e66bca33ba61da9496f6b864c1ebb1bb980d3414
[sbcl.git] / doc / compiler.sgml
1 <chapter id="compiler"><title>The Compiler</>
2
3 <para>This chapter will discuss most compiler issues other than
4 efficiency, including compiler error messages, the &SBCL compiler's
5 unusual approach to type safety in the presence of type declarations,
6 the effects of various compiler optimization policies, and the way
7 that inlining and open coding may cause optimized code to differ from
8 a naive translation. Efficiency issues are sufficiently varied and
9 separate that they have <link linkend="efficiency">their own
10 chapter</link>.</para>
11
12 <sect1><title>Error Messages</>
13 <!--INDEX {error messages}{compiler}-->
14 <!--INDEX {compiler error messages}-->
15
16 <para>The compiler supplies a large amount of source location
17 information in error messages. The error messages contain a lot of
18 detail in a terse format, so they may be confusing at first. Error
19 messages will be illustrated using this example program:
20 <programlisting>(defmacro zoq (x)
21   `(roq (ploq (+ ,x 3))))
22
23 (defun foo (y)
24   (declare (symbol y))
25   (zoq y))</programlisting>
26 The main problem with this program is that it is trying to add
27 <literal>3</> to a symbol. Note also that the functions
28 <function>roq</> and <function>ploq</> aren't defined anywhere.
29 </para>
30
31 <sect2><title>The Parts of the Error Message</>
32
33 <para>When processing this program, the compiler will produce this warning:
34 <screen>file: /tmp/foo.lisp
35
36 in: DEFUN FOO
37   (ZOQ Y)
38 --> ROQ PLOQ + 
39 ==>
40   Y
41 caught WARNING:
42   Result is a SYMBOL, not a NUMBER.</screen>
43 In this example we see each of the six possible parts of a compiler error
44 message:
45 <orderedlist>
46   <listitem><para><computeroutput>File: /tmp/foo.lisp</>
47     This is the name of the file that the compiler read the
48     relevant code from.  The file name is displayed because it
49     may not be immediately obvious when there is an
50     error during compilation of a large system, especially when
51     <function>with-compilation-unit</> is used to delay undefined
52     warnings.</para></listitem>
53   <listitem><para><computeroutput>in: DEFUN FOO</> This is the
54     definition top level form responsible for the error. It is
55     obtained by taking the first two elements of the enclosing form
56     whose first element is a symbol beginning with <quote><literal>def</></>.
57     If there is no such enclosing <quote><literal>def</></> form, then the 
58     outermost form is used.  If there are multiple <literal>def</>
59     forms, then they are all printed from the outside in, separated by
60     <literal>=></>'s.  In this example, the problem was in the
61     <function>defun</> for <function>foo</>.</para></listitem>
62   <listitem><para><computeroutput>(ZOQ Y)</> This is the
63     <emphasis>original source</> form responsible for the error.
64     Original source means that the form directly appeared in the
65     original input to the compiler, i.e. in the lambda passed to
66     <function>compile</> or in the top level form read from the
67     source file. In this example, the expansion of the <function>zoq</>
68     macro was responsible for the error.</para></listitem>
69   <listitem><para><computeroutput>--> ROQ PLOQ +</> This is the
70     <emphasis>processing path</> that the compiler used to produce
71     the errorful code.  The processing path is a representation of
72     the evaluated forms enclosing the actual source that the
73     compiler encountered when processing the original source.
74     The path is the first element of each form, or the form itself
75     if the form is not a list.  These forms result from the
76     expansion of macros or source-to-source transformation done
77     by the compiler.  In this example, the enclosing evaluated forms
78     are the calls to <function>roq</>, <function>ploq</> and
79     <function>+</>.  These calls resulted from the expansion of
80     the <function>zoq</> macro.</para></listitem>
81   <listitem><para><computeroutput>==> Y</> This is the
82     <emphasis>actual source</> responsible for the error. If
83     the actual source appears in the explanation, then
84     we print the next enclosing evaluated form, instead of
85     printing the actual source twice.  (This is the form
86     that would otherwise have been the last form of the processing
87     path.) In this example, the problem is with the evaluation of
88     the reference to the variable <varname>y</>.</para></listitem>
89   <listitem><para>
90     <computeroutput>caught WARNING: Result is a SYMBOL, not a NUMBER.</>
91     This is the <emphasis>explanation</> of the problem. In this
92     example, the problem is that <varname>y</> evaluates to a symbol,
93     but is in a context where a number is required (the argument
94     to <function>+</>).</para></listitem>
95 </orderedlist>
96
97 Note that each part of the error message is distinctively marked:
98
99 <itemizedlist>
100   <listitem><para> <computeroutput>file:</> and <computeroutput>in:</>
101     mark the file and definition, respectively.</para></listitem>
102   <listitem><para> The original source is an indented form with no
103     prefix.</para></listitem>
104   <listitem><para> Each line of the processing path is prefixed with
105    <computeroutput>--></computeroutput></para></listitem>
106   <listitem><para> The actual source form is indented like the original
107     source, but is marked by a preceding <computeroutput>==></> line.
