X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fsrctran.lisp;h=cd228468986e83f78782b2263db56704b9e33af6;hb=227096b878fee7afae9d3bc2cee5df01449bca2d;hp=eb540a84cb4e95442086f68acc9dea896c652eef;hpb=104ee7ee303efa16e415f5e75df635ac54dba733;p=sbcl.git diff --git a/src/compiler/srctran.lisp b/src/compiler/srctran.lisp index eb540a8..cd22846 100644 --- a/src/compiler/srctran.lisp +++ b/src/compiler/srctran.lisp @@ -1,6 +1,6 @@ ;;;; This file contains macro-like source transformations which ;;;; convert uses of certain functions into the canonical form desired -;;;; within the compiler. ### and other IR1 transforms and stuff. +;;;; within the compiler. FIXME: and other IR1 transforms and stuff. ;;;; This software is part of the SBCL system. See the README file for ;;;; more information. @@ -29,29 +29,30 @@ (define-source-transform identity (x) `(prog1 ,x)) (define-source-transform values (x) `(prog1 ,x)) -;;; Bind the values and make a closure that returns them. +;;; Bind the value and make a closure that returns it. (define-source-transform constantly (value) - (let ((rest (gensym "CONSTANTLY-REST-"))) - `(lambda (&rest ,rest) - (declare (ignore ,rest)) - ,value))) + (with-unique-names (rest n-value) + `(let ((,n-value ,value)) + (lambda (&rest ,rest) + (declare (ignore ,rest)) + ,n-value)))) ;;; If the function has a known number of arguments, then return a ;;; lambda with the appropriate fixed number of args. If the ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let ;;; MV optimization figure things out. -(deftransform complement ((fun) * * :node node :when :both) +(deftransform complement ((fun) * * :node node) "open code" (multiple-value-bind (min max) - (fun-type-nargs (continuation-type fun)) + (fun-type-nargs (lvar-type fun)) (cond ((and min (eql min max)) (let ((dums (make-gensym-list min))) `#'(lambda ,dums (not (funcall fun ,@dums))))) - ((let* ((cont (node-cont node)) - (dest (continuation-dest cont))) - (and (combination-p dest) - (eq (combination-fun dest) cont))) + ((awhen (node-lvar node) + (let ((dest (lvar-dest it))) + (and (combination-p dest) + (eq (combination-fun dest) it)))) '#'(lambda (&rest args) (not (apply fun args)))) (t @@ -128,9 +129,9 @@ (deftransform nthcdr ((n l) (unsigned-byte t) * :node node) "convert NTHCDR to CAxxR" - (unless (constant-continuation-p n) + (unless (constant-lvar-p n) (give-up-ir1-transform)) - (let ((n (continuation-value n))) + (let ((n (lvar-value n))) (when (> n (if (policy node (and (= speed 3) (= space 0))) *extreme-nthcdr-open-code-limit* @@ -171,16 +172,17 @@ #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (deffrob ceiling)) -(define-source-transform lognand (x y) `(lognot (logand ,x ,y))) -(define-source-transform lognor (x y) `(lognot (logior ,x ,y))) -(define-source-transform logandc1 (x y) `(logand (lognot ,x) ,y)) -(define-source-transform logandc2 (x y) `(logand ,x (lognot ,y))) -(define-source-transform logorc1 (x y) `(logior (lognot ,x) ,y)) -(define-source-transform logorc2 (x y) `(logior ,x (lognot ,y))) (define-source-transform logtest (x y) `(not (zerop (logand ,x ,y)))) -(define-source-transform logbitp (index integer) - `(not (zerop (logand (ash 1 ,index) ,integer)))) -(define-source-transform byte (size position) `(cons ,size ,position)) + +(deftransform logbitp + ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits) + (unsigned-byte #.sb!vm:n-word-bits)))) + `(if (>= index #.sb!vm:n-word-bits) + (minusp integer) + (not (zerop (logand integer (ash 1 index)))))) + +(define-source-transform byte (size position) + `(cons ,size ,position)) (define-source-transform byte-size (spec) `(car ,spec)) (define-source-transform byte-position (spec) `(cdr ,spec)) (define-source-transform ldb-test (bytespec integer) @@ -217,6 +219,21 @@ ;;;; numeric-type has everything we want to know. Reason 2 wins for ;;;; now. +;;; Support operations that mimic real arithmetic comparison +;;; operators, but imposing a total order on the floating points such +;;; that negative zeros are strictly less than positive zeros. +(macrolet ((def (name op) + `(defun ,name (x y) + (declare (real x y)) + (if (and (floatp x) (floatp y) (zerop x) (zerop y)) + (,op (float-sign x) (float-sign y)) + (,op x y))))) + (def signed-zero->= >=) + (def signed-zero-> >) + (def signed-zero-= =) + (def signed-zero-< <) + (def signed-zero-<= <=)) + ;;; The basic interval type. It can handle open and closed intervals. ;;; A bound is open if it is a list containing a number, just like ;;; Lisp says. NIL means unbounded. @@ -226,7 +243,8 @@ (defun make-interval (&key low high) (labels ((normalize-bound (val) - (cond ((and (floatp val) + (cond #-sb-xc-host + ((and (floatp val) (float-infinity-p val)) ;; Handle infinities. nil) @@ -257,6 +275,7 @@ ;;; Apply the function F to a bound X. If X is an open bound, then ;;; the result will be open. IF X is NIL, the result is NIL. (defun bound-func (f x) + (declare (type function f)) (and x (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero) ;; With these traps masked, we might get things like infinity @@ -286,6 +305,23 @@ (make-interval :low (numeric-type-low x) :high (numeric-type-high x))) +(defun type-approximate-interval (type) + (declare (type ctype type)) + (let ((types (prepare-arg-for-derive-type type)) + (result nil)) + (dolist (type types) + (let ((type (if (member-type-p type) + (convert-member-type type) + type))) + (unless (numeric-type-p type) + (return-from type-approximate-interval nil)) + (let ((interval (numeric-type->interval type))) + (setq result + (if result + (interval-approximate-union result interval) + interval))))) + result)) + (defun copy-interval-limit (limit) (if (numberp limit) limit @@ -315,16 +351,8 @@ (make-interval :low (type-bound-number (interval-low x)) :high (type-bound-number (interval-high x)))) -(defun signed-zero->= (x y) - (declare (real x y)) - (or (> x y) - (and (= x y) - (>= (float-sign (float x)) - (float-sign (float y)))))) - ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return ;;; '-. Otherwise return NIL. -#+nil (defun interval-range-info (x &optional (point 0)) (declare (type interval x)) (let ((lo (interval-low x)) @@ -335,59 +363,19 @@ '-) (t nil)))) -(defun interval-range-info (x &optional (point 0)) - (declare (type interval x)) - (labels ((signed->= (x y) - (if (and (zerop x) (zerop y) (floatp x) (floatp y)) - (>= (float-sign x) (float-sign y)) - (>= x y)))) - (let ((lo (interval-low x)) - (hi (interval-high x))) - (cond ((and lo (signed->= (type-bound-number lo) point)) - '+) - ((and hi (signed->= point (type-bound-number hi))) - '-) - (t - nil))))) ;;; Test to see whether the interval X is bounded. HOW determines the ;;; test, and should be either ABOVE, BELOW, or BOTH. (defun interval-bounded-p (x how) (declare (type interval x)) (ecase how - ('above + (above (interval-high x)) - ('below + (below (interval-low x)) - ('both + (both (and (interval-low x) (interval-high x))))) -;;; signed zero comparison functions. Use these functions if we need -;;; to distinguish between signed zeroes. -(defun signed-zero-< (x y) - (declare (real x y)) - (or (< x y) - (and (= x y) - (< (float-sign (float x)) - (float-sign (float y)))))) -(defun signed-zero-> (x y) - (declare (real x y)) - (or (> x y) - (and (= x y) - (> (float-sign (float x)) - (float-sign (float y)))))) -(defun signed-zero-= (x y) - (declare (real x y)) - (and (= x y) - (= (float-sign (float x)) - (float-sign (float y))))) -(defun signed-zero-<= (x y) - (declare (real x y)) - (or (< x y) - (and (= x y) - (<= (float-sign (float x)) - (float-sign (float y)))))) - ;;; See whether the interval X contains the number P, taking into ;;; account that the interval might not be closed. (defun interval-contains-p (p x) @@ -565,6 +553,16 @@ (make-interval :low (select-bound x-lo y-lo #'< #'>) :high (select-bound x-hi y-hi #'> #'<)))))) +;;; return the minimal interval, containing X and Y +(defun interval-approximate-union (x y) + (cond ((interval-merge-pair x y)) + ((interval-< x y) + (make-interval :low (copy-interval-limit (interval-low x)) + :high (copy-interval-limit (interval-high y)))) + (t + (make-interval :low (copy-interval-limit (interval-low y)) + :high (copy-interval-limit (interval-high x)))))) + ;;; basic arithmetic operations on intervals. We probably should do ;;; true interval arithmetic here, but it's complicated because we ;;; have float and integer types and bounds can be open or closed. @@ -630,7 +628,7 @@ :low (bound-mul (interval-low x) (interval-low y)) :high (bound-mul (interval-high x) (interval-high y)))) (t - (error "internal error in INTERVAL-MUL")))))) + (bug "excluded case in INTERVAL-MUL")))))) ;;; Divide two intervals. (defun interval-div (top bot) @@ -680,14 +678,15 @@ :low (bound-div (interval-low top) (interval-high bot) t) :high (bound-div (interval-high top) (interval-low bot) nil))) (t - (error "internal error in INTERVAL-DIV")))))) + (bug "excluded case in INTERVAL-DIV")))))) ;;; Apply the function F to the interval X. If X = [a, b], then the ;;; result is [f(a), f(b)]. It is up to the user to make sure the ;;; result makes sense. It will if F is monotonic increasing (or ;;; non-decreasing). (defun interval-func (f x) - (declare (type interval x)) + (declare (type function f) + (type interval x)) (let ((lo (bound-func f (interval-low x))) (hi (bound-func f (interval-high x)))) (make-interval :low lo :high hi))) @@ -732,9 +731,9 @@ (defun interval-abs (x) (declare (type interval x)) (case (interval-range-info x) - ('+ + (+ (copy-interval x)) - ('- + (- (interval-neg x)) (t (destructuring-bind (x- x+) (interval-split 0 x t t) @@ -752,21 +751,25 @@ ;;; the types of both X and Y are integer types, then we compute a new ;;; integer type with bounds determined Fun when applied to X and Y. ;;; Otherwise, we use Numeric-Contagion. +(defun derive-integer-type-aux (x y fun) + (declare (type function fun)) + (if (and (numeric-type-p x) (numeric-type-p y) + (eq (numeric-type-class x) 'integer) + (eq (numeric-type-class y) 'integer) + (eq (numeric-type-complexp x) :real) + (eq (numeric-type-complexp y) :real)) + (multiple-value-bind (low high) (funcall fun x y) + (make-numeric-type :class 'integer + :complexp :real + :low low + :high high)) + (numeric-contagion x y))) + (defun derive-integer-type (x y fun) - (declare (type continuation x y) (type function fun)) - (let ((x (continuation-type x)) - (y (continuation-type y))) - (if (and (numeric-type-p x) (numeric-type-p y) - (eq (numeric-type-class x) 'integer) - (eq (numeric-type-class y) 'integer) - (eq (numeric-type-complexp x) :real) - (eq (numeric-type-complexp y) :real)) - (multiple-value-bind (low high) (funcall fun x y) - (make-numeric-type :class 'integer - :complexp :real - :low low - :high high)) - (numeric-contagion x y)))) + (declare (type lvar x y) (type function fun)) + (let ((x (lvar-type x)) + (y (lvar-type y))) + (derive-integer-type-aux x y fun))) ;;; simple utility to flatten a list (defun flatten-list (x) @@ -778,9 +781,9 @@ (flatten-helper (cdr x) r)))))) (flatten-helper x nil))) -;;; Take some type of continuation and massage it so that we get a -;;; list of the constituent types. If ARG is *EMPTY-TYPE*, return NIL -;;; to indicate failure. +;;; Take some type of lvar and massage it so that we get a list of the +;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate +;;; failure. (defun prepare-arg-for-derive-type (arg) (flet ((listify (arg) (typecase arg @@ -812,7 +815,6 @@ ;;; are equal to an intermediate convention for which they are ;;; considered different which is more natural for some of the ;;; optimisers. -#!