X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fsrctran.lisp;h=a5ccd0279eafa80c69f785db1b64475f00bfcb47;hb=988afd9d54ba6c8a915544822658824ab6ae0d6c;hp=a9c153347d6e88c98843f9d027748747d69fd565;hpb=d147d512602d761a2dcdfded506dd1a8f9a140dc;p=sbcl.git diff --git a/src/compiler/srctran.lisp b/src/compiler/srctran.lisp index a9c1533..a5ccd02 100644 --- a/src/compiler/srctran.lisp +++ b/src/compiler/srctran.lisp @@ -1,6 +1,6 @@ ;;;; This file contains macro-like source transformations which ;;;; convert uses of certain functions into the canonical form desired -;;;; within the compiler. ### and other IR1 transforms and stuff. +;;;; within the compiler. FIXME: and other IR1 transforms and stuff. ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. @@ -15,43 +15,44 @@ ;;; Convert into an IF so that IF optimizations will eliminate redundant ;;; negations. -(def-source-transform not (x) `(if ,x nil t)) -(def-source-transform null (x) `(if ,x nil t)) +(define-source-transform not (x) `(if ,x nil t)) +(define-source-transform null (x) `(if ,x nil t)) ;;; ENDP is just NULL with a LIST assertion. The assertion will be ;;; optimized away when SAFETY optimization is low; hopefully that ;;; is consistent with ANSI's "should return an error". -(def-source-transform endp (x) `(null (the list ,x))) +(define-source-transform endp (x) `(null (the list ,x))) ;;; We turn IDENTITY into PROG1 so that it is obvious that it just ;;; returns the first value of its argument. Ditto for VALUES with one ;;; arg. -(def-source-transform identity (x) `(prog1 ,x)) -(def-source-transform values (x) `(prog1 ,x)) +(define-source-transform identity (x) `(prog1 ,x)) +(define-source-transform values (x) `(prog1 ,x)) -;;; Bind the values and make a closure that returns them. -(def-source-transform constantly (value) - (let ((rest (gensym "CONSTANTLY-REST-"))) - `(lambda (&rest ,rest) - (declare (ignore ,rest)) - ,value))) +;;; Bind the value and make a closure that returns it. +(define-source-transform constantly (value) + (with-unique-names (rest n-value) + `(let ((,n-value ,value)) + (lambda (&rest ,rest) + (declare (ignore ,rest)) + ,n-value)))) ;;; If the function has a known number of arguments, then return a ;;; lambda with the appropriate fixed number of args. If the ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let ;;; MV optimization figure things out. -(deftransform complement ((fun) * * :node node :when :both) +(deftransform complement ((fun) * * :node node) "open code" (multiple-value-bind (min max) - (function-type-nargs (continuation-type fun)) + (fun-type-nargs (lvar-type fun)) (cond ((and min (eql min max)) (let ((dums (make-gensym-list min))) `#'(lambda ,dums (not (funcall fun ,@dums))))) - ((let* ((cont (node-cont node)) - (dest (continuation-dest cont))) - (and (combination-p dest) - (eq (combination-fun dest) cont))) + ((awhen (node-lvar node) + (let ((dest (lvar-dest it))) + (and (combination-p dest) + (eq (combination-fun dest) it)))) '#'(lambda (&rest args) (not (apply fun args)))) (t @@ -60,67 +61,81 @@ ;;;; list hackery -;;; Translate CxxR into CAR/CDR combos. - +;;; Translate CxR into CAR/CDR combos. (defun source-transform-cxr (form) - (if (or (byte-compiling) (/= (length form) 2)) + (if (/= (length form) 2) (values nil t) - (let ((name (symbol-name (car form)))) - (do ((i (- (length name) 2) (1- i)) + (let* ((name (car form)) + (string (symbol-name + (etypecase name + (symbol name) + (leaf (leaf-source-name name)))))) + (do ((i (- (length string) 2) (1- i)) (res (cadr form) - `(,(ecase (char name i) + `(,(ecase (char string i) (#\A 'car) (#\D 'cdr)) ,res))) ((zerop i) res))))) -(do ((i 2 (1+ i)) - (b '(1 0) (cons i b))) - ((= i 5)) - (dotimes (j (ash 1 i)) - (setf (info :function :source-transform - (intern (format nil "C~{~:[A~;D~]~}R" - (mapcar #'(lambda (x) (logbitp x j)) b)))) - #'source-transform-cxr))) +;;; Make source transforms to turn CxR forms into combinations of CAR +;;; and CDR. ANSI specifies that everything up to 4 A/D operations is +;;; defined. +(/show0 "about to set CxR source transforms") +(loop for i of-type index from 2 upto 4 do + ;; Iterate over BUF = all names CxR where x = an I-element + ;; string of #\A or #\D characters. + (let ((buf (make-string (+ 2 i)))) + (setf (aref buf 0) #\C + (aref buf (1+ i)) #\R) + (dotimes (j (ash 2 i)) + (declare (type index j)) + (dotimes (k i) + (declare (type index k)) + (setf (aref buf (1+ k)) + (if (logbitp k j) #\A #\D))) + (setf (info :function :source-transform (intern buf)) + #'source-transform-cxr)))) +(/show0 "done setting CxR source transforms") ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming ;;; whatever is right for them is right for us. FIFTH..TENTH turn into ;;; Nth, which can be expanded into a CAR/CDR later on if policy ;;; favors it. -(def-source-transform first (x) `(car ,x)) -(def-source-transform rest (x) `(cdr ,x)) -(def-source-transform second (x) `(cadr ,x)) -(def-source-transform third (x) `(caddr ,x)) -(def-source-transform fourth (x) `(cadddr ,x)) -(def-source-transform fifth (x) `(nth 4 ,x)) -(def-source-transform sixth (x) `(nth 5 ,x)) -(def-source-transform seventh (x) `(nth 6 ,x)) -(def-source-transform eighth (x) `(nth 7 ,x)) -(def-source-transform ninth (x) `(nth 8 ,x)) -(def-source-transform tenth (x) `(nth 9 ,x)) +(define-source-transform first (x) `(car ,x)) +(define-source-transform rest (x) `(cdr ,x)) +(define-source-transform second (x) `(cadr ,x)) +(define-source-transform third (x) `(caddr ,x)) +(define-source-transform fourth (x) `(cadddr ,x)) +(define-source-transform fifth (x) `(nth 4 ,x)) +(define-source-transform sixth (x) `(nth 5 ,x)) +(define-source-transform seventh (x) `(nth 6 ,x)) +(define-source-transform eighth (x) `(nth 7 ,x)) +(define-source-transform ninth (x) `(nth 8 ,x)) +(define-source-transform tenth (x) `(nth 9 ,x)) ;;; Translate RPLACx to LET and SETF. -(def-source-transform rplaca (x y) +(define-source-transform rplaca (x y) (once-only ((n-x x)) `(progn (setf (car ,n-x) ,y) ,n-x))) -(def-source-transform rplacd (x y) +(define-source-transform rplacd (x y) (once-only ((n-x x)) `(progn (setf (cdr ,n-x) ,y) ,n-x))) -(def-source-transform nth (n l) `(car (nthcdr ,n ,l))) +(define-source-transform nth (n l) `(car (nthcdr ,n ,l))) (defvar *default-nthcdr-open-code-limit* 6) (defvar *extreme-nthcdr-open-code-limit* 20) (deftransform nthcdr ((n l) (unsigned-byte t) * :node node) "convert NTHCDR to CAxxR" - (unless (constant-continuation-p n) + (unless (constant-lvar-p n) (give-up-ir1-transform)) - (let ((n (continuation-value n))) + (let ((n (lvar-value n))) (when (> n (if (policy node (and (= speed 3) (= space 0))) *extreme-nthcdr-open-code-limit* @@ -135,73 +150,72 @@ ;;;; arithmetic and numerology -(def-source-transform plusp (x) `(> ,x 0)) -(def-source-transform minusp (x) `(< ,x 0)) -(def-source-transform zerop (x) `(= ,x 0)) +(define-source-transform plusp (x) `(> ,x 0)) +(define-source-transform minusp (x) `(< ,x 0)) +(define-source-transform zerop (x) `(= ,x 0)) -(def-source-transform 1+ (x) `(+ ,x 1)) -(def-source-transform 1- (x) `(- ,x 1)) +(define-source-transform 1+ (x) `(+ ,x 1)) +(define-source-transform 1- (x) `(- ,x 1)) -(def-source-transform oddp (x) `(not (zerop (logand ,x 1)))) -(def-source-transform evenp (x) `(zerop (logand ,x 1))) +(define-source-transform oddp (x) `(not (zerop (logand ,x 1)))) +(define-source-transform evenp (x) `(zerop (logand ,x 1))) ;;; Note that all the integer division functions are available for ;;; inline expansion. -;;; FIXME: DEF-FROB instead of FROB -(macrolet ((frob (fun) - `(def-source-transform ,fun (x &optional (y nil y-p)) +(macrolet ((deffrob (fun) + `(define-source-transform ,fun (x &optional (y nil y-p)) (declare (ignore y)) (if y-p (values nil t) `(,',fun ,x 1))))) - (frob truncate) - (frob round) - #!+propagate-float-type - (frob floor) - #!+propagate-float-type - (frob ceiling)) - -(def-source-transform lognand (x y) `(lognot (logand ,x ,y))) -(def-source-transform lognor (x y) `(lognot (logior ,x ,y))) -(def-source-transform logandc1 (x y) `(logand (lognot ,x) ,y)) -(def-source-transform logandc2 (x y) `(logand ,x (lognot ,y))) -(def-source-transform logorc1 (x y) `(logior (lognot ,x) ,y)) -(def-source-transform logorc2 (x y) `(logior ,x (lognot ,y))) -(def-source-transform logtest (x y) `(not (zerop (logand ,x ,y)))) -(def-source-transform logbitp (index integer) - `(not (zerop (logand (ash 1 ,index) ,integer)))) -(def-source-transform byte (size position) `(cons ,size ,position)) -(def-source-transform byte-size (spec) `(car ,spec)) -(def-source-transform byte-position (spec) `(cdr ,spec)) -(def-source-transform ldb-test (bytespec integer) + (deffrob truncate) + (deffrob round) + #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) + (deffrob floor) + #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) + (deffrob ceiling)) + +(define-source-transform logtest (x y) `(not (zerop (logand ,x ,y)))) + +(deftransform logbitp + ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits) + (unsigned-byte #.sb!vm:n-word-bits)))) + `(if (>= index #.sb!vm:n-word-bits) + (minusp integer) + (not (zerop (logand integer (ash 1 index)))))) + +(define-source-transform byte (size position) + `(cons ,size ,position)) +(define-source-transform byte-size (spec) `(car ,spec)) +(define-source-transform byte-position (spec) `(cdr ,spec)) +(define-source-transform ldb-test (bytespec integer) `(not (zerop (mask-field ,bytespec ,integer)))) ;;; With the ratio and complex accessors, we pick off the "identity" ;;; case, and use a primitive to handle the cell access case. -(def-source-transform numerator (num) +(define-source-transform numerator (num) (once-only ((n-num `(the rational ,num))) `(if (ratiop ,n-num) (%numerator ,n-num) ,n-num))) -(def-source-transform denominator (num) +(define-source-transform denominator (num) (once-only ((n-num `(the rational ,num))) `(if (ratiop ,n-num) (%denominator ,n-num) 1))) -;;;; Interval arithmetic for computing bounds -;;;; (toy@rtp.ericsson.se) +;;;; interval arithmetic for computing bounds ;;;; ;;;; This is a set of routines for operating on intervals. It ;;;; implements a simple interval arithmetic package. Although SBCL -;;;; has an interval type in numeric-type, we choose to use our own +;;;; has an interval type in NUMERIC-TYPE, we choose to use our own ;;;; for two reasons: ;;;; -;;;; 1. This package is simpler than numeric-type +;;;; 1. This package is simpler than NUMERIC-TYPE. ;;;; ;;;; 2. It makes debugging much easier because you can just strip -;;;; out these routines and test them independently of SBCL. (a +;;;; out these routines and test them independently of SBCL. (This is a ;;;; big win!) ;;;; ;;;; One disadvantage is a probable increase in consing because we @@ -209,10 +223,20 @@ ;;;; numeric-type has everything we want to know. Reason 2 wins for ;;;; now. -#-sb-xc-host ;(CROSS-FLOAT-INFINITY-KLUDGE, see base-target-features.lisp-expr) -(progn -#!+propagate-float-type -(progn +;;; Support operations that mimic real arithmetic comparison +;;; operators, but imposing a total order on the floating points such +;;; that negative zeros are strictly less than positive zeros. +(macrolet ((def (name op) + `(defun ,name (x y) + (declare (real x y)) + (if (and (floatp x) (floatp y) (zerop x) (zerop y)) + (,op (float-sign x) (float-sign y)) + (,op x y))))) + (def signed-zero->= >=) + (def signed-zero-> >) + (def signed-zero-= =) + (def signed-zero-< <) + (def signed-zero-<= <=)) ;;; The basic interval type. It can handle open and closed intervals. ;;; A bound is open if it is a list containing a number, just like @@ -223,13 +247,14 @@ (defun make-interval (&key low high) (labels ((normalize-bound (val) - (cond ((and (floatp val) + (cond #-sb-xc-host + ((and (floatp val) (float-infinity-p val)) - ;; Handle infinities + ;; Handle infinities. nil) ((or (numberp val) (eq val nil)) - ;; Handle any closed bounds + ;; Handle any closed bounds. val) ((listp val) ;; We have an open bound. Normalize the numeric @@ -238,37 +263,33 @@ ;; bound is really unbounded, so drop the openness. (let ((new-val (normalize-bound (first val)))) (when new-val - ;; Bound exists, so keep it open still + ;; The bound exists, so keep it open still. (list new-val)))) (t - (error "Unknown bound type in make-interval!"))))) + (error "unknown bound type in MAKE-INTERVAL"))))) (%make-interval :low (normalize-bound low) :high (normalize-bound high)))) -#!-sb-fluid (declaim (inline bound-value set-bound)) - -;;; Extract the numeric value of a bound. Return NIL, if X is NIL. -(defun bound-value (x) - (if (consp x) (car x) x)) - ;;; Given a number X, create a form suitable as a bound for an ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL. +#!-sb-fluid (declaim (inline set-bound)) (defun set-bound (x open-p) (if (and x open-p) (list x) x)) ;;; Apply the function F to a bound X. If X is an open bound, then ;;; the result will be open. IF X is NIL, the result is NIL. (defun bound-func (f x) + (declare (type function f)) (and x (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero) ;; With these traps masked, we might get things like infinity ;; or negative infinity returned. Check for this and return ;; NIL to indicate unbounded. - (let ((y (funcall f (bound-value x)))) + (let ((y (funcall f (type-bound-number x)))) (if (and (floatp y) (float-infinity-p y)) nil - (set-bound (funcall f (bound-value x)) (consp x))))))) + (set-bound (funcall f (type-bound-number x)) (consp x))))))) ;;; Apply a binary operator OP to two bounds X and Y. The result is ;;; NIL if either is NIL. Otherwise bound is computed and the result @@ -278,8 +299,8 @@ (defmacro bound-binop (op x y) `(and ,x ,y (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero) - (set-bound (,op (bound-value ,x) - (bound-value ,y)) + (set-bound (,op (type-bound-number ,x) + (type-bound-number ,y)) (or (consp ,x) (consp ,y)))))) ;;; Convert a numeric-type object to an interval object. @@ -288,6 +309,23 @@ (make-interval :low (numeric-type-low x) :high (numeric-type-high x))) +(defun type-approximate-interval (type) + (declare (type ctype type)) + (let ((types (prepare-arg-for-derive-type type)) + (result nil)) + (dolist (type types) + (let ((type (if (member-type-p type) + (convert-member-type type) + type))) + (unless (numeric-type-p type) + (return-from type-approximate-interval nil)) + (let ((interval (numeric-type->interval type))) + (setq result + (if result + (interval-approximate-union result interval) + interval))))) + result)) + (defun copy-interval-limit (limit) (if (numberp limit) limit @@ -314,82 +352,34 @@ ;;; to closed bounds. (defun interval-closure (x) (declare (type interval x)) - (make-interval :low (bound-value (interval-low x)) - :high (bound-value (interval-high x)))) - -(defun signed-zero->= (x y) - (declare (real x y)) - (or (> x y) - (and (= x y) - (>= (float-sign (float x)) - (float-sign (float y)))))) + (make-interval :low (type-bound-number (interval-low x)) + :high (type-bound-number (interval-high x)))) ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return ;;; '-. Otherwise return NIL. -#+nil (defun interval-range-info (x &optional (point 0)) (declare (type interval x)) (let ((lo (interval-low x)) (hi (interval-high x))) - (cond ((and lo (signed-zero->= (bound-value lo) point)) + (cond ((and lo (signed-zero->= (type-bound-number lo) point)) '+) - ((and hi (signed-zero->= point (bound-value hi))) + ((and hi (signed-zero->= point (type-bound-number hi))) '-) (t nil)))) -(defun interval-range-info (x &optional (point 0)) - (declare (type interval x)) - (labels ((signed->= (x y) - (if (and (zerop x) (zerop y) (floatp x) (floatp y)) - (>= (float-sign x) (float-sign y)) - (>= x y)))) - (let ((lo (interval-low x)) - (hi (interval-high x))) - (cond ((and lo (signed->= (bound-value lo) point)) - '+) - ((and hi (signed->= point (bound-value hi))) - '-) - (t - nil))))) ;;; Test to see whether the interval X is bounded. HOW determines the ;;; test, and should be either ABOVE, BELOW, or BOTH. (defun interval-bounded-p (x how) (declare (type interval x)) (ecase how - ('above + (above (interval-high x)) - ('below + (below (interval-low x)) - ('both + (both (and (interval-low x) (interval-high x))))) -;;; signed zero comparison functions. Use these functions if we need -;;; to distinguish between signed zeroes. -(defun signed-zero-< (x y) - (declare (real x y)) - (or (< x y) - (and (= x y) - (< (float-sign (float x)) - (float-sign (float y)))))) -(defun signed-zero-> (x y) - (declare (real x y)) - (or (> x y) - (and (= x y) - (> (float-sign (float x)) - (float-sign (float y)))))) -(defun signed-zero-= (x y) - (declare (real x y)) - (and (= x y) - (= (float-sign (float x)) - (float-sign (float y))))) -(defun signed-zero-<= (x y) - (declare (real x y)) - (or (< x y) - (and (= x y) - (<= (float-sign (float x)) - (float-sign (float y)))))) - ;;; See whether the interval X contains the number P, taking