108     </para></listitem>
109   <listitem><para> The explanation is prefixed with the error
110     severity, which can be <computeroutput>caught ERROR:</>,
111     <computeroutput>caught WARNING:</>,
112     <computeroutput>caught STYLE-WARNING:</>, or
113     <computeroutput>note:</>. </para></listitem>
114 </itemizedlist>
115 </para>
116
117 <para>Each part of the error message is more specific than the preceding
118 one.  If consecutive error messages are for nearby locations, then the
119 front part of the error messages would be the same.  In this case, the
120 compiler omits as much of the second message as in common with the
121 first.  For example:
122 <screen>file: /tmp/foo.lisp
123
124 in: DEFUN FOO
125   (ZOQ Y)
126 --> ROQ
127 ==>
128   (PLOQ (+ Y 3))
129 caught STYLE-WARNING:
130   undefined function: PLOQ
131
132 ==>
133   (ROQ (PLOQ (+ Y 3)))
134 caught STYLE-WARNING:
135   undefined function: ROQ</screen>
136 In this example, the file, definition and original source are
137 identical for the two messages, so the compiler omits them in the
138 second message.  If consecutive messages are entirely identical, then
139 the compiler prints only the first message, followed by:
140 <computeroutput>[Last message occurs <replaceable>repeats</> times]</>
141 where <replaceable>repeats</> is the number of times the message
142 was given.</para>
143
144 <para>If the source was not from a file, then no file line is printed.
145 If the actual source is the same as the original source, then the
146 processing path and actual source will be omitted. If no forms
147 intervene between the original source and the actual source, then the
148 processing path will also be omitted.</para>
149
150 </sect2>
151
152 <sect2><title>The Original and Actual Source</>
153
154 <para>The <emphasis>original source</> displayed will almost always be
155 a list. If the actual source for an error message is a symbol, the
156 original source will be the immediately enclosing evaluated list form.
157 So even if the offending symbol does appear in the original source,
158 the compiler will print the enclosing list and then print the symbol
159 as the actual source (as though the symbol were introduced by a
160 macro.)</para>
161
162 <para>When the <emphasis>actual source</> is displayed
163 (and is not a symbol), it will always
164 be code that resulted from the expansion of a macro or a source-to-source
165 compiler optimization.  This is code that did not appear in the original
166 source program; it was introduced by the compiler.</para>
167
168 <para>Keep in mind that when the compiler displays a source form
169 in an error message, it always displays the most specific (innermost)
170 responsible form.  For example, compiling this function
171 <programlisting>(defun bar (x)
172   (let (a)
173     (declare (fixnum a))
174     (setq a (foo x))
175     a))</programlisting>
176 gives this error message
177 <screen>in: DEFUN BAR
178   (LET (A) (DECLARE (FIXNUM A)) (SETQ A (FOO X)) A)
179 caught WARNING: The binding of A is not a FIXNUM:
180   NIL</screen>
181 This error message is not saying <quote>there is a problem somewhere in
182 this <function>let</></quote> &mdash; it is saying that there is a
183 problem with the <function>let</> itself. In this example, the problem
184 is that <varname>a</>'s <literal>nil</> initial value is not a
185 <type>fixnum</>.</para>
186
187 </sect2>
188
189 <sect2><title>The Processing Path</>
190 <!--INDEX processing path-->
191 <!--INDEX macroexpansion-->
192 <!--INDEX source-to-source transformation-->
193
194 <para>The processing path is mainly useful for debugging macros, so if
195 you don't write macros, you can probably ignore it. Consider this
196 example:
197
198 <programlisting>(defun foo (n)
199   (dotimes (i n *undefined*)))
200 </programlisting>
201
202 Compiling results in this error message:
203
204 <screen>in: DEFUN FOO
205   (DOTIMES (I N *UNDEFINED*))
206 --> DO BLOCK LET TAGBODY RETURN-FROM
207 ==>
208   (PROGN *UNDEFINED*)
209 caught STYLE-WARNING:
210   undefined variable: *UNDEFINED*</screen>
211
212 Note that <function>do</> appears in the processing path. This is because
213 <function>dotimes</> expands into:
214
215 <programlisting>(do ((i 0 (1+ i)) (#:g1 n))
216     ((>= i #:g1) *undefined*)
217   (declare (type unsigned-byte i)))</programlisting>
218
219 The rest of the processing path results from the expansion
220 of <function>do</>:
221
222 <programlisting>
223 (block nil
224   (let ((i 0) (#:g1 n))
225     (declare (type unsigned-byte i))
226     (tagbody (go #:g3)
227      #:g2    (psetq i (1+ i))
228      #:g3    (unless (>= i #:g1) (go #:g2))
229              (return-from nil (progn *undefined*)))))
230 </programlisting>
231
232 In this example, the compiler descended into the <function>block</>,
233 <function>let</>, <function>tagbody</> and <function>return-from</> to
234 reach the <function>progn</> printed as the actual source. This is a
235 place where the <quote>actual source appears in explanation</> rule
236 was applied. The innermost actual source form was the symbol
237 <varname>*undefined*</> itself, but that also appeared in the
