X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=src%2Fcompiler%2Fsrctran.lisp;h=e3f1985c06126a5e16a81f6f45aa86982c083fde;hb=079ef9dad558ca07cb8178ef428bf738112174fa;hp=56439e4461942b366ad756f57e2fa362504fdb49;hpb=56a55fd26733bb228e69f9c884baddd772308724;p=sbcl.git diff --git a/src/compiler/srctran.lisp b/src/compiler/srctran.lisp index 56439e4..e3f1985 100644 --- a/src/compiler/srctran.lisp +++ b/src/compiler/srctran.lisp @@ -65,10 +65,14 @@ (defun source-transform-cxr (form) (if (/= (length form) 2) (values nil t) - (let ((name (symbol-name (car form)))) - (do ((i (- (length name) 2) (1- i)) + (let* ((name (car form)) + (string (symbol-name + (etypecase name + (symbol name) + (leaf (leaf-source-name name)))))) + (do ((i (- (length string) 2) (1- i)) (res (cadr form) - `(,(ecase (char name i) + `(,(ecase (char string i) (#\A 'car) (#\D 'cdr)) ,res))) @@ -750,7 +754,7 @@ ;;; a utility for defining derive-type methods of integer operations. If ;;; the types of both X and Y are integer types, then we compute a new ;;; integer type with bounds determined Fun when applied to X and Y. -;;; Otherwise, we use Numeric-Contagion. +;;; Otherwise, we use NUMERIC-CONTAGION. (defun derive-integer-type-aux (x y fun) (declare (type function fun)) (if (and (numeric-type-p x) (numeric-type-p y) @@ -773,13 +777,12 @@ ;;; simple utility to flatten a list (defun flatten-list (x) - (labels ((flatten-helper (x r);; 'r' is the stuff to the 'right'. - (cond ((null x) r) - ((atom x) - (cons x r)) - (t (flatten-helper (car x) - (flatten-helper (cdr x) r)))))) - (flatten-helper x nil))) + (labels ((flatten-and-append (tree list) + (cond ((null tree) list) + ((atom tree) (cons tree list)) + (t (flatten-and-append + (car tree) (flatten-and-append (cdr tree) list)))))) + (flatten-and-append x nil))) ;;; Take some type of lvar and massage it so that we get a list of the ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate @@ -1023,10 +1026,9 @@ (if member-fun (with-float-traps-masked (:underflow :overflow :divide-by-zero) - (make-member-type - :members (list - (funcall member-fun - (first (member-type-members x)))))) + (specifier-type + `(eql ,(funcall member-fun + (first (member-type-members x)))))) ;; Otherwise convert to a numeric type. (let ((result-type-list (funcall derive-fun (convert-member-type x)))) @@ -1065,17 +1067,18 @@ (cond ((and (member-type-p x) (member-type-p y)) (let* ((x (first (member-type-members x))) (y (first (member-type-members y))) - (result (with-float-traps-masked - (:underflow :overflow :divide-by-zero - :invalid) - (funcall fun x y)))) - (cond ((null result)) + (result (ignore-errors + (with-float-traps-masked + (:underflow :overflow :divide-by-zero + :invalid) + (funcall fun x y))))) + (cond ((null result) *empty-type*) ((and (floatp result) (float-nan-p result)) (make-numeric-type :class 'float :format (type-of result) :complexp :real)) (t - (make-member-type :members (list result)))))) + (specifier-type `(eql ,result)))))) ((and (member-type-p x) (numeric-type-p y)) (let* ((x (convert-member-type x)) (y (if convert-type (convert-numeric-type y) y)) @@ -1617,6 +1620,13 @@ #'%unary-truncate-derive-type-aux #'%unary-truncate)) +(defoptimizer (%unary-ftruncate derive-type) ((number)) + (let ((divisor (specifier-type '(integer 1 1)))) + (one-arg-derive-type number + #'(lambda (n) + (ftruncate-derive-type-quot-aux n divisor nil)) + #'%unary-ftruncate))) + ;;; Define optimizers for FLOOR and CEILING. (macrolet ((def (name q-name r-name) @@ -2122,17 +2132,22 @@ (values nil t t))) (defun logand-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logand-derive-type-aux x)) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (declare (ignore