into ;;; account that the interval might not be closed. (defun interval-contains-p (p x) @@ -401,33 +391,33 @@ (hi (interval-high x))) (cond ((and lo hi) ;; The interval is bounded - (if (and (signed-zero-<= (bound-value lo) p) - (signed-zero-<= p (bound-value hi))) + (if (and (signed-zero-<= (type-bound-number lo) p) + (signed-zero-<= p (type-bound-number hi))) ;; P is definitely in the closure of the interval. ;; We just need to check the end points now. - (cond ((signed-zero-= p (bound-value lo)) + (cond ((signed-zero-= p (type-bound-number lo)) (numberp lo)) - ((signed-zero-= p (bound-value hi)) + ((signed-zero-= p (type-bound-number hi)) (numberp hi)) (t t)) nil)) (hi ;; Interval with upper bound - (if (signed-zero-< p (bound-value hi)) + (if (signed-zero-< p (type-bound-number hi)) t (and (numberp hi) (signed-zero-= p hi)))) (lo ;; Interval with lower bound - (if (signed-zero-> p (bound-value lo)) + (if (signed-zero-> p (type-bound-number lo)) t (and (numberp lo) (signed-zero-= p lo)))) (t ;; Interval with no bounds t)))) -;;; Determine if two intervals X and Y intersect. Return T if so. If -;;; CLOSED-INTERVALS-P is T, the treat the intervals as if they were -;;; closed. Otherwise the intervals are treated as they are. +;;; Determine whether two intervals X and Y intersect. Return T if so. +;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they +;;; were closed. Otherwise the intervals are treated as they are. ;;; ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P @@ -455,7 +445,7 @@ (flet ((adjacent (lo hi) ;; Check to see whether lo and hi are adjacent. If either is ;; nil, they can't be adjacent. - (when (and lo hi (= (bound-value lo) (bound-value hi))) + (when (and lo hi (= (type-bound-number lo) (type-bound-number hi))) ;; The bounds are equal. They are adjacent if one of ;; them is closed (a number). If both are open (consp), ;; then there is a number that lies between them. @@ -489,14 +479,14 @@ (list p))) (test-number (p int) ;; Test whether P is in the interval. - (when (interval-contains-p (bound-value p) + (when (interval-contains-p (type-bound-number p) (interval-closure int)) (let ((lo (interval-low int)) (hi (interval-high int))) - ;; Check for endpoints - (cond ((and lo (= (bound-value p) (bound-value lo))) + ;; Check for endpoints. + (cond ((and lo (= (type-bound-number p) (type-bound-number lo))) (not (and (consp p) (numberp lo)))) - ((and hi (= (bound-value p) (bound-value hi))) + ((and hi (= (type-bound-number p) (type-bound-number hi))) (not (and (numberp p) (consp hi)))) (t t))))) (test-lower-bound (p int) @@ -505,7 +495,7 @@ (test-number p int) (not (interval-bounded-p int 'below)))) (test-upper-bound (p int) - ;; P is an upper bound of an interval + ;; P is an upper bound of an interval. (if p (test-number p int) (not (interval-bounded-p int 'above))))) @@ -541,15 +531,15 @@ (when (or (interval-intersect-p x y) (interval-adjacent-p x y)) (flet ((select-bound (x1 x2 min-op max-op) - (let ((x1-val (bound-value x1)) - (x2-val (bound-value x2))) + (let ((x1-val (type-bound-number x1)) + (x2-val (type-bound-number x2))) (cond ((and x1 x2) ;; Both bounds are finite. Select the right one. (cond ((funcall min-op x1-val x2-val) - ;; x1 definitely better + ;; x1 is definitely better. x1) ((funcall max-op x1-val x2-val) - ;; x2 definitely better + ;; x2 is definitely better. x2) (t ;; Bounds are equal. Select either @@ -567,29 +557,39 @@ (make-interval :low (select-bound x-lo y-lo #'< #'>) :high (select-bound x-hi y-hi #'> #'<)))))) +;;; return the minimal interval, containing X and Y +(defun interval-approximate-union (x y) + (cond ((interval-merge-pair x y)) + ((interval-< x y) + (make-interval :low (copy-interval-limit (interval-low x)) + :high (copy-interval-limit (interval-high y)))) + (t + (make-interval :low (copy-interval-limit (interval-low y)) + :high (copy-interval-limit (interval-high x)))))) + ;;; basic arithmetic operations on intervals. We probably should do ;;; true interval arithmetic here, but it's complicated because we ;;; have float and integer types and bounds can be open or closed. -;;; The negative of an interval +;;; the negative of an interval (defun interval-neg (x) (declare (type interval x)) (make-interval :low (bound-func #'- (interval-high x)) :high (bound-func #'- (interval-low x)))) -;;; Add two intervals +;;; Add two intervals. (defun interval-add (x y) (declare (type interval x y)) (make-interval :low (bound-binop + (interval-low x) (interval-low y)) :high (bound-binop + (interval-high x) (interval-high y)))) -;;; Subtract two intervals +;;; Subtract two intervals. (defun interval-sub (x y) (declare (type interval x y)) (make-interval :low (bound-binop - (interval-low x) (interval-high y)) :high (bound-binop - (interval-high x) (interval-low y)))) -;;; Multiply two intervals +;;; Multiply two intervals. (defun interval-mul (x y) (declare (type interval x y)) (flet ((bound-mul (x y) @@ -602,7 +602,7 @@ ;; is always a closed bound. But don't replace this ;; with zero; we want the multiplication to produce ;; the correct signed zero, if needed. - (* (bound-value x) (bound-value y))) + (* (type-bound-number x) (type-bound-number y))) ((or (and (floatp x) (float-infinity-p x)) (and (floatp y) (float-infinity-p y))) ;; Infinity times anything is infinity @@ -627,11 +627,12 @@ ((eq y-range '-) (interval-neg (interval-mul x (interval-neg y)))) ((and (eq x-range '+) (eq y-range '+)) - ;; If we are here, X and Y are both positive - (make-interval :low (bound-mul (interval-low x) (interval-low y)) - :high (bound-mul (interval-high x) (interval-high y)))) + ;; If we are here, X and Y are both positive. + (make-interval + :low (bound-mul (interval-low x) (interval-low y)) + :high (bound-mul (interval-high x) (interval-high y)))) (t - (error "This shouldn't happen!")))))) + (bug "excluded case in INTERVAL-MUL")))))) ;;; Divide two intervals. (defun interval-div (top bot) @@ -643,12 +644,12 @@ ;; we need to watch out for the sign of the result, ;; to correctly handle signed zeros. We also need ;; to watch out for positive or negative infinity. - (if (floatp (bound-value x)) + (if (floatp (type-bound-number x)) (if y-low-p - (- (float-sign (bound-value x) 0.0)) - (float-sign (bound-value x) 0.0)) + (- (float-sign (type-bound-number x) 0.0)) + (float-sign (type-bound-number x) 0.0)) 0)) - ((zerop (bound-value y)) + ((zerop (type-bound-number y)) ;; Divide by zero means result is infinity nil) ((and (numberp x) (zerop x)) @@ -676,18 +677,20 @@ ;; sign of the result. (interval-neg (interval-div (interval-neg top) bot))) ((and (eq top-range '+) (eq bot-range '+)) - ;; The easy case - (make-interval :low (bound-div (interval-low top) (interval-high bot) t) - :high (bound-div (interval-high top) (interval-low bot) nil))) + ;; the easy case + (make-interval + :low (bound-div (interval-low top) (interval-high bot) t) + :high (bound-div (interval-high top) (interval-low bot) nil))) (t - (error "This shouldn't happen!")))))) + (bug "excluded case in INTERVAL-DIV")))))) ;;; Apply the function F to the interval X. If X = [a, b], then the ;;; result is [f(a), f(b)]. It is up to the user to make sure the ;;; result makes sense. It will if F is monotonic increasing (or ;;; non-decreasing). (defun interval-func (f x) - (declare (type interval x)) + (declare (type function f) + (type interval x)) (let ((lo (bound-func f (interval-low x))) (hi (bound-func f (interval-high x)))) (make-interval :low lo :high hi))) @@ -704,13 +707,13 @@ ;; don't overlap. (let ((left (interval-high x)) (right (interval-low y))) - (cond ((> (bound-value left) - (bound-value right)) - ;; Definitely overlap so result is NIL + (cond ((> (type-bound-number left) + (type-bound-number right)) + ;; The intervals definitely overlap, so result is NIL. nil) - ((< (bound-value left) - (bound-value right)) - ;; Definitely don't touch, so result is T + ((< (type-bound-number left) + (type-bound-number right)) + ;; The intervals definitely don't touch, so result is T. t) (t ;; Limits are equal. Check for open or closed bounds. @@ -724,16 +727,17 @@ ;; X >= Y if lower bound of X >= upper bound of Y (when (and (interval-bounded-p x 'below) (interval-bounded-p y 'above)) - (>= (bound-value (interval-low x)) (bound-value (interval-high y))))) + (>= (type-bound-number (interval-low x)) + (type-bound-number (interval-high y))))) ;;; Return an interval that is the absolute value of X. Thus, if ;;; X = [-1 10], the result is [0, 10]. (defun interval-abs (x) (declare (type interval x)) (case (interval-range-info x) - ('+ + (+ (copy-interval x)) - ('- + (- (interval-neg x)) (t (destructuring-bind (x- x+) (interval-split 0 x t t) @@ -742,48 +746,47 @@ ;;; Compute the square of an interval. (defun interval-sqr (x) (declare (type interval x)) - (interval-func #'(lambda (x) (* x x)) + (interval-func (lambda (x) (* x x)) (interval-abs x))) -)) ; end PROGN's -;;;; numeric derive-type methods +;;;; numeric DERIVE-TYPE methods ;;; a utility for defining derive-type methods of integer operations. If ;;; the types of both X and Y are integer types, then we compute a new ;;; integer type with bounds determined Fun when applied to X and Y. -;;; Otherwise, we use Numeric-Contagion. +;;; Otherwise, we use NUMERIC-CONTAGION. +(defun derive-integer-type-aux (x y fun) + (declare (type function fun)) + (if (and (numeric-type-p x) (numeric-type-p y) + (eq (numeric-type-class x) 'integer) + (eq (numeric-type-class y) 'integer) + (eq (numeric-type-complexp x) :real) + (eq (numeric-type-complexp y) :real)) + (multiple-value-bind (low high) (funcall fun x y) + (make-numeric-type :class 'integer + :complexp :real + :low low + :high high)) + (numeric-contagion x y))) + (defun derive-integer-type (x y fun) - (declare (type continuation x y) (type function fun)) - (let ((x (continuation-type x)) - (y (continuation-type y))) - (if (and (numeric-type-p x) (numeric-type-p y) - (eq (numeric-type-class x) 'integer) - (eq (numeric-type-class y) 'integer) - (eq (numeric-type-complexp x) :real) - (eq (numeric-type-complexp y) :real)) - (multiple-value-bind (low high) (funcall fun x y) - (make-numeric-type :class 'integer - :complexp :real - :low low - :high high)) - (numeric-contagion x y)))) - -#!+(or propagate-float-type propagate-fun-type) -(progn + (declare (type lvar x y) (type function fun)) + (let ((x (lvar-type x)) + (y (lvar-type y))) + (derive-integer-type-aux x y fun))) ;;; simple utility to flatten a list (defun flatten-list (x) - (labels ((flatten-helper (x r);; 'r' is the stuff to the 'right'. - (cond ((null x) r) - ((atom x) - (cons x r)) - (t (flatten-helper (car x) - (flatten-helper (cdr x) r)))))) - (flatten-helper x nil))) - -;;; Take some type of continuation and massage it so that we get a -;;; list of the constituent types. If ARG is *EMPTY-TYPE*, return NIL -;;; to indicate failure. + (labels ((flatten-and-append (tree list) + (cond ((null tree) list) + ((atom tree) (cons tree list)) + (t (flatten-and-append + (car tree) (flatten-and-append (cdr tree) list)))))) + (flatten-and-append x nil))) + +;;; Take some type of lvar and massage it so that we get a list of the +;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate +;;; failure. (defun prepare-arg-for-derive-type (arg) (flet ((listify (arg) (typecase arg @@ -812,19 +815,18 @@ new-args))))) ;;; Convert from the standard type convention for which -0.0 and 0.0 -;;; and equal to an intermediate convention for which they are +;;; are equal to an intermediate convention for which they are ;;; considered different which is more natural for some of the ;;; optimisers. -#!-negative-zero-is-not-zero (defun convert-numeric-type (type) (declare (type numeric-type type)) ;;; Only convert real float interval delimiters types. (if (eq (numeric-type-complexp type) :real) (let* ((lo (numeric-type-low type)) - (lo-val (bound-value lo)) + (lo-val (type-bound-number lo)) (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0))) (hi (numeric-type-high type)) - (hi-val (bound-value hi)) + (hi-val (type-bound-number hi)) (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0)))) (if (or lo-float-zero-p hi-float-zero-p) (make-numeric-type @@ -834,11 +836,11 @@ :low (if lo-float-zero-p (if (consp lo) (list (float 0.0 lo-val)) - (float -0.0 lo-val)) + (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val)) lo) :high (if hi-float-zero-p (if (consp hi) - (list (float -0.0 hi-val)) + (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val)) (float 0.0 hi-val)) hi)) type)) @@ -848,18 +850,17 @@ ;;; Convert back from the intermediate convention for which -0.0 and ;;; 0.0 are considered different to the standard type convention for ;;; which and equal. -#!-negative-zero-is-not-zero (defun convert-back-numeric-type (type) (declare (type numeric-type type)) ;;; Only convert real float interval delimiters types. (if (eq (numeric-type-complexp type) :real) (let* ((lo (numeric-type-low type)) - (lo-val (bound-value lo)) + (lo-val (type-bound-number lo)) (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0) (float-sign lo-val))) (hi (numeric-type-high type)) - (hi-val (bound-value hi)) + (hi-val (type-bound-number hi)) (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0) (float-sign hi-val)))) @@ -932,11 +933,10 @@ :high (list (float 0.0 hi-val))))))) (t type))) - ;; Not real float. + ;; not real float type)) ;;; Convert back a possible list of numeric types. -#!-negative-zero-is-not-zero (defun convert-back-numeric-type-list (type-list) (typecase type-list (list @@ -958,7 +958,9 @@ ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably ;;; belong in the kernel's type logic, invoked always, instead of in -;;; the compiler, invoked only during some type optimizations. +;;; the compiler, invoked only during some type optimizations. (In +;;; fact, as of 0.pre8.100 or so they probably are, under +;;; MAKE-MEMBER-TYPE, so probably this code can be deleted) ;;; Take a list of types and return a canonical type specifier, ;;; combining any MEMBER types together. If both positive and negative @@ -973,24 +975,15 @@ (setf members (union members (member-type-members type))) (push type misc-types))) #!+long-float - (when (null (set-difference '(-0l0 0l0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(long-float 0l0 0l0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(long-float -0l0 0l0)) misc-types) - (setf members (set-difference members '(-0l0 0l0)))) - (when (null (set-difference '(-0d0 0d0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(double-float 0d0 0d0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(double-float -0d0 0d0)) misc-types) - (setf members (set-difference members '(-0d0 0d0)))) - (when (null (set-difference '(-0f0 0f0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(single-float 0f0 0f0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(single-float -0f0 0f0)) misc-types) - (setf members (set-difference members '(-0f0 0f0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members)) + (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members)) + (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members)) + (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0)))) (if members (apply #'type-union (make-member-type :members members) misc-types) (apply #'type-union misc-types)))) @@ -1001,57 +994,52 @@ (member (first members)) (member-type (type-of member))) (aver (not (rest members))) - (specifier-type `(,(if (subtypep member-type 'integer) - 'integer - member-type) - ,member ,member)))) + (specifier-type (cond ((typep member 'integer) + `(integer ,member ,member)) + ((memq member-type '(short-float single-float + double-float long-float)) + `(,member-type ,member ,member)) + (t + member-type))))) ;;; This is used in defoptimizers for computing the resulting type of ;;; a function. ;;; -;;; Given the continuation ARG, derive the resulting type using the -;;; DERIVE-FCN. DERIVE-FCN takes exactly one argument which is some -;;; "atomic" continuation type like numeric-type or member-type -;;; (containing just one element). It should return the resulting -;;; type, which can be a list of types. +;;; Given the lvar ARG, derive the resulting type using the +;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some +;;; "atomic" lvar type like numeric-type or member-type (containing +;;; just one element). It should return the resulting type, which can +;;; be a list of types. ;;; -;;; For the case of member types, if a member-fcn is given it is +;;; For the case of member types, if a MEMBER-FUN is given it is ;;; called to compute the result otherwise the member type is first -;;; converted to a numeric type and the derive-fcn is call. -(defun one-arg-derive-type (arg derive-fcn member-fcn +;;; converted to a numeric type and the DERIVE-FUN is called. +(defun one-arg-derive-type (arg derive-fun member-fun &optional (convert-type t)) - (declare (type function derive-fcn) - (type (or null function) member-fcn) - #!