-negative-zero-is-not-zero (defun convert-numeric-type (type) (declare (type numeric-type type)) ;;; Only convert real float interval delimiters types. @@ -831,11 +833,11 @@ :low (if lo-float-zero-p (if (consp lo) (list (float 0.0 lo-val)) - (float -0.0 lo-val)) + (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val)) lo) :high (if hi-float-zero-p (if (consp hi) - (list (float -0.0 hi-val)) + (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val)) (float 0.0 hi-val)) hi)) type)) @@ -845,7 +847,6 @@ ;;; Convert back from the intermediate convention for which -0.0 and ;;; 0.0 are considered different to the standard type convention for ;;; which and equal. -#!-negative-zero-is-not-zero (defun convert-back-numeric-type (type) (declare (type numeric-type type)) ;;; Only convert real float interval delimiters types. @@ -933,7 +934,6 @@ type)) ;;; Convert back a possible list of numeric types. -#!-negative-zero-is-not-zero (defun convert-back-numeric-type-list (type-list) (typecase type-list (list @@ -955,7 +955,9 @@ ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably ;;; belong in the kernel's type logic, invoked always, instead of in -;;; the compiler, invoked only during some type optimizations. +;;; the compiler, invoked only during some type optimizations. (In +;;; fact, as of 0.pre8.100 or so they probably are, under +;;; MAKE-MEMBER-TYPE, so probably this code can be deleted) ;;; Take a list of types and return a canonical type specifier, ;;; combining any MEMBER types together. If both positive and negative @@ -970,24 +972,15 @@ (setf members (union members (member-type-members type))) (push type misc-types))) #!+long-float - (when (null (set-difference '(-0l0 0l0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(long-float 0l0 0l0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(long-float -0l0 0l0)) misc-types) - (setf members (set-difference members '(-0l0 0l0)))) - (when (null (set-difference '(-0d0 0d0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(double-float 0d0 0d0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(double-float -0d0 0d0)) misc-types) - (setf members (set-difference members '(-0d0 0d0)))) - (when (null (set-difference '(-0f0 0f0) members)) - #!-negative-zero-is-not-zero - (push (specifier-type '(single-float 0f0 0f0)) misc-types) - #!+negative-zero-is-not-zero - (push (specifier-type '(single-float -0f0 0f0)) misc-types) - (setf members (set-difference members '(-0f0 0f0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members)) + (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members)) + (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0)))) + (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members)) + (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types) + (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0)))) (if members (apply #'type-union (make-member-type :members members) misc-types) (apply #'type-union misc-types)))) @@ -998,57 +991,53 @@ (member (first members)) (member-type (type-of member))) (aver (not (rest members))) - (specifier-type `(,(if (subtypep member-type 'integer) - 'integer - member-type) - ,member ,member)))) + (specifier-type (cond ((typep member 'integer) + `(integer ,member ,member)) + ((memq member-type '(short-float single-float + double-float long-float)) + `(,member-type ,member ,member)) + (t + member-type))))) ;;; This is used in defoptimizers for computing the resulting type of ;;; a function. ;;; -;;; Given the continuation ARG, derive the resulting type using the -;;; DERIVE-FCN. DERIVE-FCN takes exactly one argument which is some -;;; "atomic" continuation type like numeric-type or member-type -;;; (containing just one element). It should return the resulting -;;; type, which can be a list of types. +;;; Given the lvar ARG, derive the resulting type using the +;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some +;;; "atomic" lvar type like numeric-type or member-type (containing +;;; just one element). It should return the resulting type, which can +;;; be a list of types. ;;; -;;; For the case of member types, if a member-fcn is given it is +;;; For the case of member types, if a MEMBER-FUN is given it is ;;; called to compute the result otherwise the member type is first -;;; converted to a numeric type and the derive-fcn is call. -(defun one-arg-derive-type (arg derive-fcn member-fcn +;;; converted to a numeric type and the DERIVE-FUN is called. +(defun one-arg-derive-type (arg derive-fun member-fun &optional (convert-type t)) - (declare (type function derive-fcn) - (type (or null function) member-fcn) - #!+negative-zero-is-not-zero (ignore convert-type)) - (let ((arg-list (prepare-arg-for-derive-type (continuation-type arg)))) + (declare (type function derive-fun) + (type (or null function) member-fun)) + (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg)))) (when arg-list (flet ((deriver (x) (typecase x (member-type - (if member-fcn + (if member-fun (with-float-traps-masked (:underflow :overflow :divide-by-zero) (make-member-type :members (list - (funcall member-fcn + (funcall member-fun (first (member-type-members x)))))) ;; Otherwise convert to a numeric type. (let ((result-type-list - (funcall derive-fcn (convert-member-type x)))) - #!-negative-zero-is-not-zero + (funcall derive-fun (convert-member-type x)))) (if convert-type (convert-back-numeric-type-list result-type-list) - result-type-list) - #!+negative-zero-is-not-zero - result-type-list))) + result-type-list)))) (numeric-type - #!-negative-zero-is-not-zero (if convert-type (convert-back-numeric-type-list - (funcall derive-fcn (convert-numeric-type x))) - (funcall derive-fcn x)) - #!+negative-zero-is-not-zero - (funcall derive-fcn x)) + (funcall derive-fun (convert-numeric-type x))) + (funcall derive-fun x))) (t *universal-type*)))) ;; Run down the list of args and derive the type of each one, @@ -1064,24 +1053,22 @@ (first results))))))) ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes -;;; two arguments. DERIVE-FCN takes 3 args in this case: the two +;;; two arguments. DERIVE-FUN takes 3 args in this case: the two ;;; original args and a third which is T to indicate if the two args -;;; really represent the same continuation. This is useful for -;;; deriving the type of things like (* x x), which should always be -;;; positive. If we didn't do this, we wouldn't be able to tell. -(defun two-arg-derive-type (arg1 arg2 derive-fcn fcn +;;; really represent the same lvar. This is useful for deriving the +;;; type of things like (* x x), which should always be positive. If +;;; we didn't do this, we wouldn't be able to tell. +(defun two-arg-derive-type (arg1 arg2 derive-fun fun &optional (convert-type t)) - #!+negative-zero-is-not-zero - (declare (ignore convert-type)) - (flet (#!-negative-zero-is-not-zero - (deriver (x y same-arg) + (declare (type function derive-fun fun)) + (flet ((deriver (x y same-arg) (cond ((and (member-type-p x) (member-type-p y)) (let* ((x (first (member-type-members x))) (y (first (member-type-members y))) (result (with-float-traps-masked (:underflow :overflow :divide-by-zero :invalid) - (funcall fcn x y)))) + (funcall fun x y)))) (cond ((null result)) ((and (floatp result) (float-nan-p result)) (make-numeric-type :class 'float @@ -1092,54 +1079,34 @@ ((and (member-type-p x) (numeric-type-p y)) (let* ((x (convert-member-type x)) (y (if convert-type (convert-numeric-type y) y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) ((and (numeric-type-p x) (member-type-p y)) (let* ((x (if convert-type (convert-numeric-type x) x)) (y (convert-member-type y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) ((and (numeric-type-p x) (numeric-type-p y)) (let* ((x (if convert-type (convert-numeric-type x) x)) (y (if convert-type (convert-numeric-type y) y)) - (result (funcall derive-fcn x y same-arg))) + (result (funcall derive-fun x y same-arg))) (if convert-type (convert-back-numeric-type-list result) result))) (t - *universal-type*))) - #!