X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fsrctran.lisp;h=1fcfe78b96fab202cbc405c2a4c294d31b81b170;hb=f8893c7c658bf9d9e0757c63e47af2fdea810f04;hp=95dfbab9c2f9e62a0d33a9d4473efc8e3a3c760e;hpb=071afc96281a1dac1938268b1cf35d7e92c7e2c0;p=sbcl.git diff --git a/src/compiler/srctran.lisp b/src/compiler/srctran.lisp index 95dfbab..1fcfe78 100644 --- a/src/compiler/srctran.lisp +++ b/src/compiler/srctran.lisp @@ -44,15 +44,15 @@ (deftransform complement ((fun) * * :node node) "open code" (multiple-value-bind (min max) - (fun-type-nargs (continuation-type fun)) + (fun-type-nargs (lvar-type fun)) (cond ((and min (eql min max)) (let ((dums (make-gensym-list min))) `#'(lambda ,dums (not (funcall fun ,@dums))))) - ((let* ((cont (node-cont node)) - (dest (continuation-dest cont))) - (and (combination-p dest) - (eq (combination-fun dest) cont))) + ((awhen (node-lvar node) + (let ((dest (lvar-dest it))) + (and (combination-p dest) + (eq (combination-fun dest) it)))) '#'(lambda (&rest args) (not (apply fun args)))) (t @@ -129,9 +129,9 @@ (deftransform nthcdr ((n l) (unsigned-byte t) * :node node) "convert NTHCDR to CAxxR" - (unless (constant-continuation-p n) + (unless (constant-lvar-p n) (give-up-ir1-transform)) - (let ((n (continuation-value n))) + (let ((n (lvar-value n))) (when (> n (if (policy node (and (= speed 3) (= space 0))) *extreme-nthcdr-open-code-limit* @@ -172,12 +172,6 @@ #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (deffrob ceiling)) -(define-source-transform lognand (x y) `(lognot (logand ,x ,y))) -(define-source-transform lognor (x y) `(lognot (logior ,x ,y))) -(define-source-transform logandc1 (x y) `(logand (lognot ,x) ,y)) -(define-source-transform logandc2 (x y) `(logand ,x (lognot ,y))) -(define-source-transform logorc1 (x y) `(logior (lognot ,x) ,y)) -(define-source-transform logorc2 (x y) `(logior ,x (lognot ,y))) (define-source-transform logtest (x y) `(not (zerop (logand ,x ,y)))) (deftransform logbitp @@ -249,7 +243,8 @@ (defun make-interval (&key low high) (labels ((normalize-bound (val) - (cond ((and (floatp val) + (cond #-sb-xc-host + ((and (floatp val) (float-infinity-p val)) ;; Handle infinities. nil) @@ -310,6 +305,23 @@ (make-interval :low (numeric-type-low x) :high (numeric-type-high x))) +(defun type-approximate-interval (type) + (declare (type ctype type)) + (let ((types (prepare-arg-for-derive-type type)) + (result nil)) + (dolist (type types) + (let ((type (if (member-type-p type) + (convert-member-type type) + type))) + (unless (numeric-type-p type) + (return-from type-approximate-interval nil)) + (let ((interval (numeric-type->interval type))) + (setq result + (if result + (interval-approximate-union result interval) + interval))))) + result)) + (defun copy-interval-limit (limit) (if (numberp limit) limit @@ -541,6 +553,16 @@ (make-interval :low (select-bound x-lo y-lo #'< #'>) :high (select-bound x-hi y-hi #'> #'<)))))) +;;; return the minimal interval, containing X and Y +(defun interval-approximate-union (x y) + (cond ((interval-merge-pair x y)) + ((interval-< x y) + (make-interval :low (copy-interval-limit (interval-low x)) + :high (copy-interval-limit (interval-high y)))) + (t + (make-interval :low (copy-interval-limit (interval-low y)) + :high (copy-interval-limit (interval-high x)))))) + ;;; basic arithmetic operations on intervals. We probably should do ;;; true interval arithmetic here, but it's complicated because we ;;; have float and integer types and bounds can be open or closed. @@ -728,36 +750,39 @@ ;;; a utility for defining derive-type methods of integer operations. If ;;; the types of both X and Y are integer types, then we compute a new ;;; integer type with bounds determined Fun when applied to X and Y. -;;; Otherwise, we use Numeric-Contagion. +;;; Otherwise, we use NUMERIC-CONTAGION. +(defun derive-integer-type-aux (x y fun) + (declare (type function fun)) + (if (and (numeric-type-p x) (numeric-type-p y) + (eq (numeric-type-class x) 'integer) + (eq (numeric-type-class y) 'integer) + (eq (numeric-type-complexp x) :real) + (eq (numeric-type-complexp y) :real)) + (multiple-value-bind (low high) (funcall fun x y) + (make-numeric-type :class 'integer + :complexp :real + :low low + :high high)) + (numeric-contagion x y))) + (defun derive-integer-type (x y fun) - (declare (type continuation x y) (type function fun)) - (let ((x (continuation-type x)) - (y (continuation-type y))) - (if (and (numeric-type-p x) (numeric-type-p y) - (eq (numeric-type-class x) 'integer) - (eq (numeric-type-class y) 'integer) - (eq (numeric-type-complexp x) :real) - (eq (numeric-type-complexp y) :real)) - (multiple-value-bind (low high) (funcall fun x