X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fsrctran.lisp;h=ac6527acc74a0e8703c9e378a7f2ea7f3830adb3;hb=e511ed14d4a20cb9de2523f052b0f23a1dde1115;hp=35b35b19cbbef59cf115599c43897181dcb20001;hpb=2d75f4246b8451a9c2c95cd36673d98c82c9845f;p=sbcl.git diff --git a/src/compiler/srctran.lisp b/src/compiler/srctran.lisp index 35b35b1..ac6527a 100644 --- a/src/compiler/srctran.lisp +++ b/src/compiler/srctran.lisp @@ -1,6 +1,6 @@ ;;;; This file contains macro-like source transformations which ;;;; convert uses of certain functions into the canonical form desired -;;;; within the compiler. ### and other IR1 transforms and stuff. +;;;; within the compiler. FIXME: and other IR1 transforms and stuff. ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. @@ -15,35 +15,36 @@ ;;; Convert into an IF so that IF optimizations will eliminate redundant ;;; negations. -(def-source-transform not (x) `(if ,x nil t)) -(def-source-transform null (x) `(if ,x nil t)) +(define-source-transform not (x) `(if ,x nil t)) +(define-source-transform null (x) `(if ,x nil t)) ;;; ENDP is just NULL with a LIST assertion. The assertion will be ;;; optimized away when SAFETY optimization is low; hopefully that ;;; is consistent with ANSI's "should return an error". -(def-source-transform endp (x) `(null (the list ,x))) +(define-source-transform endp (x) `(null (the list ,x))) ;;; We turn IDENTITY into PROG1 so that it is obvious that it just ;;; returns the first value of its argument. Ditto for VALUES with one ;;; arg. -(def-source-transform identity (x) `(prog1 ,x)) -(def-source-transform values (x) `(prog1 ,x)) +(define-source-transform identity (x) `(prog1 ,x)) +(define-source-transform values (x) `(prog1 ,x)) -;;; Bind the values and make a closure that returns them. -(def-source-transform constantly (value) - (let ((rest (gensym "CONSTANTLY-REST-"))) - `(lambda (&rest ,rest) - (declare (ignore ,rest)) - ,value))) +;;; Bind the value and make a closure that returns it. +(define-source-transform constantly (value) + (with-unique-names (rest n-value) + `(let ((,n-value ,value)) + (lambda (&rest ,rest) + (declare (ignore ,rest)) + ,n-value)))) ;;; If the function has a known number of arguments, then return a ;;; lambda with the appropriate fixed number of args. If the ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let ;;; MV optimization figure things out. -(deftransform complement ((fun) * * :node node :when :both) +(deftransform complement ((fun) * * :node node) "open code" (multiple-value-bind (min max) - (function-type-nargs (continuation-type fun)) + (fun-type-nargs (continuation-type fun)) (cond ((and min (eql min max)) (let ((dums (make-gensym-list min))) @@ -62,7 +63,7 @@ ;;; Translate CxR into CAR/CDR combos. (defun source-transform-cxr (form) - (if (or (byte-compiling) (/= (length form) 2)) + (if (/= (length form) 2) (values nil t) (let ((name (symbol-name (car form)))) (do ((i (- (length name) 2) (1- i)) @@ -97,31 +98,31 @@ ;;; whatever is right for them is right for us. FIFTH..TENTH turn into ;;; Nth, which can be expanded into a CAR/CDR later on if policy ;;; favors it. -(def-source-transform first (x) `(car ,x)) -(def-source-transform rest (x) `(cdr ,x)) -(def-source-transform second (x) `(cadr ,x)) -(def-source-transform third (x) `(caddr ,x)) -(def-source-transform fourth (x) `(cadddr ,x)) -(def-source-transform fifth (x) `(nth 4 ,x)) -(def-source-transform sixth (x) `(nth 5 ,x)) -(def-source-transform seventh (x) `(nth 6 ,x)) -(def-source-transform eighth (x) `(nth 7 ,x)) -(def-source-transform ninth (x) `(nth 8 ,x)) -(def-source-transform tenth (x) `(nth 9 ,x)) +(define-source-transform first (x) `(car ,x)) +(define-source-transform rest (x) `(cdr ,x)) +(define-source-transform second (x) `(cadr ,x)) +(define-source-transform third (x) `(caddr ,x)) +(define-source-transform fourth (x) `(cadddr ,x)) +(define-source-transform fifth (x) `(nth 4 ,x)) +(define-source-transform sixth (x) `(nth 5 ,x)) +(define-source-transform seventh (x) `(nth 6 ,x)) +(define-source-transform eighth (x) `(nth 7 ,x)) +(define-source-transform ninth (x) `(nth 8 ,x)) +(define-source-transform tenth (x) `(nth 9 ,x)) ;;; Translate RPLACx to LET and SETF. -(def-source-transform rplaca (x y) +(define-source-transform rplaca (x y) (once-only ((n-x x)) `(progn (setf (car ,n-x) ,y) ,n-x))) -(def-source-transform rplacd (x y) +(define-source-transform rplacd (x y) (once-only ((n-x x)) `(progn (setf (cdr ,n-x) ,y) ,n-x))) -(def-source-transform nth (n l) `(car (nthcdr ,n ,l))) +(define-source-transform nth (n l) `(car (nthcdr ,n ,l))) (defvar *default-nthcdr-open-code-limit* 6) (defvar *extreme-nthcdr-open-code-limit* 20) @@ -145,21 +146,21 @@ ;;;; arithmetic and numerology -(def-source-transform plusp (x) `(> ,x 0)) -(def-source-transform minusp (x) `(< ,x 0)) -(def-source-transform zerop (x) `(= ,x 0)) +(define-source-transform plusp (x) `(> ,x 0)) +(define-source-transform minusp (x) `(< ,x 0)) +(define-source-transform zerop (x) `(= ,x 0)) -(def-source-transform 1+ (x) `(+ ,x 1)) -(def-source-transform 1- (x) `(- ,x 1)) +(define-source-transform 1+ (x) `(+ ,x 1)) +(define-source-transform 1- (x) `(- ,x 1)) -(def-source-transform oddp (x) `(not (zerop (logand ,x 1)))) -(def-source-transform evenp (x) `(zerop (logand ,x 1))) +(define-source-transform oddp (x) `(not (zerop (logand ,x 1)))) +(define-source-transform evenp (x) `(zerop (logand ,x 1))) ;;; Note that all the integer division functions are available for ;;; inline expansion. (macrolet ((deffrob (fun) - `(def-source-transform ,fun (x &optional (y nil y-p)) + `(define-source-transform ,fun (x &optional (y nil y-p)) (declare (ignore y)) (if y-p (values nil t) @@ -171,29 +172,30 @@ #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (deffrob ceiling)) -(def-source-transform lognand (x y) `(lognot (logand ,x ,y))) -(def-source-transform lognor (x y) `(lognot (logior ,x ,y))) -(def-source-transform logandc1 (x y) `(logand (lognot ,x) ,y)) -(def-source-transform logandc2 (x y) `(logand ,x (lognot ,y))) -(def-source-transform logorc1 (x y) `(logior (lognot ,x) ,y)) -(def-source-transform logorc2 (x y) `(logior ,x (lognot ,y))) -(def-source-transform logtest (x y) `(not (zerop (logand ,x ,y)))) -(def-source-transform logbitp (index integer) +(define-source-transform lognand (x y) `(lognot (logand ,x ,y))) +(define-source-transform lognor (x y) `(lognot (logior ,x ,y))) +(define-source-transform logandc1 (x y) `(logand (lognot ,x) ,y)) +(define-source-transform logandc2 (x y) `(logand ,x (lognot ,y))) +(define-source-transform logorc1 (x y) `(logior (lognot ,x) ,y)) +(define-source-transform logorc2 (x y) `(logior ,x (lognot ,y))) +(define-source-transform logtest (x y) `(not (zerop (logand ,x ,y)))) +(define-source-transform logbitp (index integer) `(not (zerop (logand (ash 1 ,index) ,integer)))) -(def-source-transform byte (size position) `(cons ,size ,position)) -(def-source-transform byte-size (spec) `(car ,spec)) -(def-source-transform byte-position (spec) `(cdr ,spec)) -(def-source-transform ldb-test (bytespec integer) +(define-source-transform byte (size position) + `(cons ,size ,position)) +(define-source-transform byte-size (spec) `(car ,spec)) +(define-source-transform byte-position (spec) `(cdr ,spec)) +(define-source-transform ldb-test (bytespec integer) `(not (zerop (mask-field ,bytespec ,integer)))) ;;; With the ratio and complex accessors, we pick off the "identity" ;;; case, and use a primitive to handle the cell access case. -(def-source-transform numerator (num) +(define-source-transform numerator (num) (once-only ((n-num `(the rational ,num))) `(if (ratiop ,n-num) (%numerator ,n-num) ,n-num))) -(def-source-transform denominator (num) +(define-source-transform denominator (num) (once-only ((n-num `(the rational ,num))) `(if (ratiop ,n-num) (%denominator ,n-num) @@ -257,6 +259,7 @@ ;;; Apply the function F to a bound X. If X is an open bound, then ;;; the result will be open. IF X is NIL, the result is NIL. (defun bound-func (f x) + (declare (type function f)) (and x (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero) ;; With these traps masked, we might get things like infinity @@ -355,11 +358,11 @@ (defun interval-bounded-p (x how) (declare (type interval x)) (ecase how - ('above + (above (interval-high x)) - ('below + (below (interval-low x)) - ('both + (both (and (interval-low x) (interval-high x))))) ;;; signed zero comparison functions. Use these functions if we need @@ -630,7 +633,7 @@ :low (bound-mul (interval-low x) (interval-low y)) :high (bound-mul (interval-high x) (interval-high y)))) (t - (error "internal error in INTERVAL-MUL")))))) + (bug "excluded case in INTERVAL-MUL")))))) ;;; Divide two intervals. (defun interval-div (top bot) @@ -680,14 +683,15 @@ :low (bound-div (interval-low top) (interval-high bot) t) :high (bound-div (interval-high top) (interval-low bot) nil))) (t - (error "internal error in INTERVAL-DIV")))))) + (bug "excluded case in INTERVAL-DIV")))))) ;;; Apply the function F to the interval X. If X = [a, b], then the ;;; result is [f(a), f(b)]. It is up to the user to make sure the ;;; result makes sense. It will if F is monotonic increasing (or ;;; non-decreasing). (defun interval-func (f x) - (declare (type interval x)) + (declare (type function f) + (type interval x)) (let ((lo (bound-func f (interval-low x))) (hi (bound-func f (interval-high x)))) (make-interval :low lo :high hi))) @@ -732,9 +736,9 @@ (defun interval-abs (x) (declare (type interval x)) (case (interval-range-info x) - ('+ + (+ (copy-interval x)) - ('- + (- (interval-neg x)) (t (destructuring-bind (x- x+) (interval-split 0 x t t) @@ -812,7 +816,6 @@ ;;; are equal to an intermediate convention for which they are ;;; considered different which is more natural for some of the ;;; optimisers. -#!-negative-zero-is-not-zero (defun convert-numeric-type (type) (declare (type numeric-type type)) ;;; Only convert real float interval delimiters types. @@ -831,11 +834,11 @@ :low (if lo-float-zero-p (if (consp lo) (list (float 0.0 lo-val)) - (float -0.0 lo-val)) + (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val)) lo) :high (if hi-float-zero-p (if (consp hi) - (list (float -0.0 hi-val)) + (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val)) (float 0.0 hi-val)) hi)) type)) @@ -845,7 +848,6 @@ ;;; Convert back from the intermediate convention for which -0.0 and ;;; 0.0 are considered different to the standard type convention for ;;; which and equal. -#!-negative-zero-is-not-zero (defun convert-back-numeric-type (type) (declare (type numeric-type type)) ;;; Only convert real float interval delimiters types. @@ -933,7 +935,6 @@ type)) ;;; Convert back a possible list of numeric types. -#!-negative-zero-is-not-zero (defun convert-back-numeric-type-list (type-list) (typecase type-list (list @@ -955,7 +956,9 @@ ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably ;;; belong in the kernel's type logic, invoked always, instead of in -;;; the compiler, invoked only during some type optimizations. +;;; the compiler, invoked only during some type optimizations. (In +;;; fact, as of 0.pre8.100 or so they probably are, under +;;; MAKE-MEMBER-TYPE, so probably this code can be deleted) ;;; Take a list of types and return a canonical type specifier, ;;; combining any MEMBER types together. If both positive and negative @@ -970,24 +973,15 @@ (setf members (union members (member-type-members type))) (push type misc-types))) #!+long-float - (when (null (set-difference '(-0l0 0l0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(long-float 0l0 0l0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(long-float -0l0 0l0)) misc-types) - (setf members (set-difference members '(-0l0 0l0)))) - (when (null (set-difference '(-0d0 0d0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(double-float 0d0 0d0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(double-float -0d0 0d0)) misc-types) - (setf members (set-difference members '(-0d0 0d0)))) - (when (null (set-difference '(-0f0 0f0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(single-float 0f0 0f0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(single-float -0f0 0f0)) misc-types) - (setf members (set-difference members '(-0f0 0f0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members)) + (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members)) + (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members)) + (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0)))) (if members (apply #'type-union (make-member-type :members members) misc-types) (apply #'type-union misc-types)))) @@ -1018,8 +1012,7 @@ (defun one-arg-derive-type (arg derive-fcn member-fcn &optional (convert-type t)) (declare (type function derive-fcn) - (type (or null function) member-fcn) - #!+negative-zero-is-not-zero (ignore convert-type)) + (type (or null function) member-fcn)) (let ((arg-list (prepare-arg-for-derive-type (continuation-type arg)))) (when arg-list (flet ((deriver (x) @@ -1035,20 +1028,14 @@ ;; Otherwise convert to a numeric type. (let ((result-type-list (funcall derive-fcn (convert-member-type x)))) - #!-negative-zero-is-not-zero (if convert-type (convert-back-numeric-type-list result-type-list) - result-type-list) - #!+negative-zero-is-not-zero - result-type-list))) + result-type-list)))) (numeric-type - #!-negative-zero-is-not-zero (if convert-type (convert-back-numeric-type-list (funcall derive-fcn (convert-numeric-type x))) - (funcall derive-fcn x)) - #!