+negative-zero-is-not-zero - (deriver (x y same-arg) - (cond ((and (member-type-p x) (member-type-p y)) - (let* ((x (first (member-type-members x))) - (y (first (member-type-members y))) - (result (with-float-traps-masked - (:underflow :overflow :divide-by-zero) - (funcall fcn x y)))) - (if result - (make-member-type :members (list result))))) - ((and (member-type-p x) (numeric-type-p y)) - (let ((x (convert-member-type x))) - (funcall derive-fcn x y same-arg))) - ((and (numeric-type-p x) (member-type-p y)) - (let ((y (convert-member-type y))) - (funcall derive-fcn x y same-arg))) - ((and (numeric-type-p x) (numeric-type-p y)) - (funcall derive-fcn x y same-arg)) - (t *universal-type*)))) (let ((same-arg (same-leaf-ref-p arg1 arg2)) - (a1 (prepare-arg-for-derive-type (continuation-type arg1))) - (a2 (prepare-arg-for-derive-type (continuation-type arg2)))) + (a1 (prepare-arg-for-derive-type (lvar-type arg1))) + (a2 (prepare-arg-for-derive-type (lvar-type arg2)))) (when (and a1 a2) (let ((results nil)) (if same-arg - ;; Since the args are the same continuation, just run - ;; down the lists. + ;; Since the args are the same LVARs, just run down the + ;; lists. (dolist (x a1) (let ((result (deriver x x same-arg))) (if (listp result) @@ -1204,7 +1171,7 @@ nil)))))))) (defoptimizer (/ derive-type) ((x y)) - (numeric-contagion (continuation-type x) (continuation-type y))) + (numeric-contagion (lvar-type x) (lvar-type y))) ) ; PROGN @@ -1341,27 +1308,30 @@ ) ; PROGN - -;;; KLUDGE: All this ASH optimization is suppressed under CMU CL -;;; because as of version 2.4.6 for Debian, CMU CL blows up on (ASH -;;; 1000000000 -100000000000) (i.e. ASH of two bignums yielding zero) -;;; and it's hard to avoid that calculation in here. -#-(and cmu sb-xc-host) -(progn - (defun ash-derive-type-aux (n-type shift same-arg) (declare (ignore same-arg)) + ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for + ;; some bignum cases because as of version 2.4.6 for Debian and 18d, + ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of + ;; two bignums yielding zero) and it's hard to avoid that + ;; calculation in here. + #+(and cmu sb-xc-host) + (when (and (or (typep (numeric-type-low n-type) 'bignum) + (typep (numeric-type-high n-type) 'bignum)) + (or (typep (numeric-type-low shift) 'bignum) + (typep (numeric-type-high shift) 'bignum))) + (return-from ash-derive-type-aux *universal-type*)) (flet ((ash-outer (n s) (when (and (fixnump s) (<= s 64) - (> s sb!vm:*target-most-negative-fixnum*)) + (> s sb!xc:most-negative-fixnum)) (ash n s))) ;; KLUDGE: The bare 64's here should be related to ;; symbolic machine word size values somehow. (ash-inner (n s) (if (and (fixnump s) - (> s sb!vm:*target-most-negative-fixnum*)) + (> s sb!xc:most-negative-fixnum)) (ash n (min s 64)) (if (minusp n) -1 0)))) (or (and (csubtypep n-type (specifier-type 'integer)) @@ -1383,7 +1353,6 @@ (defoptimizer (ash derive-type) ((n shift)) (two-arg-derive-type n shift #'ash-derive-type-aux #'ash)) -) ; PROGN #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (macrolet ((frob (fun) @@ -1396,16 +1365,19 @@ (defoptimizer (%negate derive-type) ((num)) (derive-integer-type num num (frob -)))) +(defun lognot-derive-type-aux (int) + (derive-integer-type-aux int int + (lambda (type type2) + (declare (ignore type2)) + (let ((lo (numeric-type-low type)) + (hi (numeric-type-high type))) + (values (if hi (lognot hi) nil) + (if lo (lognot lo) nil) + (numeric-type-class type) + (numeric-type-format type)))))) + (defoptimizer (lognot derive-type) ((int)) - (derive-integer-type int int - (lambda (type type2) - (declare (ignore type2)) - (let ((lo (numeric-type-low type)) - (hi (numeric-type-high type))) - (values (if hi (lognot hi) nil) - (if lo (lognot lo) nil) - (numeric-type-class type) - (numeric-type-format type)))))) + (lognot-derive-type-aux (lvar-type int))) #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (%negate derive-type) ((num)) @@ -1423,7 +1395,7 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (abs derive-type) ((num)) - (let ((type (continuation-type num))) + (let ((type (lvar-type num))) (if (and (numeric-type-p type) (eq (numeric-type-class type) 'integer) (eq (numeric-type-complexp type) :real)) @@ -1476,8 +1448,8 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (truncate derive-type) ((number divisor)) - (let ((number-type (continuation-type number)) - (divisor-type (continuation-type divisor)) + (let ((number-type (lvar-type number)) + (divisor-type (lvar-type divisor)) (integer-type (specifier-type 'integer))) (if (and (numeric-type-p number-type) (csubtypep number-type integer-type) @@ -1647,7 +1619,7 @@ ;;; Define optimizers for FLOOR and CEILING. (macrolet - ((frob-opt (name q-name r-name) + ((def (name q-name r-name) (let ((q-aux (symbolicate q-name "-AUX")) (r-aux (symbolicate r-name "-AUX"))) `(progn @@ -1711,54 +1683,52 @@ (when (and quot rem) (make-values-type :required (list quot rem)))))))))) - ;; FIXME: DEF-FROB-OPT, not just FROB-OPT - (frob-opt floor floor-quotient-bound floor-rem-bound) - (frob-opt ceiling ceiling-quotient-bound ceiling-rem-bound)) + (def floor floor-quotient-bound floor-rem-bound) + (def ceiling ceiling-quotient-bound ceiling-rem-bound)) ;;; Define optimizers for FFLOOR and FCEILING -(macrolet - ((frob-opt (name q-name r-name) - (let ((q-aux (symbolicate "F" q-name "-AUX")) - (r-aux (symbolicate r-name "-AUX"))) - `(progn - ;; Compute type of quotient (first) result. - (defun ,q-aux (number-type divisor-type) - (let* ((number-interval - (numeric-type->interval number-type)) - (divisor-interval - (numeric-type->interval divisor-type)) - (quot (,q-name (interval-div number-interval - divisor-interval))) - (res-type (numeric-contagion number-type divisor-type))) - (make-numeric-type - :class (numeric-type-class res-type) - :format (numeric-type-format res-type) - :low (interval-low quot) - :high (interval-high quot)))) - - (defoptimizer (,name derive-type) ((number divisor)) - (flet ((derive-q (n d same-arg) - (declare (ignore same-arg)) - (if (and (numeric-type-real-p n) - (numeric-type-real-p d)) - (,q-aux n d) - *empty-type*)) - (derive-r (n d same-arg) - (declare (ignore same-arg)) - (if (and (numeric-type-real-p n) - (numeric-type-real-p d)) - (,r-aux n d) - *empty-type*))) - (let ((quot (two-arg-derive-type - number divisor #'derive-q #',name)) - (rem (two-arg-derive-type - number divisor #'derive-r #'mod))) - (when (and quot rem) - (make-values-type :required (list quot rem)))))))))) - - ;; FIXME: DEF-FROB-OPT, not just FROB-OPT - (frob-opt ffloor floor-quotient-bound floor-rem-bound) - (frob-opt fceiling ceiling-quotient-bound ceiling-rem-bound)) +(macrolet ((def (name q-name r-name) + (let ((q-aux (symbolicate "F" q-name "-AUX")) + (r-aux (symbolicate r-name "-AUX"))) + `(progn + ;; Compute type of quotient (first) result. + (defun ,q-aux (number-type divisor-type) + (let* ((number-interval + (numeric-type->interval number-type)) + (divisor-interval + (numeric-type->interval divisor-type)) + (quot (,q-name (interval-div number-interval + divisor-interval))) + (res-type (numeric-contagion number-type + divisor-type))) + (make-numeric-type + :class (numeric-type-class res-type) + :format (numeric-type-format res-type) + :low (interval-low quot) + :high (interval-high quot)))) + + (defoptimizer (,name derive-type) ((number divisor)) + (flet ((derive-q (n d same-arg) + (declare (ignore same-arg)) + (if (and (numeric-type-real-p n) + (numeric-type-real-p d)) + (,q-aux n d) + *empty-type*)) + (derive-r (n d same-arg) + (declare (ignore same-arg)) + (if (and (numeric-type-real-p n) + (numeric-type-real-p d)) + (,r-aux n d) + *empty-type*))) + (let ((quot (two-arg-derive-type + number divisor #'derive-q #',name)) + (rem (two-arg-derive-type + number divisor #'derive-r #'mod))) + (when (and quot rem) + (make-values-type :required (list quot rem)))))))))) + + (def ffloor floor-quotient-bound floor-rem-bound) + (def fceiling ceiling-quotient-bound ceiling-rem-bound)) ;;; functions to compute the bounds on the quotient and remainder for ;;; the FLOOR function @@ -2104,7 +2074,7 @@ #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) (defoptimizer (random derive-type) ((bound &optional state)) - (let ((type (continuation-type bound))) + (let ((type (lvar-type bound))) (when (numeric-type-p type) (let ((class (numeric-type-class type)) (high (numeric-type-high type)) @@ -2163,27 +2133,19 @@ ;; They must both be positive. (cond ((or (null x-len) (null y-len)) (specifier-type 'unsigned-byte)) - ((or (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0))) (t - (specifier-type `(unsigned-byte ,(min x-len y-len))))) + (specifier-type `(unsigned-byte* ,(min x-len y-len))))) ;; X is positive, but Y might be negative. (cond ((null x-len) (specifier-type 'unsigned-byte)) - ((zerop x-len) - (specifier-type '(integer 0 0))) (t - (specifier-type `(unsigned-byte ,x-len))))) + (specifier-type `(unsigned-byte* ,x-len))))) ;; X might be negative. (if (not y-neg) ;; Y must be positive. (cond ((null y-len) (specifier-type 'unsigned-byte)) - ((zerop y-len) - (specifier-type '(integer 0 0))) - (t - (specifier-type - `(unsigned-byte ,y-len)))) + (t (specifier-type `(unsigned-byte* ,y-len)))) ;; Either might be negative. (if (and x-len y-len) ;; The result is bounded. @@ -2198,11 +2160,9 @@ (cond ((and (not x-neg) (not y-neg)) ;; Both are positive. - (if (and x-len y-len (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0)) - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*))))) + (specifier-type `(unsigned-byte* ,(if (and x-len y-len) + (max x-len y-len) + '*)))) ((not x-pos) ;; X must be negative. (if (not y-pos) @@ -2241,14 +2201,12 @@ (and (not x-pos) (not y-pos))) ;; Either both are negative or both are positive. The result ;; will be positive, and as long as the longer. - (if (and x-len y-len (zerop x-len) (zerop y-len)) - (specifier-type '(integer 0 0)) - (specifier-type `(unsigned-byte ,(if (and x-len y-len) - (max x-len y-len) - '*))))) + (specifier-type `(unsigned-byte* ,(if (and x-len y-len) + (max x-len y-len) + '*)))) ((or (and (not x-pos) (not y-neg)) (and (not y-neg) (not y-pos))) - ;; Either X is negative and Y is positive of vice-versa. The + ;; Either X is negative and Y is positive or vice-versa. The ;; result will be negative. (specifier-type `(integer ,(if (and x-len y-len) (ash -1 (max x-len y-len)) @@ -2261,18 +2219,55 @@ (t (specifier-type 'integer)))))) -(macrolet ((deffrob (logfcn) - (let ((fcn-aux (symbolicate logfcn "-DERIVE-TYPE-AUX"))) - `(defoptimizer (,logfcn derive-type) ((x y)) - (two-arg-derive-type x y #',fcn-aux #',logfcn))))) +(macrolet ((deffrob (logfun) + (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX"))) + `(defoptimizer (,logfun derive-type) ((x y)) + (two-arg-derive-type x y #',fun-aux #',logfun))))) (deffrob logand) (deffrob logior) (deffrob logxor)) + +;;; FIXME: could actually do stuff with SAME-LEAF +(defoptimizer (logeqv derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logxor-derive-type-aux x y same-leaf))) + #'logeqv)) +(defoptimizer (lognand derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logand-derive-type-aux x y same-leaf))) + #'lognand)) +(defoptimizer (lognor derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (lognot-derive-type-aux + (logior-derive-type-aux x y same-leaf))) + #'lognor)) +(defoptimizer (logandc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logand-derive-type-aux + (lognot-derive-type-aux x) y nil)) + #'logandc1)) +(defoptimizer (logandc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logand-derive-type-aux + x (lognot-derive-type-aux y) nil)) + #'logandc2)) +(defoptimizer (logorc1 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logior-derive-type-aux + (lognot-derive-type-aux x) y nil)) + #'logorc1)) +(defoptimizer (logorc2 derive-type) ((x y)) + (two-arg-derive-type x y (lambda (x y same-leaf) + (logior-derive-type-aux + x (lognot-derive-type-aux y) nil)) + #'logorc2)) ;;;; miscellaneous derive-type methods (defoptimizer (integer-length derive-type) ((x)) - (let ((x-type (continuation-type x))) + (let ((x-type (lvar-type x))) (when (and (numeric-type-p x-type) (csubtypep x-type (specifier-type 'integer))) ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH @@ -2297,10 +2292,7 @@ (specifier-type 'base-char)) (defoptimizer (values derive-type) ((&rest values)) - (values-specifier-type - `(values ,@(mapcar (lambda (x) - (type-specifier (continuation-type x))) - values)))) + (make-values-type :required (mapcar #'lvar-type values))) ;;;; byte operations ;;;; @@ -2351,18 +2343,18 @@ `(%deposit-field ,newbyte ,size ,pos ,int)))) (defoptimizer (%ldb derive-type) ((size posn num)) - (let ((size (continuation-type size))) + (let ((size (lvar-type size))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer))) (let ((size-high (numeric-type-high size))) (if (and size-high (<= size-high sb!vm:n-word-bits)) - (specifier-type `(unsigned-byte ,size-high)) + (specifier-type `(unsigned-byte* ,size-high)) (specifier-type 'unsigned-byte))) *universal-type*))) (defoptimizer (%mask-field derive-type) ((size posn num)) - (let ((size (continuation-type size)) - (posn (continuation-type posn))) + (let ((size (lvar-type size)) + (posn (lvar-type posn))) (if (and (numeric-type-p size) (csubtypep size (specifier-type 'integer)) (numeric-type-p posn) @@ -2371,57 +2363,46 @@ (posn-high (numeric-type-high posn))) (if (and size-high posn-high (<= (+ size-high posn-high) sb!vm:n-word-bits)) - (specifier-type `(unsigned-byte ,(+ size-high posn-high))) + (specifier-type `(unsigned-byte* ,(+ size-high posn-high))) (specifier-type 'unsigned-byte))) *universal-type*))) +(defun %deposit-field-derive-type-aux (size posn int) + (let ((size (lvar-type size)) + (posn (lvar-type posn)) + (int (lvar-type int))) + (when (and (numeric-type-p size) + (numeric-type-p posn) + (numeric-type-p int)) + (let ((size-high (numeric-type-high size)) + (posn-high (numeric-type-high posn)) + (high (numeric-type-high int)) + (low (numeric-type-low int))) + (when (and size-high posn-high high low + ;; KLUDGE: we need this cutoff here, otherwise we + ;; will merrily derive the type of %DPB as + ;; (UNSIGNED-BYTE 1073741822), and then attempt to + ;; canonicalize this type to (INTEGER 0 (1- (ASH 1 + ;; 1073741822))), with hilarious consequences. We + ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference + ;; over a reasonable amount of shifting, even on + ;; the alpha/32 port, where N-WORD-BITS is 32 but + ;; machine integers are 64-bits. -- CSR, + ;; 2003-09-12 + (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits))) + (let ((raw-bit-count (max (integer-length high) + (integer-length low) + (+ size-high posn-high)))) + (specifier-type + (if (minusp low) + `(signed-byte ,(1+ raw-bit-count)) + `(unsigned-byte* ,raw-bit-count))))))))) + (defoptimizer (%dpb derive-type) ((newbyte size posn int)) - (let ((size (continuation-type size)) - (posn (continuation-type posn)) - (int (continuation-type int))) - (if (and (numeric-type-p size) - (csubtypep size (specifier-type 'integer)) - (numeric-type-p posn) - (csubtypep posn (specifier-type 'integer)) - (numeric-type-p int) - (csubtypep int (specifier-type 'integer))) - (let ((size-high (numeric-type-high size)) - (posn-high (numeric-type-high posn)) - (high (numeric-type-high int)) - (low (numeric-type-low int))) - (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:n-word-bits)) - (specifier-type - (list (if (minusp low) 'signed-byte 'unsigned-byte) - (max (integer-length high) - (integer-length low) - (+ size-high posn-high)))) - *universal-type*)) - *universal-type*))) + (%deposit-field-derive-type-aux size posn int)) (defoptimizer (%deposit-field derive-type) ((newbyte size posn int)) - (let ((size (continuation-type size)) - (posn (continuation-type posn)) - (int (continuation-type int))) - (if (and (numeric-type-p size) - (csubtypep size (specifier-type 'integer)) - (numeric-type-p posn) - (csubtypep posn (specifier-type 'integer)) - (numeric-type-p int) - (csubtypep int (specifier-type 'integer))) - (let ((size-high (numeric-type-high size)) - (posn-high (numeric-type-high posn)) - (high (numeric-type-high int)) - (low (numeric-type-low int))) - (if (and size-high posn-high high low - (<= (+ size-high posn-high) sb!vm:n-word-bits)) - (specifier-type - (list (if (minusp low) 'signed-byte 'unsigned-byte) - (max (integer-length high) - (integer-length low) - (+ size-high posn-high)))) - *universal-type*)) - *universal-type*))) + (%deposit-field-derive-type-aux size posn int)) (deftransform %ldb ((size posn int) (fixnum fixnum integer) @@ -2478,15 +2459,89 @@ (logior (logand new mask) (logand int (lognot mask))))) +;;; Modular functions + +;;; (ldb (byte s 0) (foo x y ...)) = +;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...)) +;;; +;;; and similar for other arguments. + +;;; Try to recursively cut all uses of LVAR to WIDTH bits. +;;; +;;; For good functions, we just recursively cut arguments; their +;;; "goodness" means that the result will not increase (in the +;;; (unsigned-byte +infinity) sense). An ordinary modular function is +;;; replaced with the version, cutting its result to WIDTH or more +;;; bits. If we have changed anything, we need to flush old derived +;;; types, because they have nothing in common with the new code. +(defun cut-to-width (lvar width) + (declare (type lvar lvar) (type (integer 0) width)) + (labels ((reoptimize-node (node name) + (setf (node-derived-type node) + (fun-type-returns + (info :function :type name))) + (setf (lvar-%derived-type (node-lvar node)) nil) + (setf (node-reoptimize node) t) + (setf (block-reoptimize (node-block node)) t) + (setf (component-reoptimize (node-component node)) t)) + (cut-node (node &aux did-something) + (when (and (combination-p node) + (fun-info-p (basic-combination-kind node))) + (let* ((fun-ref (lvar-use (combination-fun node))) + (fun-name (leaf-source-name (ref-leaf fun-ref))) + (modular-fun (find-modular-version fun-name width)) + (name (and (modular-fun-info-p modular-fun) + (modular-fun-info-name modular-fun)))) + (when (and modular-fun + (not (and (eq name 'logand) + (csubtypep + (single-value-type (node-derived-type node)) + (specifier-type `(unsigned-byte ,width)))))) + (unless (eq modular-fun :good) + (setq did-something t) + (change-ref-leaf + fun-ref + (find-free-fun name "in a strange place")) + (setf (combination-kind node) :full)) + (dolist (arg (basic-combination-args node)) + (when (cut-lvar arg) + (setq did-something t))) + (when did-something + (reoptimize-node node fun-name)) + did-something)))) + (cut-lvar (lvar &aux did-something) + (do-uses (node lvar) + (when (cut-node node) + (setq did-something t))) + did-something)) + (cut-lvar lvar))) + +(defoptimizer (logand optimizer) ((x y) node) + (let ((result-type (single-value-type (node-derived-type node)))) + (when (numeric-type-p result-type) + (let ((low (numeric-type-low result-type)) + (high (numeric-type-high result-type))) + (when (and (numberp low) + (numberp high) + (>= low 0)) + (let ((width (integer-length high))) + (when (some (lambda (x) (<= width x)) + *modular-funs-widths*) + ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH). + (cut-to-width x width) + (cut-to-width y width) + nil ; After fixing above, replace with T. + ))))))) + ;;; miscellanous numeric transforms ;;; If a constant appears as the first arg, swap the args. (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node) - (if (and (constant-continuation-p x) - (not (constant-continuation-p y))) - `(,(continuation-fun-name (basic-combination-fun node)) + (if (and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,(lvar-fun-name (basic-combination-fun node)) y - ,(continuation-value x)) + ,(lvar-value x)) (give-up-ir1-transform))) (dolist (x '(= char= + * logior logand logxor)) @@ -2494,11 +2549,11 @@ "place constant arg last")) ;;; Handle the case of a constant BOOLE-CODE. -(deftransform boole ((op x y) * * :when :both) +(deftransform boole ((op x y) * *) "convert to inline logical operations" - (unless (constant-continuation-p op) + (unless (constant-lvar-p op) (give-up-ir1-transform "BOOLE code is not a constant.")) - (let ((control (continuation-value op))) + (let ((control (lvar-value op))) (case control (#.boole-clr 0) (#.boole-set -1) @@ -2523,11 +2578,11 @@ ;;;; converting special case multiply/divide to shifts ;;; If arg is a constant power of two, turn * into a shift. -(deftransform * ((x y) (integer integer) * :when :both) +(deftransform * ((x y) (integer integer) *) "convert x*2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2536,72 +2591,26 @@ `(- (ash x ,len)) `(ash x ,len)))) -;;; If both arguments and the result are (UNSIGNED-BYTE 32), try to -;;; come up with a ``better'' multiplication using multiplier -;;; recoding. There are two different ways the multiplier can be -;;; recoded. The more obvious is to shift X by the correct amount for -;;; each bit set in Y and to sum the results. But if there is a string -;;; of bits that are all set, you can add X shifted by one more then -;;; the