1 ;;;; code to implement bignum support
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!BIGNUM")
16 ;;; comments from CMU CL:
17 ;;; These symbols define the interface to the number code:
18 ;;; add-bignums multiply-bignums negate-bignum subtract-bignum
19 ;;; multiply-bignum-and-fixnum multiply-fixnums
20 ;;; bignum-ashift-right bignum-ashift-left bignum-gcd
21 ;;; bignum-to-float bignum-integer-length
22 ;;; bignum-logical-and bignum-logical-ior bignum-logical-xor
23 ;;; bignum-logical-not bignum-load-byte bignum-deposit-byte
24 ;;; bignum-truncate bignum-plus-p bignum-compare make-small-bignum
25 ;;; bignum-logbitp bignum-logcount
26 ;;; These symbols define the interface to the compiler:
27 ;;; bignum-type bignum-element-type bignum-index %allocate-bignum
28 ;;; %bignum-length %bignum-set-length %bignum-ref %bignum-set
29 ;;; %digit-0-or-plusp %add-with-carry %subtract-with-borrow
30 ;;; %multiply-and-add %multiply %lognot %logand %logior %logxor
31 ;;; %fixnum-to-digit %floor %fixnum-digit-with-correct-sign %ashl
32 ;;; %ashr %digit-logical-shift-right))
34 ;;; The following interfaces will either be assembler routines or code
35 ;;; sequences expanded into the code as basic bignum operations:
41 ;;; %BIGNUM-SET-LENGTH
42 ;;; %FIXNUM-DIGIT-WITH-CORRECT-SIGN
46 ;;; %BIGNUM-0-OR-PLUSP
47 ;;; %DIGIT-LOGICAL-SHIFT-RIGHT
48 ;;; General (May not exist when done due to sole use in %-routines.)
53 ;;; %SUBTRACT-WITH-BORROW
58 ;;; Shifting (in place)
59 ;;; %NORMALIZE-BIGNUM-BUFFER
60 ;;; GCD/Relational operators:
63 ;;; Relational operators:
72 ;;; Note: The floating routines know about the float representation.
75 ;;; There might be a problem with various LET's and parameters that take a
76 ;;; digit value. We need to write these so those things stay in machine
77 ;;; registers and number stack slots. I bind locals to these values, and I
78 ;;; use function on them -- ZEROP, ASH, etc.
81 ;;; In shifting and byte operations, I use masks and logical operations that
82 ;;; could result in intermediate bignums. This is hidden by the current system,
83 ;;; but I may need to write these in a way that keeps these masks and logical
84 ;;; operations from diving into the Lisp level bignum code.
88 ;;; logior, logxor, logand
89 ;;; depending on relationals, < (twice) and <= (twice)
90 ;;; or write compare thing (twice).
91 ;;; LDB on fixnum with bignum result.
92 ;;; DPB on fixnum with bignum result.
93 ;;; TRUNCATE returns zero or one as one value and fixnum or minus fixnum
94 ;;; for the other value when given (truncate fixnum bignum).
95 ;;; Returns (truncate bignum fixnum) otherwise.
97 ;;; subtraction (twice)
100 ;;; Write MASK-FIELD and DEPOSIT-FIELD in terms of logical operations.
102 ;;; IF (/ x y) with bignums:
103 ;;; do the truncate, and if rem is 0, return quotient.
106 ;;; "truncate" each by gcd, ignoring remainder 0.
107 ;;; form ratio of each result, bottom is positive.
109 ;;;; What's a bignum?
111 (defconstant digit-size sb!vm:n-word-bits)
113 (defconstant maximum-bignum-length (1- (ash 1 (- sb!vm:n-word-bits
114 sb!vm:n-widetag-bits))))
116 (defconstant all-ones-digit (1- (ash 1 sb!vm:n-word-bits)))
118 ;;;; internal inline routines
120 ;;; %ALLOCATE-BIGNUM must zero all elements.
121 (defun %allocate-bignum (length)
122 (declare (type bignum-index length))
123 (%allocate-bignum length))
125 ;;; Extract the length of the bignum.
126 (defun %bignum-length (bignum)
127 (declare (type bignum-type bignum))
128 (%bignum-length bignum))
130 ;;; %BIGNUM-REF needs to access bignums as obviously as possible, and it needs
131 ;;; to be able to return the digit somewhere no one looks for real objects.
132 (defun %bignum-ref (bignum i)
133 (declare (type bignum-type bignum)
134 (type bignum-index i))
135 (%bignum-ref bignum i))
136 (defun %bignum-set (bignum i value)
137 (declare (type bignum-type bignum)
138 (type bignum-index i)
139 (type bignum-element-type value))
140 (%bignum-set bignum i value))
142 ;;; Return T if digit is positive, or NIL if negative.
143 (defun %digit-0-or-plusp (digit)
144 (declare (type bignum-element-type digit))
145 (not (logbitp (1- digit-size) digit)))
147 #!-sb-fluid (declaim (inline %bignum-0-or-plusp))
148 (defun %bignum-0-or-plusp (bignum len)
149 (declare (type bignum-type bignum)
150 (type bignum-index len))
151 (%digit-0-or-plusp (%bignum-ref bignum (1- len))))
153 ;;; This should be in assembler, and should not cons intermediate
154 ;;; results. It returns a bignum digit and a carry resulting from adding
155 ;;; together a, b, and an incoming carry.
156 (defun %add-with-carry (a b carry)
157 (declare (type bignum-element-type a b)
158 (type (mod 2) carry))
159 (%add-with-carry a b carry))
161 ;;; This should be in assembler, and should not cons intermediate
162 ;;; results. It returns a bignum digit and a borrow resulting from
163 ;;; subtracting b from a, and subtracting a possible incoming borrow.
165 ;;; We really do: a - b - 1 + borrow, where borrow is either 0 or 1.
166 (defun %subtract-with-borrow (a b borrow)
167 (declare (type bignum-element-type a b)
168 (type (mod 2) borrow))
169 (%subtract-with-borrow a b borrow))
171 ;;; Multiply two digit-size numbers, returning a 2*digit-size result
172 ;;; split into two digit-size quantities.