x-pos)) - (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) + (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (declare (ignore y-pos)) (if (not x-neg) ;; X must be positive. (if (not y-neg) ;; They must both be positive. - (cond ((or (null x-len) (null y-len)) + (cond ((and (null x-len) (null y-len)) (specifier-type 'unsigned-byte)) + ((null x-len) + (specifier-type `(unsigned-byte* ,y-len))) + ((null y-len) + (specifier-type `(unsigned-byte* ,x-len))) (t (specifier-type `(unsigned-byte* ,(min x-len y-len))))) ;; X is positive, but Y might be negative. @@ -2154,7 +2169,8 @@ (specifier-type 'integer))))))) (defun logior-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logior-derive-type-aux x)) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (cond @@ -2193,7 +2209,8 @@ (specifier-type 'integer)))))))) (defun logxor-derive-type-aux (x y &optional same-leaf) - (declare (ignore same-leaf)) + (when same-leaf + (return-from logxor-derive-type-aux (specifier-type '(eql 0)))) (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x) (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y) (cond @@ -2205,7 +2222,7 @@ (max x-len y-len) '*)))) ((or (and (not x-pos) (not y-neg)) - (and (not y-neg) (not y-pos))) + (and (not y-pos) (not x-neg))) ;; Either X is negative and Y is positive or vice-versa. The ;; result will be negative. (specifier-type `(integer ,(if (and x-len y-len) @@ -2227,11 +2244,10 @@ (deffrob logior) (deffrob logxor)) -;;; FIXME: could actually do stuff with SAME-LEAF (defoptimizer (logeqv derive-type) ((x y)) (two-arg-derive-type x y (lambda (x y same-leaf) (lognot-derive-type-aux - (logxor-derive-type-aux x y same-leaf))) + (logxor-derive-type-aux x y same-leaf))) #'logeqv)) (defoptimizer (lognand derive-type) ((x y)) (two-arg-derive-type x y (lambda (x y same-leaf) @@ -2245,23 +2261,31 @@ #'lognor)) (defoptimizer (logandc1 derive-type) ((x y)) (two-arg-derive-type x y (lambda (x y same-leaf) - (logand-derive-type-aux - (lognot-derive-type-aux x) y nil)) + (if same-leaf + (specifier-type '(eql 0)) + (logand-derive-type-aux + (lognot-derive-type-aux x) y nil))) #'logandc1)) (defoptimizer (logandc2 derive-type) ((x y)) (two-arg-derive-type x y (lambda (x y same-leaf) - (logand-derive-type-aux - x (lognot-derive-type-aux y) nil)) + (if same-leaf + (specifier-type '(eql 0)) + (logand-derive-type-aux + x (lognot-derive-type-aux y) nil))) #'logandc2)) (defoptimizer (logorc1 derive-type) ((x y)) (two-arg-derive-type x y (lambda (x y same-leaf) - (logior-derive-type-aux - (lognot-derive-type-aux x) y nil)) + (if same-leaf + (specifier-type '(eql -1)) + (logior-derive-type-aux + (lognot-derive-type-aux x) y nil))) #'logorc1)) (defoptimizer (logorc2 derive-type) ((x y)) (two-arg-derive-type x y (lambda (x y same-leaf) - (logior-derive-type-aux - x (lognot-derive-type-aux y) nil)) + (if same-leaf + (specifier-type '(eql -1)) + (logior-derive-type-aux + x (lognot-derive-type-aux y) nil))) #'logorc2)) ;;;; miscellaneous derive-type methods @@ -2297,10 +2321,71 @@ (specifier-type `(integer ,lo-res ,hi-res)))))) (defoptimizer (code-char derive-type) ((code)) - (specifier-type 'base-char)) + (let ((type (lvar-type code))) + ;; FIXME: unions of integral ranges? It ought to be easier to do + ;; this, given that CHARACTER-SET is basically an integral range + ;; type. -- CSR, 2004-10-04 + (when (numeric-type-p type) + (let* ((lo (numeric-type-low type)) + (hi (numeric-type-high type)) + (type (specifier-type `(character-set ((,lo . ,hi)))))) + (cond + ;; KLUDGE: when running on the host, we lose a slight amount + ;; of precision so that we don't have to "unparse" types + ;; that formally we can't, such as (CHARACTER-SET ((0 + ;; . 