1 ;;;; arithmetic tests with no side effects
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; While most of SBCL is derived from the CMU CL system, the test
7 ;;;; files (like this one) were written from scratch after the fork
10 ;;;; This software is in the public domain and is provided with
11 ;;;; absolutely no warranty. See the COPYING and CREDITS files for
12 ;;;; more information.
14 (cl:in-package :cl-user)
16 ;;; Once upon a time, in the process of porting CMUCL's SPARC backend
17 ;;; to SBCL, multiplications were excitingly broken. While it's
18 ;;; unlikely that anything with such fundamental arithmetic errors as
19 ;;; these are going to get this far, it's probably worth checking.
20 (macrolet ((test (op res1 res2)
22 (assert (= (,op 4 2) ,res1))
23 (assert (= (,op 2 4) ,res2))
24 (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 4 2)
26 (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 2 4)
34 ;;; In a bug reported by Wolfhard Buss on cmucl-imp 2002-06-18 (BUG
35 ;;; 184), sbcl didn't catch all divisions by zero, notably divisions
36 ;;; of bignums and ratios by 0. Fixed in sbcl-0.7.6.13.
37 (assert (raises-error? (/ 2/3 0) division-by-zero))
38 (assert (raises-error? (/ (1+ most-positive-fixnum) 0) division-by-zero))
40 ;;; In a bug reported by Raymond Toy on cmucl-imp 2002-07-18, (COERCE
41 ;;; <RATIONAL> '(COMPLEX FLOAT)) was failing to return a complex
42 ;;; float; a patch was given by Wolfhard Buss cmucl-imp 2002-07-19.
43 (assert (= (coerce 1 '(complex float)) #c(1.0 0.0)))
44 (assert (= (coerce 1/2 '(complex float)) #c(0.5 0.0)))
45 (assert (= (coerce 1.0d0 '(complex float)) #c(1.0d0 0.0d0)))
47 ;;; (COERCE #c(<RATIONAL> <RATIONAL>) '(complex float)) resulted in
48 ;;; an error up to 0.8.17.31
49 (assert (= (coerce #c(1 2) '(complex float)) #c(1.0 2.0)))
51 ;;; COERCE also sometimes failed to verify that a particular coercion
52 ;;; was possible (in particular coercing rationals to bounded float
54 (assert (raises-error? (coerce 1 '(float 2.0 3.0)) type-error))
55 (assert (raises-error? (coerce 1 '(single-float -1.0 0.0)) type-error))
56 (assert (eql (coerce 1 '(single-float -1.0 2.0)) 1.0))
58 ;;; ANSI says MIN and MAX should signal TYPE-ERROR if any argument
59 ;;; isn't REAL. SBCL 0.7.7 didn't in the 1-arg case. (reported as a
60 ;;; bug in CMU CL on #lisp IRC by lrasinen 2002-09-01)
61 (assert (null (ignore-errors (min '(1 2 3)))))
62 (assert (= (min -1) -1))
63 (assert (null (ignore-errors (min 1 #(1 2 3)))))
64 (assert (= (min 10 11) 10))
65 (assert (null (ignore-errors (min (find-package "CL") -5.0))))
66 (assert (= (min 5.0 -3) -3))
67 (assert (null (ignore-errors (max #c(4 3)))))
68 (assert (= (max 0) 0))
69 (assert (null (ignore-errors (max "MIX" 3))))
70 (assert (= (max -1 10.0) 10.0))
71 (assert (null (ignore-errors (max 3 #'max))))
72 (assert (= (max -3 0) 0))
74 ;;; (CEILING x 2^k) was optimized incorrectly
75 (loop for divisor in '(-4 4)
76 for ceiler = (compile nil `(lambda (x)
78 (declare (optimize (speed 3)))
79 (ceiling x ,divisor)))
80 do (loop for i from -5 to 5
81 for exact-q = (/ i divisor)
82 do (multiple-value-bind (q r)
84 (assert (= (+ (* q divisor) r) i))
85 (assert (<= exact-q q))
86 (assert (< q (1+ exact-q))))))
88 ;;; (TRUNCATE x 2^k) was optimized incorrectly
89 (loop for divisor in '(-4 4)
90 for truncater = (compile nil `(lambda (x)
92 (declare (optimize (speed 3)))
93 (truncate x ,divisor)))
94 do (loop for i from -9 to 9
95 for exact-q = (/ i divisor)
96 do (multiple-value-bind (q r)
98 (assert (= (+ (* q divisor) r) i))
99 (assert (<= (abs q) (abs exact-q)))
100 (assert (< (abs exact-q) (1+ (abs q)))))))
102 ;;; CEILING had a corner case, spotted by Paul Dietz
103 (assert (= (ceiling most-negative-fixnum (1+ most-positive-fixnum)) -1))
105 ;;; give any optimizers of constant multiplication a light testing.