173 (defun %multiply (x y)
174 (declare (type bignum-element-type x y))
177 ;;; This multiplies x-digit and y-digit, producing high and low digits
178 ;;; manifesting the result. Then it adds the low digit, res-digit, and
179 ;;; carry-in-digit. Any carries (note, you still have to add two digits
180 ;;; at a time possibly producing two carries) from adding these three
181 ;;; digits get added to the high digit from the multiply, producing the
182 ;;; next carry digit. Res-digit is optional since two uses of this
183 ;;; primitive multiplies a single digit bignum by a multiple digit
184 ;;; bignum, and in this situation there is no need for a result buffer
185 ;;; accumulating partial results which is where the res-digit comes
187 (defun %multiply-and-add (x-digit y-digit carry-in-digit
188 &optional (res-digit 0))
189 (declare (type bignum-element-type x-digit y-digit res-digit carry-in-digit))
190 (%multiply-and-add x-digit y-digit carry-in-digit res-digit))
192 (defun %lognot (digit)
193 (declare (type bignum-element-type digit))
196 ;;; Each of these does the digit-size unsigned op.
197 #!-sb-fluid (declaim (inline %logand %logior %logxor))
199 (declare (type bignum-element-type a b))
202 (declare (type bignum-element-type a b))
205 (declare (type bignum-element-type a b))
208 ;;; This takes a fixnum and sets it up as an unsigned digit-size
210 (defun %fixnum-to-digit (x)
212 (logand x (1- (ash 1 digit-size))))
215 ;;; This takes three digits and returns the FLOOR'ed result of
216 ;;; dividing the first two as a 2*digit-size integer by the third.
218 ;;; Do weird LET and SETQ stuff to bamboozle the compiler into allowing
219 ;;; the %FLOOR transform to expand into pseudo-assembler for which the
220 ;;; compiler can later correctly allocate registers.
221 (defun %floor (a b c)
222 (let ((a a) (b b) (c c))
223 (declare (type bignum-element-type a b c))
227 ;;; Convert the digit to a regular integer assuming that the digit is signed.
228 (defun %fixnum-digit-with-correct-sign (digit)
229 (declare (type bignum-element-type digit))
230 (if (logbitp (1- digit-size) digit)
231 (logior digit (ash -1 digit-size))
234 ;;; Do an arithmetic shift right of data even though bignum-element-type is
236 (defun %ashr (data count)
237 (declare (type bignum-element-type data)
238 (type (mod #.sb!vm:n-word-bits) count))
241 ;;; This takes a digit-size quantity and shifts it to the left,
242 ;;; returning a digit-size quantity.
243 (defun %ashl (data count)
244 (declare (type bignum-element-type data)
245 (type (mod #.sb!vm:n-word-bits) count))
248 ;;; Do an unsigned (logical) right shift of a digit by Count.
249 (defun %digit-logical-shift-right (data count)
250 (declare (type bignum-element-type data)
251 (type (mod #.sb!vm:n-word-bits) count))
252 (%digit-logical-shift-right data count))
254 ;;; Change the length of bignum to be newlen. Newlen must be the same or
255 ;;; smaller than the old length, and any elements beyond newlen must be zeroed.
256 (defun %bignum-set-length (bignum newlen)
257 (declare (type bignum-type bignum)
258 (type bignum-index newlen))
259 (%bignum-set-length bignum newlen))
261 ;;; This returns 0 or "-1" depending on whether the bignum is positive. This
262 ;;; is suitable for infinite sign extension to complete additions,
263 ;;; subtractions, negations, etc. This cannot return a -1 represented as
264 ;;; a negative fixnum since it would then have to low zeros.
265 #!-sb-fluid (declaim (inline %sign-digit))
266 (defun %sign-digit (bignum len)
267 (declare (type bignum-type bignum)
268 (type bignum-index len))
269 (%ashr (%bignum-ref bignum (1- len)) (1- digit-size)))
271 ;;; These take two digit-size quantities and compare or contrast them
272 ;;; without wasting time with incorrect type checking.
273 #!-sb-fluid (declaim (inline %digit-compare %digit-greater))
274 (defun %digit-compare (x y)
276 (defun %digit-greater (x y)
279 (declaim (optimize (speed 3) (safety 0)))
283 (defun add-bignums (a b)
284 (declare (type bignum-type a b))
285 (let ((len-a (%bignum-length a))
286 (len-b (%bignum-length b)))
287 (declare (type bignum-index len-a len-b))
288 (multiple-value-bind (a len-a b len-b)
290 (values a len-a b len-b)
291 (values b len-b a len-a))
292 (declare (type bignum-type a b)
293 (type bignum-index len-a len-b))
294 (let* ((len-res (1+ len-a))
295 (res (%allocate-bignum len-res))
297 (declare (type bignum-index len-res)
298 (type bignum-type res)
299 (type (mod 2) carry))
301 (declare (type bignum-index i))
302 (multiple-value-bind (v k)
303 (%add-with-carry (%bignum-ref a i) (%bignum-ref b i) carry)
304 (declare (type bignum-element-type v)
306 (setf (%bignum-ref res i) v)
309 (finish-add a res carry (%sign-digit b len-b) len-b len-a)
310 (setf (%bignum-ref res len-a)
311 (%add-with-carry (%sign-digit a len-a)
312 (%sign-digit b len-b)
314 (%normalize-bignum res len-res)))))
316 ;;; This takes the longer of two bignums and propagates the carry through its
317 ;;; remaining high order digits.
318 (defun finish-add (a res carry sign-digit-b start end)
319 (declare (type bignum-type a res)
321 (type bignum-element-type sign-digit-b)
322 (type bignum-index start end))
323 (do ((i start (1+ i)))
325 (setf (%bignum-ref res end)
326 (%add-with-carry (%sign-digit a end) sign-digit-b carry)))
327 (declare (type bignum-index i))
328 (multiple-value-bind (v k)
329 (%add-with-carry (%bignum-ref a i) sign-digit-b carry)
330 (setf (%bignum-ref res i) v)
336 (eval-when (:compile-toplevel :execute)
338 ;;; This subtracts b from a plugging result into res. Return-fun is the
339 ;;; function to call that fixes up the result returning any useful values, such
340 ;;; as the result. This macro may evaluate its arguments more than once.
