (fun) (declare (type functional fun)) - (aver (not (functional-entry-fun fun))) + (aver (null (functional-entry-fun fun))) (with-ir1-environment-from-node (lambda-bind (main-entry fun)) (let ((res (ir1-convert-lambda (make-xep-lambda-expression fun) :debug-name (debug-namify @@ -248,69 +248,59 @@ (values)) -;;; We examine all NEW-FUNS in COMPONENT, attempting to convert calls -;;; into local calls when it is legal. We also attempt to convert each -;;; LAMBDA to a LET. LET conversion is also triggered by deletion of a -;;; function reference, but functions that start out eligible for -;;; conversion must be noticed sometime. +;;; We examine all NEW-FUNCTIONALS in COMPONENT, attempting to convert +;;; calls into local calls when it is legal. We also attempt to +;;; convert each LAMBDA to a LET. LET conversion is also triggered by +;;; deletion of a function reference, but functions that start out +;;; eligible for conversion must be noticed sometime. ;;; ;;; Note that there is a lot of action going on behind the scenes ;;; here, triggered by reference deletion. In particular, the ;;; COMPONENT-LAMBDAS are being hacked to remove newly deleted and LET ;;; converted LAMBDAs, so it is important that the LAMBDA is added to -;;; the COMPONENT-LAMBDAS when it is. Also, the COMPONENT-NEW-FUNS may -;;; contain all sorts of drivel, since it is not updated when we -;;; delete functions, etc. Only COMPONENT-LAMBDAS is updated. +;;; the COMPONENT-LAMBDAS when it is. Also, the +;;; COMPONENT-NEW-FUNCTIONALS may contain all sorts of drivel, since +;;; it is not updated when we delete functions, etc. Only +;;; COMPONENT-LAMBDAS is updated. ;;; -;;; COMPONENT-REANALYZE-FUNS is treated similarly to -;;; NEW-FUNS, but we don't add lambdas to the LAMBDAS. +;;; COMPONENT-REANALYZE-FUNCTIONALS is treated similarly to +;;; COMPONENT-NEW-FUNCTIONALS, but we don't add lambdas to the +;;; LAMBDAS. (defun locall-analyze-component (component) (declare (type component component)) (aver-live-component component) (loop - (let* ((new-fun (pop (component-new-funs component))) - (fun (or new-fun (pop (component-reanalyze-funs component))))) - (unless fun (return)) - (let ((kind (functional-kind fun))) - (cond ((member kind '(:deleted :let :mv-let :assignment))) - ((and (null (leaf-refs fun)) (eq kind nil) - (not (functional-entry-fun fun))) - (delete-functional fun)) + (let* ((new-functional (pop (component-new-functionals component))) + (functional (or new-functional + (pop (component-reanalyze-functionals component))))) + (unless functional + (return)) + (let ((kind (functional-kind functional))) + (cond ((or (functional-somewhat-letlike-p functional) + (eql kind :deleted)) + (values)) ; nothing to do + ((and (null (leaf-refs functional)) (eq kind nil) + (not (functional-entry-fun functional))) + (delete-functional functional)) (t - ;; Fix/check FUN's relationship to COMPONENT-LAMDBAS. - (cond ((not (lambda-p fun)) - ;; Since FUN isn't a LAMBDA, this doesn't apply: no-op. + ;; Fix/check FUNCTIONAL's relationship to COMPONENT-LAMDBAS. + (cond ((not (lambda-p functional)) + ;; Since FUNCTIONAL isn't a LAMBDA, this doesn't + ;; apply: no-op. (values)) - (new-fun ; FUN came from NEW-FUNS, hence is new. - ;; FUN becomes part of COMPONENT-LAMBDAS now. - (aver (not (member fun (component-lambdas component)))) - (push fun (component-lambdas component))) - ;; FIXME: Maybe we don't need this clause? - ;; The only time I really thought I needed it - ;; was bug 138, and adding this clause didn't - ;; fix bug 138 but instead caused all sorts - ;; of other things to fail downstream... - #| - ((eql (lambda-inlinep fun) :inline) - ;; FUNs marked :INLINE are sometimes in - ;; COMPONENT-LAMBDAS and sometimes not. I (WHN - ;; 2002-01-01) haven't figured this one out yet, - ;; so don't assert anything. - ;; - ;; (One possibility: LAMBDAs to represent the - ;; inline expansions of things which are defined - ;; elsewhere might not be in COMPONENT-LAMBDAS, - ;; which LAMBDAs to represent the inline - ;; expansions of local functions might in - ;; COMPONENT-LAMBDAS?) - (values)) - |# - (t ; FUN is old. - ;; FUN should be in COMPONENT-LAMBDAS already. - (aver (member fun (component-lambdas component))))) - (locall-analyze-fun-1 fun) - (when (lambda-p fun) - (maybe-let-convert fun))))))) + (new-functional ; FUNCTIONAL came from + ; NEW-FUNCTIONALS, hence is new. + ;; FUNCTIONAL becomes part of COMPONENT-LAMBDAS now. + (aver (not (member functional + (component-lambdas component)))) + (push functional (component-lambdas component))) + (t ; FUNCTIONAL is old. + ;; FUNCTIONAL should be in COMPONENT-LAMBDAS already. + (aver (member functional (component-lambdas + component))))) + (locall-analyze-fun-1 functional) + (when (lambda-p functional) + (maybe-let-convert functional))))))) (values)) (defun locall-analyze-clambdas-until-done (clambdas) @@ -323,7 +313,7 @@ ;; COMPONENT is the only one here. Let's make that explicit. (aver (= 1 (length (functional-components clambda)))) (aver (eql component (first (functional-components clambda)))) - (when (component-new-funs component) + (when (component-new-functionals component) (setf did-something t) (locall-analyze-component component)))) (unless