+negative-zero-is-not-zero - (funcall derive-fcn x)) + (funcall derive-fcn x))) (t *universal-type*)))) ;; Run down the list of args and derive the type of each one, @@ -1071,10 +1058,8 @@ ;;; positive. If we didn't do this, we wouldn't be able to tell. (defun two-arg-derive-type (arg1 arg2 derive-fcn fcn &optional (convert-type t)) - #!+negative-zero-is-not-zero - (declare (ignore convert-type)) - (flet (#!-negative-zero-is-not-zero - (deriver (x y same-arg) + (declare (type function derive-fcn fcn)) + (flet ((deriver (x y same-arg) (cond ((and (member-type-p x) (member-type-p y)) (let* ((x (first (member-type-members x))) (y (first (member-type-members y))) @@ -1111,26 +1096,6 @@ (convert-back-numeric-type-list result) result))) (t - *universal-type*))) - #!+negative-zero-is-not-zero - (deriver (x y same-arg) - (cond ((and (member-type-p x) (member-type-p y)) - (let* ((x (first (member-type-members x))) - (y (first (member-type-members y))) - (result (with-float-traps-masked - (:underflow :overflow :divide-by-zero) - (funcall fcn x y)))) - (if result - (make-member-type :members (list result))))) - ((and (member-type-p x) (numeric-type-p y)) - (let ((x (convert-member-type x))) - (funcall derive-fcn x y same-arg))) - ((and (numeric-type-p x) (member-type-p y)) - (let ((y (convert-member-type y))) - (funcall derive-fcn x y same-arg))) - ((and (numeric-type-p x) (numeric-type-p y)) - (funcall derive-fcn x y same-arg)) - (t *universal-type*)))) (let ((same-arg (same-leaf-ref-p arg1 arg2)) (a1 (prepare-arg-for-derive-type (continuation-type arg1))) @@ -1341,27 +1306,30 @@ ) ; PROGN - -;;; KLUDGE: All this ASH optimization is suppressed under CMU CL -;;; because as of version 2.4.6 for Debian, CMU CL blows up on (ASH -;;; 1000000000 -100000000000) (i.e. ASH of two bignums yielding zero) -;;; and it's hard to avoid that calculation in here. -#-(and cmu sb-xc-host) -(progn - (defun ash-derive-type-aux (n-type shift same-arg) (declare (ignore same-arg)) + ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for + ;; some bignum cases because as of version 2.4.6 for Debian and 18d, + ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of + ;; two bignums yielding zero) and it's hard to avoid that + ;; calculation in here. + #+(and cmu sb-xc-host) + (when (and (or (typep (numeric-type-low n-type) 'bignum) + (typep (numeric-type-high n-type) 'bignum)) + (or (typep (numeric-type-low shift) 'bignum) + (typep (numeric-type-high shift) 'bignum))) + (return-from ash-derive-type-aux *universal-type*)) (flet ((ash-outer (n s) (when (and (fixnump s) (<= s 64) - (> s sb!vm:*target-most-negative-fixnum*)) + (> s sb!xc:most-negative-fixnum)) (ash n s))) ;; KLUDGE: The bare 64's here should be related to ;; symbolic machine word size values somehow. (ash-inner (n s) (if (and (fixnump s) - (> s sb!vm:*target-most-negative-fixnum*)) + (> s sb!xc:most-negative-fixnum)) (ash n (min s 64)) (if (minusp n) -1 0)))) (or (and (csubtypep n-type (specifier-type 'integer)) @@ -1383,7 +1351,6 @@ (defoptimizer (ash derive-type) ((n shift)) (two-arg-derive-type n shift #'ash-derive-type-aux #'ash)) -) ; PROGN #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (macrolet ((frob (fun) @@ -1647,7 +1614,7 @@ ;;; Define optimizers for FLOOR and CEILING. (macrolet - ((frob-opt (name q-name r-name) + ((def (name q-name r-name) (let ((q-aux (symbolicate q-name "-AUX")) (r-aux (symbolicate r-name "-AUX"))) `(progn @@ -1711,54 +1678,52 @@ (when (and quot rem) (make-values-type :required (list quot rem)))))))))) - ;; FIXME: DEF-FROB-OPT, not just FROB-OPT - (frob-opt floor floor-quotient-bound floor-rem-bound) - (frob-opt ceiling ceiling-quotient-bound ceiling-rem-bound)) + (def floor floor-quotient-bound floor-rem-bound) + (def ceiling ceiling-quotient-bound ceiling-rem-bound)) ;;; Define optimizers for FFLOOR and FCEILING -(macrolet - ((frob-opt (name q-name r-name) - (let ((q-aux (symbolicate "F" q-name "-AUX")) - (r-aux (symbolicate r-name "-AUX"))) - `(progn - ;; Compute type of quotient (first) result. - (defun ,q-aux (number-type divisor-type) - (let* ((number-interval - (numeric-type->interval number-type)) - (divisor-interval - (numeric-type->interval divisor-type)) - (quot (,q-name (interval-div number-interval - divisor-interval))) - (res-type (numeric-contagion number-type divisor-type))) - (make-numeric-type - :class (numeric-type-class res-type) - :format (numeric-type-format res-type) - :low (interval-low quot) - :high (interval-high quot)))) - - (defoptimizer (,name derive-type) ((number divisor)) - (flet ((derive-q (n d same-arg) - (declare (ignore same-arg)) - (if (and (numeric-type-real-p n) - (numeric-type-real-p d)) - (,q-aux n d) - *empty-type*)) - (derive-r (n d same-arg) - (declare (ignore same-arg)) - (if (and (numeric-type-real-p n) - (numeric-type-real-p d)) - (,r-aux n d) - *empty-type*))) - (let ((quot (two-arg-derive-type - number divisor #'derive-q #',name)) - (rem (two-arg-derive-type - number divisor #'derive-r #'mod))) - (when (and quot rem) - (make-values-type :required (list quot rem)))))))))) - - ;; FIXME: DEF-FROB-OPT, not just FROB-OPT - (frob-opt ffloor floor-quotient-bound floor-rem-bound) - (frob-opt fceiling ceiling-quotient-bound ceiling-rem-bound)) +(macrolet ((def (name q-name r-name) + (let ((q-aux (symbolicate "F" q-name "-AUX")) + (r-aux (symbolicate r-name "-AUX"))) + `(progn + ;; Compute type of quotient (first) result. + (defun ,q-aux (number-type divisor-type) + (let* ((number-interval + (numeric-type->interval number-type)) + (divisor-interval + (numeric-type->interval divisor-type)) + (quot (,q-name (interval-div number-interval + divisor-interval))) + (res-type (numeric-contagion number-type + divisor-type))) + (make-numeric-type + :class (numeric-type-class res-type) + :format (numeric-type-format res-type) + :low (interval-low quot) + :high (interval-high quot)))) + + (defoptimizer (,name derive-type) ((number divisor)) + (flet ((derive-q (n d same-arg) + (declare (ignore same-arg)) + (if (and (numeric-type-real-p n) + (numeric-type-real-p d)) + (,q-aux n d) + *empty-type*)) + (derive-r (n d same-arg) + (declare (ignore same-arg)) + (if (and (numeric-type-real-p n) + (numeric-type-real-p d)) + (,r-aux n d) + *empty-type*))) + (let ((quot (two-arg-derive-type + number divisor #'derive-q #',name)) + (rem (two-arg-derive-type + number divisor #'derive-r #'mod))) + (when (and quot rem) + (make-values-type :required (list quot rem)))))))))) + + (def ffloor floor-quotient-bound floor-rem-bound) + (def fceiling ceiling-quotient-bound ceiling-rem-bound)) ;;; functions to compute the bounds on the quotient and remainder for ;;; the FLOOR function @@ -2298,9 +2263,10 @@ (defoptimizer (values derive-type) ((&rest