106 ;;; 100 may seem low, but (a) it caught CSR's initial errors, and (b)
107 ;;; before checking in, CSR tested with 10000. So one hundred
108 ;;; checkins later, we'll have doubled the coverage.
110 (let* ((x (random most-positive-fixnum))
113 (let ((fn (handler-bind ((sb-ext:compiler-note
115 (when (<= x3 most-positive-fixnum)
119 (declare (optimize speed) (type (integer 0 3) y))
121 (unless (and (= (funcall fn 0) 0)
123 (= (funcall fn 2) x2)
124 (= (funcall fn 3) x3))
125 (error "bad results for ~D" x)))))
127 ;;; Bugs reported by Paul Dietz:
129 ;;; (GCD 0 x) must return (abs x)
130 (dolist (x (list -10 (* 3 most-negative-fixnum)))
131 (assert (= (gcd 0 x) (abs x))))
132 ;;; LCM returns a non-negative number
133 (assert (= (lcm 4 -10) 20))
134 (assert (= (lcm 0 0) 0))
136 ;;; PPC bignum arithmetic bug:
137 (multiple-value-bind (quo rem)
138 (truncate 291351647815394962053040658028983955 10000000000000000000000000)
139 (assert (= quo 29135164781))
140 (assert (= rem 5394962053040658028983955)))
144 (compile nil '(lambda (x) (declare (bit x)) (+ x #xf0000000)))
148 ;;; LOGBITP on bignums:
149 (dolist (x '(((1+ most-positive-fixnum) 1 nil)
150 ((1+ most-positive-fixnum) -1 t)
151 ((1+ most-positive-fixnum) (1+ most-positive-fixnum) nil)
152 ((1+ most-positive-fixnum) (1- most-negative-fixnum) t)
153 (1 (ash most-negative-fixnum 1) nil)
154 (#.(- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1) most-negative-fixnum t)
155 (#.(1+ (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t)
156 (#.(+ 2 (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t)
157 (#.(+ sb-vm:n-word-bits 32) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) nil)
158 (#.(+ sb-vm:n-word-bits 33) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) t)))
159 (destructuring-bind (index int result) x
160 (assert (eq (eval `(logbitp ,index ,int)) result))))
162 ;;; off-by-1 type inference error for %DPB and %DEPOSIT-FIELD:
163 (let ((f (compile nil '(lambda (b)
164 (integer-length (dpb b (byte 4 28) -1005))))))
165 (assert (= (funcall f 1230070) 32)))
166 (let ((f (compile nil '(lambda (b)
167 (integer-length (deposit-field b (byte 4 28) -1005))))))
168 (assert (= (funcall f 1230070) 32)))
170 ;;; type inference leading to an internal compiler error:
171 (let ((f (compile nil '(lambda (x)
172 (declare (type fixnum x))
173 (ldb (byte 0 0) x)))))
174 (assert (= (funcall f 1) 0))
175 (assert (= (funcall f most-positive-fixnum) 0))
176 (assert (= (funcall f -1) 0)))
178 ;;; Alpha bignum arithmetic bug:
179 (assert (= (* 966082078641 419216044685) 404997107848943140073085))
181 ;;; Alpha smallnum arithmetic bug:
182 (assert (= (ash -129876 -1026) -1))
184 ;;; Alpha middlenum (yes, really! Affecting numbers between 2^32 and
185 ;;; 2^64 :) arithmetic bug
186 (let ((fn (compile nil '(LAMBDA (A B C D)
187 (DECLARE (TYPE (INTEGER -1621 -513) A)
188 (TYPE (INTEGER -3 34163) B)
189 (TYPE (INTEGER -9485132993 81272960) C)
190 (TYPE (INTEGER -255340814 519943) D)
192 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
193 (TRUNCATE C (MIN -100 4149605))))))
194 (assert (= (funcall fn -1332 5864 -6963328729 -43789079) 69633287)))
196 ;;; Here's another fantastic Alpha backend bug: the code to load
197 ;;; immediate 64-bit constants into a register was wrong.