+negative-zero-is-not-zero (ignore convert-type)) - (let ((arg-list (prepare-arg-for-derive-type (continuation-type arg)))) + (declare (type function derive-fun) + (type (or null function) member-fun)) + (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg)))) (when arg-list (flet ((deriver (x) (typecase x (member-type - (if member-fcn + (if member-fun (with-float-traps-masked (:underflow :overflow :divide-by-zero) - (make-member-type - :members (list - (funcall member-fcn - (first (member-type-members x)))))) + (specifier-type + `(eql ,(funcall member-fun + (first (member-type-members x)))))) ;; Otherwise convert to a numeric type. (let ((result-type-list - (funcall derive-fcn (convert-member-type x)))) - #!-negative-zero-is-not-zero + (funcall derive-fun (convert-member-type x)))) (if convert-type (convert-back-numeric-type-list result-type-list) - result-type-list) - #!+negative-zero-is-not-zero - result-type-list))) + result-type-list)))) (numeric-type - #!-negative-zero-is-not-zero (if convert-type (convert-back-numeric-type-list - (funcall derive-fcn (convert-numeric-type x))) - (funcall derive-fcn x)) - #!+negative-zero-is-not-zero - (funcall derive-fcn x)) + (funcall derive-fun (convert-numeric-type x))) + (funcall derive-fun x))) (t *universal-type*)))) ;; Run down the list of args and derive the type of each one, @@ -1067,83 +1055,61 @@ (first results))))))) ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes -;;; two arguments. DERIVE-FCN takes 3 args in this case: the two +;;; two arguments. DERIVE-FUN takes 3 args in this case: the two ;;; original args and a third which is T to indicate if the two args -;;; really represent the same continuation. This is useful for -;;; deriving the type of things like (* x x), which should always be -;;; positive. If we didn't do this, we wouldn't be able to tell. -(defun two-arg-derive-type (arg1 arg2 derive-fcn fcn +;;; really represent the same lvar. This is useful for deriving the +;;; type of things like (* x x), which should always be positive. If +;;; we didn't do this, we wouldn't be able to tell. +(defun two-arg-derive-type (arg1 arg2 derive-fun fun &optional (convert-type t)) - #!+negative-zero-is-not-zero - (declare (ignore convert-type)) - (flet (#!-negative-zero-is-not-zero - (deriver (x y same-arg) + (declare (type function derive-fun fun)) + (flet ((deriver (x y same-arg) (cond ((and (member-type-p x) (member-type-p y)) (let* ((x (first (member-type-members x))) (y (first (member-type-members y))) - (result (with-float-traps-masked - (:underflow :overflow :divide-by-zero - :invalid) - (funcall fcn x y)))) - (cond ((null result)) + (result (ignore-errors + (with-float-traps-masked + (:underflow :overflow :divide-by-zero + :invalid) + (funcall fun x y))))) + (cond ((null result) *empty-type*) ((and (floatp result) (float-nan-p result)) - (make-numeric-type - :class 'float - :format (type-of result) - :complexp :real)) + (make-numeric-type :class 'float + :format (type-of result) + :complexp :real)) (t - (make-member-type :members (list result)))))) + (specifier-type `(eql ,result)))))) ((and (member-type-p x) (numeric-type-p y)) (let* ((x (convert-member-type x)) (y (if convert-type (convert-numeric-type y) y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) ((and (numeric-type-p x) (member-type-p y)) (let* ((x (if convert-type (convert-numeric-type x) x)) (y (convert-member-type y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) ((and (numeric-type-p x) (numeric-type-p y)) (let* ((x (if convert-type (convert-numeric-type x) x)) (y (if convert-type (convert-numeric-type y) y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) (t - *universal-type*))) - #!+negative-zero-is-not-zero - (deriver (x y same-arg) - (cond ((and (member-type-p x) (member-type-p y)) - (let* ((x (first (member-type-members x))) - (y (first (member-type-members y))) - (result (with-float-traps-masked - (:underflow :overflow :divide-by-zero) - (funcall fcn x y)))) - (if result - (make-member-type :members (list result))))) - ((and (member-type-p x) (numeric-type-p y)) - (let ((x (convert-member-type x))) - (funcall derive-fcn x y same-arg))) - ((and (numeric-type-p x) (member-type-p y)) - (let ((y (convert-member-type y))) - (funcall derive-fcn x y same-arg))) - ((and (numeric-type-p x) (numeric-type-p y)) - (funcall derive-fcn x y same-arg)) - (t *universal-type*)))) (let ((same-arg (same-leaf-ref-p arg1 arg2)) - (a1 (prepare-arg-for-derive-type (continuation-type arg1))) - (a2 (prepare-arg-for-derive-type (continuation-type arg2)))) + (a1 (prepare-arg-for-derive-type (lvar-type arg1))) + (a2 (prepare-arg-for-derive-type (lvar-type arg2)))) (when (and a1 a2) (let ((results nil)) (if same-arg - ;; Since the args are the same continuation, just run - ;; down the lists. + ;; Since the args are the same LVARs, just run down the + ;; lists. (dolist (x a1) (let ((result (deriver x x same-arg))) (if (listp result) @@ -1160,10 +1126,8 @@ (if (rest results) (make-canonical-union-type results) (first results))))))) - -) ; PROGN -#!-propagate-float-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn (defoptimizer (+ derive-type) ((x y)) (derive-integer-type @@ -1210,11 +1174,11 @@ nil)))))))) (defoptimizer (/ derive-type) ((x y)) - (numeric-contagion (continuation-type x) (continuation-type y))) + (numeric-contagion (lvar-type x) (lvar-type y))) ) ; PROGN -#!+propagate-float-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn (defun +-derive-type-aux (x y same-arg) (if (and (numeric-type-real-p x) @@ -1237,13 +1201,13 @@ (make-numeric-type :class (if (and (eq (numeric-type-class x) 'integer) (eq (numeric-type-class y) 'integer)) - ;; The sum of integers is always an integer + ;; The sum of integers is always an integer. 'integer (numeric-type-class result-type)) :format (numeric-type-format result-type) :low (interval-low result) :high (interval-high result))) - ;; General contagion + ;; general contagion (numeric-contagion x y))) (defoptimizer (+ derive-type) ((x y)) @@ -1253,7 +1217,7 @@ (if (and (numeric-type-real-p x) (numeric-type-real-p y)) (let ((result - ;; (- x x) is always 0. + ;; (- X X) is always 0. (if same-arg (make-interval :low 0 :high 0) (interval-sub (numeric-type->interval x) @@ -1270,13 +1234,13 @@ (make-numeric-type :class (if (and (eq (numeric-type-class x) 'integer) (eq (numeric-type-class y) 'integer)) - ;; The difference of integers is always an integer + ;; The difference of integers is always an integer. 'integer (numeric-type-class result-type)) :format (numeric-type-format result-type) :low (interval-low result) :high (interval-high result))) - ;; General contagion + ;; general contagion (numeric-contagion x y))) (defoptimizer (- derive-type) ((x y)) @@ -1286,8 +1250,7 @@ (if (and (numeric-type-real-p x) (numeric-type-real-p y)) (let ((result - ;; (* x x) is always positive, so take care to do it - ;; right. + ;; (* X X) is always positive, so take care to do it right. (if same-arg (interval-sqr (numeric-type->interval x)) (interval-mul (numeric-type->interval x) @@ -1348,110 +1311,30 @@ ) ; PROGN - -;;; KLUDGE: All this ASH optimization is suppressed under CMU CL -;;; because as of version 2.4.6 for Debian, CMU CL blows up on (ASH -;;; 1000000000 -100000000000) (i.e. ASH of two bignums yielding zero) -;;; and it's hard to avoid that calculation in here. -#-(and cmu sb-xc-host) -(progn -#!-propagate-fun-type -(defoptimizer (ash derive-type) ((n shift)) - ;; Large resulting bounds are easy to generate but are not - ;; particularly useful, so an open outer bound is returned for a - ;; shift greater than 64 - the largest word size of any of the ports. - ;; Large negative shifts are also problematic as the ASH - ;; implementation only accepts shifts greater than - ;; MOST-NEGATIVE-FIXNUM. These issues are handled by two local - ;; functions: - ;; ASH-OUTER: Perform the shift when within an acceptable range, - ;; otherwise return an open bound. - ;; ASH-INNER: Perform the shift when within range, limited to a - ;; maximum of 64, otherwise returns the inner limit. - ;; - ;; FIXME: The magic number 64 should be given a mnemonic name as a - ;; symbolic constant -- perhaps +MAX-REGISTER-SIZE+. And perhaps is - ;; should become an architecture-specific SB!VM:+MAX-REGISTER-SIZE+ - ;; instead of trying to have a single magic number which covers - ;; all possible ports. - (flet ((ash-outer (n s) - (when (and (fixnump s) - (<= s 64) - (> s sb!vm:*target-most-negative-fixnum*)) - (ash n s))) - (ash-inner (n s) - (if (and (fixnump s) - (> s sb!vm:*target-most-negative-fixnum*)) - (ash n (min s 64)) - (if (minusp n) -1 0)))) - (or (let ((n-type (continuation-type n))) - (when (numeric-type-p n-type) - (let ((n-low (numeric-type-low n-type)) - (n-high (numeric-type-high n-type))) - (if (constant-continuation-p shift) - (let ((shift (continuation-value shift))) - (make-numeric-type :class 'integer - :complexp :real - :low (when n-low (ash n-low shift)) - :high (when n-high (ash n-high shift)))) - (let ((s-type (continuation-type shift))) - (when (numeric-type-p s-type) - (let* ((s-low (numeric-type-low s-type)) - (s-high (numeric-type-high s-type)) - (low-slot (when n-low - (if (minusp n-low) - (ash-outer n-low s-high) - (ash-inner n-low s-low)))) - (high-slot (when n-high - (if (minusp n-high) - (ash-inner n-high s-low) - (ash-outer n-high s-high))))) - (make-numeric-type :class 'integer - :complexp :real - :low low-slot - :high high-slot)))))))) - *universal-type*)) - (or (let ((n-type (continuation-type n))) - (when (numeric-type-p n-type) - (let ((n-low (numeric-type-low n-type)) - (n-high (numeric-type-high n-type))) - (if (constant-continuation-p shift) - (let ((shift (continuation-value shift))) - (make-numeric-type :class 'integer - :complexp :real - :low (when n-low (ash n-low shift)) - :high (when n-high (ash n-high shift)))) - (let ((s-type (continuation-type shift))) - (when (numeric-type-p s-type) - (let ((s-low (numeric-type-low s-type)) - (s-high (numeric-type-high s-type))) - (if (and s-low s-high (<= s-low 64) (<= s-high 64)) - (make-numeric-type :class 'integer - :complexp :real - :low (when n-low - (min (ash n-low s-high) - (ash n-low s-low))) - :high (when n-high - (max (ash n-high s-high) - (ash n-high s-low)))) - (make-numeric-type :class 'integer - :complexp :real))))))))) - *universal-type*)) - -#!+propagate-fun-type (defun ash-derive-type-aux (n-type shift same-arg) (declare (ignore same-arg)) + ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for + ;; some bignum cases because as of version 2.4.6 for Debian and 18d, + ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of + ;; two bignums yielding zero) and it's hard to avoid that + ;; calculation in here. + #+(and cmu sb-xc-host) + (when (and (or (typep (numeric-type-low n-type) 'bignum) + (typep (numeric-type-high n-type) 'bignum)) + (or (typep (numeric-type-low shift) 'bignum) + (typep (numeric-type-high shift) 'bignum))) + (return-from ash-derive-type-aux *universal-type*)) (flet ((ash-outer (n s) (when (and (fixnump s) (<= s 64) - (> s sb!vm:*target-most-negative-fixnum*)) + (> s sb!xc:most-negative-fixnum)) (ash n s))) ;; KLUDGE: The bare 64's here should be related to ;; symbolic machine word size values somehow. (ash-inner (n s) (if (and (fixnump s) - (> s sb!vm:*target-most-negative-fixnum*)) + (> s sb!xc:most-negative-fixnum)) (ash n (min s 64)) (if (minusp n) -1 0)))) (or (and (csubtypep n-type (specifier-type 'integer)) @@ -1471,12 +1354,10 @@ (ash-outer n-high s-high)))))) *universal-type*))) -#!+propagate-fun-type (defoptimizer (ash derive-type) ((n shift)) (two-arg-derive-type n shift #'ash-derive-type-aux #'ash)) -) ; PROGN -#!-propagate-float-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (macrolet ((frob (fun) `#'(lambda (type type2) (declare (ignore type2)) @@ -1485,42 +1366,39 @@ (values (if hi (,fun hi) nil) (if lo (,fun lo) nil)))))) (defoptimizer (%negate derive-type) ((num)) - (derive-integer-type num num (frob -))) - - (defoptimizer (lognot derive-type) ((int)) - (derive-integer-type int int (frob lognot)))) + (derive-integer-type num num (frob -)))) + +(defun lognot-derive-type-aux (int) + (derive-integer-type-aux int int + (lambda (type type2) + (declare (ignore type2)) + (let ((lo (numeric-type-low type)) + (hi (numeric-type-high type))) + (values (if hi (lognot hi) nil) + (if lo (lognot lo) nil) + (numeric-type-class type) + (numeric-type-format type)))))) -#!+propagate-float-type (defoptimizer (lognot derive-type) ((int)) - (derive-integer-type int int - (lambda (type type2) - (declare (ignore type2)) - (let ((lo (numeric-type-low type)) - (hi (numeric-type-high type))) - (values (if hi (lognot hi) nil) - (if lo (lognot lo) nil) - (numeric-type-class type) - (numeric-type-format type)))))) - -#!+propagate-float-type + (lognot-derive-type-aux (lvar-type int))) + +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (%negate derive-type) ((num)) (flet ((negate-bound (b) - (set-bound (- (bound-value b)) (consp b)))) + (and b + (set-bound (- (type-bound-number b)) + (consp b))))) (one-arg-derive-type num (lambda (type) - (let ((lo (numeric-type-low type)) - (hi (numeric-type-high type)) - (result (copy-numeric-type type))) - (setf (numeric-type-low result) - (if hi (negate-bound hi) nil)) - (setf (numeric-type-high result) - (if lo (negate-bound lo) nil)) - result)) + (modified-numeric-type + type + :low (negate-bound (numeric-type-high type)) + :high (negate-bound (numeric-type-low type)))) #'-))) -#!-propagate-float-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (abs derive-type) ((num)) - (let ((type (continuation-type num))) + (let ((type (lvar-type num))) (if (and (numeric-type-p type) (eq (numeric-type-class type) 'integer) (eq (numeric-type-complexp type) :real)) @@ -1538,7 +1416,7 @@ nil))) (numeric-contagion type type)))) -#!+propagate-float-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defun abs-derive-type-aux (type) (cond ((eq (numeric-type-complexp type) :complex) ;; The absolute value of a complex number is always a @@ -1567,14 +1445,14 @@ :high (coerce-numeric-bound (interval-high abs-bnd) bound-type)))))) -#!+propagate-float-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (abs derive-type) ((num)) (one-arg-derive-type num #'abs-derive-type-aux #'abs)) -#!-propagate-float-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (truncate derive-type) ((number divisor)) - (let ((number-type (continuation-type number)) - (divisor-type (continuation-type divisor)) + (let ((number-type (lvar-type number)) + (divisor-type (lvar-type divisor)) (integer-type (specifier-type 'integer))) (if (and (numeric-type-p number-type) (csubtypep number-type integer-type) @@ -1591,9 +1469,7 @@ divisor-low divisor-high)))) *universal-type*))) -#-sb-xc-host ;(CROSS-FLOAT-INFINITY-KLUDGE, see base-target-features.lisp-expr) -(progn -#!+propagate-float-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (progn (defun rem-result-type (number-type divisor-type) @@ -1744,13 +1620,20 @@ #'%unary-truncate-derive-type-aux #'%unary-truncate)) +(defoptimizer (%unary-ftruncate derive-type) ((number)) + (let ((divisor (specifier-type '(integer 1 1)))) + (one-arg-derive-type number + #'(lambda (n) + (ftruncate-derive-type-quot-aux n divisor nil)) + #'%unary-ftruncate))) + ;;; Define optimizers for FLOOR and CEILING. (macrolet - ((frob-opt (name q-name r-name) + ((def (name q-name r-name) (let ((q-aux (symbolicate q-name "-AUX")) (r-aux (symbolicate r-name "-AUX"))) `(progn - ;; Compute type of quotient (first) result + ;; Compute type of quotient (first) result. (defun ,q-aux (number-type divisor-type) (let* ((number-interval (numeric-type->interval number-type)) @@ -1760,7 +1643,7 @@ divisor-interval)))) (specifier-type `(integer ,(or (interval-low quot) '*) ,(or (interval-high quot) '*))))) - ;; Compute type of remainder + ;; Compute type of remainder. (defun ,r-aux (number-type divisor-type) (let* ((divisor-interval (numeric-type->interval divisor-type)) @@ -1780,16 +1663,16 @@ (values nil nil))) (when (member result-type '(float single-float double-float #!