values)) (values-specifier-type - `(values ,@(mapcar #'(lambda (x) - (type-specifier (continuation-type x))) - values)))) + `(values ,@(mapcar (lambda (x) + (type-specifier (continuation-type x))) + values) + &optional))) ;;;; byte operations ;;;; @@ -2334,19 +2300,19 @@ `(let ((,,temp ,,spec)) ,,@body)))))) - (def-source-transform ldb (spec int) + (define-source-transform ldb (spec int) (with-byte-specifier (size pos spec) `(%ldb ,size ,pos ,int))) - (def-source-transform dpb (newbyte spec int) + (define-source-transform dpb (newbyte spec int) (with-byte-specifier (size pos spec) `(%dpb ,newbyte ,size ,pos ,int))) - (def-source-transform mask-field (spec int) + (define-source-transform mask-field (spec int) (with-byte-specifier (size pos spec) `(%mask-field ,size ,pos ,int))) - (def-source-transform deposit-field (newbyte spec int) + (define-source-transform deposit-field (newbyte spec int) (with-byte-specifier (size pos spec) `(%deposit-field ,newbyte ,size ,pos ,int)))) @@ -2355,7 +2321,7 @@ (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer))) (let ((size-high (numeric-type-high size))) - (if (and size-high (<= size-high sb!vm:word-bits)) + (if (and size-high (<= size-high sb!vm:n-word-bits)) (specifier-type `(unsigned-byte ,size-high)) (specifier-type 'unsigned-byte))) *universal-type*))) @@ -2370,7 +2336,7 @@ (let ((size-high (numeric-type-high size)) (posn-high (numeric-type-high posn))) (if (and size-high posn-high - (<= (+ size-high posn-high) sb!vm:word-bits)) + (<= (+ size-high posn-high) sb!vm:n-word-bits)) (specifier-type `(unsigned-byte ,(+ size-high posn-high))) (specifier-type 'unsigned-byte))) *universal-type*))) @@ -2390,7 +2356,7 @@ (high (numeric-type-high int)) (low (numeric-type-low int))) (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:word-bits)) + (<= (+ size-high posn-high) sb!vm:n-word-bits)) (specifier-type (list (if (minusp low) 'signed-byte 'unsigned-byte) (max (integer-length high) @@ -2414,7 +2380,7 @@ (high (numeric-type-high int)) (low (numeric-type-low int))) (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:word-bits)) + (<= (+ size-high posn-high) sb!vm:n-word-bits)) (specifier-type (list (if (minusp low) 'signed-byte 'unsigned-byte) (max (integer-length high) @@ -2425,19 +2391,19 @@ (deftransform %ldb ((size posn int) (fixnum fixnum integer) - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(logand (ash int (- posn)) - (ash ,(1- (ash 1 sb!vm:word-bits)) - (- size ,sb!vm:word-bits)))) + (ash ,(1- (ash 1 sb!vm:n-word-bits)) + (- size ,sb!vm:n-word-bits)))) (deftransform %mask-field ((size posn int) (fixnum fixnum integer) - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(logand int - (ash (ash ,(1- (ash 1 sb!vm:word-bits)) - (- size ,sb!vm:word-bits)) + (ash (ash ,(1- (ash 1 sb!vm:n-word-bits)) + (- size ,sb!vm:n-word-bits)) posn))) ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use @@ -2448,7 +2414,7 @@ (deftransform %dpb ((new size posn int) * - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ldb (byte size 0) -1))) (logior (ash (logand new mask) posn) @@ -2456,7 +2422,7 @@ (deftransform %dpb ((new size posn int) * - (signed-byte #.sb!vm:word-bits)) + (signed-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ldb (byte size 0) -1))) (logior (ash (logand new mask) posn) @@ -2464,7 +2430,7 @@ (deftransform %deposit-field ((new size posn int) * - (unsigned-byte #.sb!vm:word-bits)) + (unsigned-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ash (ldb (byte size 0) -1) posn))) (logior (logand new mask) @@ -2472,7 +2438,7 @@ (deftransform %deposit-field ((new size posn int) * - (signed-byte #.sb!vm:word-bits)) + (signed-byte #.sb!vm:n-word-bits)) "convert to inline logical operations" `(let ((mask (ash (ldb (byte size 0) -1) posn))) (logior (logand new mask) @@ -2484,7 +2450,7 @@ (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node) (if (and (constant-continuation-p x) (not (constant-continuation-p y))) - `(,(continuation-function-name (basic-combination-fun node)) + `(,(continuation-fun-name (basic-combination-fun node)) y ,(continuation-value x)) (give-up-ir1-transform))) @@ -2494,7 +2460,7 @@ "place constant arg last")) ;;; Handle the case of a constant BOOLE-CODE. -(deftransform boole ((op x y) * * :when :both) +(deftransform boole ((op x y) * *) "convert to inline logical operations" (unless (constant-continuation-p op) (give-up-ir1-transform "BOOLE code is not a constant.")) @@ -2523,7 +2489,7 @@ ;;;; converting special case multiply/divide to shifts ;;; If arg is a constant power of two, turn * into a shift. -(deftransform * ((x y) (integer integer) * :when :both) +(deftransform * ((x y) (integer integer) *) "convert x*2^k to shift" (unless (constant-continuation-p y) (give-up-ir1-transform)) @@ -2585,7 +2551,8 @@ (or result 0))) ;;; If arg is a constant power of two, turn FLOOR into a shift and -;;; mask. If CEILING, add in (1- (ABS Y)) and then do FLOOR. +;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a +;;; remainder. (flet ((frob (y ceil-p) (unless (constant-continuation-p y) (give-up-ir1-transform)) @@ -2595,13 +2562,14 @@ (unless (= y-abs (ash 1 len)) (give-up-ir1-transform)) (let ((shift (- len)) - (mask (1- y-abs))) - `(let ,(when ceil-p `((x (+ x ,(1- y-abs))))) + (mask (1- y-abs)) + (delta (if ceil-p (* (signum y) (1- y-abs)) 0))) + `(let ((x (+ x ,delta))) ,(if (minusp y) `(values (ash (- x) ,shift) - (- (logand (- x) ,mask))) + (- (- (logand (- x) ,mask)) ,delta)) `(values (ash x ,shift) - (logand x ,mask)))))))) + (- (logand x ,mask) ,delta)))))))) (deftransform floor ((x y) (integer integer) *) "convert division by 2^k to shift" (frob y nil)) @@ -2610,7 +2578,7 @@ (frob y t))) ;;; Do the same for MOD. -(deftransform mod ((x y) (integer integer) * :when :both) +(deftransform mod ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" (unless (constant-continuation-p y) (give-up-ir1-transform)) @@ -2647,7 +2615,7 @@ (logand x ,mask)))))) ;;; And the same for REM. -(deftransform rem ((x y) (integer integer) * :when :both) +(deftransform rem ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" (unless (constant-continuation-p y) (give-up-ir1-transform)) @@ -2665,29 +2633,24 @@ ;;; Flush calls to various arith functions that convert to the ;;; identity function or a constant. -;;; -;;; FIXME: Rewrite as DEF-FROB. -(dolist (stuff '((ash 0 x) - (logand -1 x) - (logand 0 0) - (logior 0 x) - (logior -1 -1) - (logxor -1 (lognot x)) - (logxor 0 x))) - (destructuring-bind (name identity result) stuff - (deftransform name ((x y) `(* (constant-argument (member ,identity))) '* - :eval-name t :when :both) - "fold identity operations" - result))) +(macrolet ((def (name identity result) + `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *) + "fold