X-Git-Url: http://repo.macrolet.net/gitweb/?a=blobdiff_plain;f=tests%2Farith.pure.lisp;h=d257edca253595c0aae4d9bfa346af9e0ccaa52c;hb=d7875c296a4988e9f27e2776237884deb1984c62;hp=e2b5e4cad78f4d756970d83979949db18655cfe6;hpb=6e73f7320651975ce7cd8e72e2334041b7e80df1;p=sbcl.git diff --git a/tests/arith.pure.lisp b/tests/arith.pure.lisp index e2b5e4c..d257edc 100644 --- a/tests/arith.pure.lisp +++ b/tests/arith.pure.lisp @@ -6,7 +6,7 @@ ;;;; While most of SBCL is derived from the CMU CL system, the test ;;;; files (like this one) were written from scratch after the fork ;;;; from CMU CL. -;;;; +;;;; ;;;; This software is in the public domain and is provided with ;;;; absolutely no warranty. See the COPYING and CREDITS files for ;;;; more information. @@ -18,13 +18,13 @@ ;;; unlikely that anything with such fundamental arithmetic errors as ;;; these are going to get this far, it's probably worth checking. (macrolet ((test (op res1 res2) - `(progn - (assert (= (,op 4 2) ,res1)) - (assert (= (,op 2 4) ,res2)) - (assert (= (funcall (compile nil (lambda (x y) (,op x y))) 4 2) - ,res1)) - (assert (= (funcall (compile nil (lambda (x y) (,op x y))) 2 4) - ,res2))))) + `(progn + (assert (= (,op 4 2) ,res1)) + (assert (= (,op 2 4) ,res2)) + (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 4 2) + ,res1)) + (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 2 4) + ,res2))))) (test + 6 6) (test - 2 -2) (test * 8 8) @@ -34,12 +34,8 @@ ;;; In a bug reported by Wolfhard Buss on cmucl-imp 2002-06-18 (BUG ;;; 184), sbcl didn't catch all divisions by zero, notably divisions ;;; of bignums and ratios by 0. Fixed in sbcl-0.7.6.13. -(macrolet ((test (form) `(multiple-value-bind (val cond) - (ignore-errors ,form) - (assert (null val)) - (assert (typep cond 'division-by-zero))))) - (test (/ 2/3 0)) - (test (/ (1+ most-positive-fixnum) 0))) +(assert (raises-error? (/ 2/3 0) division-by-zero)) +(assert (raises-error? (/ (1+ most-positive-fixnum) 0) division-by-zero)) ;;; In a bug reported by Raymond Toy on cmucl-imp 2002-07-18, (COERCE ;;; '(COMPLEX FLOAT)) was failing to return a complex @@ -48,15 +44,20 @@ (assert (= (coerce 1/2 '(complex float)) #c(0.5 0.0))) (assert (= (coerce 1.0d0 '(complex float)) #c(1.0d0 0.0d0))) +;;; (COERCE #c( ) '(complex float)) resulted in +;;; an error up to 0.8.17.31 +(assert (= (coerce #c(1 2) '(complex float)) #c(1.0 2.0))) + +;;; COERCE also sometimes failed to verify that a particular coercion +;;; was possible (in particular coercing rationals to bounded float +;;; types. +(assert (raises-error? (coerce 1 '(float 2.0 3.0)) type-error)) +(assert (raises-error? (coerce 1 '(single-float -1.0 0.0)) type-error)) +(assert (eql (coerce 1 '(single-float -1.0 2.0)) 1.0)) + ;;; ANSI says MIN and MAX should signal TYPE-ERROR if any argument ;;; isn't REAL. SBCL 0.7.7 didn't in the 1-arg case. (reported as a ;;; bug in CMU CL on #lisp IRC by lrasinen 2002-09-01) -#|| - -FIXME: These tests would be good to have. But although, in -sbcl-0.7.7.2x, (NULL (IGNORE-ERRORS (MIN 1 #(1 2 3)))) returns T, the -ASSERTion fails, probably in something related to bug #194. - (assert (null (ignore-errors (min '(1 2 3))))) (assert (= (min -1) -1)) (assert (null (ignore-errors (min 1 #(1 2 3))))) @@ -69,4 +70,587 @@ ASSERTion fails, probably in something related to bug #194. (assert (= (max -1 10.0) 10.0)) (assert (null (ignore-errors (max 3 #'max)))) (assert (= (max -3 0) 0)) -||# + +;;; (CEILING x 2^k) was optimized incorrectly +(loop for divisor in '(-4 4) + for ceiler = (compile nil `(lambda (x) + (declare (fixnum x)) + (declare (optimize (speed 3))) + (ceiling x ,divisor))) + do (loop for i from -5 to 5 + for exact-q = (/ i divisor) + do (multiple-value-bind (q r) + (funcall ceiler i) + (assert (= (+ (* q divisor) r) i)) + (assert (<= exact-q q)) + (assert (< q (1+ exact-q)))))) + +;;; (TRUNCATE x 2^k) was optimized incorrectly +(loop for divisor in '(-4 4) + for truncater = (compile nil `(lambda (x) + (declare (fixnum x)) + (declare (optimize (speed 3))) + (truncate x ,divisor))) + do (loop for i from -9 to 9 + for exact-q = (/ i divisor) + do (multiple-value-bind (q r) + (funcall truncater i) + (assert (= (+ (* q divisor) r) i)) + (assert (<= (abs q) (abs exact-q))) + (assert (< (abs exact-q) (1+ (abs q))))))) + +;;; CEILING had a corner case, spotted by Paul Dietz +(assert (= (ceiling most-negative-fixnum (1+ most-positive-fixnum)) -1)) + +;;; give any optimizers of constant multiplication a light testing. +;;; 100 may seem low, but (a) it caught CSR's initial errors, and (b) +;;; before checking in, CSR tested with 10000. So one hundred +;;; checkins later, we'll have doubled the coverage. +(dotimes (i 100) + (let* ((x (random most-positive-fixnum)) + (x2 (* x 2)) + (x3 (* x 3))) + (let ((fn (handler-bind ((sb-ext:compiler-note + (lambda (c) + (when (<= x3 most-positive-fixnum) + (error c))))) + (compile nil + `(lambda (y) + (declare (optimize speed) (type (integer 0 3) y)) + (* y ,x)))))) + (unless (and (= (funcall fn 0) 0) + (= (funcall fn 1) x) + (= (funcall fn 2) x2) + (= (funcall fn 3) x3)) + (error "bad results for ~D" x))))) + +;;; Bugs reported by Paul Dietz: + +;;; (GCD 0 x) must return (abs x) +(dolist (x (list -10 (* 3 most-negative-fixnum))) + (assert (= (gcd 0 x) (abs x)))) +;;; LCM returns a non-negative number +(assert (= (lcm 4 -10) 20)) +(assert (= (lcm 0 0) 0)) + +;;; PPC bignum arithmetic bug: +(multiple-value-bind (quo rem) + (truncate 291351647815394962053040658028983955 10000000000000000000000000) + (assert (= quo 29135164781)) + (assert (= rem 5394962053040658028983955))) + +;;; x86 LEA bug: +(assert (= (funcall + (compile nil '(lambda (x) (declare (bit x)) (+ x #xf0000000))) + 1) + #xf0000001)) + +;;; LOGBITP on bignums: +(dolist (x '(((1+ most-positive-fixnum) 1 nil) + ((1+ most-positive-fixnum) -1 t) + ((1+ most-positive-fixnum) (1+ most-positive-fixnum) nil) + ((1+ most-positive-fixnum) (1- most-negative-fixnum) t) + (1 (ash most-negative-fixnum 1) nil) + (#.(- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1) most-negative-fixnum t) + (#.(1+ (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t) + (#.(+ 2 (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t) + (#.(+ sb-vm:n-word-bits 32) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) nil) + (#.