did-something @@ -334,36 +324,38 @@ ;;; to be in an infinite recursive loop, then change the reference to ;;; reference a fresh copy. We return whichever function we decide to ;;; reference. -(defun maybe-expand-local-inline (fun ref call) +(defun maybe-expand-local-inline (original-functional ref call) (if (and (policy call - (and (>= speed space) (>= speed compilation-speed))) + (and (>= speed space) + (>= speed compilation-speed))) (not (eq (functional-kind (node-home-lambda call)) :external)) (inline-expansion-ok call)) - (with-ir1-environment-from-node call - (let* ((*lexenv* (functional-lexenv fun)) - (won nil) - (res (catch 'local-call-lossage - (prog1 - (ir1-convert-lambda - (functional-inline-expansion fun) - :debug-name (debug-namify "local inline ~A" - (leaf-debug-name fun))) - (setq won t))))) - (cond (won - (change-ref-leaf ref res) - res) - (t - (let ((*compiler-error-context* call)) - (compiler-note "couldn't inline expand because expansion ~ - calls this LET-converted local function:~ - ~% ~S" - (leaf-debug-name res))) - fun)))) - fun)) + (multiple-value-bind (losing-local-functional converted-lambda) + (catch 'locall-already-let-converted + (with-ir1-environment-from-node call + (let ((*lexenv* (functional-lexenv original-functional))) + (values nil + (ir1-convert-lambda + (functional-inline-expansion original-functional) + :debug-name (debug-namify + "local inline ~A" + (leaf-debug-name + original-functional))))))) + (cond (losing-local-functional + (let ((*compiler-error-context* call)) + (compiler-note "couldn't inline expand because expansion ~ + calls this LET-converted local function:~ + ~% ~S" + (leaf-debug-name losing-local-functional))) + original-functional) + (t + (change-ref-leaf ref converted-lambda) + converted-lambda))) + original-functional)) ;;; Dispatch to the appropriate function to attempt to convert a call. ;;; REF must be a reference to a FUNCTIONAL. This is called in IR1 -;;; optimize as well as in local call analysis. If the call is is +;;; optimization as well as in local call analysis. If the call is is ;;; already :LOCAL, we do nothing. If the call is already scheduled ;;; for deletion, also do nothing (in addition to saving time, this ;;; also avoids some problems with optimizing collections of functions @@ -697,9 +689,9 @@ (join-components component clambda-component))) (let ((*current-component* component)) (node-ends-block call)) - ;; FIXME: Use PROPER-LIST-OF-LENGTH-P here, and look for other + ;; FIXME: Use DESTRUCTURING-BIND here, and grep for other ;; uses of '=.*length' which could also be converted to use - ;; PROPER-LIST-OF-LENGTH-P. + ;; DESTRUCTURING-BIND or PROPER-LIST-OF-LENGTH-P. (aver (= (length (block-succ call-block)) 1)) (let ((next-block (first (block-succ call-block)))) (unlink-blocks call-block next-block) @@ -1061,10 +1053,11 @@ (link-blocks block (lambda-block fun)) (values t (maybe-convert-to-assignment fun)))))) -;;; This is called when we believe it might make sense to convert Fun -;;; to an assignment. All this function really does is determine when -;;; a function with more than one call can still be combined with the -;;; calling function's environment. We can convert when: +;;; This is called when we believe it might make sense to convert +;;; CLAMBDA to an assignment. All this function really does is +;;; determine when a function with more than one call can still be +;;; combined with the calling function's environment. We can convert +;;; when: ;;; -- The function is a normal, non-entry function, and ;;; -- Except for one call, all calls must be tail recursive calls ;;; in the called function (i.e. are self-recursive tail calls) @@ -1081,28 +1074,32 @@ ;;; calls as long as they all return to the same place (i.e. have the ;;; same conceptual continuation.) A special case of this would be ;;; when all of the outside calls are tail recursive. -(defun maybe-convert-to-assignment (fun) - (declare (type clambda fun)) - (when (and (not (functional-kind fun)) - (not (functional-entry-fun fun))) +(defun maybe-convert-to-assignment (clambda) + (declare (type clambda clambda)) + (when (and (not (functional-kind clambda)) + (not (functional-entry-fun clambda))) (let ((non-tail nil) (call-fun nil)) - (when (and (dolist (ref (leaf-refs fun) t) + (when (and (dolist (ref (leaf-refs clambda) t) (let ((dest (continuation-dest (node-cont ref)))) (when (or (not dest) (block-delete-p (node-block dest))) (return nil)) (let ((home (node-home-lambda ref))) - (unless (eq home fun) - (when call-fun (return nil)) + (unless (eq home clambda) + (when call-fun + (return nil)) (setq call-fun home)) (unless (node-tail-p dest) - (when (or non-tail (eq home fun)) (return nil)) + (when (or non-tail (eq home clambda)) + (return nil)) (setq non-tail dest))))) - (ok-initial-convert-p fun)) - (setf (functional-kind fun) :assignment) - (let-convert fun (or non-tail - (continuation-dest - (node-cont (first (leaf-refs fun)))))) - (when non-tail (reoptimize-call non-tail)) + (ok-initial-convert-p clambda)) + (setf (functional-kind clambda) :assignment) + (let-convert clambda + (or non-tail + (continuation-dest + (node-cont (first (leaf-refs clambda)))))) + (when non-tail + (reoptimize-call non-tail)) t))))