identity operations" + ',result))) + (def ash 0 x) + (def logand -1 x) + (def logand 0 0) + (def logior 0 x) + (def logior -1 -1) + (def logxor -1 (lognot x)) + (def logxor 0 x)) ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and ;;; (* 0 -4.0) is -0.0. -(deftransform - ((x y) ((constant-argument (member 0)) rational) * - :when :both) +(deftransform - ((x y) ((constant-arg (member 0)) rational) *) "convert (- 0 x) to negate" '(%negate y)) -(deftransform * ((x y) (rational (constant-argument (member 0))) * - :when :both) +(deftransform * ((x y) (rational (constant-arg (member 0))) *) "convert (* x 0) to 0" 0) @@ -2729,7 +2692,7 @@ ;;; ;;; If y is not constant, not zerop, or is contagious, or a positive ;;; float +0.0 then give up. -(deftransform + ((x y) (t (constant-argument t)) * :when :both) +(deftransform + ((x y) (t (constant-arg t)) *) "fold zero arg" (let ((val (continuation-value y))) (unless (and (zerop val) @@ -2742,7 +2705,7 @@ ;;; ;;; If y is not constant, not zerop, or is contagious, or a negative ;;; float -0.0 then give up. -(deftransform - ((x y) (t (constant-argument t)) * :when :both) +(deftransform - ((x y) (t (constant-arg t)) *) "fold zero arg" (let ((val (continuation-value y))) (unless (and (zerop val) @@ -2752,22 +2715,21 @@ 'x) ;;; Fold (OP x +/-1) -(dolist (stuff '((* x (%negate x)) - (/ x (%negate x)) - (expt x (/ 1 x)))) - (destructuring-bind (name result minus-result) stuff - (deftransform name ((x y) '(t (constant-argument real)) '* :eval-name t - :when :both) - "fold identity operations" - (let ((val (continuation-value y))) - (unless (and (= (abs val) 1) - (not-more-contagious y x)) - (give-up-ir1-transform)) - (if (minusp val) minus-result result))))) +(macrolet ((def (name result minus-result) + `(deftransform ,name ((x y) (t (constant-arg real)) *) + "fold identity operations" + (let ((val (continuation-value y))) + (unless (and (= (abs val) 1) + (not-more-contagious y x)) + (give-up-ir1-transform)) + (if (minusp val) ',minus-result ',result))))) + (def * x (%negate x)) + (def / x (%negate x)) + (def expt x (/ 1 x))) ;;; Fold (expt x n) into multiplications for small integral values of ;;; N; convert (expt x 1/2) to sqrt. -(deftransform expt ((x y) (t (constant-argument real)) *) +(deftransform expt ((x y) (t (constant-arg real)) *) "recode as multiplication or sqrt" (let ((val (continuation-value y))) ;; If Y would cause the result to be promoted to the same type as @@ -2788,21 +2750,24 @@ ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these ;;; transformations? ;;; Perhaps we should have to prove that the denominator is nonzero before -;;; doing them? (Also the DOLIST over macro calls is weird. Perhaps -;;; just FROB?) -- WHN 19990917 -;;; -;;; FIXME: What gives with the single quotes in the argument lists -;;; for DEFTRANSFORMs here? Does that work? Is it needed? Why? -(dolist (name '(ash /)) - (deftransform name ((x y) '((constant-argument (integer 0 0)) integer) '* - :eval-name t :when :both) - "fold zero arg" - 0)) -(dolist (name '(truncate round floor ceiling)) - (deftransform name ((x y) '((constant-argument (integer 0 0)) integer) '* - :eval-name t :when :both) - "fold zero arg" - '(values 0 0))) +;;; doing them? -- WHN 19990917 +(macrolet ((def (name) + `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer) + *) + "fold zero arg" + 0))) + (def ash) + (def /)) + +(macrolet ((def (name) + `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer) + *) + "fold zero arg" + '(values 0 0)))) + (def truncate) + (def round) + (def floor) + (def ceiling)) ;;;; character operations @@ -2850,8 +2815,7 @@ ;;; if there is no intersection between the types of the arguments, ;;; then the result is definitely false. (deftransform simple-equality-transform ((x y) * * - :defun-only t - :when :both) + :defun-only t) (cond ((same-leaf-ref-p x y) t) ((not (types-equal-or-intersect (continuation-type x) @@ -2860,8 +2824,11 @@ (t (give-up-ir1-transform)))) -(dolist (x '(eq char= equal)) - (%deftransform x '(function * *) #'simple-equality-transform)) +(macrolet ((def (x) + `(%deftransform ',x '(function * *) #'simple-equality-transform))) + (def eq) + (def char=) + (def equal)) ;;; This is similar to SIMPLE-EQUALITY-PREDICATE, except that we also ;;; try to convert to a type-specific predicate or EQ: @@ -2876,7 +2843,7 @@ ;;; these interesting cases. ;;; -- If Y is a fixnum, then we quietly pass because the back end can ;;; handle that case, otherwise give an efficiency note. -(deftransform eql ((x y) * * :when :both) +(deftransform eql ((x y) * *) "convert to simpler equality predicate" (let ((x-type (continuation-type x)) (y-type (continuation-type y)) @@ -2902,7 +2869,7 @@ ;;; Convert to EQL if both args are rational and complexp is specified ;;; and the same for both. -(deftransform = ((x y) * * :when :both) +(deftransform = ((x y) * *) "open code" (let ((x-type (continuation-type x)) (y-type (continuation-type y))) @@ -2980,18 +2947,18 @@ (t (give-up-ir1-transform)))))) -(deftransform < ((x y) (integer integer) * :when :both) +(deftransform < ((x y) (integer integer) *) (ir1-transform-< x y x y '>)) -(deftransform > ((x y) (integer integer) * :when :both) +(deftransform > ((x y) (integer integer) *) (ir1-transform-< y x x y '<)) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform < ((x y) (float float) * :when :both) +(deftransform < ((x y) (float float) *) (ir1-transform-< x y x y '>)) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform > ((x y) (float float) * :when :both) +(deftransform > ((x y) (float float) *) (ir1-transform-< y x x y '<)) ;;;; converting N-arg comparisons @@ -3031,31 +2998,31 @@ ((zerop i) `((lambda ,vars ,result) . ,args))))))) -(def-source-transform = (&rest args) (multi-compare '= args nil)) -(def-source-transform < (&rest args) (multi-compare '< args nil)) -(def-source-transform > (&rest args) (multi-compare '> args nil)) -(def-source-transform <= (&rest args) (multi-compare '> args t)) -(def-source-transform >= (&rest args) (multi-compare '< args t)) +(define-source-transform = (&rest args) (multi-compare '= args nil)) +(define-source-transform < (&rest args) (multi-compare '< args nil)) +(define-source-transform > (&rest args) (multi-compare '> args nil)) +(define-source-transform <= (&rest args) (multi-compare '> args t)) +(define-source-transform >= (&rest args) (multi-compare '< args t)) -(def-source-transform char= (&rest args) (multi-compare 'char= args nil)) -(def-source-transform char< (&rest args) (multi-compare 'char< args nil)) -(def-source-transform char> (&rest args) (multi-compare 'char> args nil)) -(def-source-transform char<= (&rest args) (multi-compare 'char> args t)) -(def-source-transform char>= (&rest