X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fsrctran.lisp;h=a5ccd0279eafa80c69f785db1b64475f00bfcb47;hb=988afd9d54ba6c8a915544822658824ab6ae0d6c;hp=fb6f0f765e890259d4cc72ccef13062fe1fdbb69;hpb=b42068e9080417a073dcb709cdd2e0315599b3df;p=sbcl.git diff --git a/src/compiler/srctran.lisp b/src/compiler/srctran.lisp index fb6f0f7..a5ccd02 100644 --- a/src/compiler/srctran.lisp +++ b/src/compiler/srctran.lisp @@ -44,15 +44,15 @@ (deftransform complement ((fun) * * :node node) "open code" (multiple-value-bind (min max) - (fun-type-nargs (continuation-type fun)) + (fun-type-nargs (lvar-type fun)) (cond ((and min (eql min max)) (let ((dums (make-gensym-list min))) `#'(lambda ,dums (not (funcall fun ,@dums))))) - ((let* ((cont (node-cont node)) - (dest (continuation-dest cont))) - (and (combination-p dest) - (eq (combination-fun dest) cont))) + ((awhen (node-lvar node) + (let ((dest (lvar-dest it))) + (and (combination-p dest) + (eq (combination-fun dest) it)))) '#'(lambda (&rest args) (not (apply fun args)))) (t @@ -65,10 +65,14 @@ (defun source-transform-cxr (form) (if (/= (length form) 2) (values nil t) - (let ((name (symbol-name (car form)))) - (do ((i (- (length name) 2) (1- i)) + (let* ((name (car form)) + (string (symbol-name + (etypecase name + (symbol name) + (leaf (leaf-source-name name)))))) + (do ((i (- (length string) 2) (1- i)) (res (cadr form) - `(,(ecase (char name i) + `(,(ecase (char string i) (#\A 'car) (#\D 'cdr)) ,res))) @@ -129,9 +133,9 @@ (deftransform nthcdr ((n l) (unsigned-byte t) * :node node) "convert NTHCDR to CAxxR" - (unless (constant-continuation-p n) + (unless (constant-lvar-p n) (give-up-ir1-transform)) - (let ((n (continuation-value n))) + (let ((n (lvar-value n))) (when (> n (if (policy node (and (= speed 3) (= space 0))) *extreme-nthcdr-open-code-limit* @@ -172,15 +176,15 @@ #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (deffrob ceiling)) -(define-source-transform lognand (x y) `(lognot (logand ,x ,y))) -(define-source-transform lognor (x y) `(lognot (logior ,x ,y))) -(define-source-transform logandc1 (x y) `(logand (lognot ,x) ,y)) -(define-source-transform logandc2 (x y) `(logand ,x (lognot ,y))) -(define-source-transform logorc1 (x y) `(logior (lognot ,x) ,y)) -(define-source-transform logorc2 (x y) `(logior ,x (lognot ,y))) (define-source-transform logtest (x y) `(not (zerop (logand ,x ,y)))) -(define-source-transform logbitp (index integer) - `(not (zerop (logand (ash 1 ,index) ,integer)))) + +(deftransform logbitp + ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits) + (unsigned-byte #.sb!vm:n-word-bits)))) + `(if (>= index #.sb!vm:n-word-bits) + (minusp integer) + (not (zerop (logand integer (ash 1 index)))))) + (define-source-transform byte (size position) `(cons ,size ,position)) (define-source-transform byte-size (spec) `(car ,spec)) @@ -219,6 +223,21 @@ ;;;; numeric-type has everything we want to know. Reason 2 wins for ;;;; now. +;;; Support operations that mimic real arithmetic comparison +;;; operators, but imposing a total order on the floating points such +;;; that negative zeros are strictly less than positive zeros. +(macrolet ((def (name op) + `(defun ,name (x y) + (declare (real x y)) + (if (and (floatp x) (floatp y) (zerop x) (zerop y)) + (,op (float-sign x) (float-sign y)) + (,op x y))))) + (def signed-zero->= >=) + (def signed-zero-> >) + (def signed-zero-= =) + (def signed-zero-< <) + (def signed-zero-<= <=)) + ;;; The basic interval type. It can handle open and closed intervals. ;;; A bound is open if it is a list containing a number, just like ;;; Lisp says. NIL means unbounded. @@ -228,7 +247,8 @@ (defun make-interval (&key low high) (labels ((normalize-bound (val) - (cond ((and (floatp val) + (cond #-sb-xc-host + ((and (floatp val) (float-infinity-p val)) ;; Handle infinities. nil) @@ -289,6 +309,23 @@ (make-interval :low (numeric-type-low x) :high (numeric-type-high x))) +(defun type-approximate-interval (type) + (declare (type ctype type)) + (let ((types (prepare-arg-for-derive-type type)) + (result nil)) + (dolist (type types) + (let ((type (if (member-type-p type) + (convert-member-type type) + type))) + (unless (numeric-type-p type) + (return-from type-approximate-interval nil)) + (let ((interval (numeric-type->interval type))) + (setq result + (if result + (interval-approximate-union result interval) + interval))))) + result)) + (defun copy-interval-limit (limit) (if (numberp limit) limit @@ -318,16 +355,8 @@ (make-interval :low (type-bound-number (interval-low x)) :high (type-bound-number (interval-high x)))) -(defun signed-zero->= (x y) - (declare (real x y)) - (or (> x y) - (and (= x y) - (>= (float-sign (float x)) - (float-sign (float y)))))) - ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return ;;; '-. Otherwise return NIL. -#+nil (defun interval-range-info (x &optional (point 0)) (declare (type interval x)) (let ((lo (interval-low x)) @@ -338,20 +367,6 @@ '-) (t nil)))) -(defun interval-range-info (x &optional (point 0)) - (declare (type interval x)) - (labels ((signed->= (x y) - (if (and (zerop x) (zerop y) (floatp x) (floatp y)) - (>= (float-sign x) (float-sign y)) - (>= x y)))) - (let ((lo (interval-low x)) - (hi (interval-high x))) - (cond ((and lo (signed->= (type-bound-number lo) point)) - '+) - ((and hi (signed->= point (type-bound-number hi))) - '-) - (t - nil))))) ;;; Test to see whether the interval X is bounded. HOW determines the ;;; test, and should be either ABOVE, BELOW, or BOTH. @@ -365,32 +380,6 @@ (both (and (interval-low x) (interval-high x))))) -;;; signed zero comparison functions. Use these functions if we need -;;; to distinguish between signed zeroes. -(defun signed-zero-< (x y) - (declare (real x y)) - (or (< x y) - (and (= x y) - (< (float-sign (float x)) - (float-sign (float y)))))) -(defun signed-zero-> (x y) - (declare (real x y)) - (or (> x y) - (and (= x y) - (> (float-sign (float x)) - (float-sign (float y)))))) -(defun signed-zero-= (x y) - (declare (real x y)) - (and (= x y) - (= (float-sign (float x)) - (float-sign (float y))))) -(defun signed-zero-<= (x y) - (declare (real x y)) - (or (< x y) - (and (= x y) - (<= (float-sign (float x)) - (float-sign (float y)))))) - ;;; See whether the interval X contains the number P, taking into ;;; account that the interval might not be closed. (defun interval-contains-p (p x) @@ -568,6 +557,16 @@ (make-interval :low (select-bound x-lo y-lo #'< #'>) :high (select-bound x-hi y-hi #'> #'<)))))) +;;; return the minimal interval, containing X and Y +(defun interval-approximate-union (x y) + (cond ((interval-merge-pair x y)) + ((interval-< x y) + (make-interval :low (copy-interval-limit (interval-low x)) + :high (copy-interval-limit (interval-high y)))) + (t + (make-interval :low (copy-interval-limit (interval-low y)) + :high (copy-interval-limit (interval-high x)))))) + ;;; basic arithmetic operations on intervals. We probably should do ;;; true interval arithmetic here, but it's complicated because we ;;; have float and integer types and bounds can be open or closed. @@ -755,36 +754,39 @@ ;;; a utility for defining derive-type methods of integer operations. If ;;; the types of both X and Y are integer types, then we compute a new ;;; integer type with bounds determined Fun when applied to X and Y. -;;; Otherwise, we use Numeric-Contagion. +;;; Otherwise, we use NUMERIC-CONTAGION. +(defun derive-integer-type-aux (x y fun) + (declare (type function fun)) + (if (and (numeric-type-p x) (numeric-type-p y) + (eq (numeric-type-class x) 'integer) + (eq (numeric-type-class y) 'integer) + (eq (numeric-type-complexp x) :real) + (eq (numeric-type-complexp y) :real)) + (multiple-value-bind (low high) (funcall fun x y) + (make-numeric-type :class 'integer + :complexp :real + :low low + :high high)) + (numeric-contagion x y))) + (defun derive-integer-type (x y fun) - (declare (type continuation x y) (type function fun)) - (let ((x (continuation-type x)) - (y (continuation-type y))) - (if (and (numeric-type-p x) (numeric-type-p y) - (eq (numeric-type-class x) 'integer) - (eq (numeric-type-class y) 'integer) - (eq (numeric-type-complexp x) :real) - (eq (numeric-type-complexp y) :real)) - (multiple-value-bind (low high) (funcall fun x y) - (make-numeric-type :class 'integer - :complexp :real - :low low - :high high)) - (numeric-contagion x y)))) + (declare (type lvar x y) (type function fun)) + (let ((x (lvar-type x)) + (y (lvar-type y))) + (derive-integer-type-aux x y fun))) ;;; simple utility to flatten a list (defun flatten-list (x) - (labels ((flatten-helper (x r);; 'r' is the stuff to the 'right'. - (cond ((null x) r) - ((atom x) - (cons x r)) - (t (flatten-helper (car x) - (flatten-helper (cdr x) r)))))) - (flatten-helper x nil))) - -;;; Take some type of continuation and massage it so that we get a -;;; list of the constituent types. If ARG is *EMPTY-TYPE*, return NIL -;;; to indicate failure. + (labels ((flatten-and-append (tree list) + (cond ((null tree) list) + ((atom tree) (cons tree list)) + (t (flatten-and-append + (car tree) (flatten-and-append (cdr tree) list)))))) + (flatten-and-append x nil))) + +;;; Take some type of lvar and massage it so that we get a list of the +;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate +;;; failure. (defun prepare-arg-for-derive-type (arg) (flet ((listify (arg) (typecase arg @@ -992,50 +994,52 @@ (member (first members)) (member-type (type-of member))) (aver (not (rest members))) - (specifier-type `(,(if (subtypep member-type 'integer) - 'integer - member-type) - ,member ,member)))) + (specifier-type (cond ((typep member 'integer) + `(integer ,member ,member)) + ((memq member-type '(short-float single-float + double-float long-float)) + `(,member-type ,member ,member)) + (t + member-type))))) ;;; This is used in defoptimizers for computing the resulting type of ;;; a function. ;;; -;;; Given the continuation ARG, derive the resulting type using the -;;; DERIVE-FCN. DERIVE-FCN takes exactly one argument which is some -;;; "atomic" continuation type like numeric-type or member-type -;;; (containing just one element). It should return the resulting -;;; type, which can be a list of types. +;;; Given the lvar ARG, derive the resulting type using the +;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some +;;; "atomic" lvar type like numeric-type or member-type (containing +;;; just one element). It should return the resulting type, which can +;;; be a list of types. ;;; -;;; For the case of member types, if a member-fcn is given it is +;;; For the case of member types, if a MEMBER-FUN is given it is ;;; called to compute the result otherwise the member type is first -;;; converted to a numeric type and the derive-fcn is call. -(defun one-arg-derive-type (arg derive-fcn member-fcn +;;; converted to a numeric type and the DERIVE-FUN is called. +(defun one-arg-derive-type (arg derive-fun member-fun &optional (convert-type t)) - (declare (type function derive-fcn) - (type (or null function) member-fcn)) - (let ((arg-list (prepare-arg-for-derive-type (continuation-type arg)))) + (declare (type function derive-fun) + (type (or null function) member-fun)) + (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg)))) (when arg-list (flet ((deriver (x) (typecase x (member-type - (if member-fcn + (if member-fun (with-float-traps-masked (:underflow :overflow :divide-by-zero) - (make-member-type - :members (list - (funcall member-fcn - (first (member-type-members x)))))) + (specifier-type + `(eql ,(funcall member-fun + (first (member-type-members x)))))) ;; Otherwise convert to a numeric type. (let ((result-type-list - (funcall derive-fcn (convert-member-type x)))) + (funcall derive-fun (convert-member-type x)))) (if convert-type (convert-back-numeric-type-list result-type-list) result-type-list)))) (numeric-type (if convert-type (convert-back-numeric-type-list - (funcall derive-fcn (convert-numeric-type x))) - (funcall derive-fcn x))) + (funcall derive-fun (convert-numeric-type x))) + (funcall derive-fun x))) (t *universal-type*)))) ;; Run down the list of args and derive the type of each one, @@ -1051,60 +1055,61 @@ (first results))))))) ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes -;;; two arguments. DERIVE-FCN takes 3 args in this case: the two +;;; two arguments. DERIVE-FUN takes 3 args in this case: the two ;;; original args and a third which is T to indicate if the two args -;;; really represent the same continuation. This is useful for -;;; deriving the type of things like (* x x), which should always be -;;; positive. If we didn't do this, we wouldn't be able to tell. -(defun two-arg-derive-type (arg1 arg2 derive-fcn fcn +;;; really represent the same lvar. This is useful for deriving the +;;; type of things like (* x x), which should always be positive. If +;;; we didn't do this, we wouldn't be able to tell. +(defun two-arg-derive-type (arg1 arg2 derive-fun fun &optional (convert-type t)) - (declare (type function derive-fcn fcn)) + (declare (type function derive-fun fun)) (flet ((deriver (x y same-arg) (cond ((and (member-type-p x) (member-type-p y)) (let* ((x (first (member-type-members x))) (y (first (member-type-members y))) - (result (with-float-traps-masked - (:underflow :overflow :divide-by-zero - :invalid) - (funcall fcn x y)))) - (cond ((null result)) + (result (ignore-errors + (with-float-traps-masked + (:underflow :overflow :divide-by-zero + :invalid) + (funcall fun x y))))) + (cond ((null result) *empty-type*) ((and (floatp result) (float-nan-p result)) (make-numeric-type :class 'float :format (type-of result) :complexp :real)) (t - (make-member-type :members (list result)))))) + (specifier-type `(eql ,result)))))) ((and (member-type-p x) (numeric-type-p y)) (let* ((x (convert-member-type x)) (y (if convert-type (convert-numeric-type y) y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) ((and (numeric-type-p x) (member-type-p y)) (let* ((x (if convert-type (convert-numeric-type x) x)) (y (convert-member-type y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) ((and (numeric-type-p x) (numeric-type-p y)) (let* ((x (if convert-type (convert-numeric-type x) x)) (y (if convert-type (convert-numeric-type y) y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) (t *universal-type*)))) (let ((same-arg (same-leaf-ref-p arg1 arg2)) - (a1 (prepare-arg-for-derive-type (continuation-type arg1))) - (a2 (prepare-arg-for-derive-type (continuation-type arg2)))) + (a1 (prepare-arg-for-derive-type (lvar-type arg1))) + (a2 (prepare-arg-for-derive-type (lvar-type arg2)))) (when (and a1 a2) (let ((results nil)) (if same-arg - ;; Since the args are the same continuation, just run - ;; down the lists. + ;; Since the args are the same LVARs, just run down the + ;; lists. (dolist (x a1) (let ((result (deriver x x same-arg))) (if (listp result) @@ -1169,7 +1174,7 @@ nil)))))))) (defoptimizer (/ derive-type) ((x y)) - (numeric-contagion (continuation-type