238 explanation, so the compiler backed out one level.</para>
239
240 </sect2>
241
242 <sect2><title>Error Severity</>
243 <!--INDEX severity of compiler errors -->
244 <!--INDEX compiler error severity -->
245
246 <para>There are four levels of compiler error severity:
247 <wordasword>error</>, <wordasword>warning</>, <wordasword>style
248 warning</>, and <wordasword>note</>. The first three levels correspond
249 to condition classes which are defined in the &ANSI; standard for
250 &CommonLisp; and which have special significance to the
251 <function>compile</> and <function>compile-file</> functions. These
252 levels of compiler error severity occur when the compiler handles
253 conditions of these classes. The fourth level of compiler error
254 severity, <wordasword>note</>, is used for problems which are too mild
255 for the standard condition classes, typically hints about how
256 efficiency might be improved.</para>
257
258 </sect2>
259
260 <sect2><title>Errors During Macroexpansion</>
261 <!--INDEX {macroexpansion}{errors during}-->
262
263 <para>The compiler handles errors that happen during macroexpansion,
264 turning them into compiler errors. If you want to debug the error (to
265 debug a macro), you can set <varname>*break-on-signals*</> to
266 <literal>error</>. For example, this definition:
267
268 <programlisting>(defun foo (e l)
269   (do ((current l (cdr current))
270        ((atom current) nil))
271       (when (eq (car current) e) (return current))))</programlisting>
272
273 gives this error:
274
275 <screen>in: DEFUN FOO
276   (DO ((CURRENT L #) (# NIL)) (WHEN (EQ # E) (RETURN CURRENT)) )
277 caught ERROR: 
278   (in macroexpansion of (DO # #))
279   (hint: For more precise location, try *BREAK-ON-SIGNALS*.)
280   DO step variable is not a symbol: (ATOM CURRENT)</screen>
281 </para>
282
283 </sect2>
284
285 <sect2><title>Read Errors</>
286 <!--INDEX {read errors}{compiler}-->
287
288 <para>&SBCL;'s compiler (unlike &CMUCL;'s) does not attempt to recover
289 from read errors when reading a source file, but instead just reports
290 the offending character position and gives up on the entire source
291 file.</para>
292
293 </sect2>
294
295 <!-- FIXME: How much control over error messages is in SBCL?
296 _     How much should be? How much of this documentation should
297 _     we save or adapt? 
298
299 _ %%\node Error Message Parameterization,  , Read Errors, Interpreting Error Messages
300 _ \subsection{Error Message Parameterization}
301 _ \cpsubindex{error messages}{verbosity}
302 _ \cpsubindex{verbosity}{of error messages}
303
304 _ There is some control over the verbosity of error messages.  See also
305 _ \varref{undefined-warning-limit}, \code{*efficiency-note-limit*} and
306 _ \varref{efficiency-note-cost-threshold}.
307
308 _ \begin{defvar}{}{enclosing-source-cutoff}
309
310 _   This variable specifies the number of enclosing actual source forms
311 _   that are printed in full, rather than in the abbreviated processing
312 _   path format.  Increasing the value from its default of \code{1}
313 _   allows you to see more of the guts of the macroexpanded source,
314 _   which is useful when debugging macros.
315 _ \end{defvar}
316
317 _ \begin{defvar}{}{error-print-length}
318 _   \defvarx{error-print-level}
319
320 _   These variables are the print level and print length used in
321 _   printing error messages.  The default values are \code{5} and
322 _   \code{3}.  If null, the global values of \code{*print-level*} and
323 _   \code{*print-length*} are used.
324 _ \end{defvar}
325
326 _ \begin{defmac}{extensions:}{define-source-context}{%
327 _     \args{\var{name} \var{lambda-list} \mstar{form}}}
328
329 _   This macro defines how to extract an abbreviated source context from
330 _   the \var{name}d form when it appears in the compiler input.
331 _   \var{lambda-list} is a \code{defmacro} style lambda-list used to
332 _   parse the arguments.  The \var{body} should return a list of
333 _   subforms that can be printed on about one line.  There are
334 _   predefined methods for \code{defstruct}, \code{defmethod}, etc.  If
335 _   no method is defined, then the first two subforms are returned.
336 _   Note that this facility implicitly determines the string name
337 _   associated with anonymous functions.
338 _ \end{defmac}
339
340 _ -->
341
342 </sect1>
343
344 <sect1><title>The Compiler's Handling of Types</>
345
346 <para>The most unusual features of the &SBCL; compiler (which is
347 very similar to the original &CMUCL compiler, also known as
348 &Python;) is its unusually sophisticated understanding of the
349 &CommonLisp; type system and its unusually conservative approach to
350 the implementation of type declarations. These two features reward the
351 use of type declarations throughout development, even when high
352 performance is not a concern. (Also, as discussed <link
353 linkend="efficiency">in the chapter on performance</>, the use of
354 appropriate type declarations can be very important for performance as
355 well.)</para>
356
357 <para>The &SBCL; compiler, like the related compiler in &CMUCL;,
358 treats type declarations much differently than other Lisp compilers.
