X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=tests%2Farith.pure.lisp;h=d257edca253595c0aae4d9bfa346af9e0ccaa52c;hb=1cba0af01f5107ab384d0d8b94b1f6330b3d0ef4;hp=5a6ca2f60a8870d9c9cd4ddad70f64b98f1fa28c;hpb=8466309b55b6d28e0b850384362d255b969fceef;p=sbcl.git diff --git a/tests/arith.pure.lisp b/tests/arith.pure.lisp index 5a6ca2f..d257edc 100644 --- a/tests/arith.pure.lisp +++ b/tests/arith.pure.lisp @@ -151,11 +151,11 @@ ((1+ most-positive-fixnum) (1+ most-positive-fixnum) nil) ((1+ most-positive-fixnum) (1- most-negative-fixnum) t) (1 (ash most-negative-fixnum 1) nil) - (#.(- sb-vm:n-word-bits sb-vm:n-lowtag-bits) most-negative-fixnum t) - (#.(1+ (- sb-vm:n-word-bits sb-vm:n-lowtag-bits)) (ash most-negative-fixnum 1) t) - (#.(+ 2 (- sb-vm:n-word-bits sb-vm:n-lowtag-bits)) (ash most-negative-fixnum 1) t) - (#.(+ sb-vm:n-word-bits 32) (ash most-negative-fixnum #.(+ 32 sb-vm:n-lowtag-bits 1)) nil) - (#.(+ sb-vm:n-word-bits 33) (ash most-negative-fixnum #.(+ 32 sb-vm:n-lowtag-bits 1)) t))) + (#.(- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1) most-negative-fixnum t) + (#.(1+ (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t) + (#.(+ 2 (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t) + (#.(+ sb-vm:n-word-bits 32) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) nil) + (#.(+ sb-vm:n-word-bits 33) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) t))) (destructuring-bind (index int result) x (assert (eq (eval `(logbitp ,index ,int)) result)))) @@ -339,19 +339,27 @@ (test-op (op) (let ((ub `(unsigned-byte ,sb-vm:n-word-bits)) (sb `(signed-byte ,sb-vm:n-word-bits))) - (loop for (x y type) in `((2 1 fixnum) - (2 1 ,ub) - (2 1 ,sb) - (,(1+ (ash 1 28)) ,(1- (ash 1 28)) fixnum) - (,(+ 3 (ash 1 30)) ,(+ 2 (ash 1 30)) ,ub) - (,(- -2 (ash 1 29)) ,(- 3 (ash 1 29)) ,sb) - ,@(when (> sb-vm:n-word-bits 32) - `((,(1+ (ash 1 29)) ,(1- (ash 1 29)) fixnum) - (,(1+ (ash 1 31)) ,(1- (ash 1 31)) ,ub) - (,(- -2 (ash 1 31)) ,(- 3 (ash 1 30)) ,sb) - (,(ash 1 40) ,(ash 1 39) fixnum) - (,(ash 1 40) ,(ash 1 39) ,ub) - (,(ash 1 40) ,(ash 1 39) ,sb)))) + (loop for (x y type) + in `((2 1 fixnum) + (2 1 ,ub) + (2 1 ,sb) + (,(1+ (ash 1 28)) ,(1- (ash 1 28)) fixnum) + (,(+ 3 (ash 1 30)) ,(+ 2 (ash 1 30)) ,ub) + (,(- -2 (ash 1 29)) ,(- 3 (ash 1 29)) ,sb) + ,@(when (> sb-vm:n-word-bits 32) + `((,(1+ (ash 1 29)) ,(1- (ash 1 29)) fixnum) + (,(1+ (ash 1 31)) ,(1- (ash 1 31)) ,ub) + (,(- -2 (ash 1 31)) ,(- 3 (ash 1 30)) ,sb) + (,(ash 1 40) ,(ash 1 39) fixnum) + (,(ash 1 40) ,(ash 1 39) ,ub) + (,(ash 1 40) ,(ash 1 39) ,sb))) + ;; fixnums that can be represented as 32-bit + ;; sign-extended immediates on x86-64 + ,@(when (and (> sb-vm:n-word-bits 32) + (< sb-vm:n-fixnum-tag-bits 3)) + `((,(1+ (ash 1 (- 31 sb-vm:n-fixnum-tag-bits))) + ,(1- (ash 1 (- 32 sb-vm:n-fixnum-tag-bits))) + fixnum)))) do (test-case op x y type) (test-case op x x type))))) @@ -363,8 +371,12 @@ ;; GCD used to sometimes return negative values. The following did, on 32 bit ;; builds. (with-test (:name :gcd) + ;; from lp#413680 (assert (plusp (gcd 20286123923750474264166990598656 - 680564733841876926926749214863536422912)))) + 680564733841876926926749214863536422912))) + ;; from lp#516750 + (assert (plusp (gcd 2596102012663483082521318626691873 + 2596148429267413814265248164610048)))) (with-test (:name :expt-zero-zero) ;; Check that (expt 0.0 0.0) and (expt 0 0.0) signal error, but (expt 0.0 0) @@ -399,8 +411,246 @@ (apply fast call-args) (division-by-zero () :div0))) (slow-result (handler-case - (apply fast call-args) + (apply slow call-args) (division-by-zero () :div0)))) (if (eql fast-result slow-result) (print (list :ok `(,op ,@args) :=> fast-result)) (error "oops: ~S, ~S" args call-args))))))))))) + +;;; (TRUNCATE ) is optimized +;;; to use multiplication instead of division. This propagates to FLOOR, +;;; MOD and REM. Test that the transform is indeed triggered and test +;;; several cases for correct results. +(with-test (:name (:integer-division-using-multiplication :used) + :skipped-on '(not (or :x86-64 :x86))) + (dolist (fun '(truncate floor ceiling mod rem)) + (let* ((foo (compile nil `(lambda (x) + (declare (optimize (speed 3) + (space 1) + (compilation-speed 0)) + (type (unsigned-byte + ,sb-vm:n-word-bits) x)) + (,fun x 9)))) + (disassembly (with-output-to-string (s) + (disassemble foo :stream s)))) + ;; KLUDGE copied from test :float-division-using-exact-reciprocal + ;; in compiler.pure.lisp. + (assert (and (not (search "DIV" disassembly)) + (search "MUL" disassembly)))))) + +(with-test (:name (:integer-division-using-multiplication :correctness)) + (let ((*random-state* (make-random-state t))) + (dolist (dividend-type `((unsigned-byte ,sb-vm:n-word-bits) + (and fixnum unsigned-byte) + (integer 10000 10100))) + (dolist (divisor `(;; Some special cases from the paper + 7 10 14 641 274177 + ;; Range extremes + 3 + ,most-positive-fixnum + ,(1- (expt 2 sb-vm:n-word-bits)) + ;; Some random values + ,@(loop for i from 8 to sb-vm:n-word-bits + for r = (random (expt 2 i)) + ;; We don't want 0, 1 and powers of 2. + when (not (zerop (logand r (1- r)))) + collect r))) + (dolist (fun '(truncate ceiling floor mod rem)) + (let ((foo (compile nil `(lambda (x) + (declare (optimize (speed 3) + (space 1) + (compilation-speed 0)) + (type ,dividend-type x)) + (,fun x ,divisor))))) + (dolist (dividend `(0 1 ,most-positive-fixnum + ,(1- divisor) ,divisor + ,(1- (* divisor 2)) ,(* divisor 2) + ,@(loop repeat 4 + collect (+ 10000 (random 101))) + ,@(loop for i from 4 to sb-vm:n-word-bits + for pow = (expt 2 (1- i)) + for r = (+ pow (random pow)) + collect r))) + (when (typep dividend dividend-type) + (multiple-value-bind (q1 r1) + (funcall foo dividend) + (multiple-value-bind (q2 r2) + (funcall fun dividend divisor) + (unless (and (= q1 q2) + (eql r1 r2)) + (error "bad results for ~s with dividend type ~s" + (list fun dividend divisor) + dividend-type)))))))))))) + +;; The fast path for logbitp underestimated sb!vm:n-positive-fixnum-bits +;; for > 61 bit fixnums. +(with-test (:name :logbitp-wide-fixnum) + (assert (not (logbitp (1- (integer-length most-positive-fixnum)) + most-negative-fixnum)))) + +;; EXPT dispatches in a complicated way on the types of its arguments. +;; Check that all possible combinations are covered. +(with-test (:name (:expt :argument-type-combinations)) + (let ((numbers '(2 ; fixnum + 3/5 ; ratio + 1.2f0 ; single-float + 2.0d0 ; double-float + #c(3/5 1/7) ; complex rational + #c(1.2f0 1.3f0) ; complex single-float + #c(2.0d0 3.0d0))) ; complex double-float + (bignum (expt 2 64)) + results) + (dolist (base (cons bignum numbers)) + (dolist (power numbers) + (format t "(expt ~s ~s) => " base power) + (let ((result (expt base power))) + (format t "~s~%" result) + (push result results)))) + (assert (every #'numberp results)))) + +(with-test (:name :bug-741564) + ;; The bug was that in (expt <(complex double-float)>) the + ;; calculation was partially done only to single-float precision, + ;; making the complex double-float result too unprecise. Some other + ;; combinations of argument types were affected, too; test that all + ;; of them are good to double-float precision. + (labels ((nearly-equal-p (x y) + "Are the arguments equal to nearly double-float precision?" + (declare (type double-float x y)) + (< (/ (abs (- x y)) (abs y)) + (* double-float-epsilon 4))) ; Differences in the two least + ; significant mantissa bits + ; are OK. + (test-complex (x y) + (and (nearly-equal-p (realpart x) (realpart y)) + (nearly-equal-p (imagpart x) (imagpart y)))) + (print-result (msg base power got expected) + (format t "~a (expt ~s ~s)~%got ~s~%expected ~s~%" + msg base power got expected))) + (let ((n-broken 0)) + (flet ((test (base power coerce-to-type) + (let* ((got (expt base power)) + (expected (expt (coerce base coerce-to-type) power)) + (result (test-complex got expected))) + (print-result (if result "Good:" "Bad:") + base power got expected) + (unless result + (incf n-broken))))) + (dolist (base (list 2 ; fixnum + (expt 2 64) ; bignum + 3/5 ; ratio + 2.0f0)) ; single-float + (let ((power #c(-2.5d0 -4.5d0))) ; complex double-float + (test base power 'double-float))) + (dolist (base (list #c(2.0f0 3.0f0) ; complex single-float + #c(2 3) ; complex fixnum + (complex (expt 2 64) (expt 2 65)) + ; complex bignum + #c(3/5 1/7))) ; complex ratio + (dolist (power (list #c(-2.5d0 -4.5d0) ; complex double-float + -2.5d0)) ; double-float + (test base power '(complex double-float))))) + (when (> n-broken 0) + (error "Number of broken combinations: ~a" n-broken))))) + +(with-test (:name (:ldb :rlwinm :ppc)) + (let ((one (compile nil '(lambda (a) (ldb (byte 9 27) a)))) + (two (compile nil '(lambda (a) + (declare (type (integer -3 57216651) a)) + (ldb (byte 9 27) a))))) + (assert (= 0 (- (funcall one 10) (funcall two 10)))))) + +;; The ISQRT implementation is sufficiently complicated that it should +;; be tested. +(with-test (:name :isqrt) + (labels ((test (x) + (let* ((r (isqrt x)) + (r2 (expt r 2)) + (s2 (expt (1+ r) 2))) + (unless (and (<= r2 x) + (> s2 x)) + (error "isqrt failure for ~a" x)))) + (tests (x) + (test x) + (let ((x2 (expt x 2))) + (test x2) + (test (1+ x2)) + (test (1- x2))))) + (test most-positive-fixnum) + (test (1+ most-positive-fixnum)) + (loop for i from 1 to 200 + for pow = (expt 2 (1- i)) + for j = (+ pow (random pow)) + do + (tests i) + (tests j)) + (dotimes (i 10) + (tests (random (expt 2 (+ 1000 (random 10000)))))))) + +;; bug 1026634 (reported by Eric Marsden on sbcl-devel) +(with-test (:name :recursive-cut-to-width) + (assert (eql (funcall + (compile nil + `(lambda (x) + (declare (optimize (space 3)) + (type (integer 12417236377505266230 + 12417274239874990070) x)) + (logand 8459622733968096971 x))) + 12417237222845306758) + 2612793697039849090))) + +;; Also reported by Eric Marsden on sbcl-devel (2013-06-06) +(with-test (:name :more-recursive-cut-to-width) + (assert (eql (funcall + (compile nil `(lambda (a b) + (declare (optimize (speed 2) (safety 0))) + (logand (the (eql 16779072918521075607) a) + (the (integer 21371810342718833225 21371810343571293860) b)))) + 16779072918521075607 21371810342718833263) + 2923729245085762055))) + +(with-test (:name :complicated-logand-identity) + (loop for k from -8 upto 8 do + (loop for min from -16 upto 16 do + (loop for max from min upto 16 do + (let ((f (compile nil `(lambda (x) + (declare (type (integer ,min ,max) x)) + (logand x ,k))))) + (loop for x from min upto max do + (assert (eql (logand x k) (funcall f x))))))))) + +(with-test (:name :complicated-logior-identity) + (loop for k from -8 upto 8 do + (loop for min from -16 upto 16 do + (loop for max from min upto 16 do + (let ((f (compile nil `(lambda (x) + (declare (type (integer ,min ,max) x)) + (logior x ,k))))) + (loop for x from min upto max do + (assert (eql (logior x k) (funcall f x))))))))) + +(with-test (:name :ldb-negative-index-no-error) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (ldb (byte x y) 100))) + -1 -2))) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (mask-field (byte x y) 100))) + -1 -2))) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (dpb 0 (byte x y) 100))) + -1 -2))) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (deposit-field 0 (byte x y) 100))) + -1 -2))))