args) (multi-compare 'char< args t)) +(define-source-transform char= (&rest args) (multi-compare 'char= args nil)) +(define-source-transform char< (&rest args) (multi-compare 'char< args nil)) +(define-source-transform char> (&rest args) (multi-compare 'char> args nil)) +(define-source-transform char<= (&rest args) (multi-compare 'char> args t)) +(define-source-transform char>= (&rest args) (multi-compare 'char< args t)) -(def-source-transform char-equal (&rest args) +(define-source-transform char-equal (&rest args) (multi-compare 'char-equal args nil)) -(def-source-transform char-lessp (&rest args) +(define-source-transform char-lessp (&rest args) (multi-compare 'char-lessp args nil)) -(def-source-transform char-greaterp (&rest args) +(define-source-transform char-greaterp (&rest args) (multi-compare 'char-greaterp args nil)) -(def-source-transform char-not-greaterp (&rest args) +(define-source-transform char-not-greaterp (&rest args) (multi-compare 'char-greaterp args t)) -(def-source-transform char-not-lessp (&rest args) +(define-source-transform char-not-lessp (&rest args) (multi-compare 'char-lessp args t)) ;;; This function does source transformation of N-arg inequality -;;; functions such as /=. This is similar to Multi-Compare in the <3 +;;; functions such as /=. This is similar to MULTI-COMPARE in the <3 ;;; arg cases. If there are more than two args, then we expand into ;;; the appropriate n^2 comparisons only when speed is important. (declaim (ftype (function (symbol list) *) multi-not-equal)) @@ -3080,26 +3047,33 @@ (dolist (v2 next) (setq result `(if (,predicate ,v1 ,v2) nil ,result)))))))))) -(def-source-transform /= (&rest args) (multi-not-equal '= args)) -(def-source-transform char/= (&rest args) (multi-not-equal 'char= args)) -(def-source-transform char-not-equal (&rest args) +(define-source-transform /= (&rest args) (multi-not-equal '= args)) +(define-source-transform char/= (&rest args) (multi-not-equal 'char= args)) +(define-source-transform char-not-equal (&rest args) (multi-not-equal 'char-equal args)) +;;; FIXME: can go away once bug 194 is fixed and we can use (THE REAL X) +;;; as God intended +(defun error-not-a-real (x) + (error 'simple-type-error + :datum x + :expected-type 'real + :format-control "not a REAL: ~S" + :format-arguments (list x))) + ;;; Expand MAX and MIN into the obvious comparisons. -(def-source-transform max (arg &rest more-args) - (if (null more-args) - `(values ,arg) - (once-only ((arg1 arg) - (arg2 `(max ,@more-args))) - `(if (> ,arg1 ,arg2) - ,arg1 ,arg2)))) -(def-source-transform min (arg &rest more-args) - (if (null more-args) - `(values ,arg) - (once-only ((arg1 arg) - (arg2 `(min ,@more-args))) - `(if (< ,arg1 ,arg2) - ,arg1 ,arg2)))) +(define-source-transform max (arg0 &rest rest) + (once-only ((arg0 arg0)) + (if (null rest) + `(values (the real ,arg0)) + `(let ((maxrest (max ,@rest))) + (if (> ,arg0 maxrest) ,arg0 maxrest))))) +(define-source-transform min (arg0 &rest rest) + (once-only ((arg0 arg0)) + (if (null rest) + `(values (the real ,arg0)) + `(let ((minrest (min ,@rest))) + (if (< ,arg0 minrest) ,arg0 minrest))))) ;;;; converting N-arg arithmetic functions ;;;; @@ -3107,39 +3081,42 @@ ;;;; versions, and degenerate cases are flushed. ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION. -(declaim (ftype (function (symbol t list) list) associate-arguments)) -(defun associate-arguments (function first-arg more-args) +(declaim (ftype (function (symbol t list) list) associate-args)) +(defun associate-args (function first-arg more-args) (let ((next (rest more-args)) (arg (first more-args))) (if (null next) `(,function ,first-arg ,arg) - (associate-arguments function `(,function ,first-arg ,arg) next)))) + (associate-args function `(,function ,first-arg ,arg) next)))) ;;; Do source transformations for transitive functions such as +. ;;; One-arg cases are replaced with the arg and zero arg cases with -;;; the identity. If LEAF-FUN is true, then replace two-arg calls with -;;; a call to that function. -(defun source-transform-transitive (fun args identity &optional leaf-fun) +;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to +;;; ensure (with THE) that the argument in one-argument calls is. +(defun source-transform-transitive (fun args identity + &optional one-arg-result-type) (declare (symbol fun leaf-fun) (list args)) (case (length args) (0 identity) - (1 `(values ,(first args))) - (2 (if leaf-fun - `(,leaf-fun ,(first args) ,(second args)) - (values nil t))) + (1 (if one-arg-result-type + `(values (the ,one-arg-result-type ,(first args))) + `(values ,(first args)))) + (2 (values nil t)) (t - (associate-arguments fun (first args) (rest args))))) - -(def-source-transform + (&rest args) (source-transform-transitive '+ args 0)) -(def-source-transform * (&rest args) (source-transform-transitive '* args 1)) -(def-source-transform logior (&rest args) - (source-transform-transitive 'logior args 0)) -(def-source-transform logxor (&rest args) - (source-transform-transitive 'logxor args 0)) -(def-source-transform logand (&rest args) - (source-transform-transitive 'logand args -1)) - -(def-source-transform logeqv (&rest args) + (associate-args fun (first args) (rest args))))) + +(define-source-transform + (&rest args) + (source-transform-transitive '+ args 0 'number)) +(define-source-transform * (&rest args) + (source-transform-transitive '* args 1 'number)) +(define-source-transform logior (&rest args) + (source-transform-transitive 'logior args 0 'integer)) +(define-source-transform logxor (&rest args) + (source-transform-transitive 'logxor args 0 'integer)) +(define-source-transform logand (&rest args) + (source-transform-transitive 'logand args -1 'integer)) + +(define-source-transform logeqv (&rest args) (if (evenp (length args)) `(lognot (logxor ,@args)) `(logxor ,@args))) @@ -3148,33 +3125,35 @@ ;;; because when they are given one argument, they return its absolute ;;; value. -(def-source-transform gcd (&rest args) +(define-source-transform gcd (&rest args) (case (length args) (0 0) (1 `(abs (the integer ,(first args)))) (2 (values nil t)) - (t (associate-arguments 'gcd (first args) (rest args))))) + (t (associate-args 'gcd (first args) (rest args))))) -(def-source-transform lcm (&rest args) +(define-source-transform lcm (&rest args) (case (length args) (0 1) (1 `(abs (the integer ,(first args)))) (2 (values nil t)) - (t (associate-arguments 'lcm (first args) (rest args))))) + (t (associate-args 'lcm (first args) (rest args))))) ;;; Do source transformations for intransitive n-arg functions such as ;;; /. With one arg, we form the inverse. With two args we pass. ;;; Otherwise we associate into two-arg calls. -(declaim (ftype (function (symbol list