198 (let ((fn (compile nil '(LAMBDA (A B C D)
199 (DECLARE (TYPE (INTEGER -3563 2733564) A)
200 (TYPE (INTEGER -548947 7159) B)
201 (TYPE (INTEGER -19 0) C)
202 (TYPE (INTEGER -2546009 0) D)
204 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
206 ((89 125 16) (ASH A (MIN 18 -706)))
207 (T (DPB -3 (BYTE 30 30) -1)))))))
208 (assert (= (funcall fn 1227072 -529823 -18 -792831) -2147483649)))
210 ;;; ASH of a negative bignum by a bignum count would erroneously
211 ;;; return 0 prior to sbcl-0.8.4.4
212 (assert (= (ash (1- most-negative-fixnum) (1- most-negative-fixnum)) -1))
214 ;;; Whoops. Too much optimization in division operators for 0
216 (macrolet ((frob (name)
217 `(let ((fn (compile nil '(lambda (x)
218 (declare (optimize speed) (fixnum x))
220 (assert (raises-error? (funcall fn 1) division-by-zero)))))
228 ;; Check that the logic in SB-KERNEL::BASIC-COMPARE for doing fixnum/float
229 ;; comparisons without rationalizing the floats still gives the right anwers
230 ;; in the edge cases (had a fencepost error).
231 (macrolet ((test (range type sign)
234 (start (- ,(find-symbol (format nil
235 "MOST-~A-EXACTLY-~A-FIXNUM"
239 (dotimes (i (1+ (* ,range 2)))
240 (let* ((x (+ start i))
241 (y (coerce x ',type)))
246 (dolist (op '(< <= = >= >))
247 (unless (eq (funcall op i f)
248 (funcall op i (rationalize f)))
249 (error "(not (eq (~a ~a ~f) (~a ~a ~a)))~%"
251 op i (rationalize f)))
252 (unless (eq (funcall op f i)
253 (funcall op (rationalize f) i))
254 (error "(not (eq (~a ~f ~a) (~a ~a ~a)))~%"
256 op (rationalize f) i))))))))
257 (test 32 double-float negative)
258 (test 32 double-float positive)
259 (test 32 single-float negative)
260 (test 32 single-float positive))
262 ;; x86-64 sign-extension bug found using pfdietz's random tester.
265 (declare (notinline logxor))
266 (min (logxor 0 0 0 286142502))))))
268 ;; Small bugs in LOGCOUNT can still allow SBCL to be built and thus go
269 ;; unnoticed, so check more thoroughly here.
270 (with-test (:name :logcount)
272 (unless (= (logcount x) n)
273 (error "logcount failure for ~a" x))))
274 ;; Test with some patterns with well known number of ones/zeroes ...
280 ;; ... and with some random integers of varying length.
281 (flet ((test-logcount (x)
282 (declare (type integer x))
283 (do ((result 0 (1+ result))
288 ((zerop x) result))))
290 (let ((x (random (ash 1 i))))
291 (test x (test-logcount x))
292 (test (- x) (test-logcount (- x))))))))
294 ;; 1.0 had a broken ATANH on win32
295 (with-test (:name :atanh)
296 (assert (= (atanh 0.9d0) 1.4722194895832204d0)))
298 ;; Test some cases of integer operations with constant arguments
299 (with-test (:name :constant-integers)
300 (labels ((test-forms (op x y header &rest forms)
301 (let ((val (funcall op x y)))
303 (let ((new-val (funcall (compile nil (append header form)) x y)))
304 (unless (eql val new-val)
305 (error "~S /= ~S: ~S ~S ~S~%" val new-val (append header form) x y))))))
306 (test-case (op x y type)
307 (test-forms op x y `(lambda (x y &aux z)
308 (declare (type ,type x y)
311 (optimize speed (safety 0))))
313 `((setf z (,op x ,y))
316 `((values (,op x ,y) x))
318 `((setf z (,op ,x y))
321 `((values (,op ,x y) y))
330 (values (,op x ,y) x))
338 (values (,op ,x y) y))))
340 (let ((ub `(unsigned-byte ,sb-vm:n-word-bits))
341 (sb `(signed-byte ,sb-vm:n-word-bits)))
346 (,(1+ (ash 1 28)) ,(1- (ash 1 28)) fixnum)
347 (,(+ 3 (ash 1 30)) ,(+ 2 (ash 1 30)) ,ub)
348 (,(- -2 (ash 1 29)) ,(- 3 (ash 1 29)) ,sb)
349 ,@(when (> sb-vm:n-word-bits 32)