359 By default (<emphasis>i.e.</>, at ordinary levels of the
360 <parameter>safety</> compiler optimization parameter), the compiler
361 doesn't blindly believe most type declarations; it considers them
362 assertions about the program that should be checked.</para>
363
364 <para>The &SBCL; compiler also has a greater knowledge of the
365 &CommonLisp; type system than other compilers.  Support is incomplete
366 only for the <type>not</>, <type>and</> and <type>satisfies</>
367 types.
368 <!-- FIXME: See also sections \ref{advanced-type-stuff}
369      and \ref{type-inference}, once we snarf them from the
370      CMU CL manual. -->
371 </para>
372
373 <sect2 id=compiler-impl-limitations><title>Implementation Limitations</>
374
375 <para>
376 Ideally, the compiler would consider <emphasis>all</> type declarations to
377 be assertions, so that adding type declarations to a program, no
378 matter how incorrect they might be, would <emphasis>never</> cause
379 undefined behavior. As of &SBCL; version 0.6.4, the compiler is known to
380 fall short of this goal in two areas:
381 <itemizedlist>
382   <listitem><para>The compiler trusts function return values which 
383     have been established with <function>proclaim</>.</para></listitem>
384   <listitem><para>There are a few poorly characterized but apparently
385     very uncommon situations where a type declaration in an unexpected
386     location will be trusted and never checked by the
387     compiler.</para></listitem>
388 </itemizedlist></para>
389
390 <para>These are important bugs, but are not necessarily easy to fix,
391 so they may, alas, remain in the system for a while.</para>
392
393 </sect2>
394
395 <sect2><title>Type Errors at Compile Time</>
396 <!--INDEX compile time type errors-->
397 <!--INDEX type checking}{at compile time}-->
398
399 <para>If the compiler can prove at compile time that some portion of
400 the program cannot be executed without a type error, then it will give
401 a warning at compile time. It is possible that the offending code
402 would never actually be executed at run-time due to some higher level
403 consistency constraint unknown to the compiler, so a type warning
404 doesn't always indicate an incorrect program. For example, consider
405 this code fragment:
406
407 <programlisting>(defun raz (foo)
408   (let ((x (case foo
409              (:this 13)
410              (:that 9)
411              (:the-other 42))))
412     (declare (fixnum x))
413     (foo x)))
414 </programlisting>
415
416 Compilation produces this warning:
417
418 <screen>in: DEFUN RAZ
419   (CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42))
420 --> LET COND IF COND IF COND IF
421 ==>
422   (COND)
423 caught WARNING: This is not a FIXNUM:
424   NIL</screen>
425
426 In this case, the warning means that if <varname>foo</> isn't any of
427 <literal>:this</>, <literal>:that</> or <literal>:the-other</>, then
428 <varname>x</> will be initialized to <literal>nil</>, which the
429 <type>fixnum</> declaration makes illegal. The warning will go away if
430 <function>ecase</> is used instead of <function>case</>, or if
431 <literal>:the-other</> is changed to <literal>t</>.</para>
432
433 <para>This sort of spurious type warning happens moderately often in
434 the expansion of complex macros and in inline functions. In such
435 cases, there may be dead code that is impossible to correctly execute.
436 The compiler can't always prove this code is dead (could never be
437 executed), so it compiles the erroneous code (which will always signal
438 an error if it is executed) and gives a warning.</para>
439
440 <para>
441 Type warnings are inhibited when the
442 <parameter>extensions:inhibit-warnings</> optimization quality is
443 <literal>3</>. (See <link linkend="compiler-policy">the section 
444 on compiler policy</>.) This can be used in a local declaration
445 to inhibit type warnings in a code fragment that has spurious
446 warnings.</para>
447
448 </sect2>
449
450 <sect2 id="precisetypechecking"><title>Precise Type Checking</>
451 <!--INDEX precise type checking-->
452 <!--INDEX {type checking}{precise}-->
453
454 <para>With the default compilation policy, all type declarations are
455 precisely checked, except in a few situations (such as using
456 <function>the</> to constrain the argument type passed to a function)
457 where they are simply ignored instead. Precise checking means that the
458 check is done as though <function>typep</> had been called with the
459 exact type specifier that appeared in the declaration. In &SBCL;,
460 adding type declarations makes code safer. (Except that as noted <link
461 linkend="compiler-impl-limitations">elsewhere</link>, remaining bugs in
462 the compiler's handling of types unfortunately provide some exceptions to
463 this rule.)</para>
464
465 <para>If a variable is declared to be
466 <type>(integer 3 17)</>
467 then its
468 value must always always be an integer between <literal>3</>
469 and <literal>17</>.