341 (sb!xc:defmacro subtract-bignum-loop (a len-a b len-b res len-res return-fun)
342 (let ((borrow (gensym))
351 (,a-sign (%sign-digit ,a ,len-a))
352 (,b-sign (%sign-digit ,b ,len-b)))
353 (declare (type bignum-element-type ,a-sign ,b-sign))
354 (dotimes (,i ,len-res)
355 (declare (type bignum-index ,i))
356 (let ((,a-digit (if (< ,i ,len-a) (%bignum-ref ,a ,i) ,a-sign))
357 (,b-digit (if (< ,i ,len-b) (%bignum-ref ,b ,i) ,b-sign)))
358 (declare (type bignum-element-type ,a-digit ,b-digit))
359 (multiple-value-bind (,v ,k)
360 (%subtract-with-borrow ,a-digit ,b-digit ,borrow)
361 (setf (%bignum-ref ,res ,i) ,v)
363 (,return-fun ,res ,len-res))))
367 (defun subtract-bignum (a b)
368 (declare (type bignum-type a b))
369 (let* ((len-a (%bignum-length a))
370 (len-b (%bignum-length b))
371 (len-res (1+ (max len-a len-b)))
372 (res (%allocate-bignum len-res)))
373 (declare (type bignum-index len-a len-b len-res)) ;Test len-res for bounds?
374 (subtract-bignum-loop a len-a b len-b res len-res %normalize-bignum)))
376 ;;; Operations requiring a subtraction without the overhead of intermediate
377 ;;; results, such as GCD, use this. It assumes Result is big enough for the
379 (defun subtract-bignum-buffers-with-len (a len-a b len-b result len-res)
380 (declare (type bignum-type a b)
381 (type bignum-index len-a len-b))
382 (subtract-bignum-loop a len-a b len-b result len-res
383 %normalize-bignum-buffer))
385 (defun subtract-bignum-buffers (a len-a b len-b result)
386 (declare (type bignum-type a b)
387 (type bignum-index len-a len-b))
388 (subtract-bignum-loop a len-a b len-b result (max len-a len-b)
389 %normalize-bignum-buffer))
393 (defun multiply-bignums (a b)
394 (declare (type bignum-type a b))
395 (let* ((a-plusp (%bignum-0-or-plusp a (%bignum-length a)))
396 (b-plusp (%bignum-0-or-plusp b (%bignum-length b)))
397 (a (if a-plusp a (negate-bignum a)))
398 (b (if b-plusp b (negate-bignum b)))
399 (len-a (%bignum-length a))
400 (len-b (%bignum-length b))
401 (len-res (+ len-a len-b))
402 (res (%allocate-bignum len-res))
403 (negate-res (not (eq a-plusp b-plusp))))
404 (declare (type bignum-index len-a len-b len-res))
406 (declare (type bignum-index i))
407 (let ((carry-digit 0)
408 (x (%bignum-ref a i))
410 (declare (type bignum-index k)
411 (type bignum-element-type carry-digit x))
413 (multiple-value-bind (big-carry res-digit)
418 (declare (type bignum-element-type big-carry res-digit))
419 (setf (%bignum-ref res k) res-digit)
420 (setf carry-digit big-carry)
422 (setf (%bignum-ref res k) carry-digit)))
423 (when negate-res (negate-bignum-in-place res))
424 (%normalize-bignum res len-res)))
426 (defun multiply-bignum-and-fixnum (bignum fixnum)
427 (declare (type bignum-type bignum) (type fixnum fixnum))
428 (let* ((bignum-plus-p (%bignum-0-or-plusp bignum (%bignum-length bignum)))
429 (fixnum-plus-p (not (minusp fixnum)))
430 (bignum (if bignum-plus-p bignum (negate-bignum bignum)))
431 (bignum-len (%bignum-length bignum))
432 (fixnum (if fixnum-plus-p fixnum (- fixnum)))
433 (result (%allocate-bignum (1+ bignum-len)))
435 (declare (type bignum-type bignum result)
436 (type bignum-index bignum-len)
437 (type bignum-element-type fixnum carry-digit))
438 (dotimes (index bignum-len)
439 (declare (type bignum-index index))
440 (multiple-value-bind (next-digit low)
441 (%multiply-and-add (%bignum-ref bignum index) fixnum carry-digit)
442 (declare (type bignum-element-type next-digit low))
443 (setf carry-digit next-digit)
444 (setf (%bignum-ref result index) low)))
445 (setf (%bignum-ref result bignum-len) carry-digit)
446 (unless (eq bignum-plus-p fixnum-plus-p)
447 (negate-bignum-in-place result))
448 (%normalize-bignum result (1+ bignum-len))))
450 (defun multiply-fixnums (a b)
451 (declare (fixnum a b))
452 (let* ((a-minusp (minusp a))
453 (b-minusp (minusp b)))
454 (multiple-value-bind (high low)
455 (%multiply (if a-minusp (- a) a)
456 (if b-minusp (- b) b))
457 (declare (type bignum-element-type high low))
458 (if (and (zerop high)
459 (%digit-0-or-plusp low))
460 (let ((low (sb!ext:truly-the (unsigned-byte #.(1- sb!vm:n-word-bits))
461 (%fixnum-digit-with-correct-sign low))))
462 (if (eq a-minusp b-minusp)
465 (let ((res (%allocate-bignum 2)))
466 (%bignum-set res 0 low)
467 (%bignum-set res 1 high)
468 (unless (eq a-minusp b-minusp) (negate-bignum-in-place res))
469 (%normalize-bignum res 2))))))
471 ;;;; BIGNUM-REPLACE and WITH-BIGNUM-BUFFERS
473 (eval-when (:compile-toplevel :execute)
475 (sb!xc:defmacro bignum-replace (dest
483 (sb!int:once-only ((n-dest dest)
485 (let ((n-start1 (gensym))
491 (end1 (or end1 `(%bignum-length ,n-dest)))
492 (end2 (or end2 `(%bignum-length ,n-src))))
494 `(let ((,n-start1 ,start1)
496 (do ((,i1 (1- ,end1) (1- ,i1))
497 (,i2 (1- ,end2) (1- ,i2)))
498 ((or (< ,i1 ,n-start1) (< ,i2 ,n-start2)))
499 (declare (fixnum ,i1 ,i2))
500 (%bignum-set ,n-dest ,i1
501 (%bignum-ref ,n-src ,i2))))
502 `(let ((,n-end1 ,end1)
504 (do ((,i1 ,start1 (1+ ,i1))
505 (,i2 ,start2 (1+ ,i2)))
506 ((or (>= ,i1 ,n-end1) (>= ,i2 ,n-end2)))
507 (declare (type bignum-index ,i1 ,i2))
508 (%bignum-set ,n-dest ,i1
509 (%bignum-ref ,n-src ,i2))))))))
511 (sb!xc:defmacro with-bignum-buffers (specs &body body)
513 "WITH-BIGNUM-BUFFERS ({(var size [init])}*) Form*"
514 (sb!int:collect ((binds)
517 (let ((name (first spec))
518 (size (second spec)))
519 (binds `(,name (%allocate-bignum ,size)))
520 (let ((init (third spec)))
522 (inits `(bignum-replace ,name ,init))))))
531 (eval-when (:compile-toplevel :load-toplevel :execute)
532 ;; The asserts in the GCD implementation are way too expensive to
533 ;; check in normal use, and are disabled here.