+long-float long-float)) - ;; Make sure the limits on the interval have + ;; Make sure that the limits on the interval have ;; the right type. - (setf rem (interval-func #'(lambda (x) - (coerce x result-type)) + (setf rem (interval-func (lambda (x) + (coerce x result-type)) rem))) (make-numeric-type :class class :format format :low (interval-low rem) :high (interval-high rem))))) - ;; The optimizer itself + ;; the optimizer itself (defoptimizer (,name derive-type) ((number divisor)) (flet ((derive-q (n d same-arg) (declare (ignore same-arg)) @@ -1808,57 +1691,54 @@ (rem (two-arg-derive-type number divisor #'derive-r #'mod))) (when (and quot rem) - (make-values-type :required (list quot rem)))))) - )))) + (make-values-type :required (list quot rem)))))))))) - ;; FIXME: DEF-FROB-OPT, not just FROB-OPT - (frob-opt floor floor-quotient-bound floor-rem-bound) - (frob-opt ceiling ceiling-quotient-bound ceiling-rem-bound)) + (def floor floor-quotient-bound floor-rem-bound) + (def ceiling ceiling-quotient-bound ceiling-rem-bound)) ;;; Define optimizers for FFLOOR and FCEILING -(macrolet - ((frob-opt (name q-name r-name) - (let ((q-aux (symbolicate "F" q-name "-AUX")) - (r-aux (symbolicate r-name "-AUX"))) - `(progn - ;; Compute type of quotient (first) result - (defun ,q-aux (number-type divisor-type) - (let* ((number-interval - (numeric-type->interval number-type)) - (divisor-interval - (numeric-type->interval divisor-type)) - (quot (,q-name (interval-div number-interval - divisor-interval))) - (res-type (numeric-contagion number-type divisor-type))) - (make-numeric-type - :class (numeric-type-class res-type) - :format (numeric-type-format res-type) - :low (interval-low quot) - :high (interval-high quot)))) - - (defoptimizer (,name derive-type) ((number divisor)) - (flet ((derive-q (n d same-arg) - (declare (ignore same-arg)) - (if (and (numeric-type-real-p n) - (numeric-type-real-p d)) - (,q-aux n d) - *empty-type*)) - (derive-r (n d same-arg) - (declare (ignore same-arg)) - (if (and (numeric-type-real-p n) - (numeric-type-real-p d)) - (,r-aux n d) - *empty-type*))) - (let ((quot (two-arg-derive-type - number divisor #'derive-q #',name)) - (rem (two-arg-derive-type - number divisor #'derive-r #'mod))) - (when (and quot rem) - (make-values-type :required (list quot rem)))))))))) - - ;; FIXME: DEF-FROB-OPT, not just FROB-OPT - (frob-opt ffloor floor-quotient-bound floor-rem-bound) - (frob-opt fceiling ceiling-quotient-bound ceiling-rem-bound)) +(macrolet ((def (name q-name r-name) + (let ((q-aux (symbolicate "F" q-name "-AUX")) + (r-aux (symbolicate r-name "-AUX"))) + `(progn + ;; Compute type of quotient (first) result. + (defun ,q-aux (number-type divisor-type) + (let* ((number-interval + (numeric-type->interval number-type)) + (divisor-interval + (numeric-type->interval divisor-type)) + (quot (,q-name (interval-div number-interval + divisor-interval))) + (res-type (numeric-contagion number-type + divisor-type))) + (make-numeric-type + :class (numeric-type-class res-type) + :format (numeric-type-format res-type) + :low (interval-low quot) + :high (interval-high quot)))) + + (defoptimizer (,name derive-type) ((number divisor)) + (flet ((derive-q (n d same-arg) + (declare (ignore same-arg)) + (if (and (numeric-type-real-p n) + (numeric-type-real-p d)) + (,q-aux n d) + *empty-type*)) + (derive-r (n d same-arg) + (declare (ignore same-arg)) + (if (and (numeric-type-real-p n) + (numeric-type-real-p d)) + (,r-aux n d) + *empty-type*))) + (let ((quot (two-arg-derive-type + number divisor #'derive-q #',name)) + (rem (two-arg-derive-type + number divisor #'derive-r #'mod))) + (when (and quot rem) + (make-values-type :required (list quot rem)))))))))) + + (def ffloor floor-quotient-bound floor-rem-bound) + (def fceiling ceiling-quotient-bound ceiling-rem-bound)) ;;; functions to compute the bounds on the quotient and remainder for ;;; the FLOOR function @@ -1870,9 +1750,9 @@ ;; Take the floor of the lower bound. The result is always a ;; closed lower bound. (setf lo (if lo - (floor (bound-value lo)) + (floor (type-bound-number lo)) nil)) - ;; For the upper bound, we need to be careful + ;; For the upper bound, we need to be careful. (setf hi (cond ((consp hi) ;; An open bound. We need to be careful here because @@ -1893,7 +1773,7 @@ ;; correct sign for the remainder if we can. (case (interval-range-info div) (+ - ;; Divisor is always positive. + ;; The divisor is always positive. (let ((rem (interval-abs div))) (setf (interval-low rem) 0) (when (and (numberp (interval-high rem)) @@ -1903,7 +1783,7 @@ (setf (interval-high rem) (list (interval-high rem)))) rem)) (- - ;; Divisor is always negative + ;; The divisor is always negative. (let ((rem (interval-neg (interval-abs div)))) (setf (interval-high rem) 0) (when (numberp (interval-low rem)) @@ -1911,11 +1791,10 @@ (setf (interval-low rem) (list (interval-low rem)))) rem)) (otherwise - ;; The divisor can be positive or negative. All bets off. - ;; The magnitude of remainder is the maximum value of the - ;; divisor. - (let ((limit (bound-value (interval-high (interval-abs div))))) - ;; The bound never reaches the limit, so make the interval open + ;; The divisor can be positive or negative. All bets off. The + ;; magnitude of remainder is the maximum value of the divisor. + (let ((limit (type-bound-number (interval-high (interval-abs div))))) + ;; The bound never reaches the limit, so make the interval open. (make-interval :low (if limit (list (- limit)) limit) @@ -1963,9 +1842,9 @@ ;; Take the ceiling of the upper bound. The result is always a ;; closed upper bound. (setf hi (if hi - (ceiling (bound-value hi)) + (ceiling (type-bound-number hi)) nil)) - ;; For the lower bound, we need to be careful + ;; For the lower bound, we need to be careful. (setf lo (cond ((consp lo) ;; An open bound. We need to be careful here because @@ -1984,7 +1863,6 @@ (defun ceiling-rem-bound (div) ;; The remainder depends only on the divisor. Try to get the ;; correct sign for the remainder if we can. - (case (interval-range-info div) (+ ;; Divisor is always positive. The remainder is negative. @@ -2005,11 +1883,10 @@ (setf (interval-high rem) (list (interval-high rem)))) rem)) (otherwise - ;; The divisor can be positive or negative. All bets off. - ;; The magnitude of remainder is the maximum value of the - ;; divisor. - (let ((limit (bound-value (interval-high (interval-abs div))))) - ;; The bound never reaches the limit, so make the interval open + ;; The divisor can be positive or negative. All bets off. The + ;; magnitude of remainder is the maximum value of the divisor. + (let ((limit (type-bound-number (interval-high (interval-abs div))))) + ;; The bound never reaches the limit, so make the interval open. (make-interval :low (if limit (list (- limit)) limit) @@ -2055,10 +1932,10 @@ ;; it's the union of the two pieces. (case (interval-range-info quot) (+ - ;; Just like floor + ;; just like FLOOR (floor-quotient-bound quot)) (- - ;; Just like ceiling + ;; just like CEILING (ceiling-quotient-bound quot)) (otherwise ;; Split the interval into positive and negative pieces, compute @@ -2068,9 +1945,9 @@ (floor-quotient-bound pos)))))) (defun truncate-rem-bound (num div) - ;; This is significantly more complicated than floor or ceiling. We + ;; This is significantly more complicated than FLOOR or CEILING. We ;; need both the number and the divisor to determine the range. The - ;; basic idea is to split the ranges of num and den into positive + ;; basic idea is to split the ranges of NUM and DEN into positive ;; and negative pieces and deal with each of the four possibilities ;; in turn. (case (interval-range-info num) @@ -2098,7 +1975,7 @@ (destructuring-bind (neg pos) (interval-split 0 num t t) (interval-merge-pair (truncate-rem-bound neg div) (truncate-rem-bound pos div)))))) -)) ; end PROGN's +) ; PROGN ;;; Derive useful information about the range. Returns three values: ;;; - '+ if its positive, '- negative, or nil if it overlaps 0. @@ -2115,9 +1992,9 @@ (defun integer-truncate-derive-type (number-low number-high divisor-low divisor-high) - ;; The result cannot be larger in magnitude than the number, but the sign - ;; might change. If we can determine the sign of either the number or - ;; the divisor, we can eliminate some of the cases. + ;; The result cannot be larger in magnitude than the number, but the + ;; sign might change. If we can determine the sign of either the + ;; number or the divisor, we can eliminate some of the cases. (multiple-value-bind (number-sign number-min number-max) (numeric-range-info number-low number-high) (multiple-value-bind (divisor-sign divisor-min divisor-max) @@ -2175,13 +2052,13 @@ ;; anything about the result. `integer))))) -#!-propagate-float-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defun integer-rem-derive-type (number-low number-high divisor-low divisor-high) (if (and divisor-low divisor-high) - ;; We know the range of the divisor, and the remainder must be smaller - ;; than the divisor. We can tell the sign of the remainer if we know - ;; the sign of the number. + ;; We know the range of the divisor, and the remainder must be + ;; smaller than the divisor. We can tell the sign of the + ;; remainer if we know the sign of the number. (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high))))) `(integer ,(if (or (null number-low) (minusp number-low)) @@ -2191,23 +2068,23 @@ (plusp number-high)) divisor-max 0))) - ;; The divisor is potentially either very positive or very negative. - ;; Therefore, the remainer is unbounded, but we might be able to tell - ;; something about the sign from the number. + ;; The divisor is potentially either very positive or very + ;; negative. Therefore, the remainer is unbounded, but we might + ;; be able to tell something about the sign from the number. `(integer ,(if (and number-low (not (minusp number-low))) - ;; The number we are dividing is positive. Therefore, - ;; the remainder must be positive. + ;; The number we are dividing is positive. + ;; Therefore, the remainder must be positive. 0 '*) ,(if (and number-high (not (plusp number-high))) - ;; The number we are dividing is negative. Therefore, - ;; the remainder must be negative. + ;; The number we are dividing is negative. + ;; Therefore, the remainder must be negative. 0 '*)))) -#!-propagate-float-type +#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (random derive-type) ((bound &optional state)) - (let ((type (continuation-type bound))) + (let ((type (lvar-type bound))) (when (numeric-type-p type) (let ((class (numeric-type-class type)) (high (numeric-type-high type)) @@ -2221,7 +2098,7 @@ ((or (consp high) (zerop high)) high) (t `(,high)))))))) -#!+propagate-float-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defun random-derive-type-aux (type) (let ((class (numeric-type-class type)) (high (numeric-type-high type)) @@ -2235,16 +2112,16 @@ ((or (consp high) (zerop high)) high) (t `(,high)))))) -#!+propagate-float-type +#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (random derive-type) ((bound &optional state)) (one-arg-derive-type bound #'random-derive-type-aux nil)) -;;;; logical derive-type methods +;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends -;;; Return the maximum number of bits an integer of the supplied type can take -;;; up, or NIL if it is unbounded. The second (third) value is T if the -;;; integer can be positive (negative) and NIL if not. Zero counts as -;;; positive. +;;; Return the maximum number of bits an integer of the supplied type +;;; can take up, or NIL if it is unbounded. The second (third) value +;;; is T if the integer can be positive (negative) and NIL if not. +;;; Zero counts as positive. (defun integer-type-length (type) (if (numeric-type-p type) (let ((min (numeric-type-low type)) @@ -2254,154 +2131,36 @@ (or (null min) (minusp min)))) (values nil t t))) -#!-propagate-fun-type -(progn -(defoptimizer (logand derive-type) ((x y)) - (multiple-value-bind (x-len x-pos x-neg) - (integer-type-length (continuation-type x)) - (declare (ignore x-pos)) - (multiple-value-bind (y-len y-pos y-neg) - (integer-type-length (continuation-type y)) - (declare (ignore y-pos)) - (if (not x-neg) - ;; X must be positive. - (if (not y-neg) - ;; The must both be positive. - (cond ((or (null x-len) (null y-len)) - (specifier-type 'unsigned-byte)) - ((or (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0))) - (t - (specifier-type `(unsigned-byte ,(min x-len y-len))))) - ;; X is positive, but Y might be negative. - (cond ((null x-len) - (specifier-type 'unsigned-byte)) - ((zerop x-len) - (specifier-type '(integer 0 0))) - (t - (specifier-type `(unsigned-byte ,x-len))))) - ;; X might be negative. - (if (not y-neg) - ;; Y must be positive. - (cond ((null y-len) - (specifier-type 'unsigned-byte)) - ((zerop y-len) - (specifier-type '(integer 0 0))) - (t - (specifier-type - `(unsigned-byte ,y-len)))) - ;; Either might be negative. - (if (and x-len y-len) - ;; The result is bounded. - (specifier-type `(signed-byte ,(1+ (max x-len y-len)))) - ;; We can't tell squat about the result. - (specifier-type 'integer))))))) - -(defoptimizer (logior derive-type) ((x y)) - (multiple-value-bind (x-len x-pos x-neg) - (integer-type-length (continuation-type x)) - (multiple-value-bind (y-len y-pos y-neg) - (integer-type-length (continuation-type y)) - (cond - ((and (not x-neg) (not y-neg)) - ;; Both are positive. - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*)))) - ((not x-pos) - ;; X must be negative. - (if (not y-pos) - ;; Both are negative. The result is going to be negative and be - ;; the same length or shorter than the smaller. - (if (and x-len y-len) - ;; It's bounded. - (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1)) - ;; It's unbounded. - (specifier-type '(integer * -1))) - ;; X is negative, but we don't know about Y. The result will be - ;; negative, but no more negative than X. - (specifier-type - `(integer ,(or (numeric-type-low (continuation-type x)) '*) - -1)))) - (t - ;; X might be either positive or negative. - (if (not y-pos) - ;; But Y is negative. The result will be negative. - (specifier-type - `(integer ,(or (numeric-type-low (continuation-type y)) '*) - -1)) - ;; We don't know squat about either. It won't get any bigger. - (if (and x-len y-len) - ;; Bounded. - (specifier-type `(signed-byte ,(1+ (max x-len y-len)))) - ;; Unbounded. - (specifier-type 'integer)))))))) - -(defoptimizer (logxor derive-type) ((x y)) - (multiple-value-bind (x-len x-pos x-neg) - (integer-type-length (continuation-type x)) - (multiple-value-bind (y-len y-pos y-neg) - (integer-type-length (continuation-type y)) - (cond - ((or (and (not x-neg) (not y-neg)) - (and (not x-pos) (not y-pos))) - ;; Either both are negative or both are positive. The result will be - ;; positive, and as long as the longer. - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*)))) - ((or (and (not x-pos) (not y-neg)) - (and (not y-neg) (not y-pos))) - ;; Either X is negative and Y is positive of vice-verca. The result - ;; will be negative. - (specifier-type `(integer ,(if (and x-len y-len) - (ash -1 (max x-len y-len)) - '*) - -1))) - ;; We can't tell what the sign of the result is going to be. All we - ;; know is that we don't create new bits. - ((and x-len y-len) - (specifier-type `(signed-byte ,(1+ (max x-len y-len))))) - (t - (specifier-type 'integer)))))) - -) ; PROGN - -#!