470 If multiple type declarations apply to a single variable, then all the
471 declarations must be correct; it is as though all the types were
472 intersected producing a single <type>and</> type specifier.</para>
473
474 <para>Argument type declarations are automatically enforced. If you declare
475 the type of a function argument, a type check will be done when that
476 function is called. In a function call, the called function does the
477 argument type checking, which means that a more restrictive type
478 assertion in the calling function (e.g., from <function>the</>) may be
479 lost.</para>
480
481 <para>The types of structure slots are also checked. The value of a
482 structure slot must always be of the type indicated in any
483 <literal>:type</> slot option. </para>
484
485 <para>In traditional &CommonLisp; compilers, not all type assertions
486 are checked, and type checks are not precise. Traditional compilers
487 blindly trust explicit type declarations, but may check the argument
488 type assertions for built-in functions. Type checking is not precise,
489 since the argument type checks will be for the most general type legal
490 for that argument. In many systems, type declarations suppress what
491 little type checking is being done, so adding type declarations makes
492 code unsafe. This is a problem since it discourages writing type
493 declarations during initial coding. In addition to being more error
494 prone, adding type declarations during tuning also loses all the
495 benefits of debugging with checked type assertions.</para>
496
497 <para>To gain maximum benefit from the compiler's type checking, you
498 should always declare the types of function arguments and structure
499 slots as precisely as possible. This often involves the use of
500 <type>or</>, <type>member</>, and other list-style type specifiers.</para>
501
502 </sect2>
503
504 <sect2 id="weakened-type-checking"><title>Weakened Type Checking</>
505 <!--INDEX weakened type checking-->
506 <!--INDEX {type checking}{weakened}-->
507
508 <para>At one time, &CMUCL; supported another level of type checking,
509 <quote>weakened type checking</>, when the value for the
510 <parameter>speed</> optimization quality is greater than
511 <parameter>safety</>, and <parameter>safety</> is not <literal>0</>.
512 The &CMUCL; manual still has a description of it, but even the CMU CL
513 code no longer corresponds to the manual. Some of this partial safety
514 checking lingers on in SBCL, but it's not a supported feature, and 
515 should not be relied on. If you ask the compiler to optimize
516 <parameter>speed</> to a higher level than <parameter>safety</>,
517 your program is performing without a safety net, because &SBCL; may
518 at its option believe any or all type declarations with either partial
519 or nonexistent runtime checking.</para>
520
521 </sect2>
522
523 <sect2><title>Getting Existing Programs to Run</>
524 <!--INDEX {existing programs}{to run}-->
525 <!--INDEX {types}{portability}-->
526 <!--INDEX {compatibility with other Lisps}
527     (should also have an entry in the non-&ANSI;-isms section)-->
528
529 <para>Since &SBCL;'s compiler, like &CMUCL;'s compiler, does much more
530 comprehensive type checking than most Lisp compilers, &SBCL; may
531 detect type errors in programs that have been debugged using other
532 compilers. These errors are mostly incorrect declarations, although
533 compile-time type errors can find actual bugs if parts of the program
534 have never been tested.</para>
535
536 <para>Some incorrect declarations can only be detected by run-time
537 type checking. It is very important to initially compile a program
538 with full type checks (high <parameter>safety</> optimization) and
539 then test this safe version. After the checking version has been
540 tested, then you can consider weakening or eliminating type checks.
541 <emphasis>This applies even to previously debugged
542 programs,</emphasis> because the &SBCL; compiler does much more type
543 inference than other &CommonLisp; compilers, so an incorrect
544 declaration can do more damage.</para>
545
546 <para>The most common problem is with variables whose constant initial
547 value doesn't match the type declaration. Incorrect constant initial
548 values will always be flagged by a compile-time type error, and they
549 are simple to fix once located. Consider this code fragment:
550
551 <programlisting>(prog (foo)
552   (declare (fixnum foo))
553   (setq foo ...)
554   ...)</programlisting>
555
556 Here <varname>foo</> is given an initial value of <literal>nil</>, but
557 is declared to be a <type>fixnum</>.  Even if it is never read, the
558 initial value of a variable must match the declared type.  There are
559 two ways to fix this problem. Change the declaration
560
561 <programlisting>(prog (foo)
562   (declare (type (or fixnum null) foo))
563   (setq foo ...)
564   ...)</programlisting>
565
566 or change the initial value
567
568 <programlisting>(prog ((foo 0))
569   (declare (fixnum foo))
570   (setq foo ...)
571   ...)</programlisting>
572
573 It is generally preferable to change to a legal initial value rather
574 than to weaken the declaration, but sometimes it is simpler to weaken
575 the declaration than to try to make an initial value of the
576 appropriate type.</para>
577
578 <para>Another declaration problem occasionally encountered is
579 incorrect declarations on <function>defmacro</> arguments. This can happen
580 when a function is converted into a macro. Consider this macro:
581
582 <programlisting>(defmacro my-1+ (x)
583   (declare (fixnum x))
584   `(the fixnum (1+ ,x)))</programlisting>
585
586 Although legal and well-defined &CommonLisp; code, this meaning of
587 this definition is almost certainly not what the writer intended. For
588 example, this call is illegal:
589
590 <programlisting>(my-1+ (+ 4 5))</>
591
592 This call is illegal because the argument to the macro is
593 <literal>(+ 4 5)</>, which is a <type>list</>, not a
594 <type>fixnum</>.  Because of
595 macro semantics, it is hardly ever useful to declare the types of
596 macro arguments.  If you really want to assert something about the
597 type of the result of evaluating a macro argument, then put a
598 <function>the</> in the expansion:
599
600 <programlisting>(defmacro my-1+ (x)
601   `(the fixnum (1+ (the fixnum ,x))))</programlisting>
602
603 In this case, it would be stylistically preferable to change this
604 macro back to a function and declare it inline. 