534 (sb!xc:defmacro gcd-assert (&rest args)
537 ;; We'll be doing a lot of modular arithmetic.
538 (sb!xc:defmacro modularly (form)
539 `(logand all-ones-digit ,form)))
541 ;;; I'm not sure why I need this FTYPE declaration. Compiled by the
542 ;;; target compiler, it can deduce the return type fine, but without
543 ;;; it, we pay a heavy price in BIGNUM-GCD when compiled by the
544 ;;; cross-compiler. -- CSR, 2004-07-19
545 (declaim (ftype (sfunction (bignum-type bignum-index bignum-type bignum-index)
546 sb!vm::positive-fixnum)
547 bignum-factors-of-two))
548 (defun bignum-factors-of-two (a len-a b len-b)
549 (declare (type bignum-index len-a len-b) (type bignum-type a b))
551 (end (min len-a len-b)))
552 ((= i end) (error "Unexpected zero bignums?"))
553 (declare (type bignum-index i end))
554 (let ((or-digits (%logior (%bignum-ref a i) (%bignum-ref b i))))
555 (unless (zerop or-digits)
556 (return (do ((j 0 (1+ j))
557 (or-digits or-digits (%ashr or-digits 1)))
558 ((oddp or-digits) (+ (* i digit-size) j))
559 (declare (type (mod #.sb!vm:n-word-bits) j))))))))
561 ;;; Multiply a bignum buffer with a fixnum or a digit, storing the
562 ;;; result in another bignum buffer, and without using any
563 ;;; temporaries. Inlined to avoid boxing smallnum if it's actually a
564 ;;; digit. Needed by GCD, should possibly OAOO with
565 ;;; MULTIPLY-BIGNUM-AND-FIXNUM.
566 (declaim (inline multiply-bignum-buffer-and-smallnum-to-buffer))
567 (defun multiply-bignum-buffer-and-smallnum-to-buffer (bignum bignum-len
569 (declare (type bignum-type bignum))
570 (let* ((bignum-plus-p (%bignum-0-or-plusp bignum bignum-len))
571 (smallnum-plus-p (not (minusp smallnum)))
572 (smallnum (if smallnum-plus-p smallnum (- smallnum)))
574 (declare (type bignum-type bignum res)
575 (type bignum-index bignum-len)
576 (type bignum-element-type smallnum carry-digit))
577 (unless bignum-plus-p
578 (negate-bignum-buffer-in-place bignum bignum-len))
579 (dotimes (index bignum-len)
580 (declare (type bignum-index index))
581 (multiple-value-bind (next-digit low)
582 (%multiply-and-add (%bignum-ref bignum index)
585 (declare (type bignum-element-type next-digit low))
586 (setf carry-digit next-digit)
587 (setf (%bignum-ref res index) low)))
588 (setf (%bignum-ref res bignum-len) carry-digit)
589 (unless bignum-plus-p
590 (negate-bignum-buffer-in-place bignum bignum-len))
591 (let ((res-len (%normalize-bignum-buffer res (1+ bignum-len))))
592 (unless (eq bignum-plus-p smallnum-plus-p)
593 (negate-bignum-buffer-in-place res res-len))
596 ;;; Given U and V, return U / V mod 2^32. Implements the algorithm in the
597 ;;; paper, but uses some clever bit-twiddling nicked from Nickle to do it.
598 (declaim (inline bmod))
600 (let ((ud (%bignum-ref u 0))
601 (vd (%bignum-ref v 0))
605 (declare (type (unsigned-byte #.sb!vm:n-word-bits) ud vd umask imask m))
606 (dotimes (i digit-size)
607 (setf umask (logior umask imask))
608 (unless (zerop (logand ud umask))
609 (setf ud (modularly (- ud vd)))
610 (setf m (modularly (logior m imask))))
611 (setf imask (modularly (ash imask 1)))
612 (setf vd (modularly (ash vd 1))))
615 (defun dmod (u u-len v v-len tmp1)
616 (loop while (> (bignum-buffer-integer-length u u-len)
617 (+ (bignum-buffer-integer-length v v-len)
620 (unless (zerop (%bignum-ref u 0))
621 (let* ((bmod (bmod u v))
622 (tmp1-len (multiply-bignum-buffer-and-smallnum-to-buffer v v-len
625 (setf u-len (subtract-bignum-buffers u u-len
628 (bignum-abs-buffer u u-len)))
629 (gcd-assert (zerop (%bignum-ref u 0)))
630 (setf u-len (bignum-buffer-ashift-right u u-len digit-size)))
631 (let* ((d (+ 1 (- (bignum-buffer-integer-length u u-len)
632 (bignum-buffer-integer-length v v-len))))
634 (declare (type (unsigned-byte #.(integer-length #.sb!vm:n-word-bits)) d)
635 (type (unsigned-byte #.sb!vm:n-word-bits) n))
636 (gcd-assert (>= d 0))
637 (unless (zerop (logand (%bignum-ref u 0) n))
639 (multiply-bignum-buffer-and-smallnum-to-buffer v v-len
643 (setf u-len (subtract-bignum-buffers u u-len
646 (bignum-abs-buffer u u-len)))
649 (defconstant lower-ones-digit (1- (ash 1 (truncate sb!vm:n-word-bits 2))))
651 ;;; Find D and N such that (LOGAND ALL-ONES-DIGIT (- (* D X) (* N Y))) is 0,
652 ;;; (< 0 N LOWER-ONES-DIGIT) and (< 0 (ABS D) LOWER-ONES-DIGIT).
653 (defun reduced-ratio-mod (x y)
654 (let* ((c (bmod x y))
657 (n2 (modularly (1+ (modularly (lognot n1)))))
659 (declare (type (unsigned-byte #.sb!vm:n-word-bits) n1 d1 n2 d2))
660 (loop while (> n2 (expt 2 (truncate digit-size 2))) do
661 (loop for i of-type (mod #.sb!vm:n-word-bits)
662 downfrom (- (integer-length n1) (integer-length n2))
664 (when (>= n1 (modularly (ash n2 i)))
665 (psetf n1 (modularly (- n1 (modularly (ash n2 i))))
666 d1 (modularly (- d1 (modularly (ash d2 i)))))))
671 (values n2 (if (>= d2 (expt 2 (1- digit-size)))
672 (lognot (logand most-positive-fixnum (lognot d2)))
673 (logand lower-ones-digit d2)))))
676 (defun copy-bignum (a &optional (len (%bignum-length a)))
677 (let ((b (%allocate-bignum len)))
679 (%bignum-set-length b len)
682 ;;; Allocate a single word bignum that holds fixnum. This is useful when
683 ;;; we are trying to mix fixnum and bignum operands.
