X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fsrctran.lisp;h=0d22154584167da326e779bc29f8d7c2960c4179;hb=1d68d81c3022715f83faeff6ccc9836975783462;hp=2fc68a9efb792b24259101a1c65392f7ac0dae25;hpb=0e623338468daedbdd5415b4ab29a5e2e03883f7;p=sbcl.git diff --git a/src/compiler/srctran.lisp b/src/compiler/srctran.lisp index 2fc68a9..0d22154 100644 --- a/src/compiler/srctran.lisp +++ b/src/compiler/srctran.lisp @@ -134,6 +134,11 @@ (1 `(cons ,(first args) nil)) (t (values nil t)))) +(defoptimizer (list derive-type) ((&rest args) node) + (if args + (specifier-type 'cons) + (specifier-type 'null))) + ;;; And similarly for LIST*. (define-source-transform list* (arg &rest others) (cond ((not others) arg) @@ -145,6 +150,75 @@ (specifier-type 'cons) (lvar-type arg))) +;;; + +(define-source-transform nconc (&rest args) + (case (length args) + (0 ()) + (1 (car args)) + (t (values nil t)))) + +;;; (append nil nil nil fixnum) => fixnum +;;; (append x x cons x x) => cons +;;; (append x x x x list) => list +;;; (append x x x x sequence) => sequence +;;; (append fixnum x ...) => nil +(defun derive-append-type (args) + (cond ((not args) + (specifier-type 'null)) + (t + (let ((cons-type (specifier-type 'cons)) + (null-type (specifier-type 'null)) + (list-type (specifier-type 'list)) + (last (lvar-type (car (last args))))) + (or + ;; Check that all but the last arguments are lists first + (loop for (arg next) on args + while next + do + (let ((lvar-type (lvar-type arg))) + (unless (or (csubtypep list-type lvar-type) + (csubtypep lvar-type list-type)) + (assert-lvar-type arg list-type + (lexenv-policy *lexenv*)) + (return *empty-type*)))) + (loop with all-nil = t + for (arg next) on args + for lvar-type = (lvar-type arg) + while next + do + (cond + ;; Cons in the middle guarantees the result will be a cons + ((csubtypep lvar-type cons-type) + (return cons-type)) + ;; If all but the last are NIL the type of the last arg + ;; can be used + ((csubtypep lvar-type null-type)) + (all-nil + (setf all-nil nil))) + finally + (return + (cond (all-nil + last) + ((csubtypep last cons-type) + cons-type) + ((csubtypep last list-type) + list-type) + ;; If the last is SEQUENCE (or similar) it'll + ;; be either that sequence or a cons, which is a + ;; sequence + ((csubtypep list-type last) + last))))))))) + +(defoptimizer (append derive-type) ((&rest args)) + (derive-append-type args)) + +(defoptimizer (sb!impl::append2 derive-type) ((&rest args)) + (derive-append-type args)) + +(defoptimizer (nconc derive-type) ((&rest args)) + (derive-append-type args)) + ;;; Translate RPLACx to LET and SETF. (define-source-transform rplaca (x y) (once-only ((n-x x)) @@ -236,8 +310,24 @@ ;;; on the argument types), but we make it a regular transform so that ;;; the VM has a chance to see the bare LOGTEST and potentiall choose ;;; to implement it differently. --njf, 06-02-2006 -(deftransform logtest ((x y) * *) - `(not (zerop (logand x y)))) +;;; +;;; Other transforms may be useful even with direct LOGTEST VOPs; let +;;; them fire (including the type-directed constant folding below), but +;;; disable the inlining rewrite in such cases. -- PK, 2013-05-20 +(deftransform logtest ((x y) * * :node node) + (let ((type (two-arg-derive-type x y + #'logand-derive-type-aux + #'logand))) + (multiple-value-bind (typep definitely) + (ctypep 0 type) + (cond ((and (not typep) definitely) + t) + ((type= type (specifier-type '(eql 0))) + nil) + ((neq :default (combination-implementation-style node)) + (give-up-ir1-transform)) + (t + `(not (zerop (logand x y)))))))) (deftransform logbitp ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits) @@ -2393,305 +2483,6 @@ (defoptimizer (random derive-type) ((bound &optional state)) (one-arg-derive-type bound #'random-derive-type-aux nil)) -;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends - -;;; Return the maximum number of bits an integer of the supplied type -;;; can take up, or NIL if it is unbounded. The second (third) value -;;; is T if the integer can be positive (negative) and NIL if not. -;;; Zero counts as positive. -(defun integer-type-length (type) - (if (numeric-type-p type) - (let ((min (numeric-type-low type)) - (max (numeric-type-high type))) - (values (and min max (max (integer-length min) (integer-length max))) - (or (null max) (not (minusp max))) - (or (null min) (minusp min)))) - (values nil t t))) - -;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an -;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND. -;;; Credit also goes to Raymond Toy for writing (and debugging!) similar -;;; versions in CMUCL, from which these functions copy liberally. - -(defun logand-derive-unsigned-low-bound (x y) - (let ((a (numeric-type-low x)) - (b (numeric-type-high x)) - (c (numeric-type-low y)) - (d (numeric-type-high y))) - (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1) - until (zerop m) do - (unless (zerop (logand m (lognot a) (lognot c))) - (let ((temp (logandc2 (logior a m) (1- m)))) - (when (<= temp b) - (setf a temp) - (loop-finish)) - (setf temp (logandc2 (logior c m) (1- m))) - (when (<= temp d) - (setf c temp) - (loop-finish)))) - finally (return (logand a c))))) - -(defun logand-derive-unsigned-high-bound (x y) - (let ((a (numeric-type-low x)) - (b (numeric-type-high x)) - (c (numeric-type-low y)) - (d (numeric-type-high y))) - (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1) - until (zerop m) do - (cond - ((not (zerop (logand b (lognot d) m))) - (let ((temp (logior (logandc2 b m) (1- m)))) - (when (>= temp a) - (setf b temp) - (loop-finish)))) - ((not (zerop (logand (lognot b) d m))) - (let ((temp (logior (logandc2 d m) (1- m)))) - (when (>= temp c) - (setf d temp) - (loop-finish))))) - finally (return (logand b d))))) - -(defun logand-derive-type-aux (x y &optional same-leaf) - (when same-leaf - (return-from logand-derive-type-aux x)) - (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) - (declare (ignore x-pos)) - (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) - (declare (ignore y-pos)) - (if (not x-neg) - ;; X must be positive. - (if (not y-neg) - ;; They must both be positive. - (cond ((and (null x-len) (null y-len)) - (specifier-type 'unsigned-byte)) - ((null x-len) - (specifier-type `(unsigned-byte* ,y-len))) - ((null y-len) - (specifier-type `(unsigned-byte* ,x-len))) - (t - (let ((low (logand-derive-unsigned-low-bound x y)) - (high (logand-derive-unsigned-high-bound x y))) - (specifier-type `(integer ,low ,high))))) - ;; X is positive, but Y might be negative. - (cond ((null x-len) - (specifier-type 'unsigned-byte)) - (t - (specifier-type `(unsigned-byte* ,x-len))))) - ;; X might be negative. - (if (not y-neg) - ;; Y must be positive. - (cond ((null y-len) - (specifier-type 'unsigned-byte)) - (t (specifier-type `(unsigned-byte* ,y-len)))) - ;; Either might be negative. - (if (and x-len y-len) - ;; The result is bounded. - (specifier-type `(signed-byte ,(1+ (max x-len y-len)))) - ;; We can't tell squat about the result. - (specifier-type 'integer))))))) - -(defun logior-derive-unsigned-low-bound (x y) - (let ((a (numeric-type-low x)) - (b (numeric-type-high x)) - (c (numeric-type-low y)) - (d (numeric-type-high y))) - (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1) - until (zerop m) do - (cond - ((not (zerop (logandc2 (logand c m) a))) - (let ((temp (logand (logior a m) (1+ (lognot m))))) - (when (<= temp b) - (setf a temp) - (loop-finish)))) - ((not (zerop (logandc2 (logand a m) c))) - (let ((temp (logand (logior c m) (1+ (lognot m))))) - (when (<= temp d) - (setf c temp) - (loop-finish))))) - finally (return (logior a c))))) - -(defun logior-derive-unsigned-high-bound (x y) - (let ((a (numeric-type-low x)) - (b (numeric-type-high x)) - (c (numeric-type-low y)) - (d (numeric-type-high y))) - (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1) - until (zerop m) do - (unless (zerop (logand b d m)) - (let ((temp (logior (- b m) (1- m)))) - (when (>= temp a) - (setf b temp) - (loop-finish)) - (setf temp (logior (- d m) (1- m))) - (when (>= temp c) - (setf d temp) - (loop-finish)))) - finally (return (logior b d))))) - -(defun logior-derive-type-aux (x y &optional same-leaf) - (when same-leaf - (return-from logior-derive-type-aux x)) - (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) - (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) - (cond - ((and (not x-neg) (not y-neg)) - ;; Both are positive. - (if (and x-len y-len) - (let ((low (logior-derive-unsigned-low-bound x y)) - (high (logior-derive-unsigned-high-bound x y))) - (specifier-type `(integer ,low ,high))) - (specifier-type `(unsigned-byte* *)))) - ((not x-pos) - ;; X must be negative. - (if (not y-pos) - ;; Both are negative. The result is going to be negative - ;; and be the same length or shorter than the smaller. - (if (and x-len y-len) - ;; It's bounded. - (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1)) - ;; It's unbounded. - (specifier-type '(integer * -1))) - ;; X is negative, but we don't know about Y. The result - ;; will be negative, but no more negative than X. - (specifier-type - `(integer ,(or (numeric-type-low x) '*) - -1)))) - (t - ;; X might be either positive or negative. - (if (not y-pos) - ;; But Y is negative. The result will be negative. - (specifier-type - `(integer ,(or (numeric-type-low y) '*) - -1)) - ;; We don't know squat about either. It won't get any bigger. - (if (and x-len y-len) - ;; Bounded. - (specifier-type `(signed-byte ,(1+ (max x-len y-len)))) - ;; Unbounded. - (specifier-type 'integer)))))))) - -(defun logxor-derive-unsigned-low-bound (x y) - (let ((a (numeric-type-low x)) - (b (numeric-type-high x)) - (c (numeric-type-low y)) - (d (numeric-type-high y))) - (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1) - until (zerop m) do - (cond - ((not (zerop (logandc2 (logand c m) a))) - (let ((temp (logand (logior a m) - (1+ (lognot m))))) - (when (<= temp b) - (setf a temp)))) - ((not (zerop (logandc2 (logand a m) c))) - (let ((temp (logand (logior c m) - (1+ (lognot m))))) - (when (<= temp d) - (setf c temp))))) - finally (return (logxor a c))))) - -(defun logxor-derive-unsigned-high-bound (x y) - (let ((a (numeric-type-low x)) - (b (numeric-type-high x)) - (c (numeric-type-low y)) - (d (numeric-type-high y))) - (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1) - until (zerop m) do - (unless (zerop (logand b