350 `((,(1+ (ash 1 29)) ,(1- (ash 1 29)) fixnum)
351 (,(1+ (ash 1 31)) ,(1- (ash 1 31)) ,ub)
352 (,(- -2 (ash 1 31)) ,(- 3 (ash 1 30)) ,sb)
353 (,(ash 1 40) ,(ash 1 39) fixnum)
354 (,(ash 1 40) ,(ash 1 39) ,ub)
355 (,(ash 1 40) ,(ash 1 39) ,sb)))
356 ;; fixnums that can be represented as 32-bit
357 ;; sign-extended immediates on x86-64
358 ,@(when (and (> sb-vm:n-word-bits 32)
359 (< sb-vm:n-fixnum-tag-bits 3))
360 `((,(1+ (ash 1 (- 31 sb-vm:n-fixnum-tag-bits)))
361 ,(1- (ash 1 (- 32 sb-vm:n-fixnum-tag-bits)))
364 (test-case op x y type)
365 (test-case op x x type)))))
366 (mapc #'test-op '(+ - * truncate
371 ;; GCD used to sometimes return negative values. The following did, on 32 bit
373 (with-test (:name :gcd)
375 (assert (plusp (gcd 20286123923750474264166990598656
376 680564733841876926926749214863536422912)))
378 (assert (plusp (gcd 2596102012663483082521318626691873
379 2596148429267413814265248164610048))))
381 (with-test (:name :expt-zero-zero)
382 ;; Check that (expt 0.0 0.0) and (expt 0 0.0) signal error, but (expt 0.0 0)
384 (assert (raises-error? (expt 0.0 0.0) sb-int:arguments-out-of-domain-error))
385 (assert (raises-error? (expt 0 0.0) sb-int:arguments-out-of-domain-error))
386 (assert (eql (expt 0.0 0) 1.0)))
388 (with-test (:name :multiple-constant-folding)
389 (let ((*random-state* (make-random-state t)))
392 (loop repeat (1+ (random 12))
393 do (if (zerop (random 2))
394 (let ((var (gensym)))
397 (push (- (random 21) 10) args)))
398 (values args vars))))
399 (dolist (op '(+ * logior logxor logand logeqv gcd lcm - /))
401 do (multiple-value-bind (args vars) (make-args)
402 (let ((fast (compile nil `(lambda ,vars
404 (slow (compile nil `(lambda ,vars
405 (declare (notinline ,op))
408 do (let* ((call-args (loop repeat (length vars)
409 collect (- (random 21) 10)))
410 (fast-result (handler-case
411 (apply fast call-args)
412 (division-by-zero () :div0)))
413 (slow-result (handler-case
414 (apply slow call-args)
415 (division-by-zero () :div0))))
416 (if (eql fast-result slow-result)
417 (print (list :ok `(,op ,@args) :=> fast-result))
418 (error "oops: ~S, ~S" args call-args)))))))))))
420 ;;; (TRUNCATE <unsigned-word> <constant unsigned-word>) is optimized
421 ;;; to use multiplication instead of division. This propagates to FLOOR,
422 ;;; MOD and REM. Test that the transform is indeed triggered and test
423 ;;; several cases for correct results.
424 (with-test (:name (:integer-division-using-multiplication :used)
425 :skipped-on '(not (or :x86-64 :x86)))
426 (dolist (fun '(truncate floor ceiling mod rem))
427 (let* ((foo (compile nil `(lambda (x)
428 (declare (optimize (speed 3)
430 (compilation-speed 0))
432 ,sb-vm:n-word-bits) x))
434 (disassembly (with-output-to-string (s)
435 (disassemble foo :stream s))))
436 ;; KLUDGE copied from test :float-division-using-exact-reciprocal
437 ;; in compiler.pure.lisp.
438 (assert (and (not (search "DIV" disassembly))
439 (search "MUL" disassembly))))))
441 (with-test (:name (:integer-division-using-multiplication :correctness))
442 (let ((*random-state* (make-random-state t)))
443 (dolist (dividend-type `((unsigned-byte ,sb-vm:n-word-bits)
444 (and fixnum unsigned-byte)
445 (integer 10000 10100)))
446 (dolist (divisor `(;; Some special cases from the paper
450 ,most-positive-fixnum
451 ,(1- (expt 2 sb-vm:n-word-bits))
452 ;; Some random values
453 ,@(loop for i from 8 to sb-vm:n-word-bits
454 for r = (random (expt 2 i))
455 ;; We don't want 0, 1 and powers of 2.