684 #!-sb-fluid (declaim (inline make-small-bignum))
685 (defun make-small-bignum (fixnum)
686 (let ((res (%allocate-bignum 1)))
687 (setf (%bignum-ref res 0) (%fixnum-to-digit fixnum))
690 ;; When the larger number is less than this many bignum digits long, revert
692 (defparameter *accelerated-gcd-cutoff* 3)
694 ;;; Alternate between k-ary reduction with the help of
695 ;;; REDUCED-RATIO-MOD and digit modulus reduction via DMOD. Once the
696 ;;; arguments get small enough, drop through to BIGNUM-MOD-GCD (since
697 ;;; k-ary reduction can introduce spurious factors, which need to be
698 ;;; filtered out). Reference: Kenneth Weber, "The accelerated integer
699 ;;; GCD algorithm", ACM Transactions on Mathematical Software, volume
700 ;;; 21, number 1, March 1995, epp. 111-122.
701 (defun bignum-gcd (u0 v0)
702 (declare (type bignum-type u0 v0))
703 (let* ((u1 (if (%bignum-0-or-plusp u0 (%bignum-length u0))
705 (negate-bignum u0 nil)))
706 (v1 (if (%bignum-0-or-plusp v0 (%bignum-length v0))
708 (negate-bignum v0 nil))))
710 (return-from bignum-gcd u1))
713 (let ((n (mod v1 u1)))
714 (setf v1 (if (fixnump n)
715 (make-small-bignum n)
717 (if (and (= 1 (%bignum-length v1))
718 (zerop (%bignum-ref v1 0)))
719 (return-from bignum-gcd (%normalize-bignum u1
720 (%bignum-length u1))))
721 (let* ((buffer-len (+ 2 (%bignum-length u1)))
722 (u (%allocate-bignum buffer-len))
723 (u-len (%bignum-length u1))
724 (v (%allocate-bignum buffer-len))
725 (v-len (%bignum-length v1))
726 (tmp1 (%allocate-bignum buffer-len))
728 (tmp2 (%allocate-bignum buffer-len))
731 (bignum-factors-of-two u1 (%bignum-length u1)
732 v1 (%bignum-length v1))))
733 (declare (type (or null bignum-index)
734 buffer-len u-len v-len tmp1-len tmp2-len))
735 (bignum-replace u u1)
736 (bignum-replace v v1)
738 (make-gcd-bignum-odd u
739 (bignum-buffer-ashift-right u u-len
742 (make-gcd-bignum-odd v
743 (bignum-buffer-ashift-right v v-len
745 (loop until (or (< u-len *accelerated-gcd-cutoff*)
749 (zerop (%bignum-ref v 0))))
751 (gcd-assert (= buffer-len (%bignum-length u)
753 (%bignum-length tmp1)
754 (%bignum-length tmp2)))
755 (if (> (bignum-buffer-integer-length u u-len)
756 (+ #.(truncate sb!vm:n-word-bits 4)
757 (bignum-buffer-integer-length v v-len)))
758 (setf u-len (dmod u u-len
761 (multiple-value-bind (n d) (reduced-ratio-mod u v)
763 (multiply-bignum-buffer-and-smallnum-to-buffer v v-len
766 (multiply-bignum-buffer-and-smallnum-to-buffer u u-len
768 (gcd-assert (= (copy-bignum tmp2 tmp2-len)
769 (* (copy-bignum u u-len) d)))
770 (gcd-assert (= (copy-bignum tmp1 tmp1-len)
771 (* (copy-bignum v v-len) n)))
773 (subtract-bignum-buffers-with-len tmp1 tmp1-len
778 (gcd-assert (or (zerop (- (copy-bignum tmp1 tmp1-len)
779 (copy-bignum tmp2 tmp2-len)))
780 (= (copy-bignum u u-len)
781 (- (copy-bignum tmp1 tmp1-len)
782 (copy-bignum tmp2 tmp2-len)))))
783 (bignum-abs-buffer u u-len)
784 (gcd-assert (zerop (modularly u)))))
785 (setf u-len (make-gcd-bignum-odd u u-len))
787 (rotatef u-len v-len))
788 (setf u (copy-bignum u u-len))
789 (let ((n (bignum-mod-gcd v1 u)))
790 (ash (bignum-mod-gcd u1 (if (fixnump n)
791 (make-small-bignum n)
795 (defun bignum-mod-gcd (a b)
796 (declare (type bignum-type a b))
799 ;; While the length difference of A and B is sufficiently large,
800 ;; reduce using MOD (slowish, but it should equalize the sizes of
801 ;; A and B pretty quickly). After that, use the binary GCD
802 ;; algorithm to handle the rest.