y) - (make-numeric-type :class 'integer - :complexp :real - :low low - :high high)) - (numeric-contagion x y)))) + (declare (type lvar x y) (type function fun)) + (let ((x (lvar-type x)) + (y (lvar-type y))) + (derive-integer-type-aux x y fun))) ;;; simple utility to flatten a list (defun flatten-list (x) - (labels ((flatten-helper (x r);; 'r' is the stuff to the 'right'. - (cond ((null x) r) - ((atom x) - (cons x r)) - (t (flatten-helper (car x) - (flatten-helper (cdr x) r)))))) - (flatten-helper x nil))) - -;;; Take some type of continuation and massage it so that we get a -;;; list of the constituent types. If ARG is *EMPTY-TYPE*, return NIL -;;; to indicate failure. + (labels ((flatten-and-append (tree list) + (cond ((null tree) list) + ((atom tree) (cons tree list)) + (t (flatten-and-append + (car tree) (flatten-and-append (cdr tree) list)))))) + (flatten-and-append x nil))) + +;;; Take some type of lvar and massage it so that we get a list of the +;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate +;;; failure. (defun prepare-arg-for-derive-type (arg) (flet ((listify (arg) (typecase arg @@ -976,11 +1001,11 @@ ;;; This is used in defoptimizers for computing the resulting type of ;;; a function. ;;; -;;; Given the continuation ARG, derive the resulting type using the +;;; Given the lvar ARG, derive the resulting type using the ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some -;;; "atomic" continuation type like numeric-type or member-type -;;; (containing just one element). It should return the resulting -;;; type, which can be a list of types. +;;; "atomic" lvar type like numeric-type or member-type (containing +;;; just one element). It should return the resulting type, which can +;;; be a list of types. ;;; ;;; For the case of member types, if a MEMBER-FUN is given it is ;;; called to compute the result otherwise the member type is first @@ -989,7 +1014,7 @@ &optional (convert-type t)) (declare (type function derive-fun) (type (or null function) member-fun)) - (let ((arg-list (prepare-arg-for-derive-type (continuation-type arg)))) + (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg)))) (when arg-list (flet ((deriver (x) (typecase x @@ -997,10 +1022,9 @@ (if member-fun (with-float-traps-masked (:underflow :overflow :divide-by-zero) - (make-member-type - :members (list - (funcall member-fun - (first (member-type-members x)))))) + (specifier-type + `(eql ,(funcall member-fun + (first (member-type-members x)))))) ;; Otherwise convert to a numeric type. (let ((result-type-list (funcall derive-fun (convert-member-type x)))) @@ -1029,9 +1053,9 @@ ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two ;;; original args and a third which is T to indicate if the two args -;;; really represent the same continuation. This is useful for -;;; deriving the type of things like (* x x), which should always be -;;; positive. If we didn't do this, we wouldn't be able to tell. +;;; really represent the same lvar. This is useful for deriving the +;;; type of things like (* x x), which should always be positive. If +;;; we didn't do this, we wouldn't be able to tell. (defun two-arg-derive-type (arg1 arg2 derive-fun fun &optional (convert-type t)) (declare (type function derive-fun fun)) @@ -1039,17 +1063,18 @@ (cond ((and (member-type-p x) (member-type-p y)) (let* ((x (first (member-type-members x))) (y (first (member-type-members y))) - (result (with-float-traps-masked - (:underflow :overflow :divide-by-zero - :invalid) - (funcall fun x y)))) - (cond ((null result)) + (result (ignore-errors + (with-float-traps-masked + (:underflow :overflow :divide-by-zero + :invalid) + (funcall fun x y))))) + (cond ((null result) *empty-type*) ((and (floatp result) (float-nan-p result)) (make-numeric-type :class 'float :format (type-of result) :complexp :real)) (t - (make-member-type :members (list result)))))) + (specifier-type `(eql ,result)))))) ((and (member-type-p x) (numeric-type-p y)) (let* ((x (convert-member-type x)) (y (if convert-type (convert-numeric-type y) y)) @@ -1074,13 +1099,13 @@ (t *universal-type*)))) (let ((same-arg (same-leaf-ref-p arg1 arg2)) - (a1 (prepare-arg-for-derive-type (continuation-type arg1))) - (a2 (prepare-arg-for-derive-type (continuation-type arg2)))) + (a1 (prepare-arg-for-derive-type (lvar-type arg1))) + (a2 (prepare-arg-for-derive-type (lvar-type arg2)))) (when (and a1 a2) (let ((results nil)) (if same-arg - ;; Since the args are the same continuation, just run - ;; down the lists. + ;; Since the args are the same LVARs, just run down the + ;; lists. (dolist (x a1) (let ((result (deriver x x same-arg))) (if (listp result) @@ -1145,7 +1170,7 @@ nil)))))))) (defoptimizer (/ derive-type) ((x y)) - (numeric-contagion (continuation-type x) (continuation-type y))) + (numeric-contagion (lvar-type x) (lvar-type y))) ) ; PROGN @@ -1339,16 +1364,19 @@ (defoptimizer (%negate derive-type) ((num)) (derive-integer-type num num (frob -)))) +(defun lognot-derive-type-aux (int) + (derive-integer-type-aux int int + (lambda (type type2) + (declare (ignore type2)) + (let ((lo (numeric-type-low type)) + (hi (numeric-type-high type))) + (values (if hi (lognot hi) nil) + (if lo (lognot lo) nil) + (numeric-type-class type) + (numeric-type-format type)))))) + (defoptimizer (lognot derive-type) ((int)) - (derive-integer-type int int - (lambda (type type2) - (declare (ignore type2)) - (let ((lo (numeric-type-low type)) - (hi (numeric-type-high type))) - (values (if hi (lognot hi) nil) - (if lo (lognot lo) nil) - (numeric-type-class type) - (numeric-type-format type)))))) + (lognot-derive-type-aux (lvar-type int))) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (%negate derive-type) ((num)) @@ -1366,7 +1394,7 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (abs derive-type) ((num)) - (let ((type (continuation-type num))) + (let ((type (lvar-type num))) (if (and (numeric-type-p type) (eq (numeric-type-class type) 'integer) (eq (numeric-type-complexp type) :real)) @@ -1419,8 +1447,8 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (truncate derive-type) ((number divisor)) - (let ((number-type (continuation-type number)) - (divisor-type (continuation-type divisor)) + (let ((number-type (lvar-type number)) + (divisor-type (lvar-type divisor)) (integer-type (specifier-type 'integer))) (if (and (numeric-type-p number-type) (csubtypep number-type integer-type) @@ -2045,7 +2073,7 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (random derive-type) ((bound &optional state)) - (let ((type (continuation-type bound))) + (let ((type (lvar-type bound))) (when (numeric-type-p type) (let ((class (numeric-type-class type)) (high (numeric-type-high type)) @@ -2177,7 +2205,7 @@ '*)))) ((or (and (not x-pos) (not y-neg)) (and (not y-neg) (not y-pos))) - ;; Either X is negative and Y is positive of vice-versa. The + ;; Either X is negative and Y is positive or vice-versa. The ;; result will be negative. (specifier-type `(integer ,(if (and x-len y-len) (ash -1 (max x-len y-len)) @@ -2197,13 +2225,49 @@ (deffrob logand) (deffrob logior) (deffrob logxor)) + +;;; FIXME: could actually do stuff with SAME-LEAF +(defoptimizer (logeqv derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logxor-derive-type-aux x y same-leaf))) + #'logeqv)) +(defoptimizer (lognand derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logand-derive-type-aux x y same-leaf))) + #'lognand)) +(defoptimizer (lognor derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logior-derive-type-aux x y same-leaf))) + #'lognor)) +(defoptimizer (logandc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logand-derive-type-aux + (lognot-derive-type-aux x) y nil)) + #'logandc1)) +(defoptimizer (logandc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logand-derive-type-aux + x (lognot-derive-type-aux y) nil)) + #'logandc2)) +(defoptimizer (logorc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logior-derive-type-aux + (lognot-derive-type-aux x) y nil)) + #'logorc1)) +(defoptimizer (logorc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logior-derive-type-aux + x (lognot-derive-type-aux y) nil)) + #'logorc2)) ;;;; miscellaneous derive-type methods (defoptimizer (integer-length derive-type) ((x)) - (let ((x-type (continuation-type x))) - (when (and (numeric-type-p x-type) - (csubtypep x-type (specifier-type 'integer))) + (let ((x-type (lvar-type x))) + (when (numeric-type-p x-type) ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be ;; careful about LO or HI being NIL, though. Also, if 0 is @@ -2222,11 +2286,59 @@ (setf min-len 0)) (specifier-type `(integer ,(or min-len '*) ,(or max-len '*)))))))) +(defoptimizer (isqrt derive-type) ((x)) + (let ((x-type (lvar-type x))) + (when (numeric-type-p x-type) + (let* ((lo (numeric-type-low x-type)) + (hi (numeric-type-high x-type)) + (lo-res (if lo (isqrt lo) '*)) + (hi-res (if hi (isqrt hi) '*))) + (specifier-type `(integer ,lo-res ,hi-res)))))) + (defoptimizer (code-char derive-type) ((code)) (specifier-type 'base-char)) (defoptimizer (values derive-type) ((&rest values)) - (make-values-type :required (mapcar #'continuation-type values))) + (make-values-type :required (mapcar #'lvar-type values))) + +(defun signum-derive-type-aux (type) + (if (eq (numeric-type-complexp type) :complex) + (let* ((format (case (numeric-type-class type) + ((integer