+propagate-fun-type -(progn (defun logand-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logand-derive-type-aux x)) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (declare (ignore x-pos)) - (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) + (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (declare (ignore y-pos)) (if (not x-neg) ;; X must be positive. (if (not y-neg) - ;; The must both be positive. - (cond ((or (null x-len) (null y-len)) + ;; They must both be positive. + (cond ((and (null x-len) (null y-len)) (specifier-type 'unsigned-byte)) - ((or (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0))) + ((null x-len) + (specifier-type `(unsigned-byte* ,y-len))) + ((null y-len) + (specifier-type `(unsigned-byte* ,x-len))) (t - (specifier-type `(unsigned-byte ,(min x-len y-len))))) + (specifier-type `(unsigned-byte* ,(min x-len y-len))))) ;; X is positive, but Y might be negative. (cond ((null x-len) (specifier-type 'unsigned-byte)) - ((zerop x-len) - (specifier-type '(integer 0 0))) (t - (specifier-type `(unsigned-byte ,x-len))))) + (specifier-type `(unsigned-byte* ,x-len))))) ;; X might be negative. (if (not y-neg) ;; Y must be positive. (cond ((null y-len) (specifier-type 'unsigned-byte)) - ((zerop y-len) - (specifier-type '(integer 0 0))) - (t - (specifier-type - `(unsigned-byte ,y-len)))) + (t (specifier-type `(unsigned-byte* ,y-len)))) ;; Either might be negative. (if (and x-len y-len) ;; The result is bounded. @@ -2410,29 +2169,28 @@ (specifier-type 'integer))))))) (defun logior-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logior-derive-type-aux x)) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (cond ((and (not x-neg) (not y-neg)) ;; Both are positive. - (if (and x-len y-len (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0)) - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*))))) + (specifier-type `(unsigned-byte* ,(if (and x-len y-len) + (max x-len y-len) + '*)))) ((not x-pos) ;; X must be negative. (if (not y-pos) - ;; Both are negative. The result is going to be negative and be - ;; the same length or shorter than the smaller. + ;; Both are negative. The result is going to be negative + ;; and be the same length or shorter than the smaller. (if (and x-len y-len) ;; It's bounded. (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1)) ;; It's unbounded. (specifier-type '(integer * -1))) - ;; X is negative, but we don't know about Y. The result will be - ;; negative, but no more negative than X. + ;; X is negative, but we don't know about Y. The result + ;; will be negative, but no more negative than X. (specifier-type `(integer ,(or (numeric-type-low x) '*) -1)))) @@ -2451,49 +2209,92 @@ (specifier-type 'integer)))))))) (defun logxor-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logxor-derive-type-aux (specifier-type '(eql 0)))) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (cond ((or (and (not x-neg) (not y-neg)) (and (not x-pos) (not y-pos))) - ;; Either both are negative or both are positive. The result will be - ;; positive, and as long as the longer. - (if (and x-len y-len (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0)) - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*))))) + ;; Either both are negative or both are positive. The result + ;; will be positive, and as long as the longer. + (specifier-type `(unsigned-byte* ,(if (and x-len y-len) + (max x-len y-len) + '*)))) ((or (and (not x-pos) (not y-neg)) - (and (not y-neg) (not y-pos))) - ;; Either X is negative and Y is positive of vice-verca. The result - ;; will be negative. + (and (not y-pos) (not x-neg))) + ;; Either X is negative and Y is positive or vice-versa. The + ;; result will be negative. (specifier-type `(integer ,(if (and x-len y-len) (ash -1 (max x-len y-len)) '*) -1))) - ;; We can't tell what the sign of the result is going to be. All we - ;; know is that we don't create new bits. + ;; We can't tell what the sign of the result is going to be. + ;; All we know is that we don't create new bits. ((and x-len y-len) (specifier-type `(signed-byte ,(1+ (max x-len y-len))))) (t (specifier-type 'integer)))))) -(macrolet ((frob (logfcn) - (let ((fcn-aux (symbolicate logfcn "-DERIVE-TYPE-AUX"))) - `(defoptimizer (,logfcn derive-type) ((x y)) - (two-arg-derive-type x y #',fcn-aux #',logfcn))))) - ;; FIXME: DEF-FROB, not just FROB - (frob logand) - (frob logior) - (frob logxor)) +(macrolet ((deffrob (logfun) + (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX"))) + `(defoptimizer (,logfun derive-type) ((x y)) + (two-arg-derive-type x y #',fun-aux #',logfun))))) + (deffrob logand) + (deffrob logior) + (deffrob logxor)) + +(defoptimizer (logeqv derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logxor-derive-type-aux x y same-leaf))) + #'logeqv)) +(defoptimizer (lognand derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logand-derive-type-aux x y same-leaf))) + #'lognand)) +(defoptimizer (lognor derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logior-derive-type-aux x y same-leaf))) + #'lognor)) +(defoptimizer (logandc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql 0)) + (logand-derive-type-aux + (lognot-derive-type-aux x) y nil))) + #'logandc1)) +(defoptimizer (logandc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql 0)) + (logand-derive-type-aux + x (lognot-derive-type-aux y) nil))) + #'logandc2)) +(defoptimizer (logorc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql -1)) + (logior-derive-type-aux + (lognot-derive-type-aux x) y nil))) + #'logorc1)) +(defoptimizer (logorc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql -1)) + (logior-derive-type-aux + x (lognot-derive-type-aux y) nil))) + #'logorc2)) + +;;;; miscellaneous derive-type methods (defoptimizer (integer-length derive-type) ((x)) - (let ((x-type (continuation-type x))) - (when (and (numeric-type-p x-type) - (csubtypep x-type (specifier-type 'integer))) - ;; If the X is of type (INTEGER LO HI), then the integer-length - ;; of X is (INTEGER (min lo hi) (max lo hi), basically. Be + (let ((x-type (lvar-type x))) + (when (numeric-type-p x-type) + ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH + ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be ;; careful about LO or HI being NIL, though. Also, if 0 is ;; contained in X, the lower bound is obviously 0. (flet ((null-or-min (a b) @@ -2509,36 +2310,101 @@ (when (ctypep 0 x-type) (setf min-len 0)) (specifier-type `(integer ,(or min-len '*) ,(or max-len '*)))))))) -) ; PROGN - -;;;; miscellaneous derive-type methods + +(defoptimizer (isqrt derive-type) ((x)) + (let ((x-type (lvar-type x))) + (when (numeric-type-p x-type) + (let* ((lo (numeric-type-low x-type)) + (hi (numeric-type-high x-type)) + (lo-res (if lo (isqrt lo) '*)) + (hi-res (if hi (isqrt hi) '*))) + (specifier-type `(integer ,lo-res ,hi-res)))))) (defoptimizer (code-char derive-type) ((code)) - (specifier-type 'base-char)) + (let ((type (lvar-type code))) + ;; FIXME: unions of integral ranges? It ought to be easier to do + ;; this, given that CHARACTER-SET is basically an integral range + ;; type. -- CSR, 2004-10-04 + (when (numeric-type-p type) + (let* ((lo (numeric-type-low type)) + (hi (numeric-type-high type)) + (type (specifier-type `(character-set ((,lo . ,hi)))))) + (cond + ;; KLUDGE: when running on the host, we lose a slight amount + ;; of precision so that we don't have to "unparse" types + ;; that formally we can't, such as (CHARACTER-SET ((0 + ;; . 0))). -- CSR, 2004-10-06 + #+sb-xc-host + ((csubtypep type (specifier-type 'standard-char)) type) + #+sb-xc-host + ((csubtypep type (specifier-type 'base-char)) + (specifier-type 'base-char)) + #+sb-xc-host + ((csubtypep type (specifier-type 'extended-char)) + (specifier-type 'extended-char)) + (t #+sb-xc-host (specifier-type 'character) + #-sb-xc-host type)))))) (defoptimizer (values derive-type) ((&rest values)) - (values-specifier-type - `(values ,@(mapcar #'(lambda (x) - (type-specifier (continuation-type x))) - values)))) + (make-values-type :required (mapcar #'lvar-type values))) + +(defun signum-derive-type-aux (type) + (if (eq (numeric-type-complexp type) :complex) + (let* ((format (case (numeric-type-class type) + ((integer rational) 'single-float) + (t (numeric-type-format type)))) + (bound-format (or format 'float))) + (make-numeric-type :class 'float + :format format + :complexp :complex + :low (coerce -1 bound-format) + :high (coerce 1 bound-format))) + (let* ((interval (numeric-type->interval type)) + (range-info (interval-range-info interval)) + (contains-0-p (interval-contains-p 0 interval)) + (class (numeric-type-class type)) + (format (numeric-type-format type)) + (one (coerce 1 (or format class 'real))) + (zero (coerce 0 (or format class 'real))) + (minus-one (coerce -1 (or format class 'real))) + (plus (make-numeric-type :class class :format format + :low one :high one)) + (minus (make-numeric-type :class class :format format + :low minus-one :high minus-one)) + ;; KLUDGE: here we have a fairly horrible hack to deal + ;; with the schizophrenia in the type derivation engine. + ;; The problem is that the type derivers reinterpret + ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0 + ;; 0d0) within the derivation mechanism doesn't include + ;; -0d0. Ugh. So force it in here, instead. + (zero (make-numeric-type :class class :format format + :low (- zero) :high zero))) + (case range-info + (+ (if contains-0-p (type-union plus zero) plus)) + (- (if contains-0-p (type-union minus zero) minus)) + (t (type-union minus zero plus)))))) + +(defoptimizer (signum derive-type) ((num)) + (one-arg-derive-type num #'signum-derive-type-aux nil)) ;;;; byte operations ;;;; -;;;; We try to turn byte operations into simple logical operations. First, we -;;;; convert byte specifiers into separate size and position arguments passed -;;;; to internal %FOO functions. We then attempt to transform the %FOO -;;;; functions into boolean operations when the size and position are constant -;;;; and the operands are fixnums. - -(macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to expressions that - ;; evaluate to the SIZE and POSITION of the byte-specifier form - ;; SPEC. We may wrap a let around the result of the body to bind - ;; some variables. +;;;; We try to turn byte operations into simple logical operations. +;;;; First, we convert byte specifiers into separate size and position +;;;; arguments passed to internal %FOO functions. We then attempt to +;;;; transform the %FOO functions into boolean operations when the +;;;; size and position are constant and the operands are fixnums. + +(macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to + ;; expressions that evaluate to the SIZE and POSITION of + ;; the byte-specifier form SPEC. We may wrap a let around + ;; the result of the body to bind some variables. ;; - ;; If the spec is a BYTE form, then bind the vars to the subforms. - ;; otherwise, evaluate SPEC and use the BYTE-SIZE and BYTE-POSITION. - ;; The goal of this transformation is to avoid consing up byte - ;; specifiers and then immediately throwing them away. + ;; If the spec is a BYTE form, then bind the vars to the + ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE + ;; and BYTE-POSITION. The goal of this transformation is to + ;; avoid consing up byte specifiers and then immediately + ;; throwing them away. (with-byte-specifier ((size-var pos-var spec) &body body) (once-only ((spec `(macroexpand ,spec)) (temp '(gensym))) @@ -2553,35 +2419,35 @@ `(let ((,,temp ,,spec)) ,,@body)))))) - (def-source-transform ldb (spec int) + (define-source-transform ldb (spec int) (with-byte-specifier (size pos spec) `(%ldb ,size ,pos ,int))) - (def-source-transform dpb (newbyte spec int) + (define-source-transform dpb (newbyte spec int) (with-byte-specifier (size pos spec) `(%dpb ,newbyte ,size ,pos ,int))) - (def-source-transform mask-field (spec int) + (define-source-transform mask-field (spec int) (with-byte-specifier (size pos spec) `(%mask-field ,size ,pos ,int))) - (def-source-transform deposit-field (newbyte spec int) + (define-source-transform deposit-field (newbyte spec int) (with-byte-specifier (size pos spec) `(%deposit-field ,newbyte ,size ,pos ,int)))) (defoptimizer (%ldb derive-type) ((size posn num)) - (let ((size (continuation-type size))) + (let ((size (lvar-type size))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer))) (let ((size-high (numeric-type-high size))) - (if (and size-high (<= size-high sb!vm:word-bits)) - (specifier-type `(unsigned-byte ,size-high)) + (if (and size-high (<= size-high sb!vm:n-word-bits)) + (specifier-type `(unsigned-byte* ,size-high)) (specifier-type 'unsigned-byte))) *universal-type*))) (defoptimizer (%mask-field derive-type) ((size posn num)) - (let ((size (continuation-type size)) - (posn (continuation-type posn))) + (let ((size (lvar-type size)) + (posn (lvar-type posn))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer)) (numeric-type-p posn) @@ -2589,85 +2455,74 @@ (let ((size-high (numeric-type-high size)) (posn-high (numeric-type-high posn))) (if (and size-high posn-high - (<= (+ size-high posn-high) sb!vm:word-bits)) - (specifier-type `(unsigned-byte ,(+ size-high posn-high))) + (<= (+ size-high posn-high) sb!vm:n-word-bits)) + (specifier-type `(unsigned-byte* ,(+ size-high posn-high))) (specifier-type 'unsigned-byte))) *universal-type*))) +(defun %deposit-field-derive-type-aux (size posn int) + (let ((size (lvar-type size)) + (posn (lvar-type posn)) + (int (lvar-type int))) + (when (and (numeric-type-p size) + (numeric-type-p posn) + (numeric-type-p int)) + (let ((size-high (numeric-type-high size)) + (posn-high (numeric-type-high posn)) + (high (numeric-type-high int)) + (low (numeric-type-low int))) + (when (and size-high posn-high high low + ;; KLUDGE: we need this cutoff here, otherwise we + ;; will merrily derive the type of %DPB as + ;; (UNSIGNED-BYTE 1073741822), and then attempt to + ;; canonicalize this type to (INTEGER 0 (1- (ASH 1 + ;; 1073741822))), with hilarious consequences. We + ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference + ;; over a reasonable amount of shifting, even on + ;; the alpha/32 port, where N-WORD-BITS is 32 but + ;; machine integers are 64-bits. -- CSR, + ;; 2003-09-12 + (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits))) + (let ((raw-bit-count (max (integer-length high) + (integer-length low) + (+ size-high posn-high)))) + (specifier-type + (if (minusp low) + `(signed-byte ,(1+ raw-bit-count)) + `(unsigned-byte* ,raw-bit-count))))))))) + (defoptimizer (%dpb derive-type) ((newbyte size posn int)) - (let ((size (continuation-type size)) - (posn (continuation-type posn)) - (int (continuation-type int))) - (if (and (numeric-type-p size) - (csubtypep size (specifier-type 'integer)) - (numeric-type-p posn) - (csubtypep posn (specifier-type 'integer)) - (numeric-type-p int) - (csubtypep int (specifier-type 'integer))) - (let ((size-high (numeric-type-high size)) - (posn-high (numeric-type-high posn)) - (high (numeric-type-high int)) - (low (numeric-type-low int))) - (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:word-bits)) - (specifier-type - (list (if (minusp low) 'signed-byte 'unsigned-byte) - (max (integer-length high) - (integer-length low) - (+ size-high posn-high)))) - *universal-type*)) - *universal-type*))) + (%deposit-field-derive-type-aux size posn int)) (defoptimizer (%deposit-field derive-type) ((newbyte size posn int)) - (let ((size (continuation-type size)) - (posn (continuation-type posn)) - (int (continuation-type int))) - (if (and (numeric-type-p size) - (csubtypep size (specifier-type 'integer)) - (numeric-type-p posn) - (csubtypep posn (specifier-type 'integer)) - (numeric-type-p int) - (csubtypep int (specifier-type 'integer))) - (let ((size-high (numeric-type-high size)) - (posn-high (numeric-type-high posn)) - (high (numeric-type-high int)) - (low (numeric-type-low int))) - (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:word-bits)) - (specifier-type - (list (if (minusp low) 'signed-byte 'unsigned-byte) - (max (integer-length high) - (integer-length low) - (+ size-high posn-high)))) - *universal-type*)) - *universal-type*))) + (%deposit-field-derive-type-aux size posn int)) (deftransform %ldb ((size posn int) (fixnum fixnum integer) - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(logand (ash int (- posn)) - (ash ,(1- (ash 1 sb!vm:word-bits)) - (- size ,sb!vm:word-bits)))) + (ash ,(1- (ash 1 sb!vm:n-word-bits)) + (- size ,sb!vm:n-word-bits)))) (deftransform %mask-field ((size posn int) (fixnum fixnum integer) - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(logand int - (ash (ash ,(1- (ash 1 sb!vm:word-bits)) - (- size ,sb!vm:word-bits)) + (ash (ash ,(1- (ash 1 sb!vm:n-word-bits)) + (- size ,sb!vm:n-word-bits)) posn))) ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N)) -;;; as the result type, as that would allow result types -;;; that cover the range -2^(n-1) .. 