0))). -- CSR, 2004-10-06 + #+sb-xc-host + ((csubtypep type (specifier-type 'standard-char)) type) + #+sb-xc-host + ((csubtypep type (specifier-type 'base-char)) + (specifier-type 'base-char)) + #+sb-xc-host + ((csubtypep type (specifier-type 'extended-char)) + (specifier-type 'extended-char)) + (t #+sb-xc-host (specifier-type 'character) + #-sb-xc-host type)))))) (defoptimizer (values derive-type) ((&rest values)) (make-values-type :required (mapcar #'lvar-type values))) + +(defun signum-derive-type-aux (type) + (if (eq (numeric-type-complexp type) :complex) + (let* ((format (case (numeric-type-class type) + ((integer rational) 'single-float) + (t (numeric-type-format type)))) + (bound-format (or format 'float))) + (make-numeric-type :class 'float + :format format + :complexp :complex + :low (coerce -1 bound-format) + :high (coerce 1 bound-format))) + (let* ((interval (numeric-type->interval type)) + (range-info (interval-range-info interval)) + (contains-0-p (interval-contains-p 0 interval)) + (class (numeric-type-class type)) + (format (numeric-type-format type)) + (one (coerce 1 (or format class 'real))) + (zero (coerce 0 (or format class 'real))) + (minus-one (coerce -1 (or format class 'real))) + (plus (make-numeric-type :class class :format format + :low one :high one)) + (minus (make-numeric-type :class class :format format + :low minus-one :high minus-one)) + ;; KLUDGE: here we have a fairly horrible hack to deal + ;; with the schizophrenia in the type derivation engine. + ;; The problem is that the type derivers reinterpret + ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0 + ;; 0d0) within the derivation mechanism doesn't include + ;; -0d0. Ugh. So force it in here, instead. + (zero (make-numeric-type :class class :format format + :low (- zero) :high zero))) + (case range-info + (+ (if contains-0-p (type-union plus zero) plus)) + (- (if contains-0-p (type-union minus zero) minus)) + (t (type-union minus zero plus)))))) + +(defoptimizer (signum derive-type) ((num)) + (one-arg-derive-type num #'signum-derive-type-aux nil)) ;;;; byte operations ;;;; @@ -2466,6 +2551,16 @@ `(let ((mask (ash (ldb (byte size 0) -1) posn))) (logior (logand new mask) (logand int (lognot mask))))) + +(defoptimizer (mask-signed-field derive-type) ((size x)) + (let ((size (lvar-type size))) + (if (numeric-type-p size) + (let ((size-high (numeric-type-high size))) + (if (and size-high (<= 1 size-high sb!vm:n-word-bits)) + (specifier-type `(signed-byte ,size-high)) + *universal-type*)) + *universal-type*))) + ;;; Modular functions @@ -2474,56 +2569,96 @@ ;;; ;;; and similar for other arguments. +(defun make-modular-fun-type-deriver (prototype class width) + #!-sb-fluid + (binding* ((info (info :function :info prototype) :exit-if-null) + (fun (fun-info-derive-type info) :exit-if-null) + (mask-type (specifier-type + (ecase class + (:unsigned `(unsigned-byte* ,width)) + (:signed `(signed-byte ,width)))))) + (lambda (call) + (let ((res (funcall fun call))) + (when res + (if (eq class :unsigned) + (logand-derive-type-aux res mask-type)))))) + #!+sb-fluid + (lambda (call) + (binding* ((info (info :function :info prototype) :exit-if-null) + (fun (fun-info-derive-type info) :exit-if-null) + (res (funcall fun call) :exit-if-null) + (mask-type (specifier-type + (ecase class + (:unsigned `(unsigned-byte* ,width)) + (:signed `(signed-byte ,width)))))) + (if (eq class :unsigned) + (logand-derive-type-aux res mask-type))))) + ;;; Try to recursively cut all uses of LVAR to WIDTH bits. ;;; ;;; For good functions, we just recursively cut arguments; their ;;; "goodness" means that the result will not increase (in the ;;; (unsigned-byte +infinity) sense). An ordinary modular function is ;;; replaced with the version, cutting its result to WIDTH or more -;;; bits. If we have changed