rational) 'single-float) + (t (numeric-type-format type)))) + (bound-format (or format 'float))) + (make-numeric-type :class 'float + :format format + :complexp :complex + :low (coerce -1 bound-format) + :high (coerce 1 bound-format))) + (let* ((interval (numeric-type->interval type)) + (range-info (interval-range-info interval)) + (contains-0-p (interval-contains-p 0 interval)) + (class (numeric-type-class type)) + (format (numeric-type-format type)) + (one (coerce 1 (or format class 'real))) + (zero (coerce 0 (or format class 'real))) + (minus-one (coerce -1 (or format class 'real))) + (plus (make-numeric-type :class class :format format + :low one :high one)) + (minus (make-numeric-type :class class :format format + :low minus-one :high minus-one)) + ;; KLUDGE: here we have a fairly horrible hack to deal + ;; with the schizophrenia in the type derivation engine. + ;; The problem is that the type derivers reinterpret + ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0 + ;; 0d0) within the derivation mechanism doesn't include + ;; -0d0. Ugh. So force it in here, instead. + (zero (make-numeric-type :class class :format format + :low (- zero) :high zero))) + (case range-info + (+ (if contains-0-p (type-union plus zero) plus)) + (- (if contains-0-p (type-union minus zero) minus)) + (t (type-union minus zero plus)))))) + +(defoptimizer (signum derive-type) ((num)) + (one-arg-derive-type num #'signum-derive-type-aux nil)) ;;;; byte operations ;;;; @@ -2277,7 +2389,7 @@ `(%deposit-field ,newbyte ,size ,pos ,int)))) (defoptimizer (%ldb derive-type) ((size posn num)) - (let ((size (continuation-type size))) + (let ((size (lvar-type size))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer))) (let ((size-high (numeric-type-high size))) @@ -2287,8 +2399,8 @@ *universal-type*))) (defoptimizer (%mask-field derive-type) ((size posn num)) - (let ((size (continuation-type size)) - (posn (continuation-type posn))) + (let ((size (lvar-type size)) + (posn (lvar-type posn))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer)) (numeric-type-p posn) @@ -2302,9 +2414,9 @@ *universal-type*))) (defun %deposit-field-derive-type-aux (size posn int) - (let ((size (continuation-type size)) - (posn (continuation-type posn)) - (int (continuation-type int))) + (let ((size (lvar-type size)) + (posn (lvar-type posn)) + (int (lvar-type int))) (when (and (numeric-type-p size) (numeric-type-p posn) (numeric-type-p int)) @@ -2400,56 +2512,66 @@ ;;; ;;; and similar for other arguments. -;;; Try to recursively cut all uses of the continuation CONT to WIDTH -;;; bits. +;;; Try to recursively cut all uses of LVAR to WIDTH bits. ;;; ;;; For good functions, we just recursively cut arguments; their ;;; "goodness" means that the result will not increase (in the ;;; (unsigned-byte +infinity) sense). An ordinary modular function is ;;; replaced with the version, cutting its result to WIDTH or more -;;; bits. If we have changed anything, we need to flush old derived -;;; types, because they have nothing in common with the new code. -(defun cut-to-width (cont width) - (declare (type continuation cont) (type (integer 0) width)) +;;; bits. For most functions (e.g. for +) we cut all arguments; for +;;; others (e.g. for ASH) we have "optimizers", cutting only necessary +;;; arguments (maybe to a different width) and returning the name of a +;;; modular version, if it exists, or NIL. If we have changed +;;; anything, we need to flush old derived types, because they have +;;; nothing in common with the new code. +(defun cut-to-width (lvar width) + (declare (type lvar lvar) (type (integer 0) width)) (labels ((reoptimize-node (node name) (setf (node-derived-type node) (fun-type-returns (info :function :type name))) - (setf (continuation-%derived-type (node-cont node)) nil) + (setf (lvar-%derived-type (node-lvar node)) nil) (setf (node-reoptimize node) t) (setf (block-reoptimize (node-block node)) t) (setf (component-reoptimize (node-component node)) t)) (cut-node (node &aux did-something) - (when (and (combination-p node) + (when (and (not (block-delete-p (node-block node))) + (combination-p node) (fun-info-p (basic-combination-kind node))) - (let* ((fun-ref (continuation-use (combination-fun node))) + (let* ((fun-ref (lvar-use (combination-fun node))) (fun-name (leaf-source-name (ref-leaf fun-ref))) - (modular-fun (find-modular-version fun-name width)) - (name (and (modular-fun-info-p modular-fun) - (modular-fun-info-name modular-fun)))) + (modular-fun (find-modular-version fun-name width))) (when (and modular-fun - (not (and (eq name 'logand) + (not (and (eq fun-name 'logand) (csubtypep (single-value-type (node-derived-type