605 <!--FIXME: <xref>inline-expansion</>, once we crib the 
606     relevant text from the CMU CL manual.-->
607 </para>
608
609 <para>
610 Some more subtle problems are caused by incorrect declarations that
611 can't be detected at compile time.  Consider this code:
612
613 <programlisting>(do ((pos 0 (position #\a string :start (1+ pos))))
614     ((null pos))
615   (declare (fixnum pos))
616   ...)</programlisting>
617
618 Although <varname>pos</> is almost always a <varname>fixnum</>, it is
619 <literal>nil</> at the end of the loop. If this example is compiled
620 with full type checks (the default), then running it will signal a
621 type error at the end of the loop. If compiled without type checks,
622 the program will go into an infinite loop (or perhaps
623 <function>position</> will complain because <literal>(1+ nil)</> isn't
624 a sensible start.) Why? Because if you compile without type checks,
625 the compiler just quietly believes the type declaration. Since the
626 compiler believes that <varname>pos</> is always a <type>fixnum</>, it
627 believes that <varname>pos</> is never <literal>nil</>, so
628 <literal>(null pos)</> is never true, and the loop exit test is
629 optimized away. Such errors are sometimes flagged by unreachable code
630 notes, but it is still important to initially compile and test any
631 system with full type checks, even if the system works fine when
632 compiled using other compilers.</para>
633
634 <para>In this case, the fix is to weaken the type declaration to
635 <type>(or fixnum null)</>.
636 <footnote><para>Actually, this declaration is 
637   unnecessary in &SBCL;, since it already knows that <function>position</>
638   returns a non-negative <type>fixnum</> or <literal>nil</>.
639   </para></footnote>
640
641 Note that there is usually little performance penalty for weakening a
642 declaration in this way. Any numeric operations in the body can still
643 assume that the variable is a <type>fixnum</>, since <literal>nil</>
644 is not a legal numeric argument. Another possible fix would be to say:
645
646 <programlisting>(do ((pos 0 (position #\a string :start (1+ pos))))
647     ((null pos))
648   (let ((pos pos))
649     (declare (fixnum pos))
650     ...))</programlisting>
651
652 This would be preferable in some circumstances, since it would allow a
653 non-standard representation to be used for the local <varname>pos</>
654 variable in the loop body.
655 <!-- FIXME: <xref>ND-variables</>, once we crib the text from the 
656      CMU CL manual. -->
657 </para>
658
659 </sect2>
660
661 </sect1>
662
663 <sect1 id="compiler-policy"><title>Compiler Policy</>
664
665 <para>As of version 0.6.4, &SBCL; still uses most of the &CMUCL; code
666 for compiler policy. The &CMUCL; code has many features and high-quality
667 documentation, but the two unfortunately do not match. So this area of
668 the compiler and its interface needs to be cleaned up. Meanwhile, here
669 is some rudimentary documentation on the current behavior of the
670 system.</para>
671
672 <para>Compiler policy is controlled by the <parameter>optimize</>
673 declaration. The compiler supports the &ANSI; optimization qualities,
674 and also an extension <parameter>sb-ext:inhibit-warnings</>.</para>
675
676 <para>Ordinarily, when the <parameter>speed</> quality is high, the
677 compiler emits notes to notify the programmer about its inability to
678 apply various optimizations. Setting
679 <parameter>sb-ext:inhibit-warnings</> to a value at least as large as
680 the <parameter>speed</> quality inhibits this notification. This can
681 be useful to suppress notes about code which is known to be
682 unavoidably inefficient. (For example, the compiler issues notes about
683 having to use generic arithmetic instead of fixnum arithmetic, which
684 is not helpful for code which by design supports arbitrary-sized
685 integers instead of being limited to fixnums.)</para>
686
687 <note><para>The basic functionality of the <parameter>optimize
688 inhibit-warnings</> extension will probably be supported in all future
689 versions of the system, but it will probably be renamed when the
690 compiler and its interface are cleaned up. The current name is
691 misleading, because it mostly inhibits optimization notes, not
692 warnings. And making it an optimization quality is misleading, because
693 it shouldn't affect the resulting code at all. It may become a
694 declaration identifier with a name like
695 <parameter>sb-ext:inhibit-notes</>, so that what's currently written
696
697 <programlisting>(declaim (optimize (sb-ext:inhibit-warnings 2)))</>
698
699 would become something like
700
701 <programlisting>(declaim (sb-ext:inhibit-notes 2))</>
702
703 </para></note>
704
705 <para> (In early versions of SBCL, a <parameter>speed</> value of zero
706 was used to enable byte compilation, but since version 0.7.0, SBCL
707 only supports native compilation.)</para>
708
709 <para>When <parameter>safety</> is zero, almost all runtime checking
710 of types, array bounds, and so forth is suppressed.</para>
711
712 <para>When <parameter>safety</> is less than <parameter>speed</>, any
713 and all type checks may be suppressed. At some point in the past,
714 &CMUCL; had <link linkend="weakened-type-checking">a more nuanced
715 interpretation of this</link>. However, &SBCL; doesn't support that
716 interpretation, and setting <parameter>safety</> less than
717 <parameter>speed</> may have roughly the same effect as setting
718 <parameter>safety</> to zero.</para>
719
720 <para>The value of <parameter>space</> mostly influences the
721 compiler's decision whether to inline operations, which tend to
722 increase the size of programs. Use the value <literal>0</> with
723 caution, since it can cause the compiler to inline operations so
724 indiscriminately that the net effect is to slow the program by causing
725 cache misses or swapping.</para>
726
727 <!-- FIXME: old CMU CL compiler policy, should perhaps be adapted
728 _    for SBCL. (Unfortunately, the CMU CL docs are out of sync with the
729 _    CMU CL code, so adapting this requires not only reformatting
730 _    the documentation, but rooting out code rot.)