anything, we need to flush old derived -;;; types, because they have nothing in common with the new code. -(defun cut-to-width (lvar width) +;;; bits. For most functions (e.g. for +) we cut all arguments; for +;;; others (e.g. for ASH) we have "optimizers", cutting only necessary +;;; arguments (maybe to a different width) and returning the name of a +;;; modular version, if it exists, or NIL. If we have changed +;;; anything, we need to flush old derived types, because they have +;;; nothing in common with the new code. +(defun cut-to-width (lvar class width) (declare (type lvar lvar) (type (integer 0) width)) - (labels ((reoptimize-node (node name) - (setf (node-derived-type node) - (fun-type-returns - (info :function :type name))) - (setf (lvar-%derived-type (node-lvar node)) nil) - (setf (node-reoptimize node) t) - (setf (block-reoptimize (node-block node)) t) - (setf (component-reoptimize (node-component node)) t)) - (cut-node (node &aux did-something) - (when (and (not (block-delete-p (node-block node))) - (combination-p node) - (fun-info-p (basic-combination-kind node))) - (let* ((fun-ref (lvar-use (combination-fun node))) - (fun-name (leaf-source-name (ref-leaf fun-ref))) - (modular-fun (find-modular-version fun-name width)) - (name (and (modular-fun-info-p modular-fun) - (modular-fun-info-name modular-fun)))) - (when (and modular-fun - (not (and (eq name 'logand) - (csubtypep - (single-value-type (node-derived-type node)) - (specifier-type `(unsigned-byte ,width)))))) - (unless (eq modular-fun :good) - (setq did-something t) - (change-ref-leaf - fun-ref - (find-free-fun name "in a strange place")) - (setf (combination-kind node) :full)) - (dolist (arg (basic-combination-args node)) - (when (cut-lvar arg) - (setq did-something t))) - (when did-something - (reoptimize-node node fun-name)) - did-something)))) - (cut-lvar (lvar &aux did-something) - (do-uses (node lvar) - (when (cut-node node) - (setq did-something t))) - did-something)) - (cut-lvar lvar))) + (let ((type (specifier-type (if (zerop width) + '(eql 0) + `(,(ecase class (:unsigned 'unsigned-byte) + (:signed 'signed-byte)) + ,width))))) + (labels ((reoptimize-node (node name) + (setf (node-derived-type node) + (fun-type-returns + (info :function :type name))) + (setf (lvar-%derived-type (node-lvar node)) nil) + (setf (node-reoptimize node) t) + (setf (block-reoptimize (node-block node)) t) + (reoptimize-component (node-component node) :maybe)) + (cut-node (node &aux did-something) + (when (and (not (block-delete-p (node-block node))) + (combination-p node) + (eq (basic-combination-kind node) :known)) + (let* ((fun-ref (lvar-use (combination-fun node))) + (fun-name (leaf-source-name (ref-leaf fun-ref))) + (modular-fun (find-modular-version fun-name class width))) + (when (and modular-fun + (not (and (eq fun-name 'logand) + (csubtypep + (single-value-type (node-derived-type node)) + type)))) + (binding* ((name (etypecase modular-fun + ((eql :good) fun-name) + (modular-fun-info + (modular-fun-info-name modular-fun)) + (function + (funcall modular-fun node width))) + :exit-if-null)) + (unless (eql modular-fun :good) + (setq did-something t) + (change-ref-leaf + fun-ref + (find-free-fun name "in a strange place")) + (setf (combination-kind node) :full)) + (unless (functionp modular-fun) + (dolist (arg (basic-combination-args node)) + (when (cut-lvar arg) + (setq did-something t)))) + (when did-something + (reoptimize-node node name)) + did-something))))) + (cut-lvar (lvar &aux did-something) + (do-uses (node lvar) + (when (cut-node node) + (setq did-something t))) + did-something)) + (cut-lvar lvar)))) (defoptimizer (logand optimizer) ((x y) node) (let ((result-type (single-value-type (node-derived-type node)))) @@ -2535,10 +2670,24 @@ (>= low 0)) (let ((width (integer-length high))) (when (some (lambda (x) (<= width x)) - *modular-funs-widths*) + (modular-class-widths *unsigned-modular-class*)) ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH). - (cut-to-width x width) - (cut-to-width y width) + (cut-to-width x :unsigned width) + (cut-to-width y :unsigned width) + nil ; After fixing above, replace with T. + ))))))) + +(defoptimizer (mask-signed-field optimizer) ((width x) node) + (let ((result-type (single-value-type (node-derived-type node)))) + (when (numeric-type-p result-type) + (let ((low (numeric-type-low result-type)) + (high (numeric-type-high result-type))) + (when (and (numberp low) (numberp high)) + (let ((width (max (integer-length high) (integer-length low)))) + (when (some (lambda (x) (<= width x)) + (modular-class-widths *signed-modular-class*)) + ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH). + (cut-to-width x :signed width) nil ; After fixing above, replace with T. ))))))) @@ -2564,22 +2713,22 @@ (give-up-ir1-transform "BOOLE code is not a constant.")) (let ((control (lvar-value op))) (case control - (#.boole-clr 0) - (#.boole-set -1) - (#.boole-1 'x) - (#.boole-2 'y) - (#.boole-c1 '(lognot x)) - (#.boole-c2 '(lognot y)) - (#.boole-and '(logand x y)) - (#.boole-ior '(logior x y)) - (#.boole-xor '(logxor x y)) - (#.boole-eqv '(logeqv x y)) - (#.boole-nand '(lognand x y)) - (#.boole-nor '(lognor x y)) - (#.boole-andc1 '(logandc1 x y)) - (#.boole-andc2 '(logandc2 x y)) - (#.boole-orc1 '(logorc1 x y)) - (#.boole-orc2 '(logorc2 x y)) + (#.sb!xc:boole-clr 0) + (#.sb!xc:boole-set -1) + (#.sb!xc:boole-1 'x) + (#.sb!xc:boole-2 'y) + (#.sb!xc:boole-c1 '(lognot x)) + (#.sb!xc:boole-c2 '(lognot y)) + (#.sb!xc:boole-and '(logand x y)) + (#.sb!xc:boole-ior '(logior x y)) + (#.sb!xc:boole-xor '(logxor x y)) + (#.sb!xc:boole-eqv '(logeqv x y)) + (#.sb!xc:boole-nand '(lognand x y)) + (#.sb!xc:boole-nor '(lognor x y)) + (#.sb!xc:boole-andc1 '(logandc1 x y)) + (#.sb!xc:boole-andc2 '(logandc2 x y)) + (#.sb!xc:boole-orc1 '(logorc1 x y)) + (#.sb!xc:boole-orc2 '(logorc2 x y)) (t (abort-ir1-transform "~S is an illegal control arg to BOOLE." control))))) @@ -2594,7 +2743,7 @@ (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (if (minusp y) `(- (ash x ,len)) @@ -2609,7 +2758,7 @@ (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((shift (- len)) (mask (1- y-abs)) @@ -2635,7 +2784,7 @@ (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((mask (1- y-abs))) (if (minusp y) @@ -2650,7 +2799,7 @@ (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let* ((shift (- len)) (mask (1- y-abs))) @@ -2660,7 +2809,7 @@ `(- (ash (- x) ,shift))) (- (logand (- x) ,mask))) (values ,(if (minusp y) - `(- (ash (- x) ,shift)) + `(ash (- ,mask x) ,shift) `(ash x ,shift)) (logand x ,mask)))))) @@ -2672,7 +2821,7 @@ (let* ((y (lvar-value y)) (y-abs (abs y)) (len (1- (integer-length y-abs)))) - (unless (= y-abs (ash 1 len)) + (unless (and (> y-abs 0) (= y-abs (ash 1 len))) (give-up-ir1-transform)) (let ((mask (1- y-abs))) `(if (minusp x) @@ -2706,6 +2855,13 @@ (give-up-ir1-transform)) 'x)) +(deftransform mask-signed-field ((size x) ((constant-arg t) *) *) + "fold identity operation" + (let ((size (lvar-value size))) + (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size))) + (give-up-ir1-transform)) + 'x)) + ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and ;;; (* 0 -4.0) is -0.0. (deftransform - ((x y) ((constant-arg (member 0)) rational) *) @@ -2852,21 +3008,31 @@ (or (zerop sum) (when (eql sum #x20) (let ((sum (+ ac bc))) - (and (> sum 161) (< sum 213))))))) + (or (and (> sum 161) (< sum 213)) + (and (> sum 415) (< sum 461)) + (and (> sum 463) (< sum 477)))))))) (deftransform