t) list) source-transform-intransitive)) +(declaim (ftype (function (symbol list t) + (values list &optional (member nil t))) + source-transform-intransitive)) (defun source-transform-intransitive (function args inverse) (case (length args) ((0 2) (values nil t)) (1 `(,@inverse ,(first args))) - (t (associate-arguments function (first args) (rest args))))) + (t (associate-args function (first args) (rest args))))) -(def-source-transform - (&rest args) +(define-source-transform - (&rest args) (source-transform-intransitive '- args '(%negate))) -(def-source-transform / (&rest args) +(define-source-transform / (&rest args) (source-transform-intransitive '/ args '(/ 1))) ;;;; transforming APPLY @@ -3182,11 +3161,11 @@ ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler ;;; only needs to understand one kind of variable-argument call. It is ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY. -(def-source-transform apply (fun arg &rest more-args) +(define-source-transform apply (fun arg &rest more-args) (let ((args (cons arg more-args))) `(multiple-value-call ,fun - ,@(mapcar #'(lambda (x) - `(values ,x)) + ,@(mapcar (lambda (x) + `(values ,x)) (butlast args)) (values-list ,(car (last args)))))) @@ -3223,85 +3202,161 @@ nil))) (defoptimizer (coerce derive-type) ((value type)) - (let ((value-type (continuation-type value)) - (type-type (continuation-type type))) - (labels - ((good-cons-type-p (cons-type) - ;; Make sure the cons-type we're looking at is something - ;; we're prepared to handle which is basically something - ;; that array-element-type can return. - (or (and (member-type-p cons-type) - (null (rest (member-type-members cons-type))) - (null (first (member-type-members cons-type)))) - (let ((car-type (cons-type-car-type cons-type))) - (and (member-type-p car-type) - (null (rest (member-type-members car-type))) - (or (symbolp (first (member-type-members car-type))) - (numberp (first (member-type-members car-type))) - (and (listp (first (member-type-members car-type))) - (numberp (first (first (member-type-members - car-type)))))) - (good-cons-type-p (cons-type-cdr-type cons-type)))))) - (unconsify-type (good-cons-type) - ;; Convert the "printed" respresentation of a cons - ;; specifier into a type specifier. That is, the specifier - ;; (cons (eql signed-byte) (cons (eql 16) null)) is - ;; converted to (signed-byte 16). - (cond ((or (null good-cons-type) - (eq good-cons-type 'null)) - nil) - ((and (eq (first good-cons-type) 'cons) - (eq (first (second good-cons-type)) 'member)) - `(,(second (second good-cons-type)) - ,@(unconsify-type (caddr good-cons-type)))))) - (coerceable-p (c-type) - ;; Can the value be coerced to the given type? Coerce is - ;; complicated, so we don't handle every possible case - ;; here---just the most common and easiest cases: - ;; - ;; o Any real can be coerced to a float type. - ;; o Any number can be coerced to a complex single/double-float. - ;; o An integer can be coerced to an integer. - (let ((coerced-type c-type)) - (or (and (subtypep coerced-type 'float) - (csubtypep value-type (specifier-type 'real))) - (and (subtypep coerced-type - '(or (complex single-float) - (complex double-float))) - (csubtypep value-type (specifier-type 'number))) - (and (subtypep coerced-type 'integer) - (csubtypep value-type (specifier-type 'integer)))))) - (process-types (type) - ;; FIXME: - ;; This needs some work because we should be able to derive - ;; the resulting type better than just the type arg of - ;; coerce. That is, if x is (integer 10 20), the (coerce x - ;; 'double-float) should say (double-float 10d0 20d0) - ;; instead of just double-float. - (cond ((member-type-p type) - (let ((members (member-type-members type))) - (if (every #'coerceable-p members) - (specifier-type `(or ,@members)) - *universal-type*))) - ((and (cons-type-p type) - (good-cons-type-p type)) - (let ((c-type (unconsify-type (type-specifier type)))) - (if (coerceable-p c-type) - (specifier-type c-type) - *universal-type*))) - (t - *universal-type*)))) - (cond ((union-type-p type-type) - (apply #'type-union (mapcar #'process-types - (union-type-types type-type)))) - ((or (member-type-p type-type) - (cons-type-p type-type)) - (process-types type-type)) - (t - *universal-type*))))) + (cond + ((constant-continuation-p type) + ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2), + ;; but dealing with the niggle that complex canonicalization gets + ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of + ;; type COMPLEX. + (let* ((specifier (continuation-value type)) + (result-typeoid (careful-specifier-type specifier))) + (cond + ((null result-typeoid) nil) + ((csubtypep result-typeoid (specifier-type 'number)) + ;; the difficult case: we have to cope with ANSI 12.1.5.3 + ;; Rule of Canonical Representation for Complex Rationals, + ;; which is a truly nasty delivery to field. + (cond + ((csubtypep result-typeoid (specifier-type 'real)) + ;; cleverness required here: it would be nice to deduce + ;; that something of type (INTEGER 2 3) coerced to type + ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0). + ;; FLOAT gets its own clause because it's implemented as + ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE + ;; logic below. + result-typeoid) + ((and (numeric-type-p result-typeoid) + (eq (numeric-type-complexp result-typeoid) :real)) + ;; FIXME: is this clause (a) necessary or (b) useful? + result-typeoid) + ((or (csubtypep result-typeoid + (specifier-type '(complex single-float))) + (csubtypep result-typeoid + (specifier-type '(complex double-float))) + #!+long-float + (csubtypep result-typeoid + (specifier-type '(complex long-float)))) + ;; float complex types are never canonicalized. + result-typeoid) + (t + ;; if it's not a REAL, or a COMPLEX FLOAToid, it's + ;; probably just a COMPLEX or equivalent. So, in that + ;; case, we will return a complex or an object of the + ;; provided type if it's rational: + (type-union result-typeoid + (type-intersection (continuation-type value) + (specifier-type 'rational)))))) + (t result-typeoid)))) + (t + ;; OK, the result-type argument isn't constant. However, there + ;; are common uses where we can still do better than just + ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)), + ;; where Y is of a known type. See messages on cmucl-imp + ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here + ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on + ;; the basis that it's unlikely that other uses are both + ;; time-critical and get to this branch of the COND (non-constant + ;; second argument to COERCE). -- CSR, 2002-12-16 + (let ((value-type (continuation-type value)) + (type-type (continuation-type type))) + (labels + ((good-cons-type-p (cons-type) + ;; Make sure the cons-type we're