node)) (specifier-type `(unsigned-byte ,width)))))) - (unless (eq modular-fun :good) - (setq did-something t) - (change-ref-leaf + (binding* ((name (etypecase modular-fun + ((eql :good) fun-name) + (modular-fun-info + (modular-fun-info-name modular-fun)) + (function + (funcall modular-fun node width))) + :exit-if-null)) + (unless (eql modular-fun :good) + (setq did-something t) + (change-ref-leaf fun-ref (find-free-fun name "in a strange place")) (setf (combination-kind node) :full)) - (dolist (arg (basic-combination-args node)) - (when (cut-continuation arg) - (setq did-something t))) - (when did-something - (reoptimize-node node fun-name)) - did-something)))) - (cut-continuation (cont &aux did-something) - (do-uses (node cont) + (unless (functionp modular-fun) + (dolist (arg (basic-combination-args node)) + (when (cut-lvar arg) + (setq did-something t)))) + (when did-something + (reoptimize-node node name)) + did-something))))) + (cut-lvar (lvar &aux did-something) + (do-uses (node lvar) (when (cut-node node) (setq did-something t))) did-something)) - (cut-continuation cont))) + (cut-lvar lvar))) (defoptimizer (logand optimizer) ((x y) node) (let ((result-type (single-value-type (node-derived-type node)))) @@ -2472,11 +2594,11 @@ ;;; If a constant appears as the first arg, swap the args. (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node) - (if (and (constant-continuation-p x) - (not (constant-continuation-p y))) - `(,(continuation-fun-name (basic-combination-fun node)) + (if (and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,(lvar-fun-name (basic-combination-fun node)) y - ,(continuation-value x)) + ,(lvar-value x)) (give-up-ir1-transform))) (dolist (x '(= char= + * logior logand logxor)) @@ -2486,26 +2608,26 @@ ;;; Handle the case of a constant BOOLE-CODE. (deftransform boole ((op x y) * *) "convert to inline logical operations" - (unless (constant-continuation-p op) + (unless (constant-lvar-p op) (give-up-ir1-transform "BOOLE code is not a constant.")) - (let ((control (continuation-value op))) + (let ((control (lvar-value op))) (case control - (#.boole-clr 0) - (#.boole-set -1) - (#.boole-1 'x) - (#.boole-2 'y) - (#.boole-c1 '(lognot x)) - (#.boole-c2 '(lognot y)) - (#.boole-and '(logand x y)) - (#.boole-ior '(logior x y)) - (#.boole-xor '(logxor x y)) - (#.boole-eqv '(logeqv x y)) - (#.boole-nand '(lognand x y)) - (#.boole-nor '(lognor x y)) - (#.boole-andc1 '(logandc1 x y)) - (#.boole-andc2 '(logandc2 x y)) - (#.boole-orc1 '(logorc1 x y)) - (#.boole-orc2 '(logorc2 x y)) + (#.sb!xc:boole-clr 0) + (#.sb!xc:boole-set -1) + (#.sb!xc:boole-1 'x) + (#.sb!xc:boole-2 'y) + (#.sb!xc:boole-c1 '(lognot x)) + (#.sb!xc:boole-c2 '(lognot y)) + (#.sb!xc:boole-and '(logand x y)) + (#.sb!xc:boole-ior '(logior x y)) + (#.sb!xc:boole-xor '(logxor x y)) + (#.sb!xc:boole-eqv '(logeqv x y)) + (#.sb!xc:boole-nand '(lognand x y)) + (#.sb!xc:boole-nor '(lognor x y)) + (#.sb!xc:boole-andc1 '(logandc1 x y)) + (#.sb!xc:boole-andc2 '(logandc2 x y)) + (#.sb!xc:boole-orc1 '(logorc1 x y)) + (#.sb!xc:boole-orc2 '(logorc2 x y)) (t (abort-ir1-transform "~S is an illegal control arg to BOOLE." control))))) @@ -2515,9 +2637,9 @@ ;;; If arg is a constant power of two, turn * into a shift. (deftransform * ((x y) (integer integer) *) "convert x*2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2530,9 +2652,9 @@ ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a ;;; remainder. (flet ((frob (y ceil-p) - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2556,9 +2678,9 @@ ;;; Do the same for MOD. (deftransform mod ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2571,9 +2693,9 @@ ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask. (deftransform truncate ((x y) (integer integer)) "convert division by 2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2586,16 +2708,16 @@ `(- (ash (- x) ,shift))) (- (logand (- x) ,mask))) (values ,(if (minusp y) - `(- (ash (- x) ,shift)) + `(ash (- ,mask x) ,shift) `(ash x ,shift)) (logand x ,mask)))))) ;;; And the same for REM. (deftransform rem ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2623,11 +2745,11 @@ (deftransform logand ((x y) (* (constant-arg t)) *) "fold identity operation" - (let ((y (continuation-value y))) + (let ((y (lvar-value y))) (unless (and (plusp y) (= y (1- (ash 1 (integer-length y))))) (give-up-ir1-transform)) - (unless (csubtypep (continuation-type x) + (unless (csubtypep (lvar-type x) (specifier-type `(integer 0 ,y))) (give-up-ir1-transform)) 'x)) @@ -2641,14 +2763,14 @@ "convert (* x 0) to 0" 0) -;;; Return T if in an arithmetic op including continuations X and Y, -;;; the result type is not affected by the type of X. That