(+ sb-vm:n-word-bits 33) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) t))) + (destructuring-bind (index int result) x + (assert (eq (eval `(logbitp ,index ,int)) result)))) + +;;; off-by-1 type inference error for %DPB and %DEPOSIT-FIELD: +(let ((f (compile nil '(lambda (b) + (integer-length (dpb b (byte 4 28) -1005)))))) + (assert (= (funcall f 1230070) 32))) +(let ((f (compile nil '(lambda (b) + (integer-length (deposit-field b (byte 4 28) -1005)))))) + (assert (= (funcall f 1230070) 32))) + +;;; type inference leading to an internal compiler error: +(let ((f (compile nil '(lambda (x) + (declare (type fixnum x)) + (ldb (byte 0 0) x))))) + (assert (= (funcall f 1) 0)) + (assert (= (funcall f most-positive-fixnum) 0)) + (assert (= (funcall f -1) 0))) + +;;; Alpha bignum arithmetic bug: +(assert (= (* 966082078641 419216044685) 404997107848943140073085)) + +;;; Alpha smallnum arithmetic bug: +(assert (= (ash -129876 -1026) -1)) + +;;; Alpha middlenum (yes, really! Affecting numbers between 2^32 and +;;; 2^64 :) arithmetic bug +(let ((fn (compile nil '(LAMBDA (A B C D) + (DECLARE (TYPE (INTEGER -1621 -513) A) + (TYPE (INTEGER -3 34163) B) + (TYPE (INTEGER -9485132993 81272960) C) + (TYPE (INTEGER -255340814 519943) D) + (IGNORABLE A B C D) + (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1))) + (TRUNCATE C (MIN -100 4149605)))))) + (assert (= (funcall fn -1332 5864 -6963328729 -43789079) 69633287))) + +;;; Here's another fantastic Alpha backend bug: the code to load +;;; immediate 64-bit constants into a register was wrong. +(let ((fn (compile nil '(LAMBDA (A B C D) + (DECLARE (TYPE (INTEGER -3563 2733564) A) + (TYPE (INTEGER -548947 7159) B) + (TYPE (INTEGER -19 0) C) + (TYPE (INTEGER -2546009 0) D) + (IGNORABLE A B C D) + (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1))) + (CASE A + ((89 125 16) (ASH A (MIN 18 -706))) + (T (DPB -3 (BYTE 30 30) -1))))))) + (assert (= (funcall fn 1227072 -529823 -18 -792831) -2147483649))) + +;;; ASH of a negative bignum by a bignum count would erroneously +;;; return 0 prior to sbcl-0.8.4.4 +(assert (= (ash (1- most-negative-fixnum) (1- most-negative-fixnum)) -1)) + +;;; Whoops. Too much optimization in division operators for 0 +;;; divisor. +(macrolet ((frob (name) + `(let ((fn (compile nil '(lambda (x) + (declare (optimize speed) (fixnum x)) + (,name x 0))))) + (assert (raises-error? (funcall fn 1) division-by-zero))))) + (frob mod) + (frob truncate) + (frob rem) + (frob /) + (frob floor) + (frob ceiling)) + +;; Check that the logic in SB-KERNEL::BASIC-COMPARE for doing fixnum/float +;; comparisons without rationalizing the floats still gives the right anwers +;; in the edge cases (had a fencepost error). +(macrolet ((test (range type sign) + `(let (ints + floats + (start (- ,(find-symbol (format nil + "MOST-~A-EXACTLY-~A-FIXNUM" + sign type) + :sb-kernel) + ,range))) + (dotimes (i (1+ (* ,range 2))) + (let* ((x (+ start i)) + (y (coerce x ',type))) + (push x ints) + (push y floats))) + (dolist (i ints) + (dolist (f floats) + (dolist (op '(< <= = >= >)) + (unless (eq (funcall op i f) + (funcall op i (rationalize f))) + (error "(not (eq (~a ~a ~f) (~a ~a ~a)))~%" + op i f + op i (rationalize f))) + (unless (eq (funcall op f i) + (funcall op (rationalize f) i)) + (error "(not (eq (~a ~f ~a) (~a ~a ~a)))~%" + op f i + op (rationalize f) i)))))))) + (test 32 double-float negative) + (test 32 double-float positive) + (test 32 single-float negative) + (test 32 single-float positive)) + +;; x86-64 sign-extension bug found using pfdietz's random tester. +(assert (= 286142502 + (funcall (lambda () + (declare (notinline logxor)) + (min (logxor 0 0 0 286142502)))))) + +;; Small bugs in LOGCOUNT can still allow SBCL to be built and thus go +;; unnoticed, so check more thoroughly here. +(with-test (:name :logcount) + (flet ((test (x n) + (unless (= (logcount x) n) + (error "logcount failure for ~a" x)))) + ;; Test with some patterns with well known number of ones/zeroes ... + (dotimes (i 128) + (let ((x (ash 1 i))) + (test x 1) + (test (- x) i) + (test (1- x) i))) + ;; ... and with some random integers of varying length. + (flet ((test-logcount (x) + (declare (type integer x)) + (do ((result 0 (1+ result)) + (x (if (minusp x) + (lognot x) + x) + (logand x (1- x)))) + ((zerop x) result)))) + (dotimes (i 200) + (let ((x (random (ash 1 i)))) + (test x (test-logcount x)) + (test (- x) (test-logcount (- x)))))))) + +;; 1.0 had a broken ATANH on win32 +(with-test (:name :atanh) + (assert (= (atanh 0.9d0) 1.4722194895832204d0))) + +;; Test some cases of integer operations with constant arguments +(with-test (:name :constant-integers) + (labels ((test-forms (op x y header &rest forms) + (let ((val (funcall op x y))) + (dolist (form forms) + (let ((new-val (funcall (compile nil (append header form)) x y))) + (unless (eql val new-val) + (error "~S /= ~S: ~S ~S ~S~%" val new-val (append header form) x y)))))) + (test-case (op x y type) + (test-forms op x y `(lambda (x y &aux z) + (declare (type ,type x y) + (ignorable x y z) + (notinline identity) + (optimize speed (safety 0)))) + `((,op x ,y)) + `((setf z (,op x ,y)) + (identity x) + z) + `((values (,op x ,y) x)) + `((,op ,x y)) + `((setf z (,op ,x y)) + (identity y) + z) + `((values (,op ,x y) y)) + + `((identity x) + (,op x ,y)) + `((identity x) + (setf z (,op x ,y)) + (identity x) + z) + `((identity x) + (values (,op x ,y) x)) + `((identity y) + (,op ,x y)) + `((identity y) + (setf z (,op ,x y)) + (identity y) + z) + `((identity y) + (values (,op ,x y) y)))) + (test-op (op) + (let ((ub `(unsigned-byte ,sb-vm:n-word-bits)) + (sb `(signed-byte ,sb-vm:n-word-bits))) + (loop for (x y type) + in `((2 1 fixnum) + (2 1 ,ub) + (2 1 ,sb) + (,(1+ (ash 1 28)) ,(1- (ash 1 28)) fixnum) + (,(+ 3 (ash 1 30)) ,(+ 2 (ash 1 30)) ,ub) + (,(- -2 (ash 1 29)) ,(- 3 (ash 1 29)) ,sb) + ,@(when (> sb-vm:n-word-bits 32) + `((,(1+ (ash 1 29)) ,(1- (ash 1 29)) fixnum) + (,(1+ (ash 1 31)) ,(1- (ash 1 31)) ,ub) + (,(- -2 (ash 1 31)) ,(- 3 (ash 1 30)) ,sb) + (,(ash 1 40) ,(ash 1 39) fixnum) + (,(ash 1 40) ,(ash 1 39) ,ub) + (,(ash 1 40) ,(ash 1 39) ,sb))) + ;; fixnums that can be represented as 32-bit + ;; sign-extended immediates on x86-64 + ,@(when (and (> sb-vm:n-word-bits 32) + (< sb-vm:n-fixnum-tag-bits 3)) + `((,(1+ (ash 1 (- 31 