x) (continuation-type y))) + (numeric-contagion (lvar-type x) (lvar-type y))) ) ; PROGN @@ -1363,16 +1368,19 @@ (defoptimizer (%negate derive-type) ((num)) (derive-integer-type num num (frob -)))) +(defun lognot-derive-type-aux (int) + (derive-integer-type-aux int int + (lambda (type type2) + (declare (ignore type2)) + (let ((lo (numeric-type-low type)) + (hi (numeric-type-high type))) + (values (if hi (lognot hi) nil) + (if lo (lognot lo) nil) + (numeric-type-class type) + (numeric-type-format type)))))) + (defoptimizer (lognot derive-type) ((int)) - (derive-integer-type int int - (lambda (type type2) - (declare (ignore type2)) - (let ((lo (numeric-type-low type)) - (hi (numeric-type-high type))) - (values (if hi (lognot hi) nil) - (if lo (lognot lo) nil) - (numeric-type-class type) - (numeric-type-format type)))))) + (lognot-derive-type-aux (lvar-type int))) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (%negate derive-type) ((num)) @@ -1390,7 +1398,7 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (abs derive-type) ((num)) - (let ((type (continuation-type num))) + (let ((type (lvar-type num))) (if (and (numeric-type-p type) (eq (numeric-type-class type) 'integer) (eq (numeric-type-complexp type) :real)) @@ -1443,8 +1451,8 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (truncate derive-type) ((number divisor)) - (let ((number-type (continuation-type number)) - (divisor-type (continuation-type divisor)) + (let ((number-type (lvar-type number)) + (divisor-type (lvar-type divisor)) (integer-type (specifier-type 'integer))) (if (and (numeric-type-p number-type) (csubtypep number-type integer-type) @@ -1612,6 +1620,13 @@ #'%unary-truncate-derive-type-aux #'%unary-truncate)) +(defoptimizer (%unary-ftruncate derive-type) ((number)) + (let ((divisor (specifier-type '(integer 1 1)))) + (one-arg-derive-type number + #'(lambda (n) + (ftruncate-derive-type-quot-aux n divisor nil)) + #'%unary-ftruncate))) + ;;; Define optimizers for FLOOR and CEILING. (macrolet ((def (name q-name r-name) @@ -2069,7 +2084,7 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (random derive-type) ((bound &optional state)) - (let ((type (continuation-type bound))) + (let ((type (lvar-type bound))) (when (numeric-type-p type) (let ((class (numeric-type-class type)) (high (numeric-type-high type)) @@ -2117,38 +2132,35 @@ (values nil t t))) (defun logand-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logand-derive-type-aux x)) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (declare (ignore x-pos)) - (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) + (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (declare (ignore y-pos)) (if (not x-neg) ;; X must be positive. (if (not y-neg) ;; They must both be positive. - (cond ((or (null x-len) (null y-len)) + (cond ((and (null x-len) (null y-len)) (specifier-type 'unsigned-byte)) - ((or (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0))) + ((null x-len) + (specifier-type `(unsigned-byte* ,y-len))) + ((null y-len) + (specifier-type `(unsigned-byte* ,x-len))) (t - (specifier-type `(unsigned-byte ,(min x-len y-len))))) + (specifier-type `(unsigned-byte* ,(min x-len y-len))))) ;; X is positive, but Y might be negative. (cond ((null x-len) (specifier-type 'unsigned-byte)) - ((zerop x-len) - (specifier-type '(integer 0 0))) (t - (specifier-type `(unsigned-byte ,x-len))))) + (specifier-type `(unsigned-byte* ,x-len))))) ;; X might be negative. (if (not y-neg) ;; Y must be positive. (cond ((null y-len) (specifier-type 'unsigned-byte)) - ((zerop y-len) - (specifier-type '(integer 0 0))) - (t - (specifier-type - `(unsigned-byte ,y-len)))) + (t (specifier-type `(unsigned-byte* ,y-len)))) ;; Either might be negative. (if (and x-len y-len) ;; The result is bounded. @@ -2157,17 +2169,16 @@ (specifier-type 'integer))))))) (defun logior-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logior-derive-type-aux x)) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (cond ((and (not x-neg) (not y-neg)) ;; Both are positive. - (if (and x-len y-len (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0)) - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*))))) + (specifier-type `(unsigned-byte* ,(if (and x-len y-len) + (max x-len y-len) + '*)))) ((not x-pos) ;; X must be negative. (if (not y-pos) @@ -2198,7 +2209,8 @@ (specifier-type 'integer)))))))) (defun logxor-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logxor-derive-type-aux (specifier-type '(eql 0)))) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (cond @@ -2206,14 +2218,12 @@ (and (not x-pos) (not y-pos))) ;; Either both are negative or both are positive. The result ;; will be positive, and as long as the longer. - (if (and x-len y-len (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0)) - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*))))) + (specifier-type `(unsigned-byte* ,(if (and x-len y-len) + (max x-len y-len) + '*)))) ((or (and (not x-pos) (not y-neg)) - (and (not y-neg) (not y-pos))) - ;; Either X is negative and Y is positive of vice-versa. The + (and (not y-pos) (not x-neg))) + ;; Either X is negative and Y is positive or vice-versa. The ;; result will be negative. (specifier-type `(integer ,(if (and x-len y-len) (ash -1 (max x-len y-len)) @@ -2226,20 +2236,63 @@ (t (specifier-type 'integer)))))) -(macrolet ((deffrob (logfcn) - (let ((fcn-aux (symbolicate logfcn "-DERIVE-TYPE-AUX"))) - `(defoptimizer (,logfcn derive-type) ((x y)) - (two-arg-derive-type x y #',fcn-aux #',logfcn))))) +(macrolet ((deffrob (logfun) + (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX"))) + `(defoptimizer (,logfun derive-type) ((x y)) + (two-arg-derive-type x y #',fun-aux #',logfun))))) (deffrob logand) (deffrob logior) (deffrob logxor)) + +(defoptimizer (logeqv derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logxor-derive-type-aux x y same-leaf))) + #'logeqv)) +(defoptimizer (lognand derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logand-derive-type-aux x y same-leaf))) + #'lognand)) +(defoptimizer (lognor derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logior-derive-type-aux x y same-leaf))) + #'lognor)) +(defoptimizer (logandc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql 0)) + (logand-derive-type-aux + (lognot-derive-type-aux x) y nil))) + #'logandc1)) +(defoptimizer (logandc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql 0)) + (logand-derive-type-aux + x (lognot-derive-type-aux y) nil))) + #'logandc2)) +(defoptimizer (logorc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql -1)) + (logior-derive-type-aux + (lognot-derive-type-aux x) y nil))) + #'logorc1)) +(defoptimizer (logorc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (if same-leaf + (specifier-type '(eql -1)) + (logior-derive-type-aux + x (lognot-derive-type-aux y) nil))) + #'logorc2)) ;;;; miscellaneous derive-type methods (defoptimizer (integer-length derive-type) ((x)) - (let ((x-type (continuation-type x))) - (when (and (numeric-type-p x-type) - (csubtypep x-type (specifier-type 'integer))) + (let ((x-type (lvar-type x))) + (when (numeric-type-p x-type) ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be ;; careful about LO or HI being NIL, though. Also, if 0 is @@ -2258,11 +2311,81 @@ (setf min-len 0)) (specifier-type `(integer ,(or min-len '*) ,(or max-len '*)))))))) +(defoptimizer (isqrt derive-type) ((x)) + (let ((x-type (lvar-type x))) + (when (numeric-type-p x-type) + (let* ((lo (numeric-type-low x-type)) + (hi (numeric-type-high x-type)) + (lo-res (if lo (isqrt lo) '*)) + (hi-res (if hi (isqrt hi) '*))) + (specifier-type `(integer ,lo-res ,hi-res)))))) + (defoptimizer (code-char derive-type) ((code)) - (specifier-type 'base-char)) + (let ((type (lvar-type code))) + ;; FIXME: unions of integral ranges? It ought to be easier to do + ;; this, given that CHARACTER-SET is basically an integral range + ;; type. -- CSR, 2004-10-04 + (when (numeric-type-p type) + (let* ((lo (numeric-type-low type)) + (hi (numeric-type-high type)) + (type (specifier-type `(character-set ((,lo . ,hi)))))) + (cond + ;; KLUDGE: when running on the host, we lose a slight amount + ;; of precision so that we don't have to "unparse" types + ;; that formally we can't, such as (CHARACTER-SET ((0 + ;; . 