d m)) - (let ((temp (logior (- b m) (1- m)))) - (cond - ((>= temp a) (setf b temp)) - (t (let ((temp (logior (- d m) (1- m)))) - (when (>= temp c) - (setf d temp))))))) - finally (return (logxor b d))))) - -(defun logxor-derive-type-aux (x y &optional same-leaf) - (when same-leaf - (return-from logxor-derive-type-aux (specifier-type '(eql 0)))) - (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) - (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) - (cond - ((and (not x-neg) (not y-neg)) - ;; Both are positive - (if (and x-len y-len) - (let ((low (logxor-derive-unsigned-low-bound x y)) - (high (logxor-derive-unsigned-high-bound x y))) - (specifier-type `(integer ,low ,high))) - (specifier-type '(unsigned-byte* *)))) - ((and (not x-pos) (not y-pos)) - ;; Both are negative. The result will be positive, and as long - ;; as the longer. - (specifier-type `(unsigned-byte* ,(if (and x-len y-len) - (max x-len y-len) - '*)))) - ((or (and (not x-pos) (not y-neg)) - (and (not y-pos) (not x-neg))) - ;; Either X is negative and Y is positive or vice-versa. The - ;; result will be negative. - (specifier-type `(integer ,(if (and x-len y-len) - (ash -1 (max x-len y-len)) - '*) - -1))) - ;; We can't tell what the sign of the result is going to be. - ;; All we know is that we don't create new bits. - ((and x-len y-len) - (specifier-type `(signed-byte ,(1+ (max x-len y-len))))) - (t - (specifier-type 'integer)))))) - -(macrolet ((deffrob (logfun) - (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX"))) - `(defoptimizer (,logfun derive-type) ((x y)) - (two-arg-derive-type x y #',fun-aux #',logfun))))) - (deffrob logand) - (deffrob logior) - (deffrob logxor)) - -(defoptimizer (logeqv derive-type) ((x y)) - (two-arg-derive-type x y (lambda (x y same-leaf) - (lognot-derive-type-aux - (logxor-derive-type-aux x y same-leaf))) - #'logeqv)) -(defoptimizer (lognand derive-type) ((x y)) - (two-arg-derive-type x y (lambda (x y same-leaf) - (lognot-derive-type-aux - (logand-derive-type-aux x y same-leaf))) - #'lognand)) -(defoptimizer (lognor derive-type) ((x y)) - (two-arg-derive-type x y (lambda (x y same-leaf) - (lognot-derive-type-aux - (logior-derive-type-aux x y same-leaf))) - #'lognor)) -(defoptimizer (logandc1 derive-type) ((x y)) - (two-arg-derive-type x y (lambda (x y same-leaf) - (if same-leaf - (specifier-type '(eql 0)) - (logand-derive-type-aux - (lognot-derive-type-aux x) y nil))) - #'logandc1)) -(defoptimizer (logandc2 derive-type) ((x y)) - (two-arg-derive-type x y (lambda (x y same-leaf) - (if same-leaf - (specifier-type '(eql 0)) - (logand-derive-type-aux - x (lognot-derive-type-aux y) nil))) - #'logandc2)) -(defoptimizer (logorc1 derive-type) ((x y)) - (two-arg-derive-type x y (lambda (x y same-leaf) - (if same-leaf - (specifier-type '(eql -1)) - (logior-derive-type-aux - (lognot-derive-type-aux x) y nil))) - #'logorc1)) -(defoptimizer (logorc2 derive-type) ((x y)) - (two-arg-derive-type x y (lambda (x y same-leaf) - (if same-leaf - (specifier-type '(eql -1)) - (logior-derive-type-aux - x (lognot-derive-type-aux y) nil))) - #'logorc2)) - ;;;; miscellaneous derive-type methods (defoptimizer (integer-length derive-type) ((x)) @@ -3051,50 +2842,79 @@ (setf (block-reoptimize (node-block node)) t) (reoptimize-component (node-component node) :maybe)) (cut-node (node &aux did-something) - (when (and (not (block-delete-p (node-block node))) - (ref-p node) - (constant-p (ref-leaf node))) - (let* ((constant-value (constant-value (ref-leaf node))) - (new-value (if signedp - (mask-signed-field width constant-value) - (ldb (byte width 0) constant-value)))) - (unless (= constant-value new-value) - (change-ref-leaf node (make-constant new-value)) - (setf (lvar-%derived-type (node-lvar node)) (make-values-type :required (list (ctype-of new-value)))) - (setf (block-reoptimize (node-block node)) t) - (reoptimize-component (node-component node) :maybe) - (return-from cut-node t)))) - (when (and (not (block-delete-p (node-block node))) - (combination-p node) - (eq (basic-combination-kind node) :known)) - (let* ((fun-ref (lvar-use (combination-fun node))) - (fun-name (leaf-source-name (ref-leaf fun-ref))) - (modular-fun (find-modular-version fun-name kind signedp width))) - (when (and modular-fun - (not (and (eq fun-name 'logand) - (csubtypep - (single-value-type (node-derived-type node)) - type)))) - (binding* ((name (etypecase modular-fun - ((eql :good) fun-name) - (modular-fun-info - (modular-fun-info-name modular-fun)) - (function - (funcall modular-fun node width))) - :exit-if-null)) - (unless (eql modular-fun :good) - (setq did-something t) - (change-ref-leaf - fun-ref - (find-free-fun name "in a strange place")) - (setf (combination-kind node) :full)) - (unless (functionp modular-fun) - (dolist (arg (basic-combination-args node)) - (when (cut-lvar arg) - (setq did-something t)))) - (when did-something - (reoptimize-node node name)) - did-something))))) + (when (block-delete-p (node-block node)) + (return-from cut-node)) + (typecase node + (ref + (typecase (ref-leaf node) + (constant + (let* ((constant-value (constant-value (ref-leaf node))) + (new-value (if signedp + (mask-signed-field width constant-value) + (ldb (byte width 0) constant-value)))) + (unless (= constant-value new-value) + (change-ref-leaf node (make-constant new-value)) + (let ((lvar (node-lvar node))) + (setf (lvar-%derived-type lvar) + (and (lvar-has-single-use-p lvar) + (make-values-type :required (list (ctype-of new-value)))))) + (setf (block-reoptimize (node-block node)) t) + (reoptimize-component (node-component node) :maybe) + t))) + (lambda-var + (binding* ((dest (lvar-dest lvar) :exit-if-null) + (nil (combination-p dest) :exit-if-null) + (name (lvar-fun-name (combination-fun dest)))) + ;; we're about to insert an m-s-f/logand between a ref to + ;; a variable and another m-s-f/logand. No point in doing + ;; that; the parent m-s-f/logand was already cut to width + ;; anyway. + (unless (or (cond (signedp + (and (eql name 'mask-signed-field) + (eql lvar (second + (combination-args + dest))))) + (t + (eql name 'logand))) + (csubtypep (lvar-type lvar) type)) + (filter-lvar lvar + (if signedp + `(mask-signed-field ,width 'dummy) + `(logand 'dummy ,(ldb (byte width 0) -1)))) + (setf (block-reoptimize (node-block node)) t) + (reoptimize-component (node-component node) :maybe) + t))))) + (combination + (when (eq (basic-combination-kind node) :known) + (let* ((fun-ref (lvar-use (combination-fun node))) + (fun-name (lvar-fun-name (combination-fun node))) + (modular-fun (find-modular-version fun-name kind + signedp width))) + (when (and modular-fun + (not (and (eq fun-name 'logand) + (csubtypep + (single-value-type (node-derived-type node)) + type)))) + (binding* ((name (etypecase modular-fun + ((eql :good) fun-name) + (modular-fun-info + (modular-fun-info-name modular-fun)) + (function + (funcall modular-fun node width))) + :exit-if-null)) + (unless (eql modular-fun :good) + (setq did-something t) + (change-ref-leaf + fun-ref + (find-free-fun name "in a strange place")) + (setf (combination-kind node) :full)) + (unless (functionp modular-fun) + (dolist (arg (basic-combination-args node)) + (when (cut-lvar arg) + (setq did-something t)))) + (when did-something + (reoptimize-node node name)) + did-something))))))) (cut-lvar (lvar &aux did-something) (do-uses (node lvar) (when (cut-node node) @@ -3461,6 +3281,60 @@ (give-up-ir1-transform)) 'x)) +;;; Pick off easy association opportunities for constant folding. +;;; More complicated stuff that also depends on commutativity +;;; (e.g. (f (f x k1) (f y k2)) => (f (f x y) (f k1 k2))) should +;;; probably be handled with a more general tree-rewriting pass. +(macrolet ((def (operator &key (type 'integer) (folded operator)) + `(deftransform ,operator ((x z) (,type (constant-arg ,type))) + ,(format nil "associate ~A/~A of constants" + operator folded) + (binding* ((node (if (lvar-has-single-use-p x) + (lvar-use x) + (give-up-ir1-transform))) + (nil (or (and (combination-p node) + (eq (lvar-fun-name + (combination-fun node)) + ',folded)) + (give-up-ir1-transform))) + (y (second (combination-args node))) + (nil (or (constant-lvar-p y) + (give-up-ir1-transform))) + (y (lvar-value y))) + (unless (typep y ',type) + (give-up-ir1-transform)) + (splice-fun-args x ',folded 2) + `(lambda (x y z) + (declare (ignore y z)) + (,',operator x ',(,folded y (lvar-value z)))))))) + (def logand) + (def logior) + (def logxor) + (def logtest :folded logand) + (def + :type rational) + (def * :type rational)) + +(deftransform mask-signed-field ((width x) ((constant-arg unsigned-byte) *)) + "Fold mask-signed-field/mask-signed-field of constant width" + (binding* ((node (if (lvar-has-single-use-p x) + (lvar-use x) + (give-up-ir1-transform))) + (nil (or (combination-p node) + (give-up-ir1-transform))) + (nil (or (eq (lvar-fun-name (combination-fun node)) + 'mask-signed-field) + (give-up-ir1-transform))) + (x-width (first (combination-args node))) + (nil (or (constant-lvar-p x-width) + (give-up-ir1-transform))) + (x-width (lvar-value x-width))) + (unless (typep x-width 'unsigned-byte) + (give-up-ir1-transform)) + (splice-fun-args x 'mask-signed-field 2) + `(lambda (width x-width x) + (declare (ignore width x-width)) + (mask-signed-field ,(min (lvar-value width) x-width) x)))) + ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and ;;; (* 0 -4.0) is -0.0. (deftransform - ((x y) ((constant-arg (member 0)) rational) *) @@ -3712,10 +3586,10 @@ ((and (csubtypep x-type char-type) (csubtypep y-type char-type)) '(char= x y)) - ((or (fixnum-type-p x-type) (fixnum-type-p y-type)) - (commutative-arg-swap node)) ((or (eq-comparable-type-p x-type) (eq-comparable-type-p y-type)) - '(eq x y)) + (if (and (constant-lvar-p x) (not (constant-lvar-p y))) + '(eq y x) + '(eq x y))) ((and (not (constant-lvar-p y)) (or (constant-lvar-p x) (and (csubtypep x-type y-type) @@ -4152,10 +4026,12 @@ `(car (nthcdr ,n ,list))))) (define-source-transform elt (seq n) - (multiple-value-bind (context count) (possible-rest-arg-context seq) - (if context - `(%rest-ref ,n ,seq ,context ,count) - (values nil t)))) + (if (policy *lexenv* (= safety 3)) + (values nil t) + (multiple-value-bind (context count) (possible-rest-arg-context seq) + (if context + `(%rest-ref ,n ,seq ,context ,count) + (values nil t))))) ;;; CAxR -> %REST-REF (defun source-transform-car (list nth)