sb-vm:n-fixnum-tag-bits))) + ,(1- (ash 1 (- 32 sb-vm:n-fixnum-tag-bits))) + fixnum)))) + do + (test-case op x y type) + (test-case op x x type))))) + (mapc #'test-op '(+ - * truncate + < <= = >= > + eql + eq)))) + +;; GCD used to sometimes return negative values. The following did, on 32 bit +;; builds. +(with-test (:name :gcd) + ;; from lp#413680 + (assert (plusp (gcd 20286123923750474264166990598656 + 680564733841876926926749214863536422912))) + ;; from lp#516750 + (assert (plusp (gcd 2596102012663483082521318626691873 + 2596148429267413814265248164610048)))) + +(with-test (:name :expt-zero-zero) + ;; Check that (expt 0.0 0.0) and (expt 0 0.0) signal error, but (expt 0.0 0) + ;; returns 1.0 + (assert (raises-error? (expt 0.0 0.0) sb-int:arguments-out-of-domain-error)) + (assert (raises-error? (expt 0 0.0) sb-int:arguments-out-of-domain-error)) + (assert (eql (expt 0.0 0) 1.0))) + +(with-test (:name :multiple-constant-folding) + (let ((*random-state* (make-random-state t))) + (flet ((make-args () + (let (args vars) + (loop repeat (1+ (random 12)) + do (if (zerop (random 2)) + (let ((var (gensym))) + (push var args) + (push var vars)) + (push (- (random 21) 10) args))) + (values args vars)))) + (dolist (op '(+ * logior logxor logand logeqv gcd lcm - /)) + (loop repeat 10 + do (multiple-value-bind (args vars) (make-args) + (let ((fast (compile nil `(lambda ,vars + (,op ,@args)))) + (slow (compile nil `(lambda ,vars + (declare (notinline ,op)) + (,op ,@args))))) + (loop repeat 3 + do (let* ((call-args (loop repeat (length vars) + collect (- (random 21) 10))) + (fast-result (handler-case + (apply fast call-args) + (division-by-zero () :div0))) + (slow-result (handler-case + (apply slow call-args) + (division-by-zero () :div0)))) + (if (eql fast-result slow-result) + (print (list :ok `(,op ,@args) :=> fast-result)) + (error "oops: ~S, ~S" args call-args))))))))))) + +;;; (TRUNCATE ) is optimized +;;; to use multiplication instead of division. This propagates to FLOOR, +;;; MOD and REM. Test that the transform is indeed triggered and test +;;; several cases for correct results. +(with-test (:name (:integer-division-using-multiplication :used) + :skipped-on '(not (or :x86-64 :x86))) + (dolist (fun '(truncate floor ceiling mod rem)) + (let* ((foo (compile nil `(lambda (x) + (declare (optimize (speed 3) + (space 1) + (compilation-speed 0)) + (type (unsigned-byte + ,sb-vm:n-word-bits) x)) + (,fun x 9)))) + (disassembly (with-output-to-string (s) + (disassemble foo :stream s)))) + ;; KLUDGE copied from test :float-division-using-exact-reciprocal + ;; in compiler.pure.lisp. + (assert (and (not (search "DIV" disassembly)) + (search "MUL" disassembly)))))) + +(with-test (:name (:integer-division-using-multiplication :correctness)) + (let ((*random-state* (make-random-state t))) + (dolist (dividend-type `((unsigned-byte ,sb-vm:n-word-bits) + (and fixnum unsigned-byte) + (integer 10000 10100))) + (dolist (divisor `(;; Some special cases from the paper + 7 10 14 641 274177 + ;; Range extremes + 3 + ,most-positive-fixnum + ,(1- (expt 2 sb-vm:n-word-bits)) + ;; Some random values + ,@(loop for i from 8 to sb-vm:n-word-bits + for r = (random (expt 2 i)) + ;; We don't want 0, 1 and powers of 2. + when (not (zerop (logand r (1- r)))) + collect r))) + (dolist (fun '(truncate ceiling floor mod rem)) + (let ((foo (compile nil `(lambda (x) + (declare (optimize (speed 3) + (space 1) + (compilation-speed 0)) + (type ,dividend-type x)) + (,fun x ,divisor))))) + (dolist (dividend `(0 1 ,most-positive-fixnum + ,(1- divisor) ,divisor + ,(1- (* divisor 2)) ,(* divisor 2) + ,@(loop repeat 4 + collect (+ 10000 (random 101))) + ,@(loop for i from 4 to sb-vm:n-word-bits + for pow = (expt 2 (1- i)) + for r = (+ pow (random pow)) + collect r))) + (when (typep dividend dividend-type) + (multiple-value-bind (q1 r1) + (funcall foo dividend) + (multiple-value-bind (q2 r2) + (funcall fun dividend divisor) + (unless (and (= q1 q2) + (eql r1 r2)) + (error "bad results for ~s with dividend type ~s" + (list fun dividend divisor) + dividend-type)))))))))))) + +;; The fast path for logbitp underestimated sb!vm:n-positive-fixnum-bits +;; for > 61 bit fixnums. +(with-test (:name :logbitp-wide-fixnum) + (assert (not (logbitp (1- (integer-length most-positive-fixnum)) + most-negative-fixnum)))) + +;; EXPT dispatches in a complicated way on the types of its arguments. +;; Check that all possible combinations are covered. +(with-test (:name (:expt :argument-type-combinations)) + (let ((numbers '(2 ; fixnum + 3/5 ; ratio + 1.2f0 ; single-float + 2.0d0 ; double-float + #c(3/5 1/7) ; complex rational + #c(1.2f0 1.3f0) ; complex single-float + #c(2.0d0 3.0d0))) ; complex double-float + (bignum (expt 2 64)) + results) + (dolist (base (cons bignum numbers)) + (dolist (power numbers) + (format t "(expt ~s ~s) => " base power) + (let ((result (expt base power))) + (format t "~s~%" result) + (push result results)))) + (assert (every #'numberp results)))) + +(with-test (:name :bug-741564) + ;; The bug was that in (expt <(complex double-float)>) the + ;; calculation was partially done only to single-float precision, + ;; making the complex double-float result too unprecise. Some other + ;; combinations of argument types were affected, too; test that all + ;; of them are good to double-float precision. + (labels ((nearly-equal-p (x y) + "Are the arguments equal to nearly double-float precision?" + (declare (type double-float x y)) + (< (/ (abs (- x y)) (abs y)) + (* double-float-epsilon 4))) ; Differences in the two least + ; significant mantissa bits + ; are OK. + (test-complex (x y) + (and (nearly-equal-p (realpart x) (realpart y)) + (nearly-equal-p (imagpart x) (imagpart y)))) + (print-result (msg base power got expected) + (format t "~a (expt ~s ~s)~%got ~s~%expected ~s~%" + msg base power got expected))) + (let ((n-broken 0)) + (flet ((test (base power coerce-to-type) + (let* ((got (expt base power)) + (expected (expt (coerce base coerce-to-type) power)) + (result (test-complex got expected))) + (print-result (if result "Good:" "Bad:") + base power got expected) + (unless result + (incf n-broken))))) + (dolist (base (list 2 ; fixnum + (expt 2 64) ; bignum + 3/5 ; ratio + 2.0f0)) ; single-float + (let ((power #c(-2.5d0 -4.5d0))) ; complex double-float + (test