1-2^n, instead of allowing result types -;;; of (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N). +;;; as the result type, as that would allow result types that cover +;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of +;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N). (deftransform %dpb ((new size posn int) * - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ldb (byte size 0) -1))) (logior (ash (logand new mask) posn) @@ -2675,7 +2530,7 @@ (deftransform %dpb ((new size posn int) * - (signed-byte #.sb!vm:word-bits)) + (signed-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ldb (byte size 0) -1))) (logior (ash (logand new mask) posn) @@ -2683,7 +2538,7 @@ (deftransform %deposit-field ((new size posn int) * - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ash (ldb (byte size 0) -1) posn))) (logior (logand new mask) @@ -2691,50 +2546,135 @@ (deftransform %deposit-field ((new size posn int) * - (signed-byte #.sb!vm:word-bits)) + (signed-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ash (ldb (byte size 0) -1) posn))) (logior (logand new mask) (logand int (lognot mask))))) +;;; Modular functions + +;;; (ldb (byte s 0) (foo x y ...)) = +;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...)) +;;; +;;; and similar for other arguments. + +;;; Try to recursively cut all uses of LVAR to WIDTH bits. +;;; +;;; For good functions, we just recursively cut arguments; their +;;; "goodness" means that the result will not increase (in the +;;; (unsigned-byte +infinity) sense). An ordinary modular function is +;;; replaced with the version, cutting its result to WIDTH or more +;;; bits. For most functions (e.g. for +) we cut all arguments; for +;;; others (e.g. for ASH) we have "optimizers", cutting only necessary +;;; arguments (maybe to a different width) and returning the name of a +;;; modular version, if it exists, or NIL. If we have changed +;;; anything, we need to flush old derived types, because they have +;;; nothing in common with the new code. +(defun cut-to-width (lvar width) + (declare (type lvar lvar) (type (integer 0) width)) + (labels ((reoptimize-node (node name) + (setf (node-derived-type node) + (fun-type-returns + (info :function :type name))) + (setf (lvar-%derived-type (node-lvar node)) nil) + (setf (node-reoptimize node) t) + (setf (block-reoptimize (node-block node)) t) + (setf (component-reoptimize (node-component node)) t)) + (cut-node (node &aux did-something) + (when (and (not (block-delete-p (node-block node))) + (combination-p node) + (eq (basic-combination-kind node) :known)) + (let* ((fun-ref (lvar-use (combination-fun node))) + (fun-name (leaf-source-name (ref-leaf fun-ref))) + (modular-fun (find-modular-version fun-name width))) + (when (and modular-fun + (not (and (eq fun-name 'logand) + (csubtypep + (single-value-type (node-derived-type node)) + (specifier-type `(unsigned-byte* ,width)))))) + (binding* ((name (etypecase modular-fun + ((eql :good) fun-name) + (modular-fun-info + (modular-fun-info-name modular-fun)) + (function + (funcall modular-fun node width))) + :exit-if-null)) + (unless (eql modular-fun :good) + (setq did-something t) + (change-ref-leaf + fun-ref + (find-free-fun name "in a strange place")) + (setf (combination-kind node) :full)) + (unless (functionp modular-fun) + (dolist (arg (basic-combination-args node)) + (when (cut-lvar arg) + (setq did-something t)))) + (when did-something + (reoptimize-node node name)) + did-something))))) + (cut-lvar (lvar &aux did-something) + (do-uses (node lvar) + (when (cut-node node) + (setq did-something t))) + did-something)) + (cut-lvar lvar))) + +(defoptimizer (logand optimizer) ((x y) node) + (let ((result-type (single-value-type (node-derived-type node)))) + (when (numeric-type-p result-type) + (let ((low (numeric-type-low result-type)) + (high (numeric-type-high result-type))) + (when (and (numberp low) + (numberp high) + (>= low 0)) + (let ((width (integer-length high))) + (when (some (lambda (x) (<= width x)) + *modular-funs-widths*) + ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH). + (cut-to-width x width) + (cut-to-width y width) + nil ; After fixing above, replace with T. + ))))))) + ;;; miscellanous numeric transforms ;;; If a constant appears as the first arg, swap the args. (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node) - (if (and (constant-continuation-p x) - (not (constant-continuation-p y))) - `(,(continuation-function-name (basic-combination-fun node)) + (if (and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,(lvar-fun-name (basic-combination-fun node)) y - ,(continuation-value x)) + ,(lvar-value x)) (give-up-ir1-transform))) (dolist (x '(= char= + * logior logand logxor)) (%deftransform x '(function * *) #'commutative-arg-swap - "place constant arg last.")) + "place constant arg last")) ;;; Handle the case of a constant BOOLE-CODE. -(deftransform boole ((op x y) * * :when :both) +(deftransform boole ((op x y) * *) "convert to inline logical operations" - (unless (constant-continuation-p op) + (unless (constant-lvar-p op) (give-up-ir1-transform "BOOLE code is not a constant.")) - (let ((control (continuation-value op))) + (let ((control (lvar-value op))) (case control - (#.boole-clr 0) - (#.boole-set -1) - (#.boole-1 'x) - (#.boole-2 'y) - (#.boole-c1 '(lognot x)) - (#.boole-c2 '(lognot y)) - (#.boole-and '(logand x y)) - (#.boole-ior '(logior x y)) - (#.boole-xor '(logxor x y)) - (#.boole-eqv '(logeqv x y)) - (#.boole-nand '(lognand x y)) - (#.boole-nor '(lognor x y)) - (#.boole-andc1 '(logandc1 x y)) - (#.boole-andc2 '(logandc2 x y)) - (#.boole-orc1 '(logorc1 x y)) - (#.boole-orc2 '(logorc2 x y)) + (#.sb!xc:boole-clr 0) + (#.sb!xc:boole-set -1) + (#.sb!xc:boole-1 'x) + (#.sb!xc:boole-2 'y) + (#.sb!xc:boole-c1 '(lognot x)) + (#.sb!xc:boole-c2 '(lognot y)) + (#.sb!xc:boole-and '(logand x y)) + (#.sb!xc:boole-ior '(logior x y)) + (#.sb!xc:boole-xor '(logxor x y)) + (#.sb!xc:boole-eqv '(logeqv x y)) + (#.sb!xc:boole-nand '(lognand x y)) + (#.sb!xc:boole-nor '(lognor x y)) + (#.sb!xc:boole-andc1 '(logandc1 x y)) + (#.sb!xc:boole-andc2 '(logandc2 x y)) + (#.sb!xc:boole-orc1 '(logorc1 x y)) + (#.sb!xc:boole-orc2 '(logorc2 x y)) (t (abort-ir1-transform "~S is an illegal control arg to BOOLE." control))))) @@ -2742,84 +2682,39 @@ ;;;; converting special case multiply/divide to shifts ;;; If arg is a constant power of two, turn * into a shift. -(deftransform * ((x y) (integer integer) * :when :both) +(deftransform * ((x y) (integer integer) *) "convert x*2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (if (minusp y) `(- (ash x ,len)) `(ash x ,len)))) -;;; If both arguments and the result are (unsigned-byte 32), try to come up -;;; with a ``better'' multiplication using multiplier recoding. There are two -;;; different ways the multiplier can be recoded. The more obvious is to shift -;;; X by the correct amount for each bit set in Y and to sum the results. But -;;; if there is a string of bits that are all set, you can add X shifted by -;;; one more then the bit position of the first set bit and subtract X shifted -;;; by the bit position of the last set bit. We can't use this second method -;;; when the high order bit is bit 31 because shifting by 32 doesn't work -;;; too well. -(deftransform * ((x y) - ((unsigned-byte 32) (unsigned-byte 32)) - (unsigned-byte 32)) - "recode as shift and add" - (unless (constant-continuation-p y) - (give-up-ir1-transform)) - (let ((y (continuation-value y)) - (result nil) - (first-one nil)) - (labels ((tub32 (x) `(truly-the (unsigned-byte 32) ,x)) - (add (next-factor) - (setf result - (tub32 - (if result - `(+ ,result ,(tub32 next-factor)) - next-factor))))) - (declare (inline add)) - (dotimes (bitpos 32) - (if first-one - (when (not (logbitp bitpos y)) - (add (if (= (1+ first-one) bitpos) - ;; There is only a single bit in the string. - `(ash x ,first-one) - ;; There are at least two. - `(- ,(tub32 `(ash x ,bitpos)) - ,(tub32 `(ash x ,first-one))))) - (setf first-one nil)) - (when (logbitp bitpos y) - (setf first-one bitpos)))) - (when first-one - (cond ((= first-one 31)) - ((= first-one 30) - (add '(ash x 30))) - (t - (add `(- ,(tub32 '(ash x 31)) ,(tub32 `(ash x ,first-one)))))) - (add '(ash x 31)))) - (or result 0))) - -;;; If arg is a constant power of two, turn FLOOR into a shift and mask. -;;; If CEILING, add in (1- (ABS Y)) and then do FLOOR. +;;; If arg is a constant power of two, turn FLOOR into a shift and +;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a +;;; remainder. (flet ((frob (y ceil-p) - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((shift (- len)) - (mask (1- y-abs))) - `(let ,(when ceil-p `((x (+ x ,(1- y-abs))))) + (mask (1- y-abs)) + (delta (if ceil-p (* (signum y) (1- y-abs)) 0))) + `(let ((x (+ x ,delta))) ,(if (minusp y) `(values (ash (- x) ,shift) - (- (logand (- x) ,mask))) + (- (- (logand (- x) ,mask)) ,delta)) `(values (ash x ,shift) - (logand x ,mask)))))))) + (- (logand x ,mask) ,delta)))))))) (deftransform floor ((x y) (integer integer) *) "convert division by 2^k to shift" (frob y nil)) @@ -2828,14 +2723,14 @@ (frob y t))) ;;; Do the same for MOD. -(deftransform mod ((x y) (integer integer) * :when :both) +(deftransform mod ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((mask (1- y-abs))) (if (minusp y) @@ -2845,12 +2740,12 @@ ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask. (deftransform truncate ((x y) (integer integer)) "convert division by 2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let* ((shift (- len)) (mask (1- y-abs))) @@ -2860,19 +2755,19 @@ `(- (ash (- x) ,shift))) (- (logand (- x) ,mask))) (values ,(if (minusp y) - `(- (ash (- x) ,shift)) + `(ash (- ,mask x) ,shift) `(ash x ,shift)) (logand x ,mask)))))) ;;; And the same for REM. -(deftransform rem ((x y) (integer integer) * :when :both) +(deftransform rem ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((mask (1- y-abs))) `(if (minusp x) @@ -2880,50 +2775,57 @@ (logand x ,mask))))) ;;;; arithmetic and logical identity operation elimination -;;;; -;;;; Flush calls to various arith functions that convert to the identity -;;;; function or a constant. - -(dolist (stuff '((ash 0 x) - (logand -1 x) - (logand 0 0) - (logior 0 x) - (logior -1 -1) - (logxor -1 (lognot x)) - (logxor 0 x))) - (destructuring-bind (name identity result) stuff - (deftransform name ((x y) `(* (constant-argument (member ,identity))) '* - :eval-name t :when :both) - "fold identity operations" - result))) + +;;; Flush calls to various arith functions that convert to the +;;; identity function or a constant. +(macrolet ((def (name identity result) + `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *) + "fold identity operations" + ',result))) + (def ash 0 x) + (def logand -1 x) + (def logand 0 0) + (def logior 0 x) + (def logior -1 -1) + (def logxor -1 (lognot x)) + (def logxor 0 x)) + +(deftransform logand ((x y) (* (constant-arg t)) *) + "fold identity operation" + (let ((y (lvar-value y))) + (unless (and (plusp y) + (= y (1- (ash 1 (integer-length y))))) + (give-up-ir1-transform)) + (unless (csubtypep (lvar-type x) + (specifier-type `(integer 0 ,y))) + (give-up-ir1-transform)) + 'x)) ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and ;;; (* 0 -4.0) is -0.0. -(deftransform - ((x y) ((constant-argument (member 0)) rational) * - :when :both) +(deftransform - ((x y) ((constant-arg (member 0)) rational) *) "convert (- 0 x) to negate" '(%negate y)) -(deftransform * ((x y) (rational (constant-argument (member 0))) * - :when :both) - "convert (* x 0) to 0." +(deftransform * ((x y) (rational (constant-arg (member 0))) *) + "convert (* x 0) to 0" 0) -;;; Return T if in an arithmetic op including continuations X and Y, the -;;; result type is not affected by the type of X. That is, Y is at least as -;;; contagious as X. +;;; Return T if in an arithmetic op including lvars X and Y, the +;;; result type is not affected by the type of X. That is, Y is at +;;; least as contagious as X. #+nil (defun not-more-contagious (x y) (declare (type continuation x y)) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (values (type= (numeric-contagion x y) (numeric-contagion y y))))) ;;; Patched version by Raymond Toy. dtc: Should be safer although it -;;; needs more work as valid transforms are missed; some cases are +;;; XXX needs more work as valid transforms are missed; some cases are ;;; specific to particular transform functions so the use of this ;;; function may need a re-think. (defun not-more-contagious (x y) - (declare (type continuation x y)) + (declare (type lvar x y)) (flet ((simple-numeric-type (num) (and (numeric-type-p num) ;; Return non-NIL if NUM is integer, rational, or a float @@ -2935,8 +2837,8 @@ (numeric-type-format num)) (t nil))))) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (if (and (simple-numeric-type x) (simple-numeric-type y)) (values (type= (numeric-contagion x y) @@ -2944,11 +2846,11 @@ ;;; Fold (+ x 0). ;;; -;;; If y is not constant, not zerop, or is contagious, or a -;;; positive float +0.0 then give up. -(deftransform + ((x y) (t (constant-argument t)) * :when :both) +;;; If y is not constant, not zerop, or is contagious, or a positive +;;; float +0.0 then give up. +(deftransform + ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (plusp (float-sign val)))) (not-more-contagious y x)) @@ -2957,11 +2859,11 @@ ;;; Fold (- x 0). ;;; -;;; If y is not constant, not zerop, or is contagious, or a -;;; negative float -0.0 then give up. -(deftransform - ((x y) (t (constant-argument t)) * :when :both) +;;; If y is not constant, not zerop, or is contagious, or a negative +;;; float -0.0 then give up. +(deftransform - ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (minusp (float-sign val)))) (not-more-contagious y x)) @@ -2969,31 +2871,42 @@ 'x) ;;; Fold (OP x +/-1) -(dolist (stuff '((* x (%negate x)) - (/ x (%negate x)) - (expt x (/ 1 x)))) - (destructuring-bind (name result minus-result) stuff - (deftransform name ((x y) '(t (constant-argument real)) '* :eval-name t - :when :both) - "fold identity operations" - (let ((val (continuation-value y))) - (unless (and (= (abs val) 1) - (not-more-contagious y x)) - (give-up-ir1-transform)) - (if (minusp val) minus-result result))))) +(macrolet ((def (name result minus-result) + `(deftransform ,name ((x y) (t (constant-arg real)) *) + "fold identity operations" + (let ((val (lvar-value y))) + (unless (and (= (abs val) 1) + (not-more-contagious y x)) + (give-up-ir1-transform)) + (if (minusp val) ',minus-result ',result))))) + (def * x (%negate x)) + (def / x (%negate x)) + (def expt x (/ 1 x))) ;;; Fold (expt x n) into multiplications for small integral values of ;;; N; convert (expt x 1/2) to sqrt. -(deftransform expt ((x y) (t (constant-argument real)) *) +(deftransform expt ((x y) (t (constant-arg real)) *) "recode as multiplication or sqrt" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) ;; If Y would cause the result to be promoted to the same type as ;; Y, we give up. If not, then the result will be the same type ;; as X, so we can replace the exponentiation with simple ;; multiplication and division for small integral powers. (unless (not-more-contagious y x) (give-up-ir1-transform)) - (cond ((zerop val) '(float 1 x)) + (cond ((zerop val) + (let ((x-type (lvar-type x))) + (cond ((csubtypep x-type (specifier-type '(or rational + (complex rational)))) + '1) + ((csubtypep x-type (specifier-type 'real)) + `(if (rationalp x) + 1 + (float 1 x))) + ((csubtypep x-type (specifier-type 'complex)) + ;; both parts are float + `(1+ (* x ,val))) + (t (give-up-ir1-transform))))) ((= val 2) '(* x x)) ((= val -2) '(/ (* x x))) ((= val 3) '(* x x x)) @@ -3005,25 +2918,30 @@ ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these ;;; transformations? ;;; Perhaps we should have to prove that the denominator is nonzero before -;;; doing them? (Also the DOLIST over macro calls is weird. Perhaps -;;; just FROB?) -- WHN 19990917 -;;; -;;; FIXME: What gives with the single quotes in the argument lists -;;; for DEFTRANSFORMs here? Does that work? Is it needed? Why? -(dolist (name '(ash /)) - (deftransform name ((x y) '((constant-argument (integer 0 0)) integer) '* - :eval-name t :when :both) - "fold zero arg" - 0)) -(dolist (name '(truncate round floor ceiling)) - (deftransform name ((x y) '((constant-argument (integer 0 0)) integer) '* - :eval-name t :when :both) - "fold zero arg" - '(values 0 0))) +;;; doing them? -- WHN 19990917 +(macrolet ((def (name) + `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer) + *) + "fold zero arg" + 0))) + (def ash) + (def /)) + +(macrolet ((def (name) + `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer) + *) + "fold zero arg" + '(values 0 0)))) + (def truncate) + (def round) + (def floor) + (def ceiling)) ;;;; character operations -(deftransform char-equal ((a b) (base-char base-char)) +(deftransform char-equal ((a b) + ((character-set ((0 . 255))) + (character-set ((0 . 255))))) "open code" '(let* ((ac (char-code a)) (bc (char-code b)) @@ -3031,55 +2949,66 @@ (or (zerop sum) (when (eql sum #x20) (let ((sum (+ ac bc))) - (and (> sum 161) (< sum 213))))))) + (or (and (> sum 161) (< sum 213)) + (and (> sum 415) (< sum 461)) + (and (> sum 463) (< sum 477)))))))) -(deftransform char-upcase ((x) (base-char)) +(deftransform char-upcase ((x) ((character-set ((0 . 255))))) "open code" '(let ((n-code (char-code x))) - (if (and (> n-code #o140) ; Octal 141 is #\a. - (< n-code #o173)) ; Octal 172 is #\z. + (if (or (and (> n-code #o140) ; Octal 141 is #\a. + (< n-code #o173)) ; Octal 172 is #\z. + (and (> n-code #o337) + (< n-code #o367)) + (and (> n-code #o367) + (< n-code #o377))) (code-char (logxor #x20 n-code)) x))) -(deftransform char-downcase ((x) (base-char)) +(deftransform char-downcase ((x) ((character-set ((0 . 