0))). -- CSR, 2004-10-06 + #+sb-xc-host + ((csubtypep type (specifier-type 'standard-char)) type) + #+sb-xc-host + ((csubtypep type (specifier-type 'base-char)) + (specifier-type 'base-char)) + #+sb-xc-host + ((csubtypep type (specifier-type 'extended-char)) + (specifier-type 'extended-char)) + (t #+sb-xc-host (specifier-type 'character) + #-sb-xc-host type)))))) (defoptimizer (values derive-type) ((&rest values)) - (make-values-type :required (mapcar #'continuation-type values))) + (make-values-type :required (mapcar #'lvar-type values))) + +(defun signum-derive-type-aux (type) + (if (eq (numeric-type-complexp type) :complex) + (let* ((format (case (numeric-type-class type) + ((integer rational) 'single-float) + (t (numeric-type-format type)))) + (bound-format (or format 'float))) + (make-numeric-type :class 'float + :format format + :complexp :complex + :low (coerce -1 bound-format) + :high (coerce 1 bound-format))) + (let* ((interval (numeric-type->interval type)) + (range-info (interval-range-info interval)) + (contains-0-p (interval-contains-p 0 interval)) + (class (numeric-type-class type)) + (format (numeric-type-format type)) + (one (coerce 1 (or format class 'real))) + (zero (coerce 0 (or format class 'real))) + (minus-one (coerce -1 (or format class 'real))) + (plus (make-numeric-type :class class :format format + :low one :high one)) + (minus (make-numeric-type :class class :format format + :low minus-one :high minus-one)) + ;; KLUDGE: here we have a fairly horrible hack to deal + ;; with the schizophrenia in the type derivation engine. + ;; The problem is that the type derivers reinterpret + ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0 + ;; 0d0) within the derivation mechanism doesn't include + ;; -0d0. Ugh. So force it in here, instead. + (zero (make-numeric-type :class class :format format + :low (- zero) :high zero))) + (case range-info + (+ (if contains-0-p (type-union plus zero) plus)) + (- (if contains-0-p (type-union minus zero) minus)) + (t (type-union minus zero plus)))))) + +(defoptimizer (signum derive-type) ((num)) + (one-arg-derive-type num #'signum-derive-type-aux nil)) ;;;; byte operations ;;;; @@ -2313,18 +2436,18 @@ `(%deposit-field ,newbyte ,size ,pos ,int)))) (defoptimizer (%ldb derive-type) ((size posn num)) - (let ((size (continuation-type size))) + (let ((size (lvar-type size))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer))) (let ((size-high (numeric-type-high size))) (if (and size-high (<= size-high sb!vm:n-word-bits)) - (specifier-type `(unsigned-byte ,size-high)) + (specifier-type `(unsigned-byte* ,size-high)) (specifier-type 'unsigned-byte))) *universal-type*))) (defoptimizer (%mask-field derive-type) ((size posn num)) - (let ((size (continuation-type size)) - (posn (continuation-type posn))) + (let ((size (lvar-type size)) + (posn (lvar-type posn))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer)) (numeric-type-p posn) @@ -2333,57 +2456,46 @@ (posn-high (numeric-type-high posn))) (if (and size-high posn-high (<= (+ size-high posn-high) sb!vm:n-word-bits)) - (specifier-type `(unsigned-byte ,(+ size-high posn-high))) + (specifier-type `(unsigned-byte* ,(+ size-high posn-high))) (specifier-type 'unsigned-byte))) *universal-type*))) +(defun %deposit-field-derive-type-aux (size posn int) + (let ((size (lvar-type size)) + (posn (lvar-type posn)) + (int (lvar-type int))) + (when (and (numeric-type-p size) + (numeric-type-p posn) + (numeric-type-p int)) + (let ((size-high (numeric-type-high size)) + (posn-high (numeric-type-high posn)) + (high (numeric-type-high int)) + (low (numeric-type-low int))) + (when (and size-high posn-high high low + ;; KLUDGE: we need this cutoff here, otherwise we + ;; will merrily derive the type of %DPB as + ;; (UNSIGNED-BYTE 1073741822), and then attempt to + ;; canonicalize this type to (INTEGER 0 (1- (ASH 1 + ;; 1073741822))), with hilarious consequences. We + ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference + ;; over a reasonable amount of shifting, even on + ;; the alpha/32 port, where N-WORD-BITS is 32 but + ;; machine integers are 64-bits. -- CSR, + ;; 2003-09-12 + (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits))) + (let ((raw-bit-count (max (integer-length high) + (integer-length low) + (+ size-high posn-high)))) + (specifier-type + (if (minusp low) + `(signed-byte ,(1+ raw-bit-count)) + `(unsigned-byte* ,raw-bit-count))))))))) + (defoptimizer (%dpb derive-type) ((newbyte size posn int)) - (let ((size (continuation-type size)) - (posn (continuation-type posn)) - (int (continuation-type int))) - (if (and (numeric-type-p size) - (csubtypep size (specifier-type 'integer)) - (numeric-type-p posn) - (csubtypep posn (specifier-type 'integer)) - (numeric-type-p int) - (csubtypep int (specifier-type 'integer))) - (let ((size-high (numeric-type-high size)) - (posn-high (numeric-type-high posn)) - (high (numeric-type-high int)) - (low (numeric-type-low int))) - (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:n-word-bits)) - (specifier-type - (list (if (minusp low) 'signed-byte 'unsigned-byte) - (max (integer-length high) - (integer-length low) - (+ size-high posn-high)))) - *universal-type*)) - *universal-type*))) + (%deposit-field-derive-type-aux size posn int)) (defoptimizer (%deposit-field derive-type) ((newbyte size posn int)) - (let ((size (continuation-type size)) - (posn (continuation-type posn)) - (int (continuation-type int))) - (if (and (numeric-type-p size) - (csubtypep size (specifier-type 'integer)) - (numeric-type-p posn) - (csubtypep posn (specifier-type 'integer)) - (numeric-type-p int) - (csubtypep int (specifier-type 'integer))) - (let ((size-high (numeric-type-high size)) - (posn-high (numeric-type-high posn)) - (high (numeric-type-high int)) - (low (numeric-type-low int))) - (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:n-word-bits)) - (specifier-type - (list (if (minusp low) 'signed-byte 'unsigned-byte) - (max (integer-length high) - (integer-length low) - (+ size-high posn-high)))) - *universal-type*)) - *universal-type*))) + (%deposit-field-derive-type-aux size posn int)) (deftransform %ldb ((size posn int) (fixnum fixnum integer) @@ -2447,56 +2559,66 @@ ;;; ;;; and similar for other arguments. -;;; Try to recursively cut all uses of the continuation CONT to WIDTH -;;; bits. +;;; Try to recursively cut all uses of LVAR to WIDTH bits. ;;; ;;; For good functions, we just recursively cut arguments; their ;;; "goodness" means that the result will not increase (in the ;;; (unsigned-byte +infinity) sense). An ordinary modular function is ;;; replaced with the version, cutting its result to WIDTH or more -;;; bits. If