803 (loop until (and (= (%bignum-length b) 1) (zerop (%bignum-ref b 0))) do
804 (when (<= (%bignum-length a) (1+ (%bignum-length b)))
805 (return-from bignum-mod-gcd (bignum-binary-gcd a b)))
806 (let ((rem (mod a b)))
808 (setf a (make-small-bignum rem))
811 (if (= (%bignum-length a) 1)
812 (%normalize-bignum a 1)
815 (defun bignum-binary-gcd (a b)
816 (declare (type bignum-type a b))
817 (let* ((len-a (%bignum-length a))
818 (len-b (%bignum-length b)))
819 (declare (type bignum-index len-a len-b))
820 (with-bignum-buffers ((a-buffer len-a a)
822 (res-buffer (max len-a len-b)))
823 (let* ((factors-of-two
824 (bignum-factors-of-two a-buffer len-a
826 (len-a (make-gcd-bignum-odd
828 (bignum-buffer-ashift-right a-buffer len-a
830 (len-b (make-gcd-bignum-odd
832 (bignum-buffer-ashift-right b-buffer len-b
834 (declare (type bignum-index len-a len-b))
841 (multiple-value-bind (u v len-v r len-r)
842 (bignum-gcd-order-and-subtract x len-x y len-y z)
843 (declare (type bignum-index len-v len-r))
844 (when (and (= len-r 1) (zerop (%bignum-ref r 0)))
845 (if (zerop factors-of-two)
846 (let ((ret (%allocate-bignum len-v)))
848 (setf (%bignum-ref ret i) (%bignum-ref v i)))
849 (return (%normalize-bignum ret len-v)))
850 (return (bignum-ashift-left v factors-of-two len-v))))
851 (setf x v len-x len-v)
852 (setf y r len-y (make-gcd-bignum-odd r len-r))
855 (defun bignum-gcd-order-and-subtract (a len-a b len-b res)
856 (declare (type bignum-index len-a len-b) (type bignum-type a b))
857 (cond ((= len-a len-b)
858 (do ((i (1- len-a) (1- i)))
860 (setf (%bignum-ref res 0) 0)
861 (values a b len-b res 1))
862 (let ((a-digit (%bignum-ref a i))
863 (b-digit (%bignum-ref b i)))
864 (cond ((%digit-compare a-digit b-digit))
865 ((%digit-greater a-digit b-digit)
867 (values a b len-b res
868 (subtract-bignum-buffers a len-a b len-b
872 (values b a len-a res
873 (subtract-bignum-buffers b len-b
877 (values a b len-b res
878 (subtract-bignum-buffers a len-a b len-b res)))
880 (values b a len-a res
881 (subtract-bignum-buffers b len-b a len-a res)))))
883 (defun make-gcd-bignum-odd (a len-a)
884 (declare (type bignum-type a) (type bignum-index len-a))
885 (dotimes (index len-a)
886 (declare (type bignum-index index))
887 (do ((digit (%bignum-ref a index) (%ashr digit 1))
888 (increment 0 (1+ increment)))
890 (declare (type (mod #.sb!vm:n-word-bits) increment))
892 (return-from make-gcd-bignum-odd
893 (bignum-buffer-ashift-right a len-a
894 (+ (* index digit-size)
900 (eval-when (:compile-toplevel :execute)
902 ;;; This negates bignum-len digits of bignum, storing the resulting digits into
903 ;;; result (possibly EQ to bignum) and returning whatever end-carry there is.
904 (sb!xc:defmacro bignum-negate-loop (bignum
906 &optional (result nil resultp))
907 (let ((carry (gensym))
911 `(let* (,@(if (not resultp) `(,last))
913 (multiple-value-bind (,value ,carry)
914 (%add-with-carry (%lognot (%bignum-ref ,bignum 0)) 1 0)
916 `(setf (%bignum-ref ,result 0) ,value)
917 `(setf ,last ,value))
921 (declare (type bit ,carry)
922 (type bignum-index i ,end))
924 (when (= i ,end) (return))
925 (multiple-value-bind (,value temp)
926 (%add-with-carry (%lognot (%bignum-ref ,bignum i)) 0 ,carry)
928 `(setf (%bignum-ref ,result i) ,value)
929 `(setf ,last ,value))
932 ,(if resultp carry `(values ,carry ,last)))))
936 ;;; Fully-normalize is an internal optional. It cause this to always return
937 ;;; a bignum, without any extraneous digits, and it never returns a fixnum.
938 (defun negate-bignum (x &optional (fully-normalize t))
939 (declare (type bignum-type x))
940 (let* ((len-x (%bignum-length x))
942 (res (%allocate-bignum len-res)))
943 (declare (type bignum-index len-x len-res)) ;Test len-res for range?
944 (let ((carry (bignum-negate-loop x len-x res)))
945 (setf (%bignum-ref res len-x)
946 (%add-with-carry (%lognot (%sign-digit x len-x)) 0 carry)))
948 (%normalize-bignum res len-res)
949 (%mostly-normalize-bignum res len-res))))
951 ;;; This assumes bignum is positive; that is, the result of negating it will
952 ;;; stay in the provided allocated bignum.
953 (defun negate-bignum-buffer-in-place (bignum bignum-len)
954 (bignum-negate-loop bignum bignum-len bignum)
957 (defun negate-bignum-in-place (bignum)
958 (declare (inline negate-bignum-buffer-in-place))
959 (negate-bignum-buffer-in-place bignum (%bignum-length bignum)))
961 (defun bignum-abs-buffer (bignum len)
962 (unless (%bignum-0-or-plusp bignum len)
963 (negate-bignum-in-place bignum len)))
967 (eval-when (:compile-toplevel :execute)
969 ;;; This macro is used by BIGNUM-ASHIFT-RIGHT, BIGNUM-BUFFER-ASHIFT-RIGHT, and
970 ;;; BIGNUM-LDB-BIGNUM-RES. They supply a termination form that references
971 ;;; locals established by this form. Source is the source bignum. Start-digit
972 ;;; is the first digit in source from which we pull bits. Start-pos is the
973 ;;; first bit we want. Res-len-form is the form that computes the length of
974 ;;; the resulting bignum. Termination is a DO termination form with a test and
975 ;;; body. When result is supplied, it is the variable to which this binds a
976 ;;; newly allocated bignum.
978 ;;; Given start-pos, 1-31 inclusively, of shift, we form the j'th resulting
979 ;;; digit from high bits of the i'th source digit and the start-pos number of
980 ;;; bits from the i+1'th source digit.
981 (sb!xc:defmacro shift-right-unaligned (source
987 `(let* ((high-bits-in-first-digit (- digit-size ,start-pos))
988 (res-len ,res-len-form)
989 (res-len-1 (1- res-len))
990 ,@(if result `((,result (%allocate-bignum res-len)))))
991 (declare (type bignum-index res-len res-len-1))
992 (do ((i ,start-digit i+1)
993 (i+1 (1+ ,start-digit) (1+ i+1))
996 (declare (type bignum-index i i+1 j))
997 (setf (%bignum-ref ,(if result result source) j)
998 (%logior (%digit-logical-shift-right (%bignum-ref ,source i)
1000 (%ashl (%bignum-ref ,source i+1)
1001 high-bits-in-first-digit))))))
1005 ;;; First compute the number of whole digits to shift, shifting them by
1006 ;;; skipping them when we start to pick up bits, and the number of bits to
1007 ;;; shift the remaining digits into place. If the number of digits is greater
1008 ;;; than the length of the bignum, then the result is either 0 or -1. If we
1009 ;;; shift on a digit boundary (that is, n-bits is zero), then we just copy
1010 ;;; digits. The last branch handles the general case which uses a macro that a
1011 ;;; couple other routines use. The fifth argument to the macro references
1012 ;;; locals established by the macro.