731 _
732 _<sect2 id="compiler-policy"><title>Compiler Policy</>
733 _  INDEX {policy}{compiler}
734 _  INDEX compiler policy
735 _
736 _<para>The policy is what tells the compiler <emphasis>how</> to
737 _compile a program. This is logically (and often textually) distinct
738 _from the program itself. Broad control of policy is provided by the
739 _<parameter>optimize</> declaration; other declarations and variables
740 _control more specific aspects of compilation.</para>
741 _
742 _\begin{comment}
743 _* The Optimize Declaration::
744 _* The Optimize-Interface Declaration::
745 _\end{comment}
746 _
747 _%%\node The Optimize Declaration, The Optimize-Interface Declaration, Compiler Policy, Compiler Policy
748 _\subsection{The Optimize Declaration}
749 _\label{optimize-declaration}
750 _\cindex{optimize declaration}
751 _\cpsubindex{declarations}{\code{optimize}}
752 _
753 _The \code{optimize} declaration recognizes six different
754 _\var{qualities}.  The qualities are conceptually independent aspects
755 _of program performance.  In reality, increasing one quality tends to
756 _have adverse effects on other qualities.  The compiler compares the
757 _relative values of qualities when it needs to make a trade-off; i.e.,
758 _if \code{speed} is greater than \code{safety}, then improve speed at
759 _the cost of safety.
760 _
761 _The default for all qualities (except \code{debug}) is \code{1}.
762 _Whenever qualities are equal, ties are broken according to a broad
763 _idea of what a good default environment is supposed to be.  Generally
764 _this downplays \code{speed}, \code{compile-speed} and \code{space} in
765 _favor of \code{safety} and \code{debug}.  Novice and casual users
766 _should stick to the default policy.  Advanced users often want to
767 _improve speed and memory usage at the cost of safety and
768 _debuggability.
769 _
770 _If the value for a quality is \code{0} or \code{3}, then it may have a
771 _special interpretation.  A value of \code{0} means ``totally
772 _unimportant'', and a \code{3} means ``ultimately important.''  These
773 _extreme optimization values enable ``heroic'' compilation strategies
774 _that are not always desirable and sometimes self-defeating.
775 _Specifying more than one quality as \code{3} is not desirable, since
776 _it doesn't tell the compiler which quality is most important.
777 _
778 _
779 _These are the optimization qualities:
780 _\begin{Lentry}
781 _
782 _\item[\code{speed}] \cindex{speed optimization quality}How fast the
783 _  program should is run.  \code{speed 3} enables some optimizations
784 _  that hurt debuggability.
785 _
786 _\item[\code{compilation-speed}] \cindex{compilation-speed optimization
787 _    quality}How fast the compiler should run.  Note that increasing
788 _  this above \code{safety} weakens type checking.
789 _
790 _\item[\code{space}] \cindex{space optimization quality}How much space
791 _  the compiled code should take up.  Inline expansion is mostly
792 _  inhibited when \code{space} is greater than \code{speed}.  A value
793 _  of \code{0} enables indiscriminate inline expansion.  Wide use of a
794 _  \code{0} value is not recommended, as it may waste so much space
795 _  that run time is slowed.  \xlref{inline-expansion} for a discussion
796 _  of inline expansion.
797 _
798 _\item[\code{debug}] \cindex{debug optimization quality}How debuggable
799 _  the program should be.  The quality is treated differently from the
800 _  other qualities: each value indicates a particular level of debugger
801 _  information; it is not compared with the other qualities.
802 _  \xlref{debugger-policy} for more details.
803 _
804 _\item[\code{safety}] \cindex{safety optimization quality}How much
805 _  error checking should be done.  If \code{speed}, \code{space} or
806 _  \code{compilation-speed} is more important than \code{safety}, then
807 _  type checking is weakened (\pxlref{weakened-type-checks}).  If
808 _  \code{safety} if \code{0}, then no run time error checking is done.