char-upcase ((x) (base-char)) "open code" '(let ((n-code (char-code x))) - (if (and (> n-code #o140) ; Octal 141 is #\a. - (< n-code #o173)) ; Octal 172 is #\z. + (if (or (and (> n-code #o140) ; Octal 141 is #\a. + (< n-code #o173)) ; Octal 172 is #\z. + (and (> n-code #o337) + (< n-code #o367)) + (and (> n-code #o367) + (< n-code #o377))) (code-char (logxor #x20 n-code)) x))) (deftransform char-downcase ((x) (base-char)) "open code" '(let ((n-code (char-code x))) - (if (and (> n-code 64) ; 65 is #\A. - (< n-code 91)) ; 90 is #\Z. + (if (or (and (> n-code 64) ; 65 is #\A. + (< n-code 91)) ; 90 is #\Z. + (and (> n-code 191) + (< n-code 215)) + (and (> n-code 215) + (< n-code 223))) (code-char (logxor #x20 n-code)) x))) @@ -2889,21 +3055,18 @@ ;;; then the result is definitely false. (deftransform simple-equality-transform ((x y) * * :defun-only t) - (cond ((same-leaf-ref-p x y) - t) - ((not (types-equal-or-intersect (lvar-type x) - (lvar-type y))) + (cond + ((same-leaf-ref-p x y) t) + ((not (types-equal-or-intersect (lvar-type x) (lvar-type y))) nil) - (t - (give-up-ir1-transform)))) + (t (give-up-ir1-transform)))) (macrolet ((def (x) `(%deftransform ',x '(function * *) #'simple-equality-transform))) (def eq) - (def char=) - (def equal)) + (def char=)) -;;; This is similar to SIMPLE-EQUALITY-PREDICATE, except that we also +;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also ;;; try to convert to a type-specific predicate or EQ: ;;; -- If both args are characters, convert to CHAR=. This is better than ;;; just converting to EQ, since CHAR= may have special compilation @@ -2922,8 +3085,8 @@ (y-type (lvar-type y)) (char-type (specifier-type 'character)) (number-type (specifier-type 'number))) - (cond ((same-leaf-ref-p x y) - t) + (cond + ((same-leaf-ref-p x y) t) ((not (types-equal-or-intersect x-type y-type)) nil) ((and (csubtypep x-type char-type) @@ -2940,6 +3103,25 @@ (t (give-up-ir1-transform))))) +;;; similarly to the EQL transform above, we attempt to constant-fold +;;; or convert to a simpler predicate: mostly we have to be careful +;;; with strings. +(deftransform equal ((x y) * *) + "convert to simpler equality predicate" + (let ((x-type (lvar-type x)) + (y-type (lvar-type y)) + (string-type (specifier-type 'string))) + (cond + ((same-leaf-ref-p x y) t) + ((and (csubtypep x-type string-type) + (csubtypep y-type string-type)) + '(string= x y)) + ((and (or (not (types-equal-or-intersect x-type string-type)) + (not (types-equal-or-intersect y-type string-type))) + (not (types-equal-or-intersect x-type y-type))) + nil) + (t (give-up-ir1-transform))))) + ;;; Convert to EQL if both args are rational and complexp is specified ;;; and the same for both. (deftransform = ((x y) * *) @@ -3128,13 +3310,13 @@ (if (null rest) `(values (the real ,arg0)) `(let ((maxrest (max ,@rest))) - (if (> ,arg0 maxrest) ,arg0 maxrest))))) + (if (>= ,arg0 maxrest) ,arg0 maxrest))))) (define-source-transform min (arg0 &rest rest) (once-only ((arg0 arg0)) (if (null rest) `(values (the real ,arg0)) `(let ((minrest (min ,@rest))) - (if (< ,arg0 minrest) ,arg0 minrest))))) + (if (<= ,arg0 minrest) ,arg0 minrest))))) ;;;; converting N-arg arithmetic functions ;;;; @@ -3237,12 +3419,6 @@ ;;; for compile-time argument count checking. ;;; -;;; FIXME I: this is currently called from DEFTRANSFORMs, the vast -;;; majority of which are not going to transform the code, but instead -;;; are going to GIVE-UP-IR1-TRANSFORM unconditionally. It would be -;;; nice to make this explicit, maybe by implementing a new -;;; "optimizer" (say, DEFOPTIMIZER CONSISTENCY-CHECK). -;;; ;;; FIXME II: In some cases, type information could be correlated; for ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type ;;; of a