1013 (defun bignum-ashift-right (bignum count)
1014 (declare (type bignum-type bignum)
1015 (type unsigned-byte count))
1016 (let ((bignum-len (%bignum-length bignum)))
1017 (declare (type bignum-index bignum-len))
1018 (cond ((fixnump count)
1019 (multiple-value-bind (digits n-bits) (truncate count digit-size)
1020 (declare (type bignum-index digits))
1022 ((>= digits bignum-len)
1023 (if (%bignum-0-or-plusp bignum bignum-len) 0 -1))
1025 (bignum-ashift-right-digits bignum digits))
1027 (shift-right-unaligned bignum digits n-bits (- bignum-len digits)
1029 (setf (%bignum-ref res j)
1030 (%ashr (%bignum-ref bignum i) n-bits))
1031 (%normalize-bignum res res-len))
1033 ((> count bignum-len)
1034 (if (%bignum-0-or-plusp bignum bignum-len) 0 -1))
1035 ;; Since a FIXNUM should be big enough to address anything in
1036 ;; memory, including arrays of bits, and since arrays of bits
1037 ;; take up about the same space as corresponding fixnums, there
1038 ;; should be no way that we fall through to this case: any shift
1039 ;; right by a bignum should give zero. But let's check anyway:
1040 (t (error "bignum overflow: can't shift right by ~S" count)))))
1042 (defun bignum-ashift-right-digits (bignum digits)
1043 (declare (type bignum-type bignum)
1044 (type bignum-index digits))
1045 (let* ((res-len (- (%bignum-length bignum) digits))
1046 (res (%allocate-bignum res-len)))
1047 (declare (type bignum-index res-len)
1048 (type bignum-type res))
1049 (bignum-replace res bignum :start2 digits)
1050 (%normalize-bignum res res-len)))
1052 ;;; GCD uses this for an in-place shifting operation. This is different enough
1053 ;;; from BIGNUM-ASHIFT-RIGHT that it isn't worth folding the bodies into a
1054 ;;; macro, but they share the basic algorithm. This routine foregoes a first
1055 ;;; test for digits being greater than or equal to bignum-len since that will
1056 ;;; never happen for its uses in GCD. We did fold the last branch into a macro
1057 ;;; since it was duplicated a few times, and the fifth argument to it
1058 ;;; references locals established by the macro.
1059 (defun bignum-buffer-ashift-right (bignum bignum-len x)
1060 (declare (type bignum-index bignum-len) (fixnum x))
1061 (multiple-value-bind (digits n-bits) (truncate x digit-size)
1062 (declare (type bignum-index digits))
1065 (let ((new-end (- bignum-len digits)))
1066 (bignum-replace bignum bignum :end1 new-end :start2 digits
1068 (%normalize-bignum-buffer bignum new-end)))
1070 (shift-right-unaligned bignum digits n-bits (- bignum-len digits)
1072 (setf (%bignum-ref bignum j)
1073 (%ashr (%bignum-ref bignum i) n-bits))
1074 (%normalize-bignum-buffer bignum res-len)))))))
1076 ;;; This handles shifting a bignum buffer to provide fresh bignum data for some
1077 ;;; internal routines. We know bignum is safe when called with bignum-len.
1078 ;;; First we compute the number of whole digits to shift, shifting them
1079 ;;; starting to store farther along the result bignum. If we shift on a digit
1080 ;;; boundary (that is, n-bits is zero), then we just copy digits. The last
1081 ;;; branch handles the general case.
1082 (defun bignum-ashift-left (bignum x &optional bignum-len)
1083 (declare (type bignum-type bignum)
1084 (type unsigned-byte x)
1085 (type (or null bignum-index) bignum-len))
1087 (multiple-value-bind (digits n-bits) (truncate x digit-size)
1088 (let* ((bignum-len (or bignum-len (%bignum-length bignum)))
1089 (res-len (+ digits bignum-len 1)))
1090 (when (> res-len maximum-bignum-length)
1091 (error "can't represent result of left shift"))
1093 (bignum-ashift-left-digits bignum bignum-len digits)
1094 (bignum-ashift-left-unaligned bignum digits n-bits res-len))))
1095 ;; Left shift by a number too big to be represented as a fixnum
1096 ;; would exceed our memory capacity, since a fixnum is big enough
1097 ;; to index any array, including a bit array.
1098 (error "can't represent result of left shift")))
1100 (defun bignum-ashift-left-digits (bignum bignum-len digits)
1101 (declare (type bignum-index bignum-len digits))
1102 (let* ((res-len (+ bignum-len digits))
1103 (res (%allocate-bignum res-len)))
1104 (declare (type bignum-index res-len))
1105 (bignum-replace res bignum :start1 digits :end1 res-len :end2 bignum-len
1109 ;;; BIGNUM-TRUNCATE uses this to store into a bignum buffer by supplying res.
1110 ;;; When res comes in non-nil, then this foregoes allocating a result, and it
1111 ;;; normalizes the buffer instead of the would-be allocated result.
1113 ;;; We start storing into one digit higher than digits, storing a whole result
1114 ;;; digit from parts of two contiguous digits from bignum. When the loop
1115 ;;; finishes, we store the remaining bits from bignum's first digit in the
1116 ;;; first non-zero result digit, digits. We also grab some left over high
1117 ;;; bits from the last digit of bignum.
1118 (defun bignum-ashift-left-unaligned (bignum digits n-bits res-len
1119 &optional (res nil resp))
1120 (declare (type bignum-index digits res-len)
1121 (type (mod #.digit-size) n-bits))
1122 (let* ((remaining-bits (- digit-size n-bits))
1123 (res-len-1 (1- res-len))
1124 (res (or res (%allocate-bignum res-len))))
1125 (declare (type bignum-index res-len res-len-1))
1128 (j (1+ digits) (1+ j)))
1130 (setf (%bignum-ref res digits)
1131 (%ashl (%bignum-ref bignum 0) n-bits))
1132 (setf (%bignum-ref res j)
1133 (%ashr (%bignum-ref bignum i) remaining-bits))
1135 (%normalize-bignum-buffer res res-len)
1136 (%normalize-bignum res res-len)))
1137 (declare (type bignum-index i i+1 j))
1138 (setf (%bignum-ref res j)
1139 (%logior (%digit-logical-shift-right (%bignum-ref bignum i)
1141 (%ashl (%bignum-ref bignum i+1) n-bits))))))
1143 ;;;; relational operators
1145 ;;; Return T iff bignum is positive.