809 _  In addition to suppressing type checks, \code{0} also suppresses
810 _  argument count checking, unbound-symbol checking and array bounds
811 _  checks.
812 _
813 _\item[\code{extensions:inhibit-warnings}] \cindex{inhibit-warnings
814 _    optimization quality}This is a CMU extension that determines how
815 _  little (or how much) diagnostic output should be printed during
816 _  compilation.  This quality is compared to other qualities to
817 _  determine whether to print style notes and warnings concerning those
818 _  qualities.  If \code{speed} is greater than \code{inhibit-warnings},
819 _  then notes about how to improve speed will be printed, etc.  The
820 _  default value is \code{1}, so raising the value for any standard
821 _  quality above its default enables notes for that quality.  If
822 _  \code{inhibit-warnings} is \code{3}, then all notes and most
823 _  non-serious warnings are inhibited.  This is useful with
824 _  \code{declare} to suppress warnings about unavoidable problems.
825 _\end{Lentry}
826 _
827 _%%\node The Optimize-Interface Declaration,  , The Optimize Declaration, Compiler Policy
828 _\subsection{The Optimize-Interface Declaration}
829 _\label{optimize-interface-declaration}
830 _\cindex{optimize-interface declaration}
831 _\cpsubindex{declarations}{\code{optimize-interface}}
832 _
833 _The \code{extensions:optimize-interface} declaration is identical in
834 _syntax to the \code{optimize} declaration, but it specifies the policy
835 _used during compilation of code the compiler automatically generates
836 _to check the number and type of arguments supplied to a function.  It
837 _is useful to specify this policy separately, since even thoroughly
838 _debugged functions are vulnerable to being passed the wrong arguments.
839 _The \code{optimize-interface} declaration can specify that arguments
840 _should be checked even when the general \code{optimize} policy is
841 _unsafe.
842 _
843 _Note that this argument checking is the checking of user-supplied
844 _arguments to any functions defined within the scope of the
845 _declaration, \code{not} the checking of arguments to \llisp{}
846 _primitives that appear in those definitions.
847 _
848 _The idea behind this declaration is that it allows the definition of
849 _functions that appear fully safe to other callers, but that do no
850 _internal error checking.  Of course, it is possible that arguments may
851 _be invalid in ways other than having incorrect type.  Functions
852 _compiled unsafely must still protect themselves against things like
853 _user-supplied array indices that are out of bounds and improper lists.
854 _See also the \kwd{context-declarations} option to
855 _\macref{with-compilation-unit}.
856 _
857 _(end of section on compiler policy)
858 _-->
859
860 </sect1>
861
862 <sect1><title>Open Coding and Inline Expansion</>
863 <!--INDEX open-coding-->
864 <!--INDEX inline expansion-->
865 <!--INDEX static functions-->
866
867 <para>Since &CommonLisp; forbids the redefinition of standard
868 functions, the compiler can have special knowledge of these standard
869 functions embedded in it. This special knowledge is used in various
870 ways (open coding, inline expansion, source transformation), but the
871 implications to the user are basically the same:
872 <itemizedlist>
873   <listitem><para> Attempts to redefine standard functions may
874     be frustrated, since the function may never be called. Although
875     it is technically illegal to redefine standard functions, users
876     sometimes want to implicitly redefine these functions when they
877     are debugging using the <function>trace</> macro.  Special-casing
878     of standard functions can be inhibited using the
879     <parameter>notinline</> declaration.</para></listitem>
880   <listitem><para> The compiler can have multiple alternate
881     implementations of standard functions that implement different
882     trade-offs of speed, space and safety.  This selection is
883     based on the <link linkend="compiler-policy">compiler policy</link>.
884     </para></listitem>
885 </itemizedlist>
886 </para>
887
888 <para>When a function call is <emphasis>open coded</>, inline code whose
889 effect is equivalent to the function call is substituted for that
890 function call. When a function call is <emphasis>closed coded</>, it
891 is usually left as is, although it might be turned into a call to a
892 different function with different arguments. As an example, if
893 <function>nthcdr</> were to be open coded, then
894
895 <programlisting>(nthcdr 4 foobar)</programlisting>
896
897 might turn into
898
899 <programlisting>(cdr (cdr (cdr (cdr foobar))))</>
900
901 or even
902
903 <programlisting>(do ((i 0 (1+ i))
904      (list foobar (cdr foobar)))
905     ((= i 4) list))</programlisting>
906
907 If <function>nth</> is closed coded, then
908
909 <programlisting>
910 (nth x l)
911 </programlisting>
912
913 might stay the same, or turn into something like
914
915 <programlisting>
916 (car (nthcdr x l))
917 </programlisting>
918 </para>
919
920 <para>In general, open coding sacrifices space for speed, but some
921 functions (such as <function>car</>) are so simple that they are always
922 open-coded. Even when not open-coded, a call to a standard function
923 may be transformed into a different function call (as in the last
924 example) or compiled as <emphasis>static call</>. Static function call
925 uses a more efficient calling convention that forbids
926 redefinition.</para>
927
928 </sect1>
929
930 </chapter>