bit position of the first set bit and subtract X shifted by -;;; the bit position of the last set bit. We can't use this second -;;; method when the high order bit is bit 31 because shifting by 32 -;;; doesn't work too well. -(deftransform * ((x y) - ((unsigned-byte 32) (unsigned-byte 32)) - (unsigned-byte 32)) - "recode as shift and add" - (unless (constant-continuation-p y) - (give-up-ir1-transform)) - (let ((y (continuation-value y)) - (result nil) - (first-one nil)) - (labels ((tub32 (x) `(truly-the (unsigned-byte 32) ,x)) - (add (next-factor) - (setf result - (tub32 - (if result - `(+ ,result ,(tub32 next-factor)) - next-factor))))) - (declare (inline add)) - (dotimes (bitpos 32) - (if first-one - (when (not (logbitp bitpos y)) - (add (if (= (1+ first-one) bitpos) - ;; There is only a single bit in the string. - `(ash x ,first-one) - ;; There are at least two. - `(- ,(tub32 `(ash x ,bitpos)) - ,(tub32 `(ash x ,first-one))))) - (setf first-one nil)) - (when (logbitp bitpos y) - (setf first-one bitpos)))) - (when first-one - (cond ((= first-one 31)) - ((= first-one 30) - (add '(ash x 30))) - (t - (add `(- ,(tub32 '(ash x 31)) ,(tub32 `(ash x ,first-one)))))) - (add '(ash x 31)))) - (or result 0))) - ;;; If arg is a constant power of two, turn FLOOR into a shift and -;;; mask. If CEILING, add in (1- (ABS Y)) and then do FLOOR. +;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a +;;; remainder. (flet ((frob (y ceil-p) - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) (give-up-ir1-transform)) (let ((shift (- len)) - (mask (1- y-abs))) - `(let ,(when ceil-p `((x (+ x ,(1- y-abs))))) + (mask (1- y-abs)) + (delta (if ceil-p (* (signum y) (1- y-abs)) 0))) + `(let ((x (+ x ,delta))) ,(if (minusp y) `(values (ash (- x) ,shift) - (- (logand (- x) ,mask))) + (- (- (logand (- x) ,mask)) ,delta)) `(values (ash x ,shift) - (logand x ,mask)))))))) + (- (logand x ,mask) ,delta)))))))) (deftransform floor ((x y) (integer integer) *) "convert division by 2^k to shift" (frob y nil)) @@ -2610,11 +2619,11 @@ (frob y t))) ;;; Do the same for MOD. -(deftransform mod ((x y) (integer integer) * :when :both) +(deftransform mod ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2627,9 +2636,9 @@ ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask. (deftransform truncate ((x y) (integer integer)) "convert division by 2^k to shift" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2647,11 +2656,11 @@ (logand x ,mask)))))) ;;; And the same for REM. -(deftransform rem ((x y) (integer integer) * :when :both) +(deftransform rem ((x y) (integer integer) *) "convert remainder mod 2^k to LOGAND" - (unless (constant-continuation-p y) + (unless (constant-lvar-p y) (give-up-ir1-transform)) - (let* ((y (continuation-value y)) + (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) (unless (= y-abs (ash 1 len)) @@ -2665,38 +2674,46 @@ ;;; Flush calls to various arith functions that convert to the ;;; identity function or a constant. -(macrolet ((def-frob (name identity result) - `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) - * :when :both) +(macrolet ((def (name identity result) + `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *) "fold identity operations" ',result))) - (def-frob ash 0 x) - (def-frob logand -1 x) - (def-frob logand 0 0) - (def-frob logior 0 x) - (def-frob logior -1 -1) - (def-frob logxor -1 (lognot x)) - (def-frob logxor 0 x)) + (def ash 0 x) + (def logand -1 x) + (def logand 0 0) + (def logior 0 x) + (def logior -1 -1) + (def logxor -1 (lognot x)) + (def logxor 0 x)) + +(deftransform logand ((x y) (* (constant-arg t)) *) + "fold identity operation" + (let ((y (lvar-value y))) + (unless (and (plusp y) + (= y (1- (ash 1 (integer-length y))))) + (give-up-ir1-transform)) + (unless (csubtypep (lvar-type x) + (specifier-type `(integer 0 ,y))) + (give-up-ir1-transform)) + 'x)) ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and ;;; (* 0 -4.0) is -0.0. -(deftransform - ((x y) ((constant-arg (member 0)) rational) * - :when :both) +(deftransform - ((x y) ((constant-arg (member 0)) rational) *) "convert (- 0 x) to negate" '(%negate y)) -(deftransform * ((x y) (rational (constant-arg (member 0))) * - :when :both) +(deftransform * ((x y) (rational (constant-arg (member 0))) *) "convert (* x 0) to 0" 0) -;;; Return T if in an arithmetic op including continuations X and Y, -;;; the result type is not affected by the type of X. That is, Y is at +;;; Return T if in an arithmetic op including lvars X and Y, the +;;; result type is not affected by the type of X. That is, Y is at ;;; least as contagious as X. #+nil (defun not-more-contagious (x y) (declare (type continuation x y)) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (values (type= (numeric-contagion x y) (numeric-contagion y y))))) ;;; Patched version by Raymond Toy. dtc: Should be safer although it @@ -2704,7 +2721,7 @@ ;;; specific to particular transform functions so the use of this ;;; function may need a re-think. (defun not-more-contagious (x y) - (declare (type continuation x y)) + (declare (type lvar x y)) (flet ((simple-numeric-type (num) (and (numeric-type-p num) ;; Return non-NIL if NUM is integer, rational, or a float @@ -2716,8 +2733,8 @@ (numeric-type-format num)) (t nil))))) - (let ((x (continuation-type x)) - (y (continuation-type y))) + (let ((x (lvar-type x)) + (y (lvar-type y))) (if (and (simple-numeric-type x) (simple-numeric-type y)) (values (type= (numeric-contagion x y) @@ -2727,9 +2744,9 @@ ;;; ;;; If y is not constant, not zerop, or is contagious, or a positive ;;; float +0.0 then give up. -(deftransform + ((x y) (t (constant-arg t)) * :when :both) +(deftransform + ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (plusp (float-sign val)))) (not-more-contagious y x)) @@ -2740,9 +2757,9 @@ ;;; ;;; If y is not constant, not zerop, or is contagious, or a negative ;;; float -0.0 then give up. -(deftransform - ((x y) (t (constant-arg t)) * :when :both) +(deftransform - ((x y) (t (constant-arg t)) *) "fold zero arg" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (zerop val) (not (and (floatp val) (minusp (float-sign val)))) (not-more-contagious y x)) @@ -2750,31 +2767,42 @@ 'x) ;;; Fold (OP x +/-1) -(macrolet ((def-frob (name result minus-result) - `(deftransform ,name ((x y) (t (constant-arg real)) - * :when :both) +(macrolet ((def (name result minus-result) + `(deftransform ,name ((x y) (t (constant-arg real)) *) "fold identity operations" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) (unless (and (= (abs val) 1) (not-more-contagious y x)) (give-up-ir1-transform)) (if (minusp val) ',minus-result ',result))))) - (def-frob * x (%negate x)) - (def-frob / x (%negate x)) - (def-frob expt x (/ 1 x))) + (def * x (%negate x)) + (def / x (%negate x)) + (def expt x (/ 1 x))) ;;; Fold (expt x n) into multiplications for small integral values of ;;; N; convert (expt x 1/2) to sqrt. (deftransform expt ((x y) (t (constant-arg real)) *) "recode as multiplication or sqrt" - (let ((val (continuation-value y))) + (let ((val (lvar-value y))) ;; If Y would cause the result to be promoted to the same type as ;; Y, we give up. If not, then the result will be the same type ;; as X, so we can replace the exponentiation with simple ;; multiplication and division for small integral powers. (unless (not-more-contagious y x) (give-up-ir1-transform)) - (cond ((zerop val) '(float 1 x)) + (cond ((zerop val) + (let ((x-type (lvar-type x))) + (cond ((csubtypep x-type (specifier-type '(or rational + (complex rational)))) + '1) + ((csubtypep x-type (specifier-type 'real)) + `(if (rationalp x) + 1 + (float 1 x))) + ((csubtypep x-type (specifier-type 'complex)) + ;; both parts are float + `(1+ (* x ,val))) + (t (give-up-ir1-transform))))) ((= val 2) '(* x x)) ((= val -2) '(/ (* x x))) ((= val 3) '(* x x x)) @@ -2787,24 +2815,23 @@ ;;; transformations? ;;; Perhaps we should have to prove that the denominator is nonzero before ;;; doing them? -- WHN 19990917 -(macrolet ((def-frob (name) +(macrolet ((def (name) `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer) - * :when :both) + *) "fold zero arg" 0))) - (def-frob ash) - (def-frob /)) + (def ash) + (def /)) -(macrolet ((def-frob (name) +(macrolet ((def (name) `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer) - * :when :both) + *) "fold zero arg" '(values 0 0)))) - (def-frob truncate) - (def-frob round) - (def-frob floor) - (def-frob ceiling)) - + (def truncate) + (def round) + (def floor) + (def ceiling)) ;;;; character operations @@ -2836,13 +2863,13 @@ ;;;; equality predicate transforms -;;; Return true if X and Y are continuations whose only use is a +;;; Return true if X and Y are lvars whose only use is a ;;; reference to the same leaf, and the value of the leaf cannot ;;; change. (defun same-leaf-ref-p (x y) - (declare (type continuation x y)) - (let ((x-use (continuation-use x)) - (y-use (continuation-use y))) + (declare (type lvar x y)) + (let ((x-use (principal-lvar-use x)) + (y-use (principal-lvar-use y))) (and (ref-p x-use) (ref-p y-use) (eq (ref-leaf x-use) (ref-leaf y-use)) @@ -2852,21 +2879,20 @@ ;;; if there is no intersection between the types of the arguments, ;;; then the result is definitely false. (deftransform simple-equality-transform ((x y) * * - :defun-only t - :when :both) + :defun-only t) (cond ((same-leaf-ref-p x y) t) - ((not (types-equal-or-intersect (continuation-type x) - (continuation-type y))) + ((not (types-equal-or-intersect (lvar-type x) + (lvar-type y))) nil) (t (give-up-ir1-transform)))) -(macrolet ((def-frob (x) +(macrolet ((def (x) `(%deftransform ',x '(function * *) #'simple-equality-transform))) - (def-frob eq) - (def-frob char=) - (def-frob equal)) + (def eq) + (def char=) + (def equal)) ;;; This is similar to SIMPLE-EQUALITY-PREDICATE, except that we also ;;; try to convert to a type-specific predicate or EQ: @@ -2881,10 +2907,10 @@ ;;; these interesting cases. ;;; -- If Y is a fixnum, then we quietly pass because the back end can ;;; handle that case, otherwise give an efficiency note. -(deftransform eql ((x y) * * :when :both) +(deftransform eql ((x y) * *) "convert to simpler equality