looking at is something + ;; we're prepared to handle which is basically something + ;; that array-element-type can return. + (or (and (member-type-p cons-type) + (null (rest (member-type-members cons-type))) + (null (first (member-type-members cons-type)))) + (let ((car-type (cons-type-car-type cons-type))) + (and (member-type-p car-type) + (null (rest (member-type-members car-type))) + (or (symbolp (first (member-type-members car-type))) + (numberp (first (member-type-members car-type))) + (and (listp (first (member-type-members + car-type))) + (numberp (first (first (member-type-members + car-type)))))) + (good-cons-type-p (cons-type-cdr-type cons-type)))))) + (unconsify-type (good-cons-type) + ;; Convert the "printed" respresentation of a cons + ;; specifier into a type specifier. That is, the + ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16) + ;; NULL)) is converted to (SIGNED-BYTE 16). + (cond ((or (null good-cons-type) + (eq good-cons-type 'null)) + nil) + ((and (eq (first good-cons-type) 'cons) + (eq (first (second good-cons-type)) 'member)) + `(,(second (second good-cons-type)) + ,@(unconsify-type (caddr good-cons-type)))))) + (coerceable-p (c-type) + ;; Can the value be coerced to the given type? Coerce is + ;; complicated, so we don't handle every possible case + ;; here---just the most common and easiest cases: + ;; + ;; * Any REAL can be coerced to a FLOAT type. + ;; * Any NUMBER can be coerced to a (COMPLEX + ;; SINGLE/DOUBLE-FLOAT). + ;; + ;; FIXME I: we should also be able to deal with characters + ;; here. + ;; + ;; FIXME II: I'm not sure that anything is necessary + ;; here, at least while COMPLEX is not a specialized + ;; array element type in the system. Reasoning: if + ;; something cannot be coerced to the requested type, an + ;; error will be raised (and so any downstream compiled + ;; code on the assumption of the returned type is + ;; unreachable). If something can, then it will be of + ;; the requested type, because (by assumption) COMPLEX + ;; (and other difficult types like (COMPLEX INTEGER) + ;; aren't specialized types. + (let ((coerced-type c-type)) + (or (and (subtypep coerced-type 'float) + (csubtypep value-type (specifier-type 'real))) + (and (subtypep coerced-type + '(or (complex single-float) + (complex double-float))) + (csubtypep value-type (specifier-type 'number)))))) + (process-types (type) + ;; FIXME: This needs some work because we should be able + ;; to derive the resulting type better than just the + ;; type arg of coerce. That is, if X is (INTEGER 10 + ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say + ;; (DOUBLE-FLOAT 10d0 20d0) instead of just + ;; double-float. + (cond ((member-type-p type) + (let ((members (member-type-members type))) + (if (every #'coerceable-p members) + (specifier-type `(or ,@members)) + *universal-type*))) + ((and (cons-type-p type) + (good-cons-type-p type)) + (let ((c-type (unconsify-type (type-specifier type)))) + (if (coerceable-p c-type) + (specifier-type c-type) + *universal-type*))) + (t + *universal-type*)))) + (cond ((union-type-p type-type) + (apply #'type-union (mapcar #'process-types + (union-type-types type-type)))) + ((or (member-type-p type-type) + (cons-type-p type-type)) + (process-types type-type)) + (t + *universal-type*))))))) + +(defoptimizer (compile derive-type) ((nameoid function)) + (when (csubtypep (continuation-type nameoid) + (specifier-type 'null)) + (values-specifier-type '(values function boolean boolean)))) +;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving +;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE +;;; optimizer, above). (defoptimizer (array-element-type derive-type) ((array)) - (let* ((array-type (continuation-type array))) + (let ((array-type (continuation-type array))) (labels ((consify (list) (if (endp list) '(eql nil) @@ -3319,11 +3374,84 @@ (error "can't understand type ~S~%" element-type)))))) (cond ((array-type-p array-type) (get-element-type array-type)) - ((union-type-p array-type) + ((union-type-p array-type) (apply #'type-union (mapcar #'get-element-type (union-type-types array-type)))) (t *universal-type*))))) + +(define-source-transform sb!impl::sort-vector (vector start end predicate key) + `(macrolet ((%index (x) `(truly-the index ,x)) + (%parent (i) `(ash ,i -1)) + (%left (i) `(%index (ash ,i 1))) + (%right (i) `(%index (1+ (ash ,i 1)))) + (%heapify (i) + `(do* ((i ,i) + (left (%left i) (%left i))) + ((> left current-heap-size)) + (declare (type index i left)) + (let* ((i-elt (%elt i)) + (i-key (funcall keyfun i-elt)) + (left-elt (%elt left)) + (left-key (funcall keyfun left-elt))) + (multiple-value-bind (large large-elt large-key) + (if (funcall ,',predicate i-key left-key) + (values left left-elt left-key) + (values i i-elt i-key)) + (let ((right (%right i))) + (multiple-value-bind (largest largest-elt) + (if (> right current-heap-size) + (values large large-elt) + (let* ((right-elt (%elt right)) + (right-key (funcall keyfun right-elt))) + (if (funcall ,',predicate large-key right-key) + (values right right-elt) + (values large large-elt)))) + (cond ((= largest i) + (return)) + (t + (setf (%elt i) largest-elt + (%elt largest) i-elt + i largest))))))))) + (%sort-vector (keyfun &optional (vtype 'vector)) + `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had trouble getting + ;; type inference to propagate all the way + ;; through this tangled mess of + ;; inlining. The TRULY-THE here works + ;; around that. -- WHN + (%elt (i) + `(aref (truly-the ,',vtype ,',',vector) + (%index (+ (%index ,i) start-1))))) + (let ((start-1 (1- ,',start)) ; Heaps prefer 1-based addressing. + (current-heap-size (- ,',end ,',start)) + (keyfun ,keyfun)) + (declare (type (integer -1 #.(1- most-positive-fixnum)) + start-1)) + (declare (type index current-heap-size)) + (declare (type function keyfun)) + (loop for i of-type index + from (ash current-heap-size -1) downto 1 do + (%heapify i)) + (loop + (when (< current-heap-size 2) + (return)) + (rotatef (%elt 1) (%elt current-heap-size)) + (decf current-heap-size) + (%heapify 1)))))) + (if (typep ,vector 'simple-vector) + ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is + ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA. + (if (null ,key) + ;; Special-casing the KEY=NIL case lets us avoid some + ;; function calls. + (%sort-vector #'identity simple-vector) + (%sort-vector ,key simple-vector)) + ;; It's hard to anticipate many speed-critical applications for + ;; sorting vector types other than (VECTOR T), so we just lump + ;; them all together in one slow dynamically typed mess. + (locally + (declare (optimize (speed 2) (space 2) (inhibit-warnings 3))) + (%sort-vector (or ,key #'identity)))))) ;;;; debuggers' little helpers