we have changed anything, we need to flush old derived -;;; types, because they have nothing in common with the new code. -(defun cut-to-width (cont width) - (declare (type continuation cont) (type (integer 0) width)) +;;; bits. For most functions (e.g. for +) we cut all arguments; for +;;; others (e.g. for ASH) we have "optimizers", cutting only necessary +;;; arguments (maybe to a different width) and returning the name of a +;;; modular version, if it exists, or NIL. If we have changed +;;; anything, we need to flush old derived types, because they have +;;; nothing in common with the new code. +(defun cut-to-width (lvar width) + (declare (type lvar lvar) (type (integer 0) width)) (labels ((reoptimize-node (node name) (setf (node-derived-type node) (fun-type-returns (info :function :type name))) - (setf (continuation-%derived-type (node-cont node)) nil) + (setf (lvar-%derived-type (node-lvar node)) nil) (setf (node-reoptimize node) t) (setf (block-reoptimize (node-block node)) t) (setf (component-reoptimize (node-component node)) t)) (cut-node (node &aux did-something) - (when (and (combination-p node) - (fun-info-p (basic-combination-kind node))) - (let* ((fun-ref (continuation-use (combination-fun node))) + (when (and (not (block-delete-p (node-block node))) + (combination-p node) + (eq (basic-combination-kind node) :known)) + (let* ((fun-ref (lvar-use (combination-fun node))) (fun-name (leaf-source-name (ref-leaf fun-ref))) - (modular-fun (find-modular-version fun-name width)) - (name (and (modular-fun-info-p modular-fun) - (modular-fun-info-name modular-fun)))) + (modular-fun (find-modular-version fun-name width))) (when (and modular-fun - (not (and (eq name 'logand) + (not (and (eq fun-name 'logand) (csubtypep (single-value-type (node-derived-type node)) - (specifier-type `(unsigned-byte ,width)))))) - (unless (eq modular-fun :good) - (setq did-something t) - (change-ref-leaf + (specifier-type `(unsigned-byte* ,width)))))) + (binding* ((name (etypecase modular-fun + ((eql :good) fun-name) + (modular-fun-info + (modular-fun-info-name modular-fun)) + (function + (funcall modular-fun node width))) + :exit-if-null)) + (unless (eql modular-fun :good) + (setq did-something t) + (change-ref-leaf fun-ref (find-free-fun name "in a strange place")) (setf (combination-kind node) :full)) - (dolist (arg (basic-combination-args node)) - (when (cut-continuation arg) - (setq did-something t))) - (when did-something - (reoptimize-node node fun-name)) - did-something)))) - (cut-continuation (cont &aux did-something) - (do-uses (node cont) + (unless (functionp modular-fun) + (dolist (arg (basic-combination-args node)) + (when (cut-lvar arg) + (setq did-something t)))) + (when did-something + (reoptimize-node node name)) + did-something))))) + (cut-lvar (lvar &aux did-something) + (do-uses (node lvar) (when (cut-node node) (setq did-something t))) did-something)) - (cut-continuation cont))) + (cut-lvar lvar))) (defoptimizer (logand optimizer) ((x y) node) (let ((result-type (single-value-type (node-derived-type node)))) @@ -2519,11 +2641,11 @@ ;;; If a constant appears as the first arg, swap the args. (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node) - (if (and (constant-continuation-p x) - (not (constant-continuation-p y))) - `(,(continuation-fun-name (basic-combination-fun node)) + (if (and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,(lvar-fun-name (basic-combination-fun node)) y - ,(continuation-value x)) + ,(lvar-value x)) (give-up-ir1-transform))) (dolist (x '(= char= + * logior logand logxor)) @@ -2533,26 +2655,26 @@ ;;; Handle the case of a constant BOOLE-CODE. (deftransform boole ((op x y) * *) "convert to inline logical operations" - (unless (constant-continuation-p op) + (unless (constant-lvar-p op) (give-up-ir1-transform "BOOLE code is not a constant.")) - (let ((control (continuation-value op))) + (let ((control (lvar-value op))) (case control - (#.boole-clr 0) - (#.boole-set -1) - (#.boole-1 'x) - (#.boole-2 'y) - (#.boole-c1 '(lognot x)) - (#.boole-c2 '(lognot y)) - (#.boole-and '(logand x y)) - (#.boole-ior '(logior x y)) - (#.boole-xor '(logxor x y)) - (#.boole-eqv '(logeqv x y)) - (#.boole-nand '(lognand x y)) - (#.boole-nor '(lognor x y)) - (#.boole-andc1 '(logandc1 x y)) - (#.boole-andc2 '(logandc2 x y)) - (#.boole-orc1 '(logorc1 x y)) - (#.boole-orc2 '(logorc2 x y)) + (#.sb!xc:boole-clr 0) + (#.sb!xc:boole-set -1) + (#.sb!xc:boole-1 'x) + (#.sb!xc:boole-2 'y) + (#.sb!xc:boole-c1 '(lognot x)) + (#.sb!xc:boole-c2 '(lognot y)) + (#.sb!xc:boole-and '(logand x y)) + (#.sb!xc:boole-ior '(logior x y)) + (#.sb!xc:boole-xor '(logxor x y)) + (#.sb!xc:boole-eqv '(logeqv x y)) + (#.sb!xc:boole-nand '(lognand x y)) + (#.sb!xc:boole-nor '(lognor x y)) + (#.sb!xc:boole-andc1 '(logandc1 x y)) + (#.sb!xc:boole-andc2 '(logandc2 x y)) + (#.sb!xc:boole-orc1 '(logorc1 x y)) + (#.sb!xc:boole-orc2 '(logorc2 x y)) (t (abort-ir1-transform "~S is an illegal control arg to BOOLE." control))))) @@ -2562,75 +2684,27 @@ ;;; If arg is a constant power of two, turn * into a shift. (deftransform * ((x y) (integer integer) *) "convert x*2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (if (minusp y) `(- (ash x ,len)) `(ash x ,len)))) -;;; If both arguments and the result are (UNSIGNED-BYTE 32), try to -;;; come up with a ``better'' multiplication using multiplier -;;; recoding. There are two different ways the multiplier can be -;;; recoded. The more obvious is to shift X by the correct amount for -;;; each bit set in Y and to sum the results. But if there is a string -;;; of bits that are all set, you can add X shifted by one more then -;;; the bit position of the first set bit and subtract X shifted by -;;; the bit position of the last set bit. We can't use this second -;;; method when the high order bit is bit 31 because shifting by 32 -;;; doesn't work too well. -(deftransform * ((x y) - ((unsigned-byte 32) (unsigned-byte 32)) - (unsigned-byte 32)) - "recode as shift and add" - (unless (constant-continuation-p y) - (give-up-ir1-transform)) - (let ((y (continuation-value y)) - (result nil) - (first-one nil)) - (labels ((tub32 (x) `(truly-the (unsigned-byte 32) ,x)) - (add (next-factor) - (setf result - (tub32 - (if result - `(+ ,result ,(tub32 next-factor)) - next-factor))))) - (declare (inline add)) - (dotimes (bitpos 32) - (if first-one - (when (not (logbitp bitpos y)) - (add (if (= (1+ first-one) bitpos) - ;; There is only a single bit in the string. - `(ash x ,first-one) - ;; There are at least two. - `(- ,(tub32 `(ash x ,bitpos)) - ,(tub32 `(ash x ,first-one))))) - (setf first-one nil)) - (when (logbitp bitpos y) - (setf first-one bitpos)))) - (when first-one - (cond ((= first-one 31)) - ((= first-one 30) - (add '(ash x 30))) - (t - (add `(- ,(tub32 '(ash x 31)) ,(tub32 `(ash x ,first-one)))))) - (add '(ash x 31)))) - (or result 0))) - ;;; If arg is a constant power of two, turn FLOOR into a shift and ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a ;;; remainder. (flet ((frob (y ceil-p) - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((shift (- len)) (mask (1- y-abs)) @@ -2651,12 +2725,12 @@ ;;; Do the same for MOD. (deftransform mod ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((mask (1- y-abs))) (if (minusp y) @@ -2666,12 +2740,12 @@ ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask. (deftransform truncate ((x y) (integer integer)) "convert division by 2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let* ((shift (- len)) (mask (1- y-abs))) @@ -2681,19 +2755,19 @@ `(- (ash (- x) ,shift))) (- (logand (- x) ,mask))) (values ,(if (minusp y) - `(- (ash (- x) ,shift)) + `(ash (- ,mask x) ,shift) `(ash x ,shift)) (logand x ,mask)))))) ;;; And the same for REM. (deftransform rem ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((mask (1- y-abs))) `(if (minusp x) @@ -2718,11 +2792,11 @@ (deftransform logand ((x y) (* (constant-arg t)) *) "fold identity operation" - (let ((y (continuation-value y))) + (let ((y (lvar-value y))) (unless (and (plusp y) (= y (1- (ash 1 (integer-length y))))) (give-up-ir1-transform)) - (unless (csubtypep (continuation-type x) + (unless (csubtypep (lvar-type x) (specifier-type `(integer 0 ,y))) (give-up-ir1-transform)) 'x)) @@ -2736,14 +2810,14 @@ "convert (* x 0) to 0" 0) -;;; Return T if in an arithmetic op including continuations X and Y, -;;; the result type is not affected by the type of X. That is, Y is at +;;; Return T if in an arithmetic op including lvars X and Y, the +;;; result type is not affected by the type of X. That is, Y is at ;;; least as contagious as X. #+nil (defun not-more-contagious (x y) (declare (type continuation x y)) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (values (type= (numeric-contagion x y) (numeric-contagion y y))))) ;;; Patched version by Raymond Toy. dtc: Should be safer although it @@ -2751,7 +2825,7 @@ ;;; specific to particular transform functions so the use of this ;;; function may need a re-think. (defun not-more-contagious (x y) - (declare (type continuation x y)) + (declare (type lvar x y)) (flet ((simple-numeric-type (num) (and (numeric-type-p num) ;; Return non-NIL if NUM is integer, rational, or a float @@ -2763,8 +2837,8 @@ (numeric-type-format num)) (t nil))))) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (if (and (simple-numeric-type x) (simple-numeric-type y)) (values (type= (numeric-contagion x y) @@ -2776,7 +2850,7 @@ ;;; float +0.0 then give up. (deftransform + ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (plusp (float-sign val)))) (not-more-contagious y x)) @@ -2789,7 +2863,7 @@ ;;; float -0.0 then give up. (deftransform - ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (minusp (float-sign val)))) (not-more-contagious y x)) @@ -2800,7 +2874,7 @@ (macrolet ((def (name result minus-result) `(deftransform ,name ((x y) (t (constant-arg real)) *) "fold identity operations" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (= (abs val) 1) (not-more-contagious y x)) (give-up-ir1-transform)) @@ -2813,14 +2887,26 @@ ;;; N; convert (expt x 1/2) to sqrt. (deftransform expt ((x y) (t (constant-arg real)) *) "recode as multiplication or sqrt" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) ;; If Y would cause the result to be promoted to the same type as ;; Y, we give up. If not, then the result will be the same type ;; as X, so we can replace the exponentiation with simple ;; multiplication and division for small integral powers. (unless (not-more-contagious y x) (give-up-ir1-transform)) - (cond ((zerop val) '(float 1 x)) + (cond ((zerop val) + (let ((x-type (lvar-type x))) + (cond ((csubtypep x-type (specifier-type '(or rational + (complex rational)))) + '1) + ((csubtypep x-type (specifier-type 'real)) + `(if (rationalp x) + 1 + (float 1 x))) + ((csubtypep x-type (specifier-type 'complex)) + ;; both parts are float + `(1+ (* x ,val))) + (t (give-up-ir1-transform))))) ((= val 2) '(* x x)) ((= val -2) '(/ (* x x))) ((= val 3) '(* x x x)) @@ -2853,7 +2939,9 @@ ;;;; character operations -(deftransform char-equal ((a b) (base-char base-char)) +(deftransform char-equal ((a b) + ((character-set ((0 . 255))) + (character-set ((0 . 255))))) "open code" '(let* ((ac (char-code a)) (bc (char-code b)) @@ -2861,33 +2949,43 @@ (or (zerop sum) (when (eql sum #x20) (let ((sum (+ ac bc))) - (and (> sum 161) (< sum 213))))))) + (or (and (> sum 161) (< sum 213)) + (and (> sum 415) (< sum 461)) + (and (> sum 463) (< sum 477)))))))) -(deftransform char-upcase ((x) (base-char)) +(deftransform char-upcase ((x) ((character-set ((0 . 255))))) "open code" '(let ((n-code (char-code x))) - (if (and (> n-code #o140) ; Octal 141 is #\a. - (< n-code #o173)) ; Octal 172 is #\z. + (if (or (and (> n-code #o140) ; Octal 141 is #\a. + (< n-code #o173)) ; Octal 172 is #\z. + (and (> n-code #o337) + (< n-code #o367)) + (and (> n-code #o367) + (< n-code #o377))) (code-char (logxor #x20 n-code)) x))) -(deftransform char-downcase ((x) (base-char)) +(deftransform char-downcase ((x) ((character-set ((0 . 255))))) "open code" '(let ((n-code (char-code x))) - (if (and (> n-code 64) ; 65 is #\A. - (< n-code 91)) ; 90 is #\Z. + (if (or (and (> n-code 64) ; 65 is #\A. + (< n-code 91)) ; 90 is #\Z. + (and (> n-code 191) + (< n-code 215)) + (and (> n-code 215) + (< n-code 223))) (code-char (logxor #x20 n-code)) x))) ;;;; equality predicate transforms -;;; Return true if X and Y are continuations whose only use is a +;;; Return true if X and Y are lvars whose only use is a ;;; reference to the same leaf, and the value of the leaf cannot ;;; change. (defun same-leaf-ref-p (x y) - (declare (type continuation x y)) - (let ((x-use (principal-continuation-use x)) - (y-use (principal-continuation-use y))) + (declare (type lvar x y)) + (let ((x-use (principal-lvar-use x)) + (y-use (principal-lvar-use y))) (and (ref-p x-use) (ref-p y-use) (eq (ref-leaf x-use) (ref-leaf y-use)) @@ -2898,21 +2996,18 @@ ;;; then the result is definitely false. (deftransform simple-equality-transform ((x y) * * :defun-only t) - (cond ((same-leaf-ref-p x y) - t) - ((not (types-equal-or-intersect (continuation-type x) - (continuation-type y))) + (cond + ((same-leaf-ref-p x y) t) + ((not (types-equal-or-intersect (lvar-type x) (lvar-type y))) nil) - (t - (give-up-ir1-transform)))) + (t (give-up-ir1-transform)))) (macrolet ((def (x) `(%deftransform ',x '(function * *) #'simple-equality-transform))) (def eq) - (def char=) - (def equal)) + (def char=)) -;;; This is similar to SIMPLE-EQUALITY-PREDICATE, except that we also +;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also ;;; try to convert to a type-specific predicate or EQ: ;;; -- If both args are characters, convert to CHAR=. This is better than ;;; just converting to EQ, since CHAR= may have special compilation @@ -2927,12 +3022,12 @@ ;;; handle that case, otherwise give an efficiency note. (deftransform eql ((x y) * *) "convert to simpler equality predicate" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y)) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y)) (char-type (specifier-type 'character)) (number-type (specifier-type 'number))) - (cond ((same-leaf-ref-p x y) - t) + (cond + ((same-leaf-ref-p x y) t) ((not (types-equal-or-intersect x-type y-type)) nil) ((and (csubtypep x-type char-type) @@ -2941,20 +3036,39 @@ ((or (not (types-equal-or-intersect x-type number-type)) (not (types-equal-or-intersect y-type number-type))) '(eq x y)) - ((and (not (constant-continuation-p y)) - (or (constant-continuation-p x) + ((and (not (constant-lvar-p y)) + (or (constant-lvar-p x) (and (csubtypep x-type y-type) (not (csubtypep y-type x-type))))) '(eql y x)) (t (give-up-ir1-transform))))) +;;; similarly to the EQL transform above, we attempt to constant-fold +;;; or convert to a simpler predicate: mostly we have to be careful +;;; with strings. +(deftransform equal ((x y) * *) + "convert to simpler equality predicate" + (let ((x-type (lvar-type x)) + (y-type (lvar-type y)) + (string-type (specifier-type 'string))) + (cond + ((same-leaf-ref-p x y) t) + ((and (csubtypep x-type string-type) + (csubtypep y-type string-type)) + '(string= x y)) + ((and (or (not (types-equal-or-intersect x-type string-type)) + (not (types-equal-or-intersect y-type string-type))) + (not (types-equal-or-intersect x-type y-type))) + nil) + (t (give-up-ir1-transform))))) + ;;; Convert to EQL if both args are rational and complexp is specified ;;; and the same for both. (deftransform = ((x y) * *) "open code" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y))) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y))) (if (and (csubtypep x-type (specifier-type 'number)) (csubtypep y-type (specifier-type 'number))) (cond ((or (and (csubtypep x-type (specifier-type 'float)) @@ -2979,11 +3093,11 @@ (give-up-ir1-transform "The operands might not be the same type.")))) -;;; If CONT's type is a numeric type, then return the type, otherwise +;;; If LVAR's type is a numeric type, then return the type, otherwise ;;; GIVE-UP-IR1-TRANSFORM. -(defun numeric-type-or-lose (cont) - (declare (type continuation cont)) - (let ((res (continuation-type cont))) +(defun numeric-type-or-lose (lvar) + (declare (type lvar lvar)) + (let ((res (lvar-type lvar))) (unless (numeric-type-p res) (give-up-ir1-transform)) res)) @@ -2991,67 +3105,37 @@ ;;; information. If X's high bound is < Y's low, then X < Y. ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return ;;; NIL). If not, at least make sure any constant arg is second. -;;; -;;; FIXME: Why should constant argument be second? It would be nice to -;;; find out and explain. -#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - nil - (let* ((x-type (numeric-type-or-lose x)) - (x-lo (numeric-type-low x-type)) - (x-hi (numeric-type-high x-type)) - (y-type (numeric-type-or-lose y)) - (y-lo (numeric-type-low y-type)) - (y-hi (numeric-type-high y-type))) - (cond ((and x-hi y-lo (< x-hi y-lo)) - t) - ((and y-hi x-lo (>= x-lo y-hi)) - nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - nil - (let ((xi (numeric-type->interval (numeric-type-or-lose x))) - (yi (numeric-type->interval (numeric-type-or-lose y)))) - (cond ((interval-< xi yi) - t) - ((interval->= xi yi) - nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) - -(deftransform < ((x y) (integer integer) *) - (ir1-transform-< x y x y '>)) - -(deftransform > ((x y) (integer integer) *) - (ir1-transform-< y x x y '<)) - -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform < ((x y) (float float) *) - (ir1-transform-< x y x y '>)) - -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform > ((x y) (float float) *) - (ir1-transform-< y x x y '<)) +(macrolet ((def (name inverse reflexive-p surely-true surely-false) + `(deftransform ,name ((x y)) + (if (same-leaf-ref-p x y) + ,reflexive-p + (let ((ix (or (type-approximate-interval (lvar-type x)) + (give-up-ir1-transform))) + (iy (or (type-approximate-interval (lvar-type y)) + (give-up-ir1-transform)))) + (cond (,surely-true + t) + (,surely-false + nil) + ((and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,',inverse y x)) + (t + (give-up-ir1-transform)))))))) + (def < > nil (interval-< ix iy) (interval->= ix iy)) + (def > < nil (interval-< iy ix) (interval->= iy ix)) + (def <= >= t (interval->= iy ix) (interval-< iy ix)) + (def >= <= t (interval->= ix iy) (interval-< ix iy))) (defun ir1-transform-char< (x y first second inverse) (cond ((same-leaf-ref-p x y) nil) ;; If we had interval representation of character types, as we ;; might eventually have to to support 2^21 characters, then here - ;; we could do some compile-time computation as in IR1-TRANSFORM-< - ;; above. -- CSR, 2003-07-01 - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) + ;; we could do some compile-time computation as in transforms for + ;; < above. -- CSR, 2003-07-01 + ((and (constant-lvar-p first) + (not (constant-lvar-p second))) `(,inverse y x)) (t (give-up-ir1-transform)))) @@ -3167,13 +3251,13 @@ (if (null rest) `(values (the real ,arg0)) `(let ((maxrest (max ,@rest))) - (if (> ,arg0 maxrest) ,arg0 maxrest))))) + (if (>= ,arg0 maxrest) ,arg0 maxrest))))) (define-source-transform min (arg0 &rest rest) (once-only ((arg0 arg0)) (if (null rest) `(values (the real ,arg0)) `(let ((minrest (min ,@rest))) - (if (< ,arg0 minrest) ,arg0 minrest))))) + (if (<= ,arg0 minrest) ,arg0 minrest))))) ;;;; converting N-arg arithmetic functions ;;;; @@ -3195,7 +3279,7 @@ ;;; ensure (with THE) that the argument in one-argument calls is. (defun source-transform-transitive (fun args identity &optional one-arg-result-type) - (declare (symbol fun leaf-fun) (list args)) + (declare (symbol fun) (list args)) (case (length args) (0 identity) (1 (if one-arg-result-type @@ -3215,11 +3299,8 @@ (source-transform-transitive 'logxor args 0 'integer)) (define-source-transform logand (&rest args) (source-transform-transitive 'logand args -1 'integer)) - (define-source-transform logeqv (&rest args) - (if (evenp (length args)) - `(lognot (logxor ,@args)) - `(logxor ,@args))) + (source-transform-transitive 'logeqv args -1 'integer)) ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM ;;; because when they are given one argument, they return its absolute @@ -3279,16 +3360,10 @@ ;;; for compile-time argument count checking. ;;; -;;; FIXME I: this is currently called from DEFTRANSFORMs, the vast -;;; majority of which are not going to transform the code, but instead -;;; are going to GIVE-UP-IR1-TRANSFORM unconditionally. It would be -;;; nice to make this explicit, maybe by implementing a new -;;; "optimizer" (say, DEFOPTIMIZER CONSISTENCY-CHECK). -;;; ;;; FIXME II: In some cases, type information could be correlated; for -;;; instance, ~{ ... ~} requires a list argument, so if the -;;; continuation-type of a corresponding argument is known and does -;;; not intersect the list type, a warning could be signalled. +;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type +;;; of a corresponding argument is known and does not intersect the +;;; list type, a warning could be signalled. (defun check-format-args (string args fun) (declare (type string string)) (unless (typep string 'simple-string) @@ -3301,33 +3376,30 @@ (let ((nargs (length args))) (cond ((< nargs min) - (compiler-warn "Too few arguments (~D) to ~S ~S: ~ - requires at least ~D." - nargs fun string min)) + (warn 'format-too-few-args-warning + :format-control + "Too few arguments (~D) to ~S ~S: requires at least ~D." + :format-arguments (list nargs fun string min))) ((> nargs max) - (;; to get warned about probably bogus code at - ;; cross-compile time. - #+sb-xc-host compiler-warn - ;; ANSI saith that too many arguments doesn't cause a - ;; run-time error. - #-sb-xc-host compiler-style-warn - "Too many arguments (~D) to ~S ~S: uses at most ~D." - nargs fun string max))))))) + (warn 'format-too-many-args-warning + :format-control + "Too many arguments (~D) to ~S ~S: uses at most ~D." + :format-arguments (list nargs fun string max)))))))) (defoptimizer (format optimizer) ((dest control &rest args)) - (when (constant-continuation-p control) - (let ((x (continuation-value control))) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) (when (stringp x) (check-format-args x args 'format))))) (deftransform format ((dest control &rest args) (t simple-string &rest t) * :policy (> speed space)) - (unless (constant-continuation-p control) + (unless (constant-lvar-p control) (give-up-ir1-transform "The control string is not a constant.")) (let ((arg-names (make-gensym-list (length args)))) `(lambda (dest control ,@arg-names) (declare (ignore control)) - (format dest (formatter ,(continuation-value control)) ,@arg-names)))) + (format dest (formatter ,(lvar-value control)) ,@arg-names)))) (deftransform format ((stream control &rest args) (stream function &rest t) * :policy (> speed space)) @@ -3347,8 +3419,8 @@ (macrolet ((def (name) `(defoptimizer (,name optimizer) ((control &rest args)) - (when (constant-continuation-p control) - (let ((x (continuation-value control))) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) (when (stringp x) (check-format-args x args ',name))))))) (def error) @@ -3365,10 +3437,10 @@ (def bug))) (defoptimizer (cerror optimizer) ((report control &rest args)) - (when (and (constant-continuation-p control) - (constant-continuation-p report)) - (let ((x (continuation-value control)) - (y (continuation-value report))) + (when (and (constant-lvar-p control) + (constant-lvar-p report)) + (let ((x (lvar-value control)) + (y (lvar-value report))) (when (and (stringp x) (stringp y)) (multiple-value-bind (min1 max1) (handler-case @@ -3385,27 +3457,28 @@ (let ((nargs (length args))) (cond ((< nargs (min min1 min2)) - (compiler-warn "Too few arguments (~D) to ~S ~S ~S: ~ - requires at least ~D." - nargs 'cerror y x (min min1 min2))) + (warn 'format-too-few-args-warning + :format-control + "Too few arguments (~D) to ~S ~S ~S: ~ + requires at least ~D." + :format-arguments + (list nargs 'cerror y x (min min1 min2)))) ((> nargs (max max1 max2)) - (;; to get warned about probably bogus code at - ;; cross-compile time. - #+sb-xc-host compiler-warn - ;; ANSI saith that too many arguments doesn't cause a - ;; run-time error. - #-sb-xc-host compiler-style-warn - "Too many arguments (~D) to ~S ~S ~S: uses at most ~D." - nargs 'cerror y x (max max1 max2))))))))))))) + (warn 'format-too-many-args-warning + :format-control + "Too many arguments (~D) to ~S ~S ~S: ~ + uses at most ~D." + :format-arguments + (list nargs 'cerror y x (max max1 max2)))))))))))))) (defoptimizer (coerce derive-type) ((value type)) (cond - ((constant-continuation-p type) + ((constant-lvar-p type) ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2), ;; but dealing with the niggle that complex canonicalization gets ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of ;; type COMPLEX. - (let* ((specifier (continuation-value type)) + (let* ((specifier (lvar-value type)) (result-typeoid (careful-specifier-type specifier))) (cond ((null result-typeoid) nil) @@ -3441,7 +3514,7 @@ ;; case, we will return a complex or an object of the ;; provided type if it's rational: (type-union result-typeoid - (type-intersection (continuation-type value) + (type-intersection (lvar-type value) (specifier-type 'rational)))))) (t result-typeoid)))) (t @@ -3454,8 +3527,8 @@ ;; the basis that it's unlikely that other uses are both ;; time-critical and get to this branch of the COND (non-constant ;; second argument to COERCE). -- CSR, 2002-12-16 - (let ((value-type (continuation-type value)) - (type-type (continuation-type type))) + (let ((value-type (lvar-type value)) + (type-type (lvar-type type))) (labels ((good-cons-type-p (cons-type) ;; Make sure the cons-type we're looking at is something @@ -3545,7 +3618,7 @@ *universal-type*))))))) (defoptimizer (compile derive-type) ((nameoid function)) - (when (csubtypep (continuation-type nameoid) + (when (csubtypep (lvar-type nameoid) (specifier-type 'null)) (values-specifier-type '(values function boolean boolean)))) @@ -3553,7 +3626,7 @@ ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE ;;; optimizer, above). (defoptimizer (array-element-type derive-type) ((array)) - (let ((array-type (continuation-type array))) + (let ((array-type (lvar-type array))) (labels ((consify (list) (if (endp list) '(eql nil) @@ -3577,7 +3650,17 @@ (t *universal-type*))))) +;;; Like CMU CL, we use HEAPSORT. However, other than that, this code +;;; isn't really related to the CMU CL code, since instead of trying +;;; to generalize the CMU CL code to allow START and END values, this +;;; code has been written from scratch following Chapter 7 of +;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir. (define-source-transform sb!impl::sort-vector (vector start end predicate key) + ;; Like CMU CL, we use HEAPSORT. However, other than that, this code + ;; isn't really related to the CMU CL code, since instead of trying + ;; to generalize the CMU CL code to allow START and END values, this + ;; code has been written from scratch following Chapter 7 of + ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir. `(macrolet ((%index (x) `(truly-the index ,x)) (%parent (i) `(ash ,i -1)) (%left (i) `(%index (ash ,i 1))) @@ -3611,15 +3694,16 @@ (%elt largest) i-elt i largest))))))))) (%sort-vector (keyfun &optional (vtype 'vector)) - `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had trouble getting - ;; type inference to propagate all the way - ;; through this tangled mess of - ;; inlining. The TRULY-THE here works - ;; around that. -- WHN + `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had + ;; trouble getting type inference to + ;; propagate all the way through this + ;; tangled mess of inlining. The TRULY-THE + ;; here works around that. -- WHN (%elt (i) `(aref (truly-the ,',vtype ,',',vector) (%index (+ (%index ,i) start-1))))) - (let ((start-1 (1- ,',start)) ; Heaps prefer 1-based addressing. + (let (;; Heaps prefer 1-based addressing. + (start-1 (1- ,',start)) (current-heap-size (- ,',end ,',start)) (keyfun ,keyfun)) (declare (type (integer -1 #.(1- most-positive-fixnum)) @@ -3655,27 +3739,27 @@ ;;; for debugging when transforms are behaving mysteriously, ;;; e.g. when debugging a problem with an ASH transform ;;; (defun foo (&optional s) -;;; (sb-c::/report-continuation s "S outside WHEN") +;;; (sb-c::/report-lvar s "S outside WHEN") ;;; (when (and (integerp s) (> s 3)) -;;; (sb-c::/report-continuation s "S inside WHEN") +;;; (sb-c::/report-lvar s "S inside WHEN") ;;; (let ((bound (ash 1 (1- s)))) -;;; (sb-c::/report-continuation bound "BOUND") +;;; (sb-c::/report-lvar bound "BOUND") ;;; (let ((x (- bound)) ;;; (y (1- bound))) -;;; (sb-c::/report-continuation x "X") -;;; (sb-c::/report-continuation x "Y")) +;;; (sb-c::/report-lvar x "X") +;;; (sb-c::/report-lvar x "Y")) ;;; `(integer ,(- bound) ,(1- bound))))) ;;; (The DEFTRANSFORM doesn't do anything but report at compile time, ;;; and the function doesn't do anything at all.) #!+sb-show (progn - (defknown /report-continuation (t t) null) - (deftransform /report-continuation ((x message) (t t)) - (format t "~%/in /REPORT-CONTINUATION~%") - (format t "/(CONTINUATION-TYPE X)=~S~%" (continuation-type x)) - (when (constant-continuation-p x) - (format t "/(CONTINUATION-VALUE X)=~S~%" (continuation-value x))) - (format t "/MESSAGE=~S~%" (continuation-value message)) + (defknown /report-lvar (t t) null) + (deftransform /report-lvar ((x message) (t t)) + (format t "~%/in /REPORT-LVAR~%") + (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x)) + (when (constant-lvar-p x) + (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x))) + (format t "/MESSAGE=~S~%" (lvar-value message)) (give-up-ir1-transform "not a real transform")) - (defun /report-continuation (x message) + (defun /report-lvar (x message) (declare (ignore x message))))