predicate" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y)) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y)) (char-type (specifier-type 'character)) (number-type (specifier-type 'number))) (cond ((same-leaf-ref-p x y) @@ -2897,8 +2923,8 @@ ((or (not (types-equal-or-intersect x-type number-type)) (not (types-equal-or-intersect y-type number-type))) '(eq x y)) - ((and (not (constant-continuation-p y)) - (or (constant-continuation-p x) + ((and (not (constant-lvar-p y)) + (or (constant-lvar-p x) (and (csubtypep x-type y-type) (not (csubtypep y-type x-type))))) '(eql y x)) @@ -2907,10 +2933,10 @@ ;;; Convert to EQL if both args are rational and complexp is specified ;;; and the same for both. -(deftransform = ((x y) * * :when :both) +(deftransform = ((x y) * *) "open code" - (let ((x-type (continuation-type x)) - (y-type (continuation-type y))) + (let ((x-type (lvar-type x)) + (y-type (lvar-type y))) (if (and (csubtypep x-type (specifier-type 'number)) (csubtypep y-type (specifier-type 'number))) (cond ((or (and (csubtypep x-type (specifier-type 'float)) @@ -2935,11 +2961,11 @@ (give-up-ir1-transform "The operands might not be the same type.")))) -;;; If CONT's type is a numeric type, then return the type, otherwise +;;; If LVAR's type is a numeric type, then return the type, otherwise ;;; GIVE-UP-IR1-TRANSFORM. -(defun numeric-type-or-lose (cont) - (declare (type continuation cont)) - (let ((res (continuation-type cont))) +(defun numeric-type-or-lose (lvar) + (declare (type lvar lvar)) + (let ((res (lvar-type lvar))) (unless (numeric-type-p res) (give-up-ir1-transform)) res)) @@ -2947,57 +2973,45 @@ ;;; information. If X's high bound is < Y's low, then X < Y. ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return ;;; NIL). If not, at least make sure any constant arg is second. -;;; -;;; FIXME: Why should constant argument be second? It would be nice to -;;; find out and explain. -#+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - nil - (let* ((x-type (numeric-type-or-lose x)) - (x-lo (numeric-type-low x-type)) - (x-hi (numeric-type-high x-type)) - (y-type (numeric-type-or-lose y)) - (y-lo (numeric-type-low y-type)) - (y-hi (numeric-type-high y-type))) - (cond ((and x-hi y-lo (< x-hi y-lo)) - t) - ((and y-hi x-lo (>= x-lo y-hi)) - nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(defun ir1-transform-< (x y first second inverse) - (if (same-leaf-ref-p x y) - nil - (let ((xi (numeric-type->interval (numeric-type-or-lose x))) - (yi (numeric-type->interval (numeric-type-or-lose y)))) - (cond ((interval-< xi yi) - t) - ((interval->= xi yi) - nil) - ((and (constant-continuation-p first) - (not (constant-continuation-p second))) - `(,inverse y x)) - (t - (give-up-ir1-transform)))))) - -(deftransform < ((x y) (integer integer) * :when :both) - (ir1-transform-< x y x y '>)) - -(deftransform > ((x y) (integer integer) * :when :both) - (ir1-transform-< y x x y '<)) - -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform < ((x y) (float float) * :when :both) - (ir1-transform-< x y x y '>)) - -#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.) -(deftransform > ((x y) (float float) * :when :both) - (ir1-transform-< y x x y '<)) +(macrolet ((def (name reflexive-p surely-true surely-false) + `(deftransform ,name ((x y)) + (if (same-leaf-ref-p x y) + ,reflexive-p + (let ((x (or (type-approximate-interval (lvar-type x)) + (give-up-ir1-transform))) + (y (or (type-approximate-interval (lvar-type y)) + (give-up-ir1-transform)))) + (cond (,surely-true + t) + (,surely-false + nil) + ((and (constant-lvar-p x) + (not (constant-lvar-p y))) + `(,',name y x)) + (t + (give-up-ir1-transform)))))))) + (def < nil (interval-< x y) (interval->= x y)) + (def > nil (interval-< y x) (interval->= y x)) + (def <= t (interval->= y x) (interval-< y x)) + (def >= t (interval->= x y) (interval-< x y))) + +(defun ir1-transform-char< (x y first second inverse) + (cond + ((same-leaf-ref-p x y) nil) + ;; If we had interval representation of character types, as we + ;; might eventually have to to support 2^21 characters, then here + ;; we could do some compile-time computation as in transforms for + ;; < above. -- CSR, 2003-07-01 + ((and (constant-lvar-p first) + (not (constant-lvar-p second))) + `(,inverse y x)) + (t (give-up-ir1-transform)))) + +(deftransform char< ((x y) (character character) *) + (ir1-transform-char< x y x y 'char>)) + +(deftransform char> ((x y) (character character) *) + (ir1-transform-char< y x x y 'char<)) ;;;; converting N-arg comparisons ;;;; @@ -3014,11 +3028,11 @@ ;;; negated test as appropriate. If it is a degenerate one-arg call, ;;; then we transform to code that returns true. Otherwise, we bind ;;; all the arguments and expand into a bunch of IFs. -(declaim (ftype (function (symbol list boolean) *) multi-compare)) -(defun multi-compare (predicate args not-p) +(declaim (ftype (function (symbol list boolean t) *) multi-compare)) +(defun multi-compare (predicate args not-p type) (let ((nargs (length args))) (cond ((< nargs 1) (values nil t)) - ((= nargs 1) `(progn ,@args t)) + ((= nargs 1) `(progn (the ,type ,@args) t)) ((= nargs 2) (if not-p `(if (,predicate ,(first args) ,(second args)) nil t) @@ -3034,40 +3048,46 @@ `(if (,predicate ,current ,last) ,result nil)))) ((zerop i) - `((lambda ,vars ,result) . ,args))))))) - -(define-source-transform = (&rest args) (multi-compare '= args nil)) -(define-source-transform < (&rest args) (multi-compare '< args nil)) -(define-source-transform > (&rest args) (multi-compare '> args nil)) -(define-source-transform <= (&rest args) (multi-compare '> args t)) -(define-source-transform >= (&rest args) (multi-compare '< args t)) - -(define-source-transform char= (&rest args) (multi-compare 'char= args nil)) -(define-source-transform char< (&rest args) (multi-compare 'char< args nil)) -(define-source-transform char> (&rest args) (multi-compare 'char> args nil)) -(define-source-transform char<= (&rest args) (multi-compare 'char> args t)) -(define-source-transform char>= (&rest args) (multi-compare 'char< args t)) + `((lambda ,vars (declare (type ,type ,@vars)) ,result) + ,@args))))))) + +(define-source-transform = (&rest args) (multi-compare '= args nil 'number)) +(define-source-transform < (&rest args) (multi-compare '< args nil 'real)) +(define-source-transform > (&rest args) (multi-compare '> args nil 'real)) +(define-source-transform <= (&rest args) (multi-compare '> args t 'real)) +(define-source-transform >= (&rest args) (multi-compare '< args t 'real)) + +(define-source-transform char= (&rest args) (multi-compare 'char= args nil + 'character)) +(define-source-transform char< (&rest args) (multi-compare 'char< args nil + 'character)) +(define-source-transform char> (&rest args) (multi-compare 'char> args nil + 'character)) +(define-source-transform char<= (&rest args) (multi-compare 'char> args t + 'character)) +(define-source-transform char>= (&rest args) (multi-compare 'char< args t + 'character)) (define-source-transform char-equal (&rest args) - (multi-compare 'char-equal args nil)) + (multi-compare 'char-equal args nil 'character)) (define-source-transform char-lessp (&rest args) - (multi-compare 'char-lessp args nil)) + (multi-compare 'char-lessp args nil 'character)) (define-source-transform char-greaterp (&rest args) - (multi-compare 'char-greaterp args nil)) + (multi-compare 'char-greaterp args nil 'character)) (define-source-transform char-not-greaterp (&rest args) - (multi-compare 'char-greaterp args t)) + (multi-compare 'char-greaterp args t 'character)) (define-source-transform char-not-lessp (&rest args) - (multi-compare 'char-lessp args t)) + (multi-compare 'char-lessp args t 'character)) ;;; This function does source transformation of N-arg inequality -;;; functions such as /=. This is similar to Multi-Compare in the <3 +;;; functions such as /=. This is similar to MULTI-COMPARE in the <3 ;;; arg cases. If there are more than two args, then we expand into ;;; the appropriate n^2 comparisons only when speed is important. -(declaim (ftype (function (symbol list) *) multi-not-equal)) -(defun multi-not-equal (predicate args) +(declaim (ftype (function (symbol list t) *) multi-not-equal)) +(defun multi-not-equal (predicate args type) (let ((nargs (length args))) (cond ((< nargs 1) (values nil t)) - ((= nargs 1) `(progn ,@args t)) + ((= nargs 1) `(progn (the ,type ,@args) t)) ((= nargs 2) `(if (,predicate ,(first args) ,(second args)) nil t)) ((not (policy *lexenv* @@ -3080,31 +3100,32 @@ (next (cdr vars) (cdr next)) (result t)) ((null next) - `((lambda ,vars ,result) . ,args)) + `((lambda ,vars (declare (type ,type ,@vars)) ,result) + ,@args)) (let ((v1 (first var))) (dolist (v2 next) (setq result `(if (,predicate ,v1 ,v2) nil ,result)))))))))) -(define-source-transform /= (&rest args) (multi-not-equal '= args)) -(define-source-transform char/= (&rest args) (multi-not-equal 'char= args)) +(define-source-transform /= (&rest args) + (multi-not-equal '= args 'number)) +(define-source-transform char/= (&rest args) + (multi-not-equal 'char= args 'character)) (define-source-transform char-not-equal (&rest args) - (multi-not-equal 'char-equal args)) + (multi-not-equal 'char-equal args 'character)) ;;; Expand MAX and MIN into the obvious comparisons. -(define-source-transform max (arg &rest more-args) - (if (null more-args) - `(values ,arg) - (once-only ((arg1 arg) - (arg2 `(max ,@more-args))) - `(if (> ,arg1 ,arg2) - ,arg1 ,arg2)))) -(define-source-transform min (arg &rest more-args) - (if (null more-args) - `(values ,arg) - (once-only ((arg1 arg) - (arg2 `(min ,@more-args))) - `(if (< ,arg1 ,arg2) - ,arg1 ,arg2)))) +(define-source-transform max (arg0 &rest rest) + (once-only ((arg0 arg0)) + (if (null rest) + `(values (the real ,arg0)) + `(let ((maxrest (max ,@rest))) + (if (> ,arg0 maxrest) ,arg0 maxrest))))) +(define-source-transform min (arg0 &rest rest) + (once-only ((arg0 arg0)) + (if (null rest) + `(values (the real ,arg0)) + `(let ((minrest (min ,@rest))) + (if (< ,arg0 minrest) ,arg0 minrest))))) ;;;; converting N-arg arithmetic functions ;;;; @@ -3122,34 +3143,32 @@ ;;; Do source transformations for transitive functions such as +. ;;; One-arg cases are replaced with the