255))))) "open code" '(let ((n-code (char-code x))) - (if (and (> n-code 64) ; 65 is #\A. - (< n-code 91)) ; 90 is #\Z. + (if (or (and (> n-code 64) ; 65 is #\A. + (< n-code 91)) ; 90 is #\Z. + (and (> n-code 191) + (< n-code 215)) + (and (> n-code 215) + (< n-code 223))) (code-char (logxor #x20 n-code)) x))) ;;;; equality predicate transforms -;;; Return true if X and Y are continuations whose only use is a reference -;;; to the same leaf, and the value of the leaf cannot change. +;;; Return true if X and Y are lvars whose only use is a +;;; reference to the same leaf, and the value of the leaf cannot +;;; change. (defun same-leaf-ref-p (x y) - (declare (type continuation x y)) - (let ((x-use (continuation-use x)) - (y-use (continuation-use y))) + (declare (type lvar x y)) + (let ((x-use (principal-lvar-use x)) + (y-use (principal-lvar-use y))) (and (ref-p x-use) (ref-p y-use) (eq (ref-leaf x-use) (ref-leaf y-use)) (constant-reference-p x-use)))) -;;; If X and Y are the same leaf, then the result is true. Otherwise, if -;;; there is no intersection between the types of the arguments, then the -;;; result is definitely false. +;;; If X and Y are the same leaf, then the result is true. Otherwise, +;;; if there is no intersection between the types of the arguments, +;;; then the result is definitely false. (deftransform simple-equality-transform ((x y) * * - :defun-only t - :when :both) - (cond ((same-leaf-ref-p x y) - 't) - ((not (types-intersect (continuation-type x) (continuation-type y))) - 'nil) - (t - (give-up-ir1-transform)))) - -(dolist (x '(eq char= equal)) - (%deftransform x '(function * *) #'simple-equality-transform)) - -;;; Similar to SIMPLE-EQUALITY-PREDICATE, except that we also try to -;;; convert to a type-specific predicate or EQ: + :defun-only t) + (cond + ((same-leaf-ref-p x y) t) + ((not (types-equal-or-intersect (lvar-type x) (lvar-type y))) + nil) + (t (give-up-ir1-transform)))) + +(macrolet ((def (x) + `(%deftransform ',x '(function * *) #'simple-equality-transform))) + (def eq) + (def char=)) + +;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also +;;; try to convert to a type-specific predicate or EQ: ;;; -- If both args are characters, convert to CHAR=. This is better than ;;; just converting to EQ, since CHAR= may have special compilation ;;; strategies for non-standard representations, etc. @@ -3090,37 +3019,56 @@ ;;; it second. These rules make it easier for the back end to match ;;; these interesting cases. ;;; -- If Y is a fixnum, then we quietly pass because the back end can -;;; handle that case, otherwise give an efficency note. -(deftransform eql ((x y) * * :when :both) +;;; handle that case, otherwise give an efficiency note. +(deftransform eql ((x y) * *) "convert to simpler equality predicate" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y)) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y)) (char-type (specifier-type 'character)) (number-type (specifier-type 'number))) - (cond ((same-leaf-ref-p x y) - 't) - ((not (types-intersect x-type y-type)) - 'nil) + (cond + ((same-leaf-ref-p x y) t) + ((not (types-equal-or-intersect x-type y-type)) + nil) ((and (csubtypep x-type char-type) (csubtypep y-type char-type)) '(char= x y)) - ((or (not (types-intersect x-type number-type)) - (not (types-intersect y-type number-type))) + ((or (not (types-equal-or-intersect x-type number-type)) + (not (types-equal-or-intersect y-type number-type))) '(eq x y)) - ((and (not (constant-continuation-p y)) - (or (constant-continuation-p x) + ((and (not (constant-lvar-p y)) + (or (constant-lvar-p x) (and (csubtypep x-type y-type) (not (csubtypep y-type x-type))))) '(eql y x)) (t (give-up-ir1-transform))))) +;;; similarly to the EQL transform above, we attempt to constant-fold +;;; or convert to a simpler predicate: mostly we have to be careful +;;; with strings. +(deftransform equal ((x y) * *) + "convert to simpler equality predicate" + (let ((x-type (lvar-type x)) + (y-type (lvar-type y)) + (string-type (specifier-type 'string))) + (cond + ((same-leaf-ref-p x y) t) + ((and (csubtypep x-type string-type) + (csubtypep y-type string-type)) + '(string= x y)) + ((and (or (not (types-equal-or-intersect x-type string-type)) + (not (types-equal-or-intersect y-type string-type))) + (not (types-equal-or-intersect x-type y-type))) + nil) + (t (give-up-ir1-transform))))) + ;;; Convert to EQL if both args are rational and complexp is specified ;;; and the same for both. -(deftransform = ((x y) * * :when :both) +(deftransform = ((x y) * *) "open code" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y))) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y))) (if (and (csubtypep x-type (specifier-type 'number)) (csubtypep y-type (specifier-type 'number))) (cond ((or (and (csubtypep x-type (specifier-type 'float)) @@ -3132,10 +3080,12 @@ (give-up-ir1-transform)) ((or (and (csubtypep x-type (specifier-type 'rational)) (csubtypep y-type (specifier-type 'rational))) - (and (csubtypep x-type (specifier-type '(complex rational))) - (csubtypep y-type (specifier-type '(complex rational))))) - ;; They are both rationals and complexp is the same. Convert - ;; to EQL. + (and (csubtypep x-type + (specifier-type '(complex rational))) + (csubtypep y-type + (specifier-type '(complex rational))))) + ;; They are both rationals and complexp is the same. + ;; Convert to EQL. '(eql x y)) (t (give-up-ir1-transform @@ -3143,69 +3093,57 @@ (give-up-ir1-transform "The operands might not be the same type.")))) -;;; If Cont's type is a numeric type, then return the type, otherwise +;;; If LVAR's type is a numeric type, then return the type, otherwise ;;; GIVE-UP-IR1-TRANSFORM. -(defun numeric-type-or-lose (cont) - (declare (type continuation cont)) - (let ((res (continuation-type cont))) +(defun numeric-type-or-lose (lvar) + (declare (type lvar lvar)) + (let ((res (lvar-type lvar))) (unless (numeric-type-p res) (give-up-ir1-transform)) res)) -;;; See whether we can statically determine (< X Y) using type information. -;;; If X's high bound is < Y's low, then X < Y. Similarly, if X's low is >= -;;; to Y's high, the X >= Y (so return NIL). If not, at least make sure any -;;; constant arg is second. -;;; -;;; KLUDGE: Why should constant argument be second? It would be nice to find -;;; out and explain. -- WHN 19990917 -#!-propagate-float-type -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - 'nil - (let* ((x-type (numeric-type-or-lose x)) - (x-lo (numeric-type-low x-type)) - (x-hi (numeric-type-high x-type)) - (y-type (numeric-type-or-lose y)) - (y-lo (numeric-type-low y-type)) - (y-hi (numeric-type-high y-type))) - (cond ((and x-hi y-lo (< x-hi y-lo)) - 't) - ((and y-hi x-lo (>= x-lo y-hi)) - 'nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) -#!+propagate-float-type -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - 'nil - (let ((xi (numeric-type->interval (numeric-type-or-lose x))) - (yi (numeric-type->interval (numeric-type-or-lose y)))) - (cond ((interval-< xi yi) - 't) - ((interval->= xi yi) - 'nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) - -(deftransform < ((x y) (integer integer) * :when :both) - (ir1-transform-< x y x y '>)) - -(deftransform > ((x y) (integer integer) * :when :both) - (ir1-transform-< y x x y '<)) - -#!+propagate-float-type -(deftransform < ((x y) (float float) * :when :both) - (ir1-transform-< x y x y '>)) - -#!+propagate-float-type -(deftransform > ((x y) (float float) * :when :both) - (ir1-transform-< y x x y '<)) +;;; See whether we can statically determine (< X Y) using type +;;; information. If X's high bound is < Y's low, then X < Y. +;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return +;;; NIL). If not, at least make sure any constant arg is second. +(macrolet ((def (name inverse reflexive-p surely-true surely-false) + `(deftransform ,name ((x y)) + (if (same-leaf-ref-p x y) + ,reflexive-p + (let ((ix (or (type-approximate-interval (lvar-type x)) + (give-up-ir1-transform))) + (iy (or (type-approximate-interval (lvar-type y)) + (give-up-ir1-transform)))) + (cond (,surely-true + t) + (,surely-false + nil) + ((and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,',inverse y x)) + (t + (give-up-ir1-transform)))))))) + (def < > nil (interval-< ix iy) (interval->= ix iy)) + (def > < nil (interval-< iy ix) (interval->= iy ix)) + (def <= >= t (interval->= iy ix) (interval-< iy ix)) + (def >= <= t (interval->= ix iy) (interval-< ix iy))) + +(defun ir1-transform-char< (x y first second inverse) + (cond + ((same-leaf-ref-p x y) nil) + ;; If we had interval representation of character types, as we + ;; might eventually have to to support 2^21 characters, then here + ;; we could do some compile-time computation as in transforms for + ;; < above. -- CSR, 2003-07-01 + ((and (constant-lvar-p first) + (not (constant-lvar-p second))) + `(,inverse y x)) + (t (give-up-ir1-transform)))) + +(deftransform char< ((x y) (character character) *) + (ir1-transform-char< x y x y 'char>)) + +(deftransform char> ((x y) (character character) *) + (ir1-transform-char< y x x y 'char<)) ;;;; converting N-arg comparisons ;;;; @@ -3222,11 +3160,11 @@ ;;; negated test as appropriate. If it is a degenerate one-arg call, ;;; then we transform to code that returns true. Otherwise, we bind ;;; all the arguments and expand into a bunch of IFs. -(declaim (ftype (function (symbol list boolean) *) multi-compare)) -(defun multi-compare (predicate args not-p) +(declaim (ftype (function (symbol list boolean t) *) multi-compare)) +(defun multi-compare (predicate args not-p type) (let ((nargs (length args))) (cond ((< nargs 1) (values nil t)) - ((= nargs 1) `(progn ,@args t)) + ((= nargs 1) `(progn (the ,type ,@args) t)) ((= nargs 2) (if not-p `(if (,predicate ,(first args) ,(second args)) nil t) @@ -3236,153 +3174,167 @@ (last nil current) (current (gensym) (gensym)) (vars (list current) (cons current vars)) - (result 't (if not-p - `(if (,predicate ,current ,last) - nil ,result) - `(if (,predicate ,current ,last) - ,result nil)))) + (result t (if not-p + `(if (,predicate ,current ,last) + nil ,result) + `(if (,predicate ,current ,last) + ,result nil)))) ((zerop i) - `((lambda ,vars ,result) . ,args))))))) - -(def-source-transform = (&rest args) (multi-compare '= args nil)) -(def-source-transform < (&rest args) (multi-compare '< args nil)) -(def-source-transform > (&rest args) (multi-compare '> args nil)) -(def-source-transform <= (&rest args) (multi-compare '> args t)) -(def-source-transform >= (&rest args) (multi-compare '< args t)) - -(def-source-transform char= (&rest args) (multi-compare 'char= args nil)) -(def-source-transform char< (&rest args) (multi-compare 'char< args nil)) -(def-source-transform char> (&rest args) (multi-compare 'char> args nil)) -(def-source-transform char<= (&rest args) (multi-compare 'char> args t)) -(def-source-transform char>= (&rest args) (multi-compare 'char< args t)) - -(def-source-transform char-equal (&rest args) (multi-compare 'char-equal args nil)) -(def-source-transform char-lessp (&rest args) (multi-compare 'char-lessp args nil)) -(def-source-transform char-greaterp (&rest args) - (multi-compare 'char-greaterp args nil)) -(def-source-transform char-not-greaterp (&rest args) - (multi-compare 'char-greaterp args t)) -(def-source-transform char-not-lessp (&rest args) (multi-compare 'char-lessp args t)) + `((lambda ,vars (declare (type ,type ,@vars)) ,result) + ,@args))))))) + +(define-source-transform = (&rest args) (multi-compare '= args nil 'number)) +(define-source-transform < (&rest args) (multi-compare '< args nil 'real)) +(define-source-transform > (&rest args) (multi-compare '> args nil 'real)) +(define-source-transform <= (&rest args) (multi-compare '> args t 'real)) +(define-source-transform >= (&rest args) (multi-compare '< args t 'real)) + +(define-source-transform char= (&rest args) (multi-compare 'char= args nil + 'character)) +(define-source-transform char< (&rest args) (multi-compare 'char< args nil + 'character)) +(define-source-transform char> (&rest args) (multi-compare 'char> args nil + 'character)) +(define-source-transform char<= (&rest args) (multi-compare 'char> args t + 'character)) +(define-source-transform char>= (&rest args) (multi-compare 'char< args t + 'character)) + +(define-source-transform char-equal (&rest args) + (multi-compare 'char-equal args nil 'character)) +(define-source-transform char-lessp (&rest args) + (multi-compare 'char-lessp args nil 'character)) +(define-source-transform char-greaterp (&rest args) + (multi-compare 'char-greaterp args nil 'character)) +(define-source-transform char-not-greaterp (&rest args) + (multi-compare 'char-greaterp args t 'character)) +(define-source-transform char-not-lessp (&rest args) + (multi-compare 'char-lessp args t 'character)) ;;; This function does source transformation of N-arg inequality -;;; functions such as /=. This is similar to Multi-Compare in the <3 +;;; functions such as /=. This is similar to MULTI-COMPARE in the <3 ;;; arg cases. If there are more than two args, then we expand into ;;; the appropriate n^2 comparisons only when speed is important. -(declaim (ftype (function (symbol list) *) multi-not-equal)) -(defun multi-not-equal (predicate args) +(declaim (ftype (function (symbol list t) *) multi-not-equal)) +(defun multi-not-equal (predicate args type) (let ((nargs (length args))) (cond ((< nargs 1) (values nil t)) - ((= nargs 1) `(progn ,@args t)) + ((= nargs 1) `(progn (the ,type ,@args) t)) ((= nargs 2) `(if (,predicate ,(first args) ,(second args)) nil t)) - ((not (policy nil (and (>= speed space) - (>= speed compilation-speed)))) + ((not (policy *lexenv* + (and (>= speed space) + (>= speed compilation-speed)))) (values nil t)) (t (let ((vars (make-gensym-list nargs))) (do ((var vars next) (next (cdr vars) (cdr next)) - (result 't)) + (result t)) ((null next) - `((lambda ,vars ,result) . ,args)) + `((lambda ,vars (declare (type ,type ,@vars)) ,result) + ,@args)) (let ((v1 (first var))) (dolist (v2 next) (setq result `(if (,predicate ,v1 ,v2) nil ,result)))))))))) -(def-source-transform /= (&rest args) (multi-not-equal '= args)) -(def-source-transform char/= (&rest args) (multi-not-equal 'char= args)) -(def-source-transform char-not-equal (&rest args) (multi-not-equal 'char-equal args)) +(define-source-transform /= (&rest args) + (multi-not-equal '= args 'number)) +(define-source-transform char/= (&rest args) + (multi-not-equal 'char= args 'character)) +(define-source-transform char-not-equal (&rest args) + (multi-not-equal 'char-equal args 'character)) ;;; Expand MAX and MIN into the obvious comparisons. -(def-source-transform max (arg &rest more-args) - (if (null more-args) - `(values ,arg) - (once-only ((arg1 arg) - (arg2 `(max ,@more-args))) - `(if (> ,arg1 ,arg2) - ,arg1 ,arg2)))) -(def-source-transform min (arg &rest more-args) - (if (null more-args) - `(values ,arg) - (once-only ((arg1 arg) - (arg2 `(min ,@more-args))) - `(if (< ,arg1 ,arg2) - ,arg1 ,arg2)))) +(define-source-transform max (arg0 &rest rest) + (once-only ((arg0 arg0)) + (if (null rest) + `(values (the real ,arg0)) + `(let ((maxrest (max ,@rest))) + (if (>= ,arg0 maxrest) ,arg0 maxrest))))) +(define-source-transform min (arg0 &rest rest) + (once-only ((arg0 arg0)) + (if (null rest) + `(values (the real ,arg0)) + `(let ((minrest (min ,@rest))) + (if (<= ,arg0 minrest) ,arg0 minrest))))) ;;;; converting N-arg arithmetic functions ;;;; ;;;; N-arg arithmetic and logic functions are associated into two-arg ;;;; versions, and degenerate cases are flushed. -;;; Left-associate First-Arg and More-Args using Function. -(declaim (ftype (function (symbol t list) list) associate-arguments)) -(defun associate-arguments (function first-arg more-args) +;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION. +(declaim (ftype (function (symbol t list) list) associate-args)) +(defun associate-args (function first-arg more-args) (let ((next (rest more-args)) (arg (first more-args))) (if (null next) `(,function ,first-arg ,arg) - (associate-arguments function `(,function ,first-arg ,arg) next)))) + (associate-args function `(,function ,first-arg ,arg) next)))) ;;; Do source transformations for transitive functions such as +. ;;; One-arg cases are replaced with the arg and zero arg cases with -;;; the identity. If LEAF-FUN is true, then replace two-arg calls with -;;; a call to that function. -(defun source-transform-transitive (fun args identity &optional leaf-fun) - (declare (symbol fun leaf-fun) (list args)) +;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to +;;; ensure (with THE) that the argument in one-argument calls is. +(defun source-transform-transitive (fun args identity + &optional one-arg-result-type) + (declare (symbol fun) (list args)) (case (length args) (0 identity) - (1 `(values ,(first args))) - (2 (if leaf-fun - `(,leaf-fun ,(first args) ,(second args)) - (values nil t))) + (1 (if one-arg-result-type + `(values (the ,one-arg-result-type ,(first args))) + `(values ,(first args)))) + (2 (values nil t)) (t - (associate-arguments fun (first args) (rest args))))) - -(def-source-transform + (&rest args) (source-transform-transitive '+ args 0)) -(def-source-transform * (&rest args) (source-transform-transitive '* args 1)) -(def-source-transform logior (&rest args) - (source-transform-transitive 'logior args 0)) -(def-source-transform logxor (&rest args) - (source-transform-transitive 'logxor args 0)) -(def-source-transform logand (&rest args) - (source-transform-transitive 'logand args -1)) - -(def-source-transform logeqv (&rest args) - (if (evenp (length args)) - `(lognot (logxor ,@args)) - `(logxor ,@args))) + (associate-args fun (first args) (rest args))))) + +(define-source-transform + (&rest args) + (source-transform-transitive '+ args 0 'number)) +(define-source-transform * (&rest args) + (source-transform-transitive '* args 1 'number)) +(define-source-transform logior (&rest args) + (source-transform-transitive 'logior args 0 'integer)) +(define-source-transform logxor (&rest args) + (source-transform-transitive 'logxor args 0 'integer)) +(define-source-transform logand (&rest args) + (source-transform-transitive 'logand args -1 'integer)) +(define-source-transform logeqv (&rest args) + (source-transform-transitive 'logeqv args -1 'integer)) ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM ;;; because when they are given one