456 when (not (zerop (logand r (1- r))))
458 (dolist (fun '(truncate ceiling floor mod rem))
459 (let ((foo (compile nil `(lambda (x)
460 (declare (optimize (speed 3)
462 (compilation-speed 0))
463 (type ,dividend-type x))
464 (,fun x ,divisor)))))
465 (dolist (dividend `(0 1 ,most-positive-fixnum
466 ,(1- divisor) ,divisor
467 ,(1- (* divisor 2)) ,(* divisor 2)
469 collect (+ 10000 (random 101)))
470 ,@(loop for i from 4 to sb-vm:n-word-bits
471 for pow = (expt 2 (1- i))
472 for r = (+ pow (random pow))
474 (when (typep dividend dividend-type)
475 (multiple-value-bind (q1 r1)
476 (funcall foo dividend)
477 (multiple-value-bind (q2 r2)
478 (funcall fun dividend divisor)
479 (unless (and (= q1 q2)
481 (error "bad results for ~s with dividend type ~s"
482 (list fun dividend divisor)
483 dividend-type))))))))))))
485 ;; The fast path for logbitp underestimated sb!vm:n-positive-fixnum-bits
486 ;; for > 61 bit fixnums.
487 (with-test (:name :logbitp-wide-fixnum)
488 (assert (not (logbitp (1- (integer-length most-positive-fixnum))
489 most-negative-fixnum))))
491 ;; EXPT dispatches in a complicated way on the types of its arguments.
492 ;; Check that all possible combinations are covered.
493 (with-test (:name (:expt :argument-type-combinations))
494 (let ((numbers '(2 ; fixnum
498 #c(3/5 1/7) ; complex rational
499 #c(1.2f0 1.3f0) ; complex single-float
500 #c(2.0d0 3.0d0))) ; complex double-float
503 (dolist (base (cons bignum numbers))
504 (dolist (power numbers)
505 (format t "(expt ~s ~s) => " base power)
506 (let ((result (expt base power)))
507 (format t "~s~%" result)
508 (push result results))))
509 (assert (every #'numberp results))))
511 (with-test (:name :bug-741564)
512 ;; The bug was that in (expt <fixnum> <(complex double-float)>) the
513 ;; calculation was partially done only to single-float precision,
514 ;; making the complex double-float result too unprecise. Some other
515 ;; combinations of argument types were affected, too; test that all
516 ;; of them are good to double-float precision.
517 (labels ((nearly-equal-p (x y)
518 "Are the arguments equal to nearly double-float precision?"
519 (declare (type double-float x y))
520 (< (/ (abs (- x y)) (abs y))
521 (* double-float-epsilon 4))) ; Differences in the two least
522 ; significant mantissa bits
525 (and (nearly-equal-p (realpart x) (realpart y))
526 (nearly-equal-p (imagpart x) (imagpart y))))
527 (print-result (msg base power got expected)
528 (format t "~a (expt ~s ~s)~%got ~s~%expected ~s~%"
529 msg base power got expected)))
531 (flet ((test (base power coerce-to-type)
532 (let* ((got (expt base power))
533 (expected (expt (coerce base coerce-to-type) power))
534 (result (test-complex got expected)))
535 (print-result (if result "Good:" "Bad:")
536 base power got expected)
539 (dolist (base (list 2 ; fixnum
542 2.0f0)) ; single-float
543 (let ((power #c(-2.5d0 -4.5d0))) ; complex double-float
544 (test base power 'double-float)))
545 (dolist (base (list #c(2.0f0 3.0f0) ; complex single-float
546 #c(2 3) ; complex fixnum
547 (complex (expt 2 64) (expt 2 65))
549 #c(3/5 1/7))) ; complex ratio
550 (dolist (power (list #c(-2.5d0 -4.5d0) ; complex double-float
551 -2.5d0)) ; double-float
552 (test base power '(complex double-float)))))
554 (error "Number of broken combinations: ~a" n-broken)))))
556 (with-test (:name (:ldb :rlwinm :ppc))
557 (let ((one (compile nil '(lambda (a) (ldb (byte 9 27) a))))
558 (two (compile nil '(lambda (a)
559 (declare (type (integer -3 57216651) a))
560 (ldb (byte 9 27) a)))))
561 (assert (= 0 (- (funcall one 10) (funcall two 10))))))
563 ;; The ISQRT implementation is sufficiently complicated that it should
565 (with-test (:name :isqrt)
569 (s2 (expt (1+ r) 2)))
570 (unless (and (<= r2 x)
572 (error "isqrt failure for ~a" x))))
575 (let ((x2 (expt x 2)))
579 (loop for i from 1 to 200
580 for pow = (expt 2 (1- i))
581 for j = (+ pow (random pow))
586 (tests (random (expt 2 (+ 1000 (random 10000))))))))