arg and zero arg cases with -;;; the identity. If LEAF-FUN is true, then replace two-arg calls with -;;; a call to that function. -(defun source-transform-transitive (fun args identity &optional leaf-fun) - (declare (symbol fun leaf-fun) (list args)) +;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to +;;; ensure (with THE) that the argument in one-argument calls is. +(defun source-transform-transitive (fun args identity + &optional one-arg-result-type) + (declare (symbol fun) (list args)) (case (length args) (0 identity) - (1 `(values ,(first args))) - (2 (if leaf-fun - `(,leaf-fun ,(first args) ,(second args)) - (values nil t))) + (1 (if one-arg-result-type + `(values (the ,one-arg-result-type ,(first args))) + `(values ,(first args)))) + (2 (values nil t)) (t (associate-args fun (first args) (rest args))))) (define-source-transform + (&rest args) - (source-transform-transitive '+ args 0)) + (source-transform-transitive '+ args 0 'number)) (define-source-transform * (&rest args) - (source-transform-transitive '* args 1)) + (source-transform-transitive '* args 1 'number)) (define-source-transform logior (&rest args) - (source-transform-transitive 'logior args 0)) + (source-transform-transitive 'logior args 0 'integer)) (define-source-transform logxor (&rest args) - (source-transform-transitive 'logxor args 0)) + (source-transform-transitive 'logxor args 0 'integer)) (define-source-transform logand (&rest args) - (source-transform-transitive 'logand args -1)) - + (source-transform-transitive 'logand args -1 'integer)) (define-source-transform logeqv (&rest args) - (if (evenp (length args)) - `(lognot (logxor ,@args)) - `(logxor ,@args))) + (source-transform-transitive 'logeqv args -1 'integer)) ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM ;;; because when they are given one argument, they return its absolute @@ -3172,7 +3191,9 @@ ;;; Do source transformations for intransitive n-arg functions such as ;;; /. With one arg, we form the inverse. With two args we pass. ;;; Otherwise we associate into two-arg calls. -(declaim (ftype (function (symbol list t) list) source-transform-intransitive)) +(declaim (ftype (function (symbol list t) + (values list &optional (member nil t))) + source-transform-intransitive)) (defun source-transform-intransitive (function args inverse) (case (length args) ((0 2) (values nil t)) @@ -3205,14 +3226,57 @@ ;;;; or T and the control string is a function (i.e. FORMATTER), then ;;;; convert the call to FORMAT to just a FUNCALL of that function. +;;; for compile-time argument count checking. +;;; +;;; FIXME I: this is currently called from DEFTRANSFORMs, the vast +;;; majority of which are not going to transform the code, but instead +;;; are going to GIVE-UP-IR1-TRANSFORM unconditionally. It would be +;;; nice to make this explicit, maybe by implementing a new +;;; "optimizer" (say, DEFOPTIMIZER CONSISTENCY-CHECK). +;;; +;;; FIXME II: In some cases, type information could be correlated; for +;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type +;;; of a corresponding argument is known and does not intersect the +;;; list type, a warning could be signalled. +(defun check-format-args (string args fun) + (declare (type string string)) + (unless (typep string 'simple-string) + (setq string (coerce string 'simple-string))) + (multiple-value-bind (min max) + (handler-case (sb!format:%compiler-walk-format-string string args) + (sb!format:format-error (c) + (compiler-warn "~A" c))) + (when min + (let ((nargs (length args))) + (cond + ((< nargs min) + (compiler-warn "Too few arguments (~D) to ~S ~S: ~ + requires at least ~D." + nargs fun string min)) + ((> nargs max) + (;; to get warned about probably bogus code at + ;; cross-compile time. + #+sb-xc-host compiler-warn + ;; ANSI saith that too many arguments doesn't cause a + ;; run-time error. + #-sb-xc-host compiler-style-warn + "Too many arguments (~D) to ~S ~S: uses at most ~D." + nargs fun string max))))))) + +(defoptimizer (format optimizer) ((dest control &rest args)) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) + (when (stringp x) + (check-format-args x args 'format))))) + (deftransform format ((dest control &rest args) (t simple-string &rest t) * :policy (> speed space)) - (unless (constant-continuation-p control) + (unless (constant-lvar-p control) (give-up-ir1-transform "The control string is not a constant.")) (let ((arg-names (make-gensym-list (length args)))) `(lambda (dest control ,@arg-names) (declare (ignore control)) - (format dest (formatter ,(continuation-value control)) ,@arg-names)))) + (format dest (formatter ,(lvar-value control)) ,@arg-names)))) (deftransform format ((stream control &rest args) (stream function &rest t) * :policy (> speed space)) @@ -3229,86 +3293,216 @@ (funcall control *standard-output* ,@arg-names) nil))) +(macrolet + ((def (name) + `(defoptimizer (,name optimizer) ((control &rest args)) + (when (constant-lvar-p control) + (let ((x (lvar-value control))) + (when (stringp x) + (check-format-args x args ',name))))))) + (def error) + (def warn) + #+sb-xc-host ; Only we should be using these + (progn + (def style-warn) + (def compiler-abort) + (def compiler-error) + (def compiler-warn) + (def compiler-style-warn) + (def compiler-notify) + (def maybe-compiler-notify) + (def bug))) + +(defoptimizer (cerror optimizer) ((report control &rest args)) + (when (and (constant-lvar-p control) + (constant-lvar-p report)) + (let ((x (lvar-value control)) + (y (lvar-value report))) + (when (and (stringp x) (stringp y)) + (multiple-value-bind (min1 max1) + (handler-case + (sb!format:%compiler-walk-format-string x args) + (sb!format:format-error (c) + (compiler-warn "~A" c))) + (when min1 + (multiple-value-bind (min2 max2) + (handler-case + (sb!format:%compiler-walk-format-string y args) + (sb!format:format-error (c) + (compiler-warn "~A" c))) + (when min2 + (let ((nargs (length args))) + (cond + ((< nargs (min min1 min2)) + (compiler-warn "Too few arguments (~D) to ~S ~S ~S: ~ + requires at least ~D." + nargs 'cerror y x (min min1 min2))) + ((> nargs (max max1 max2)) + (;; to get warned about probably bogus code at + ;; cross-compile time. + #+sb-xc-host compiler-warn + ;; ANSI saith that too many arguments doesn't cause a + ;; run-time error. + #-sb-xc-host compiler-style-warn + "Too many arguments (~D) to ~S ~S ~S: uses at most ~D." + nargs 'cerror y x (max max1 max2))))))))))))) + (defoptimizer (coerce derive-type) ((value type)) - (let ((value-type (continuation-type value)) - (type-type (continuation-type type))) - (labels - ((good-cons-type-p (cons-type) - ;; Make sure the cons-type we're looking at is something - ;; we're prepared to handle which is basically something - ;; that array-element-type can return. - (or (and (member-type-p cons-type) - (null (rest (member-type-members cons-type))) - (null (first (member-type-members cons-type)))) - (let ((car-type (cons-type-car-type cons-type))) - (and (member-type-p car-type) - (null (rest (member-type-members car-type))) - (or (symbolp (first (member-type-members car-type))) - (numberp (first (member-type-members car-type))) - (and (listp (first (member-type-members car-type))) - (numberp (first (first (member-type-members - car-type)))))) - (good-cons-type-p (cons-type-cdr-type cons-type)))))) - (unconsify-type (good-cons-type) - ;; Convert the "printed" respresentation of a cons - ;; specifier into a type specifier. That is, the specifier - ;; (cons (eql signed-byte) (cons (eql 16) null)) is - ;; converted to (signed-byte 16). - (cond ((or (null good-cons-type) - (eq good-cons-type 'null)) - nil) - ((and (eq (first good-cons-type) 'cons) - (eq (first (second good-cons-type)) 'member)) - `(,(second (second good-cons-type)) - ,@(unconsify-type (caddr good-cons-type)))))) - (coerceable-p (c-type) - ;; Can the value be coerced to the given type? Coerce is - ;; complicated, so we don't handle every possible case - ;; here---just the most common and easiest cases: - ;; - ;; o Any real can be coerced to a float type. - ;; o Any number can be coerced to a complex single/double-float. - ;; o An integer can be coerced to an integer. - (let ((coerced-type c-type)) - (or (and (subtypep coerced-type 'float) - (csubtypep value-type (specifier-type 'real))) - (and (subtypep coerced-type - '(or (complex single-float) - (complex double-float))) - (csubtypep value-type (specifier-type 'number))) - (and (subtypep coerced-type 'integer) - (csubtypep value-type (specifier-type 'integer)))))) - (process-types (type) - ;; FIXME: - ;; This needs some work because we should be able to derive - ;; the resulting type better than just the type arg of - ;; coerce. That is, if x is (integer 10 20), the (coerce x - ;; 'double-float) should say (double-float 10d0 20d0) - ;; instead of just double-float. - (cond ((member-type-p type) - (let ((members (member-type-members type))) - (if (every #'coerceable-p members) - (specifier-type `(or ,@members)) - *universal-type*))) - ((and (cons-type-p type) - (good-cons-type-p type)) - (let ((c-type (unconsify-type (type-specifier type)))) - (if (coerceable-p c-type) - (specifier-type c-type) - *universal-type*))) - (t - *universal-type*)))) - (cond ((union-type-p type-type) - (apply #'type-union (mapcar #'process-types - (union-type-types type-type)))) - ((or (member-type-p type-type) - (cons-type-p type-type)) - (process-types type-type)) - (t - *universal-type*))))) + (cond + ((constant-lvar-p type) + ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2), + ;; but dealing with the niggle that complex canonicalization gets + ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of + ;; type COMPLEX. + (let* ((specifier (lvar-value type)) + (result-typeoid (careful-specifier-type specifier))) + (cond + ((null result-typeoid) nil) + ((csubtypep result-typeoid (specifier-type 'number)) + ;; the difficult case: we have to cope with ANSI 12.1.5.3 + ;; Rule of Canonical Representation for Complex Rationals, + ;; which is a truly nasty delivery to field. + (cond + ((csubtypep result-typeoid (specifier-type 'real)) + ;; cleverness required here: it would be nice to deduce + ;; that something of type (INTEGER 2 3) coerced to type + ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0). + ;; FLOAT gets its own clause because it's implemented as + ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE + ;; logic below. + result-typeoid) + ((and (numeric-type-p result-typeoid) + (eq (numeric-type-complexp result-typeoid) :real)) + ;; FIXME: is this clause (a) necessary or (b) useful? + result-typeoid) + ((or (csubtypep result-typeoid + (specifier-type '(complex single-float))) + (csubtypep result-typeoid + (specifier-type '(complex double-float))) + #!