is, Y is at +;;; Return T if in an arithmetic op including lvars X and Y, the +;;; result type is not affected by the type of X. That is, Y is at ;;; least as contagious as X. #+nil (defun not-more-contagious (x y) (declare (type continuation x y)) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (values (type= (numeric-contagion x y) (numeric-contagion y y))))) ;;; Patched version by Raymond Toy. dtc: Should be safer although it @@ -2656,7 +2778,7 @@ ;;; specific to particular transform functions so the use of this ;;; function may need a re-think. (defun not-more-contagious (x y) - (declare (type continuation x y)) + (declare (type lvar x y)) (flet ((simple-numeric-type (num) (and (numeric-type-p num) ;; Return non-NIL if NUM is integer, rational, or a float @@ -2668,8 +2790,8 @@ (numeric-type-format num)) (t nil))))) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (if (and (simple-numeric-type x) (simple-numeric-type y)) (values (type= (numeric-contagion x y) @@ -2681,7 +2803,7 @@ ;;; float +0.0 then give up. (deftransform + ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (plusp (float-sign val)))) (not-more-contagious y x)) @@ -2694,7 +2816,7 @@ ;;; float -0.0 then give up. (deftransform - ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (minusp (float-sign val)))) (not-more-contagious y x)) @@ -2705,7 +2827,7 @@ (macrolet ((def (name result minus-result) `(deftransform ,name ((x y) (t (constant-arg real)) *) "fold identity operations" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (= (abs val) 1) (not-more-contagious y x)) (give-up-ir1-transform)) @@ -2718,7 +2840,7 @@ ;;; N; convert (expt x 1/2) to sqrt. (deftransform expt ((x y) (t (constant-arg real)) *) "recode as multiplication or sqrt" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) ;; If Y would cause the result to be promoted to the same type as ;; Y, we give up. If not, then the result will be the same type ;; as X, so we can replace the exponentiation with simple @@ -2726,7 +2848,7 @@ (unless (not-more-contagious y x) (give-up-ir1-transform)) (cond ((zerop val) - (let ((x-type (continuation-type x))) + (let ((x-type (lvar-type x))) (cond ((csubtypep x-type (specifier-type '(or rational (complex rational)))) '1) @@ -2798,13 +2920,13 @@ ;;;; equality predicate transforms -;;; Return true if X and Y are continuations whose only use is a +;;; Return true if X and Y are lvars whose only use is a ;;; reference to the same leaf, and the value of the leaf cannot ;;; change. (defun same-leaf-ref-p (x y) - (declare (type continuation x y)) - (let ((x-use (principal-continuation-use x)) - (y-use (principal-continuation-use y))) + (declare (type lvar x y)) + (let ((x-use (principal-lvar-use x)) + (y-use (principal-lvar-use y))) (and (ref-p x-use) (ref-p y-use) (eq (ref-leaf x-use) (ref-leaf y-use)) @@ -2817,8 +2939,8 @@ :defun-only t) (cond ((same-leaf-ref-p x y) t) - ((not (types-equal-or-intersect (continuation-type x) - (continuation-type y))) + ((not (types-equal-or-intersect (lvar-type x) + (lvar-type y))) nil) (t (give-up-ir1-transform)))) @@ -2844,8 +2966,8 @@ ;;; handle that case, otherwise give an efficiency note. (deftransform eql ((x y) * *) "convert to simpler equality predicate" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y)) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y)) (char-type (specifier-type 'character)) (number-type (specifier-type 'number))) (cond ((same-leaf-ref-p x y) @@ -2858,8 +2980,8 @@ ((or (not (types-equal-or-intersect x-type number-type)) (not (types-equal-or-intersect y-type number-type))) '(eq x y)) - ((and (not (constant-continuation-p y)) - (or (constant-continuation-p x) + ((and (not (constant-lvar-p y)) + (or (constant-lvar-p x) (and (csubtypep x-type y-type) (not (csubtypep y-type x-type))))) '(eql y x)) @@ -2870,8 +2992,8 @@ ;;; and the same for both. (deftransform = ((x y) * *) "open code" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y))) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y))) (if (and (csubtypep x-type (specifier-type 'number)) (csubtypep y-type (specifier-type 'number))) (cond ((or (and (csubtypep x-type (specifier-type 'float)) @@ -2896,11 +3018,11 @@ (give-up-ir1-transform "The operands might not be the same type.")))) -;;; If CONT's type is a numeric type, then return the type, otherwise +;;; If LVAR's type is a numeric type, then return the type, otherwise ;;; GIVE-UP-IR1-TRANSFORM. -(defun numeric-type-or-lose (cont) - (declare (type continuation cont)) - (let ((res (continuation-type cont))) +(defun numeric-type-or-lose (lvar) + (declare (type lvar lvar)) + (let ((res (lvar-type lvar))) (unless (numeric-type-p res) (give-up-ir1-transform)) res)) @@ -2908,67 +3030,37 @@ ;;; information. If X's high bound is < Y's low, then X < Y. ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return ;;; NIL). If not, at least make sure any constant arg is second. -;;; -;;; FIXME: Why should constant argument be second? It would be nice to -;;; find out and explain. -#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - nil - (let* ((x-type (numeric-type-or-lose x)) - (x-lo (numeric-type-low x-type)) - (x-hi (numeric-type-high x-type)) - (y-type (numeric-type-or-lose y)) - (y-lo (numeric-type-low y-type)) - (y-hi (numeric-type-high y-type))) - (cond ((and x-hi y-lo (< x-hi y-lo)) - t) - ((and y-hi x-lo (>= x-lo y-hi)) - nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - nil - (let ((xi (numeric-type->interval (numeric-type-or-lose x))) - (yi (numeric-type->interval (numeric-type-or-lose y)))) - (cond ((interval-< xi yi) - t) - ((interval->= xi yi) - nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) - -(deftransform < ((x y) (integer integer) *) - (ir1-transform-< x y x y '>)) - -(deftransform > ((x y) (integer integer) *) - (ir1-transform-< y x x y '<)) - -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform < ((x y) (float float) *) - (ir1-transform-< x y x y '>)) - -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform > ((x y) (float float) *) - (ir1-transform-< y x x y '<)) +(macrolet ((def (name inverse reflexive-p surely-true surely-false) + `(deftransform ,name ((x y)) + (if (same-leaf-ref-p x y) + ,reflexive-p + (let ((ix (or (type-approximate-interval (lvar-type x)) + (give-up-ir1-transform))) + (iy (or (type-approximate-interval (lvar-type y)) + (give-up-ir1-transform)))) + (cond (,surely-true + t) + (,surely-false + nil) + ((and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,',inverse y x)) + (t + (give-up-ir1-transform)))))))) + (def < > nil (interval-< ix iy) (interval->= ix iy)) + (def > < nil (interval-< iy ix) (interval->= iy ix)) + (def <= >= t (interval->= iy ix) (interval-< iy ix)) + (def >= <= t (interval->= ix iy) (interval-< ix iy))) (defun ir1-transform-char< (x y first second inverse) (cond ((same-leaf-ref-p x y) nil) ;; If we had interval representation of character types, as we ;; might eventually have to to support 2^21 characters, then here - ;; we could do some compile-time computation as in IR1-TRANSFORM-< - ;; above. -- CSR, 2003-07-01 - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) + ;; we could do some compile-time computation as in transforms for + ;; < above. -- CSR, 2003-07-01 + ((and (constant-lvar-p first) + (not (constant-lvar-p second))) `(,inverse y x)) (t (give-up-ir1-transform)))) @@ -3112,7 +3204,7 @@ ;;; ensure (with THE) that the argument in one-argument calls is. (defun source-transform-transitive (fun args identity &optional one-arg-result-type) - (declare (symbol fun leaf-fun) (list args)) + (declare (symbol fun) (list args)) (case (length args) (0 identity) (1 (if one-arg-result-type @@ -3132,11 +3224,8 @@ (source-transform-transitive 'logxor args 0 'integer)) (define-source-transform logand (&rest args) (source-transform-transitive 'logand args -1 'integer)) - (define-source-transform logeqv (&rest args) - (if (evenp (length args)) - `(lognot (logxor ,@args)) - `(logxor ,@args))) + (source-transform-transitive 'logeqv args -1 'integer)) ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM ;;; because when they are given one argument, they return its absolute @@ -3203,9 +3292,9 @@ ;;; "optimizer" (say, DEFOPTIMIZER CONSISTENCY-CHECK). ;;; ;;; FIXME II: In some cases, type information could be correlated; for -;;; instance, ~{ ... ~} requires a list argument, so if the -;;; continuation-type of a corresponding argument is known and does -;;; not intersect the list type, a warning could be signalled. +;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type +;;; of a corresponding argument is known and does not intersect the +;;; list type, a warning could be signalled. (defun check-format-args (string args fun) (declare (type string string)) (unless (typep string 'simple-string) @@ -3232,19 +3321,19 @@ nargs fun string max))))))) (defoptimizer (format optimizer) ((dest control &rest args)) - (when (constant-continuation-p control) - (let ((x (continuation-value control))) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) (when (stringp x) (check-format-args x args 'format))))) (deftransform format ((dest control &rest args) (t simple-string &rest t) * :policy (> speed space)) - (unless (constant-continuation-p control) + (unless (constant-lvar-p control) (give-up-ir1-transform "The control string is not a constant.")) (let ((arg-names (make-gensym-list (length args)))) `(lambda (dest control ,@arg-names) (declare (ignore control)) - (format dest (formatter ,(continuation-value control)) ,@arg-names)))) + (format dest (formatter ,(lvar-value control)) ,@arg-names)))) (deftransform format ((stream control &rest args) (stream function &rest t) * :policy (> speed space)) @@ -3264,8 +3353,8 @@ (macrolet ((def (name) `(defoptimizer (,name optimizer) ((control &rest args)) - (when (constant-continuation-p control) - (let ((x (continuation-value control))) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) (when (stringp x) (check-format-args x args ',name))))))) (def error) @@ -3282,10 +3371,10 @@ (def bug))) (defoptimizer (cerror optimizer) ((report control &rest args)) - (when (and (constant-continuation-p control) - (constant-continuation-p report)) - (let ((x (continuation-value control)) - (y (continuation-value report))) + (when (and (constant-lvar-p control) + (constant-lvar-p report)) + (let ((x (lvar-value control)) + (y (lvar-value report))) (when (and (stringp x) (stringp y)) (multiple-value-bind (min1 max1) (handler-case @@ -3317,12 +3406,12 @@ (defoptimizer (coerce derive-type) ((value type)) (cond - ((constant-continuation-p type) + ((constant-lvar-p type) ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2), ;; but dealing with the niggle that complex canonicalization gets ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of ;; type COMPLEX. - (let* ((specifier (continuation-value type)) + (let* ((specifier (lvar-value type)) (result-typeoid (careful-specifier-type specifier))) (cond ((null result-typeoid) nil) @@ -3358,7 +3447,7 @@ ;; case, we will return a complex or an object of the ;; provided type if it's rational: (type-union result-typeoid - (type-intersection (continuation-type value) + (type-intersection (lvar-type value) (specifier-type 'rational)))))) (t result-typeoid)))) (t @@ -3371,8 +3460,8 @@ ;; the basis that it's unlikely that other uses are both ;; time-critical and get to this branch of the COND (non-constant ;; second argument to COERCE). -- CSR, 2002-12-16 - (let ((value-type (continuation-type value)) - (type-type (continuation-type type))) + (let ((value-type (lvar-type value)) + (type-type (lvar-type type))) (labels ((good-cons-type-p (cons-type) ;; Make sure the cons-type we're looking at is something @@ -3462,7 +3551,7 @@ *universal-type*))))))) (defoptimizer (compile derive-type) ((nameoid function)) - (when (csubtypep (continuation-type nameoid) + (when (csubtypep (lvar-type nameoid) (specifier-type 'null)) (values-specifier-type '(values function boolean boolean)))) @@ -3470,7 +3559,7 @@ ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE ;;; optimizer, above). (defoptimizer (array-element-type derive-type) ((array)) - (let ((array-type (continuation-type array))) + (let ((array-type (lvar-type array))) (labels ((consify (list) (if (endp list) '(eql nil) @@ -3572,27 +3661,27 @@ ;;; for debugging when transforms are behaving mysteriously, ;;; e.g. when debugging a problem with an ASH transform ;;; (defun foo (&optional s) -;;; (sb-c::/report-continuation s "S outside WHEN") +;;; (sb-c::/report-lvar s "S outside WHEN") ;;; (when (and (integerp s) (> s 3)) -;;; (sb-c::/report-continuation s "S inside WHEN") +;;; (sb-c::/report-lvar s "S inside WHEN") ;;; (let ((bound (ash 1 (1- s)))) -;;; (sb-c::/report-continuation bound "BOUND") +;;; (sb-c::/report-lvar bound "BOUND") ;;; (let ((x (- bound)) ;;; (y (1- bound))) -;;; (sb-c::/report-continuation x "X") -;;; (sb-c::/report-continuation x "Y")) +;;; (sb-c::/report-lvar x "X") +;;; (sb-c::/report-lvar x "Y")) ;;; `(integer ,(- bound) ,(1- bound))))) ;;; (The DEFTRANSFORM doesn't do anything but report at compile time, ;;; and the function doesn't do anything at all.) #!+sb-show (progn - (defknown /report-continuation (t t) null) - (deftransform /report-continuation ((x message) (t t)) - (format t "~%/in /REPORT-CONTINUATION~%") - (format t "/(CONTINUATION-TYPE X)=~S~%" (continuation-type x)) - (when (constant-continuation-p x) - (format t "/(CONTINUATION-VALUE X)=~S~%" (continuation-value x))) - (format t "/MESSAGE=~S~%" (continuation-value message)) + (defknown /report-lvar (t t) null) + (deftransform /report-lvar ((x message) (t t)) + (format t "~%/in /REPORT-LVAR~%") + (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x)) + (when (constant-lvar-p x) + (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x))) + (format t "/MESSAGE=~S~%" (lvar-value message)) (give-up-ir1-transform "not a real transform")) - (defun /report-continuation (x message) + (defun /report-lvar (x message) (declare (ignore x message))))