argument, they return its absolute ;;; value. -(def-source-transform gcd (&rest args) +(define-source-transform gcd (&rest args) (case (length args) (0 0) (1 `(abs (the integer ,(first args)))) (2 (values nil t)) - (t (associate-arguments 'gcd (first args) (rest args))))) + (t (associate-args 'gcd (first args) (rest args))))) -(def-source-transform lcm (&rest args) +(define-source-transform lcm (&rest args) (case (length args) (0 1) (1 `(abs (the integer ,(first args)))) (2 (values nil t)) - (t (associate-arguments 'lcm (first args) (rest args))))) + (t (associate-args 'lcm (first args) (rest args))))) ;;; Do source transformations for intransitive n-arg functions such as ;;; /. With one arg, we form the inverse. With two args we pass. ;;; Otherwise we associate into two-arg calls. -(declaim (ftype (function (symbol list t) list) source-transform-intransitive)) +(declaim (ftype (function (symbol list t) + (values list &optional (member nil t))) + source-transform-intransitive)) (defun source-transform-intransitive (function args inverse) (case (length args) ((0 2) (values nil t)) (1 `(,@inverse ,(first args))) - (t (associate-arguments function (first args) (rest args))))) + (t (associate-args function (first args) (rest args))))) -(def-source-transform - (&rest args) +(define-source-transform - (&rest args) (source-transform-intransitive '- args '(%negate))) -(def-source-transform / (&rest args) +(define-source-transform / (&rest args) (source-transform-intransitive '/ args '(/ 1))) ;;;; transforming APPLY @@ -3390,11 +3342,11 @@ ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler ;;; only needs to understand one kind of variable-argument call. It is ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY. -(def-source-transform apply (fun arg &rest more-args) +(define-source-transform apply (fun arg &rest more-args) (let ((args (cons arg more-args))) `(multiple-value-call ,fun - ,@(mapcar #'(lambda (x) - `(values ,x)) + ,@(mapcar (lambda (x) + `(values ,x)) (butlast args)) (values-list ,(car (last args)))))) @@ -3406,14 +3358,48 @@ ;;;; or T and the control string is a function (i.e. FORMATTER), then ;;;; convert the call to FORMAT to just a FUNCALL of that function. +;;; for compile-time argument count checking. +;;; +;;; FIXME II: In some cases, type information could be correlated; for +;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type +;;; of a corresponding argument is known and does not intersect the +;;; list type, a warning could be signalled. +(defun check-format-args (string args fun) + (declare (type string string)) + (unless (typep string 'simple-string) + (setq string (coerce string 'simple-string))) + (multiple-value-bind (min max) + (handler-case (sb!format:%compiler-walk-format-string string args) + (sb!format:format-error (c) + (compiler-warn "~A" c))) + (when min + (let ((nargs (length args))) + (cond + ((< nargs min) + (warn 'format-too-few-args-warning + :format-control + "Too few arguments (~D) to ~S ~S: requires at least ~D." + :format-arguments (list nargs fun string min))) + ((> nargs max) + (warn 'format-too-many-args-warning + :format-control + "Too many arguments (~D) to ~S ~S: uses at most ~D." + :format-arguments (list nargs fun string max)))))))) + +(defoptimizer (format optimizer) ((dest control &rest args)) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) + (when (stringp x) + (check-format-args x args 'format))))) + (deftransform format ((dest control &rest args) (t simple-string &rest t) * :policy (> speed space)) - (unless (constant-continuation-p control) + (unless (constant-lvar-p control) (give-up-ir1-transform "The control string is not a constant.")) (let ((arg-names (make-gensym-list (length args)))) `(lambda (dest control ,@arg-names) (declare (ignore control)) - (format dest (formatter ,(continuation-value control)) ,@arg-names)))) + (format dest (formatter ,(lvar-value control)) ,@arg-names)))) (deftransform format ((stream control &rest args) (stream function &rest t) * :policy (> speed space)) @@ -3429,3 +3415,351 @@ (declare (ignore tee)) (funcall control *standard-output* ,@arg-names) nil))) + +(macrolet + ((def (name) + `(defoptimizer (,name optimizer) ((control &rest args)) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) + (when (stringp x) + (check-format-args x args ',name))))))) + (def error) + (def warn) + #+sb-xc-host ; Only we should be using these + (progn + (def style-warn) + (def compiler-abort) + (def compiler-error) + (def compiler-warn) + (def compiler-style-warn) + (def compiler-notify) + (def maybe-compiler-notify) + (def bug))) + +(defoptimizer (cerror optimizer) ((report control &rest args)) + (when (and (constant-lvar-p control) + (constant-lvar-p report)) + (let ((x (lvar-value control)) + (y (lvar-value report))) + (when (and (stringp x) (stringp y)) + (multiple-value-bind (min1 max1) + (handler-case + (sb!format:%compiler-walk-format-string x args) + (sb!format:format-error (c) + (compiler-warn "~A" c))) + (when min1 + (multiple-value-bind (min2 max2) + (handler-case + (sb!format:%compiler-walk-format-string y args) + (sb!format:format-error (c) + (compiler-warn "~A" c))) + (when min2 + (let ((nargs (length args))) + (cond + ((< nargs (min min1 min2)) + (warn 'format-too-few-args-warning + :format-control + "Too few arguments (~D) to ~S ~S ~S: ~ + requires at least ~D." + :format-arguments + (list nargs 'cerror y x (min min1 min2)))) + ((> nargs (max max1 max2)) + (warn 'format-too-many-args-warning + :format-control + "Too many arguments (~D) to ~S ~S ~S: ~ + uses at most ~D." + :format-arguments + (list nargs 'cerror y x (max max1 max2)))))))))))))) + +(defoptimizer (coerce derive-type) ((value type)) + (cond + ((constant-lvar-p type) + ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2), + ;; but dealing with the niggle that complex canonicalization gets + ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of + ;; type COMPLEX. + (let* ((specifier (lvar-value type)) + (result-typeoid (careful-specifier-type specifier))) + (cond + ((null result-typeoid) nil) + ((csubtypep result-typeoid (specifier-type 'number)) + ;; the difficult case: we have to cope with ANSI 12.1.5.3 + ;; Rule of Canonical Representation for Complex Rationals, + ;; which is a truly nasty delivery to field. + (cond + ((csubtypep result-typeoid (specifier-type 'real)) + ;; cleverness required here: it would be nice to deduce + ;; that something of type (INTEGER 2 3) coerced to type + ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0). + ;; FLOAT gets its own clause because it's implemented as + ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE + ;; logic below. + result-typeoid) + ((and (numeric-type-p result-typeoid) + (eq (numeric-type-complexp result-typeoid) :real)) + ;; FIXME: is this clause (a) necessary or (b) useful? + result-typeoid) + ((or (csubtypep result-typeoid + (specifier-type '(complex single-float))) + (csubtypep result-typeoid + (specifier-type '(complex double-float))) + #!+long-float + (csubtypep result-typeoid + (specifier-type '(complex long-float)))) + ;; float complex types are never canonicalized. + result-typeoid) + (t + ;; if it's not a REAL, or a COMPLEX FLOAToid, it's + ;; probably just a COMPLEX or equivalent. So, in that + ;; case, we will return a complex or an object of the + ;; provided type if it's rational: + (type-union result-typeoid + (type-intersection (lvar-type value) + (specifier-type 'rational)))))) + (t result-typeoid)))) + (t + ;; OK, the result-type argument isn't constant. However, there + ;; are common uses where we can still do better than just + ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)), + ;; where Y is of a known type. See messages on cmucl-imp + ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here + ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on + ;; the basis that it's unlikely that other uses are both + ;; time-critical and get to this branch of the COND (non-constant + ;; second argument to COERCE). -- CSR, 2002-12-16 + (let ((value-type (lvar-type value)) + (type-type (lvar-type type))) + (labels + ((good-cons-type-p (cons-type) + ;; Make sure the cons-type we're looking at is something + ;; we're prepared to handle which is basically something + ;; that array-element-type can return. + (or (and (member-type-p cons-type) + (null (rest (member-type-members cons-type))) + (null (first (member-type-members cons-type)))) + (let ((car-type (cons-type-car-type cons-type))) + (and (member-type-p car-type) + (null (rest (member-type-members car-type))) + (or (symbolp (first (member-type-members car-type))) + (numberp (first (member-type-members car-type))) + (and (listp (first (member-type-members + car-type))) + (numberp (first (first (member-type-members + car-type)))))) + (good-cons-type-p (cons-type-cdr-type cons-type)))))) + (unconsify-type (good-cons-type) + ;; Convert the "printed" respresentation of a cons + ;; specifier into a type specifier. That is, the + ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16) + ;; NULL)) is converted to (SIGNED-BYTE 16). + (cond ((or (null good-cons-type) + (eq good-cons-type 'null)) + nil) + ((and (eq (first good-cons-type) 'cons) + (eq (first (second good-cons-type)) 'member)) + `(,(second (second good-cons-type)) + ,@(unconsify-type (caddr good-cons-type)))))) + (coerceable-p (c-type) + ;; Can the value be coerced to the given type? Coerce is + ;; complicated, so we don't handle every possible case + ;; here---just the most common and easiest cases: + ;; + ;; * Any REAL can be coerced to a FLOAT type. + ;; * Any NUMBER can be coerced to a (COMPLEX + ;; SINGLE/DOUBLE-FLOAT). + ;; + ;; FIXME I: we should also be able to deal with characters + ;; here. + ;; + ;; FIXME II: I'm not sure that anything is necessary + ;; here, at least while COMPLEX is not a specialized + ;; array element type in the system. Reasoning: if + ;; something cannot be coerced to the requested type, an + ;; error will be raised (and so any downstream compiled + ;; code on the assumption of the returned type is + ;; unreachable). If something can, then it will be of + ;; the requested type, because (by assumption) COMPLEX + ;; (and other difficult types like (COMPLEX INTEGER) + ;; aren't specialized types. + (let ((coerced-type c-type)) + (or (and (subtypep coerced-type 'float) + (csubtypep value-type (specifier-type 'real))) + (and (subtypep coerced-type + '(or (complex single-float) + (complex double-float))) + (csubtypep value-type (specifier-type 'number)))))) + (process-types (type) + ;; FIXME: This needs some work because we should be able + ;; to derive the resulting type better than just the + ;; type arg of coerce. That is, if X is (INTEGER 10 + ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say + ;; (DOUBLE-FLOAT 10d0 20d0) instead of just + ;; double-float. + (cond ((member-type-p type) + (let ((members (member-type-members type))) + (if (every #'coerceable-p members) + (specifier-type `(or ,@members)) + *universal-type*))) + ((and (cons-type-p type) + (good-cons-type-p type)) + (let ((c-type (unconsify-type (type-specifier type)))) + (if (coerceable-p c-type) + (specifier-type c-type) + *universal-type*))) + (t + *universal-type*)))) + (cond ((union-type-p type-type) + (apply #'type-union (mapcar #'process-types + (union-type-types type-type)))) + ((or (member-type-p type-type) + (cons-type-p type-type)) + (process-types type-type)) + (t + *universal-type*))))))) + +(defoptimizer (compile derive-type) ((nameoid function)) + (when (csubtypep (lvar-type nameoid) + (specifier-type 'null)) + (values-specifier-type '(values function boolean boolean)))) + +;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving +;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE +;;; optimizer, above). +(defoptimizer (array-element-type derive-type) ((array)) + (let ((array-type (lvar-type array))) + (labels ((consify (list) + (if (endp list) + '(eql nil) + `(cons (eql ,(car list)) ,(consify (rest list))))) + (get-element-type (a) + (let ((element-type + (type-specifier (array-type-specialized-element-type a)))) + (cond ((eq element-type '*) + (specifier-type 'type-specifier)) + ((symbolp element-type) + (make-member-type :members (list element-type))) + ((consp element-type) + (specifier-type (consify element-type))) + (t + (error "can't understand type ~S~%" element-type)))))) + (cond ((array-type-p array-type) + (get-element-type array-type)) + ((union-type-p array-type) + (apply #'type-union + (mapcar #'get-element-type (union-type-types array-type)))) + (t + *universal-type*))))) + +;;; Like CMU CL, we use HEAPSORT. However, other than that, this code +;;; isn't really related to the CMU CL code, since instead of trying +;;; to generalize the CMU CL code to allow START and END values, this +;;; code has been written from scratch following Chapter 7 of +;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir. +(define-source-transform sb!impl::sort-vector (vector start end predicate key) + ;; Like CMU CL, we use HEAPSORT. However, other than that, this code + ;; isn't really related to the CMU CL code, since instead of trying + ;; to generalize the CMU CL code to allow START and END values, this + ;; code has been written from scratch following Chapter 7 of + ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir. + `(macrolet ((%index (x) `(truly-the index ,x)) + (%parent (i) `(ash ,i -1)) + (%left (i) `(%index (ash ,i 1))) + (%right (i) `(%index (1+ (ash ,i 1)))) + (%heapify (i) + `(do* ((i ,i) + (left (%left i) (%left i))) + ((> left current-heap-size)) + (declare (type index i left)) + (let* ((i-elt (%elt i)) + (i-key (funcall keyfun i-elt)) + (left-elt (%elt left)) + (left-key (funcall keyfun left-elt))) + (multiple-value-bind (large large-elt large-key) + (if (funcall ,',predicate i-key left-key) + (values left left-elt left-key) + (values i i-elt i-key)) + (let ((right (%right i))) + (multiple-value-bind (largest largest-elt) + (if (> right current-heap-size) + (values large large-elt) + (let* ((right-elt (%elt right)) + (right-key (funcall keyfun right-elt))) + (if (funcall ,',predicate large-key right-key) + (values right right-elt) + (values large large-elt)))) + (cond ((= largest i) + (return)) + (t + (setf (%elt i) largest-elt + (%elt largest) i-elt + i largest))))))))) + (%sort-vector (keyfun &optional (vtype 'vector)) + `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had + ;; trouble getting type inference to + ;; propagate all the way through this + ;; tangled mess of inlining. The TRULY-THE + ;; here works around that. -- WHN + (%elt (i) + `(aref (truly-the ,',vtype ,',',vector) + (%index (+ (%index ,i) start-1))))) + (let (;; Heaps prefer 1-based addressing. + (start-1 (1- ,',start)) + (current-heap-size (- ,',end ,',start)) + (keyfun ,keyfun)) + (declare (type (integer -1 #.(1- most-positive-fixnum)) + start-1)) + (declare (type index current-heap-size)) + (declare (type function keyfun)) + (loop for i of-type index + from (ash current-heap-size -1) downto 1 do + (%heapify i)) + (loop + (when (< current-heap-size 2) + (return)) + (rotatef (%elt 1) (%elt current-heap-size)) + (decf current-heap-size) + (%heapify 1)))))) + (if (typep ,vector 'simple-vector) + ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is + ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA. + (if (null ,key) + ;; Special-casing the KEY=NIL case lets us avoid some + ;; function calls. + (%sort-vector #'identity simple-vector) + (%sort-vector ,key simple-vector)) + ;; It's hard to anticipate many speed-critical applications for + ;; sorting vector types other than (VECTOR T), so we just lump + ;; them all together in one slow dynamically typed mess. + (locally + (declare (optimize (speed 2) (space 2) (inhibit-warnings 3))) + (%sort-vector (or ,key #'identity)))))) + +;;;; debuggers' little helpers + +;;; for debugging when transforms are behaving mysteriously, +;;; e.g. when debugging a problem with an ASH transform +;;; (defun foo (&optional s) +;;; (sb-c::/report-lvar s "S outside WHEN") +;;; (when (and (integerp s) (> s 3)) +;;; (sb-c::/report-lvar s "S inside WHEN") +;;; (let ((bound (ash 1 (1- s)))) +;;; (sb-c::/report-lvar bound "BOUND") +;;; (let ((x (- bound)) +;;; (y (1- bound))) +;;; (sb-c::/report-lvar x "X") +;;; (sb-c::/report-lvar x "Y")) +;;; `(integer ,(- bound) ,(1- bound))))) +;;; (The DEFTRANSFORM doesn't do anything but report at compile time, +;;; and the function doesn't do anything at all.) +#!+sb-show +(progn + (defknown /report-lvar (t t) null) + (deftransform /report-lvar ((x message) (t t)) + (format t "~%/in /REPORT-LVAR~%") + (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x)) + (when (constant-lvar-p x) + (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x))) + (format t "/MESSAGE=~S~%" (lvar-value message)) + (give-up-ir1-transform "not a real transform")) + (defun /report-lvar (x message) + (declare (ignore x message))))