+long-float + (csubtypep result-typeoid + (specifier-type '(complex long-float)))) + ;; float complex types are never canonicalized. + result-typeoid) + (t + ;; if it's not a REAL, or a COMPLEX FLOAToid, it's + ;; probably just a COMPLEX or equivalent. So, in that + ;; case, we will return a complex or an object of the + ;; provided type if it's rational: + (type-union result-typeoid + (type-intersection (lvar-type value) + (specifier-type 'rational)))))) + (t result-typeoid)))) + (t + ;; OK, the result-type argument isn't constant. However, there + ;; are common uses where we can still do better than just + ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)), + ;; where Y is of a known type. See messages on cmucl-imp + ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here + ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on + ;; the basis that it's unlikely that other uses are both + ;; time-critical and get to this branch of the COND (non-constant + ;; second argument to COERCE). -- CSR, 2002-12-16 + (let ((value-type (lvar-type value)) + (type-type (lvar-type type))) + (labels + ((good-cons-type-p (cons-type) + ;; Make sure the cons-type we're looking at is something + ;; we're prepared to handle which is basically something + ;; that array-element-type can return. + (or (and (member-type-p cons-type) + (null (rest (member-type-members cons-type))) + (null (first (member-type-members cons-type)))) + (let ((car-type (cons-type-car-type cons-type))) + (and (member-type-p car-type) + (null (rest (member-type-members car-type))) + (or (symbolp (first (member-type-members car-type))) + (numberp (first (member-type-members car-type))) + (and (listp (first (member-type-members + car-type))) + (numberp (first (first (member-type-members + car-type)))))) + (good-cons-type-p (cons-type-cdr-type cons-type)))))) + (unconsify-type (good-cons-type) + ;; Convert the "printed" respresentation of a cons + ;; specifier into a type specifier. That is, the + ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16) + ;; NULL)) is converted to (SIGNED-BYTE 16). + (cond ((or (null good-cons-type) + (eq good-cons-type 'null)) + nil) + ((and (eq (first good-cons-type) 'cons) + (eq (first (second good-cons-type)) 'member)) + `(,(second (second good-cons-type)) + ,@(unconsify-type (caddr good-cons-type)))))) + (coerceable-p (c-type) + ;; Can the value be coerced to the given type? Coerce is + ;; complicated, so we don't handle every possible case + ;; here---just the most common and easiest cases: + ;; + ;; * Any REAL can be coerced to a FLOAT type. + ;; * Any NUMBER can be coerced to a (COMPLEX + ;; SINGLE/DOUBLE-FLOAT). + ;; + ;; FIXME I: we should also be able to deal with characters + ;; here. + ;; + ;; FIXME II: I'm not sure that anything is necessary + ;; here, at least while COMPLEX is not a specialized + ;; array element type in the system. Reasoning: if + ;; something cannot be coerced to the requested type, an + ;; error will be raised (and so any downstream compiled + ;; code on the assumption of the returned type is + ;; unreachable). If something can, then it will be of + ;; the requested type, because (by assumption) COMPLEX + ;; (and other difficult types like (COMPLEX INTEGER) + ;; aren't specialized types. + (let ((coerced-type c-type)) + (or (and (subtypep coerced-type 'float) + (csubtypep value-type (specifier-type 'real))) + (and (subtypep coerced-type + '(or (complex single-float) + (complex double-float))) + (csubtypep value-type (specifier-type 'number)))))) + (process-types (type) + ;; FIXME: This needs some work because we should be able + ;; to derive the resulting type better than just the + ;; type arg of coerce. That is, if X is (INTEGER 10 + ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say + ;; (DOUBLE-FLOAT 10d0 20d0) instead of just + ;; double-float. + (cond ((member-type-p type) + (let ((members (member-type-members type))) + (if (every #'coerceable-p members) + (specifier-type `(or ,@members)) + *universal-type*))) + ((and (cons-type-p type) + (good-cons-type-p type)) + (let ((c-type (unconsify-type (type-specifier type)))) + (if (coerceable-p c-type) + (specifier-type c-type) + *universal-type*))) + (t + *universal-type*)))) + (cond ((union-type-p type-type) + (apply #'type-union (mapcar #'process-types + (union-type-types type-type)))) + ((or (member-type-p type-type) + (cons-type-p type-type)) + (process-types type-type)) + (t + *universal-type*))))))) + +(defoptimizer (compile derive-type) ((nameoid function)) + (when (csubtypep (lvar-type nameoid) + (specifier-type 'null)) + (values-specifier-type '(values function boolean boolean)))) +;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving +;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE +;;; optimizer, above). (defoptimizer (array-element-type derive-type) ((array)) - (let* ((array-type (continuation-type array))) + (let ((array-type (lvar-type array))) (labels ((consify (list) (if (endp list) '(eql nil) @@ -3326,38 +3520,111 @@ (error "can't understand type ~S~%" element-type)))))) (cond ((array-type-p array-type) (get-element-type array-type)) - ((union-type-p array-type) + ((union-type-p array-type) (apply #'type-union (mapcar #'get-element-type (union-type-types array-type)))) (t *universal-type*))))) + +(define-source-transform sb!impl::sort-vector (vector start end predicate key) + `(macrolet ((%index (x) `(truly-the index ,x)) + (%parent (i) `(ash ,i -1)) + (%left (i) `(%index (ash ,i 1))) + (%right (i) `(%index (1+ (ash ,i 1)))) + (%heapify (i) + `(do* ((i ,i) + (left (%left i) (%left i))) + ((> left current-heap-size)) + (declare (type index i left)) + (let* ((i-elt (%elt i)) + (i-key (funcall keyfun i-elt)) + (left-elt (%elt left)) + (left-key (funcall keyfun left-elt))) + (multiple-value-bind (large large-elt large-key) + (if (funcall ,',predicate i-key left-key) + (values left left-elt left-key) + (values i i-elt i-key)) + (let ((right (%right i))) + (multiple-value-bind (largest largest-elt) + (if (> right current-heap-size) + (values large large-elt) + (let* ((right-elt (%elt right)) + (right-key (funcall keyfun right-elt))) + (if (funcall ,',predicate large-key right-key) + (values right right-elt) + (values large large-elt)))) + (cond ((= largest i) + (return)) + (t + (setf (%elt i) largest-elt + (%elt largest) i-elt + i largest))))))))) + (%sort-vector (keyfun &optional (vtype 'vector)) + `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had trouble getting + ;; type inference to propagate all the way + ;; through this tangled mess of + ;; inlining. The TRULY-THE here works + ;; around that. -- WHN + (%elt (i) + `(aref (truly-the ,',vtype ,',',vector) + (%index (+ (%index ,i) start-1))))) + (let ((start-1 (1- ,',start)) ; Heaps prefer 1-based addressing. + (current-heap-size (- ,',end ,',start)) + (keyfun ,keyfun)) + (declare (type (integer -1 #.(1- most-positive-fixnum)) + start-1)) + (declare (type index current-heap-size)) + (declare (type function keyfun)) + (loop for i of-type index + from (ash current-heap-size -1) downto 1 do + (%heapify i)) + (loop + (when (< current-heap-size 2) + (return)) + (rotatef (%elt 1) (%elt current-heap-size)) + (decf current-heap-size) + (%heapify 1)))))) + (if (typep ,vector 'simple-vector) + ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is + ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA. + (if (null ,key) + ;; Special-casing the KEY=NIL case lets us avoid some + ;; function calls. + (%sort-vector #'identity simple-vector) + (%sort-vector ,key simple-vector)) + ;; It's hard to anticipate many speed-critical applications for + ;; sorting vector types other than (VECTOR T), so we just lump + ;; them all together in one slow dynamically typed mess. + (locally + (declare (optimize (speed 2) (space 2) (inhibit-warnings 3))) + (%sort-vector (or ,key #'identity)))))) ;;;; debuggers' little helpers ;;; for debugging when transforms are behaving mysteriously, ;;; e.g. when debugging a problem with an ASH transform ;;; (defun foo (&optional s) -;;; (sb-c::/report-continuation s "S outside WHEN") +;;; (sb-c::/report-lvar s "S outside WHEN") ;;; (when (and (integerp s) (> s 3)) -;;; (sb-c::/report-continuation s "S inside WHEN") +;;; (sb-c::/report-lvar s "S inside WHEN") ;;; (let ((bound (ash 1 (1- s)))) -;;; (sb-c::/report-continuation bound "BOUND") +;;; (sb-c::/report-lvar bound "BOUND") ;;; (let ((x (- bound)) ;;; (y (1- bound))) -;;; (sb-c::/report-continuation x "X") -;;; (sb-c::/report-continuation x "Y")) +;;; (sb-c::/report-lvar x "X") +;;; (sb-c::/report-lvar x "Y")) ;;; `(integer ,(- bound) ,(1- bound))))) ;;; (The DEFTRANSFORM doesn't do anything but report at compile time, ;;; and the function doesn't do anything at all.) #!+sb-show (progn - (defknown /report-continuation (t t) null) - (deftransform /report-continuation ((x message) (t t)) - (format t "~%/in /REPORT-CONTINUATION~%") - (format t "/(CONTINUATION-TYPE X)=~S~%" (continuation-type x)) - (when (constant-continuation-p x) - (format t "/(CONTINUATION-VALUE X)=~S~%" (continuation-value x))) - (format t "/MESSAGE=~S~%" (continuation-value message)) + (defknown /report-lvar (t t) null) + (deftransform /report-lvar ((x message) (t t)) + (format t "~%/in /REPORT-LVAR~%") + (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x)) + (when (constant-lvar-p x) + (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x))) + (format t "/MESSAGE=~S~%" (lvar-value message)) (give-up-ir1-transform "not a real transform")) - (defun /report-continuation (&rest rest) - (declare (ignore rest)))) + (defun /report-lvar (x message) + (declare (ignore x message))))