base power 'double-float))) + (dolist (base (list #c(2.0f0 3.0f0) ; complex single-float + #c(2 3) ; complex fixnum + (complex (expt 2 64) (expt 2 65)) + ; complex bignum + #c(3/5 1/7))) ; complex ratio + (dolist (power (list #c(-2.5d0 -4.5d0) ; complex double-float + -2.5d0)) ; double-float + (test base power '(complex double-float))))) + (when (> n-broken 0) + (error "Number of broken combinations: ~a" n-broken))))) + +(with-test (:name (:ldb :rlwinm :ppc)) + (let ((one (compile nil '(lambda (a) (ldb (byte 9 27) a)))) + (two (compile nil '(lambda (a) + (declare (type (integer -3 57216651) a)) + (ldb (byte 9 27) a))))) + (assert (= 0 (- (funcall one 10) (funcall two 10)))))) + +;; The ISQRT implementation is sufficiently complicated that it should +;; be tested. +(with-test (:name :isqrt) + (labels ((test (x) + (let* ((r (isqrt x)) + (r2 (expt r 2)) + (s2 (expt (1+ r) 2))) + (unless (and (<= r2 x) + (> s2 x)) + (error "isqrt failure for ~a" x)))) + (tests (x) + (test x) + (let ((x2 (expt x 2))) + (test x2) + (test (1+ x2)) + (test (1- x2))))) + (test most-positive-fixnum) + (test (1+ most-positive-fixnum)) + (loop for i from 1 to 200 + for pow = (expt 2 (1- i)) + for j = (+ pow (random pow)) + do + (tests i) + (tests j)) + (dotimes (i 10) + (tests (random (expt 2 (+ 1000 (random 10000)))))))) + +;; bug 1026634 (reported by Eric Marsden on sbcl-devel) +(with-test (:name :recursive-cut-to-width) + (assert (eql (funcall + (compile nil + `(lambda (x) + (declare (optimize (space 3)) + (type (integer 12417236377505266230 + 12417274239874990070) x)) + (logand 8459622733968096971 x))) + 12417237222845306758) + 2612793697039849090))) + +;; Also reported by Eric Marsden on sbcl-devel (2013-06-06) +(with-test (:name :more-recursive-cut-to-width) + (assert (eql (funcall + (compile nil `(lambda (a b) + (declare (optimize (speed 2) (safety 0))) + (logand (the (eql 16779072918521075607) a) + (the (integer 21371810342718833225 21371810343571293860) b)))) + 16779072918521075607 21371810342718833263) + 2923729245085762055))) + +(with-test (:name :complicated-logand-identity) + (loop for k from -8 upto 8 do + (loop for min from -16 upto 16 do + (loop for max from min upto 16 do + (let ((f (compile nil `(lambda (x) + (declare (type (integer ,min ,max) x)) + (logand x ,k))))) + (loop for x from min upto max do + (assert (eql (logand x k) (funcall f x))))))))) + +(with-test (:name :complicated-logior-identity) + (loop for k from -8 upto 8 do + (loop for min from -16 upto 16 do + (loop for max from min upto 16 do + (let ((f (compile nil `(lambda (x) + (declare (type (integer ,min ,max) x)) + (logior x ,k))))) + (loop for x from min upto max do + (assert (eql (logior x k) (funcall f x))))))))) + +(with-test (:name :ldb-negative-index-no-error) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (ldb (byte x y) 100))) + -1 -2))) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (mask-field (byte x y) 100))) + -1 -2))) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (dpb 0 (byte x y) 100))) + -1 -2))) + (assert + (raises-error? + (funcall (compile nil + `(lambda (x y) + (deposit-field 0 (byte x y) 100))) + -1 -2))))