corresponding argument is known and does not intersect the @@ -3259,18 +3435,15 @@ (let ((nargs (length args))) (cond ((< nargs min) - (compiler-warn "Too few arguments (~D) to ~S ~S: ~ - requires at least ~D." - nargs fun string min)) + (warn 'format-too-few-args-warning + :format-control + "Too few arguments (~D) to ~S ~S: requires at least ~D." + :format-arguments (list nargs fun string min))) ((> nargs max) - (;; to get warned about probably bogus code at - ;; cross-compile time. - #+sb-xc-host compiler-warn - ;; ANSI saith that too many arguments doesn't cause a - ;; run-time error. - #-sb-xc-host compiler-style-warn - "Too many arguments (~D) to ~S ~S: uses at most ~D." - nargs fun string max))))))) + (warn 'format-too-many-args-warning + :format-control + "Too many arguments (~D) to ~S ~S: uses at most ~D." + :format-arguments (list nargs fun string max)))))))) (defoptimizer (format optimizer) ((dest control &rest args)) (when (constant-lvar-p control) @@ -3343,18 +3516,19 @@ (let ((nargs (length args))) (cond ((< nargs (min min1 min2)) - (compiler-warn "Too few arguments (~D) to ~S ~S ~S: ~ - requires at least ~D." - nargs 'cerror y x (min min1 min2))) + (warn 'format-too-few-args-warning + :format-control + "Too few arguments (~D) to ~S ~S ~S: ~ + requires at least ~D." + :format-arguments + (list nargs 'cerror y x (min min1 min2)))) ((> nargs (max max1 max2)) - (;; to get warned about probably bogus code at - ;; cross-compile time. - #+sb-xc-host compiler-warn - ;; ANSI saith that too many arguments doesn't cause a - ;; run-time error. - #-sb-xc-host compiler-style-warn - "Too many arguments (~D) to ~S ~S ~S: uses at most ~D." - nargs 'cerror y x (max max1 max2))))))))))))) + (warn 'format-too-many-args-warning + :format-control + "Too many arguments (~D) to ~S ~S ~S: ~ + uses at most ~D." + :format-arguments + (list nargs 'cerror y x (max max1 max2)))))))))))))) (defoptimizer (coerce derive-type) ((value type)) (cond @@ -3535,7 +3709,17 @@ (t *universal-type*))))) +;;; Like CMU CL, we use HEAPSORT. However, other than that, this code +;;; isn't really related to the CMU CL code, since instead of trying +;;; to generalize the CMU CL code to allow START and END values, this +;;; code has been written from scratch following Chapter 7 of +;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir. (define-source-transform sb!impl::sort-vector (vector start end predicate key) + ;; Like CMU CL, we use HEAPSORT. However, other than that, this code + ;; isn't really related to the CMU CL code, since instead of trying + ;; to generalize the CMU CL code to allow START and END values, this + ;; code has been written from scratch following Chapter 7 of + ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir. `(macrolet ((%index (x) `(truly-the index ,x)) (%parent (i) `(ash ,i -1)) (%left (i) `(%index (ash ,i 1))) @@ -3569,15 +3753,16 @@ (%elt largest) i-elt i largest))))))))) (%sort-vector (keyfun &optional (vtype 'vector)) - `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had trouble getting - ;; type inference to propagate all the way - ;; through this tangled mess of - ;; inlining. The TRULY-THE here works - ;; around that. -- WHN + `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had + ;; trouble getting type inference to + ;; propagate all the way through this + ;; tangled mess of inlining. The TRULY-THE + ;; here works around that. -- WHN (%elt (i) `(aref (truly-the ,',vtype ,',',vector) (%index (+ (%index ,i) start-1))))) - (let ((start-1 (1- ,',start)) ; Heaps prefer 1-based addressing. + (let (;; Heaps prefer 1-based addressing. + (start-1 (1- ,',start)) (current-heap-size (- ,',end ,',start)) (keyfun ,keyfun)) (declare (type (integer -1 #.(1- most-positive-fixnum))