1146 (defun bignum-plus-p (bignum)
1147 (declare (type bignum-type bignum))
1148 (%bignum-0-or-plusp bignum (%bignum-length bignum)))
1150 ;;; This compares two bignums returning -1, 0, or 1, depending on
1151 ;;; whether a is less than, equal to, or greater than b.
1152 (declaim (ftype (function (bignum bignum) (integer -1 1)) bignum-compare))
1153 (defun bignum-compare (a b)
1154 (declare (type bignum-type a b))
1155 (let* ((len-a (%bignum-length a))
1156 (len-b (%bignum-length b))
1157 (a-plusp (%bignum-0-or-plusp a len-a))
1158 (b-plusp (%bignum-0-or-plusp b len-b)))
1159 (declare (type bignum-index len-a len-b))
1160 (cond ((not (eq a-plusp b-plusp))
1163 (do ((i (1- len-a) (1- i)))
1165 (declare (type bignum-index i))
1166 (let ((a-digit (%bignum-ref a i))
1167 (b-digit (%bignum-ref b i)))
1168 (declare (type bignum-element-type a-digit b-digit))
1169 (when (%digit-greater a-digit b-digit)
1171 (when (%digit-greater b-digit a-digit)
1173 (when (zerop i) (return 0))))
1176 (t (if a-plusp -1 1)))))
1178 ;;;; float conversion
1180 ;;; Make a single or double float with the specified significand,
1181 ;;; exponent and sign.
1182 (defun single-float-from-bits (bits exp plusp)
1183 (declare (fixnum exp))
1184 (declare (optimize #-sb-xc-host (sb!ext:inhibit-warnings 3)))
1186 sb!vm:single-float-exponent-byte
1187 (logandc2 (logand #xffffffff
1188 (%bignum-ref bits 1))
1189 sb!vm:single-float-hidden-bit))))
1193 (logior res (ash -1 sb!vm:float-sign-shift))))))
1194 (defun double-float-from-bits (bits exp plusp)
1195 (declare (fixnum exp))
1196 (declare (optimize #-sb-xc-host (sb!ext:inhibit-warnings 3)))
1198 sb!vm:double-float-exponent-byte
1199 (logandc2 (ecase sb!vm::n-word-bits
1200 (32 (%bignum-ref bits 2))
1201 (64 (ash (%bignum-ref bits 1) -32)))
1202 sb!vm:double-float-hidden-bit)))
1203 (lo (logand #xffffffff (%bignum-ref bits 1))))
1204 (make-double-float (if plusp
1206 (logior hi (ash -1 sb!vm:float-sign-shift)))
1208 #!+(and long-float x86)
1209 (defun long-float-from-bits (bits exp plusp)
1210 (declare (fixnum exp))
1211 (declare (optimize #-sb-xc-host (sb!ext:inhibit-warnings 3)))
1215 (logior exp (ash 1 15)))
1216 (%bignum-ref bits 2)
1217 (%bignum-ref bits 1)))
1219 ;;; Convert Bignum to a float in the specified Format, rounding to the best
1221 (defun bignum-to-float (bignum format)
1222 (let* ((plusp (bignum-plus-p bignum))
1223 (x (if plusp bignum (negate-bignum bignum)))
1224 (len (bignum-integer-length x))
1225 (digits (float-format-digits format))
1226 (keep (+ digits digit-size))
1227 (shift (- keep len))
1228 (shifted (if (minusp shift)
1229 (bignum-ashift-right x (- shift))
1230 (bignum-ashift-left x shift)))
1231 (low (%bignum-ref shifted 0))
1232 (round-bit (ash 1 (1- digit-size))))
1233 (declare (type bignum-index len digits keep) (fixnum shift))
1234 (labels ((round-up ()
1235 (let ((rounded (add-bignums shifted round-bit)))
1236 (if (> (integer-length rounded) keep)
1237 (float-from-bits (bignum-ashift-right rounded 1)
1239 (float-from-bits rounded len))))
1240 (float-from-bits (bits len)
1241 (declare (type bignum-index len))
1244 (single-float-from-bits
1246 (check-exponent len sb!vm:single-float-bias
1247 sb!vm:single-float-normal-exponent-max)
1250 (double-float-from-bits
1252 (check-exponent len sb!vm:double-float-bias
1253 sb!vm:double-float-normal-exponent-max)
1257 (long-float-from-bits
1259 (check-exponent len sb!vm:long-float-bias
1260 sb!vm:long-float-normal-exponent-max)
1262 (check-exponent (exp bias max)
1263 (declare (type bignum-index len))
1264 (let ((exp (+ exp bias)))
1266 ;; Why a SIMPLE-TYPE-ERROR? Well, this is mainly
1267 ;; called by COERCE, which requires an error of
1268 ;; TYPE-ERROR if the conversion can't happen
1269 ;; (except in certain circumstances when we are
1270 ;; coercing to a FUNCTION) -- CSR, 2002-09-18
1271 (error 'simple-type-error
1272 :format-control "Too large to be represented as a ~S:~% ~S"
1273 :format-arguments (list format x)
1274 :expected-type format
1279 ;; Round down if round bit is 0.
1280 ((zerop (logand round-bit low))
1281 (float-from-bits shifted len))
1282 ;; If only round bit is set, then round to even.
1283 ((and (= low round-bit)
1284 (dotimes (i (- (%bignum-length x) (ceiling keep digit-size))
1286 (unless (zerop (%bignum-ref x i)) (return nil))))
1287 (let ((next (%bignum-ref shifted 1)))
1290 (float-from-bits shifted len))))
1291 ;; Otherwise, round up.
1295 ;;;; integer length and logbitp/logcount
1297 (defun bignum-buffer-integer-length (bignum len)
1298 (declare (type bignum-type bignum))
1299 (let* ((len-1 (1- len))
1300 (digit (%bignum-ref bignum len-1)))
1301 (declare (type bignum-index len len-1)
1302 (type bignum-element-type digit))
1303 (+ (integer-length (%fixnum-digit-with-correct-sign digit))
1304 (* len-1 digit-size))))
1306 (defun bignum-integer-length (bignum)
1307 (declare (type bignum-type bignum))
1308 (bignum-buffer-integer-length bignum (%bignum-length bignum)))
1310 (defun bignum-logbitp (index bignum)
1311 (declare (type bignum-type bignum))
1312 (let ((len (%bignum-length bignum)))
1313 (declare (type bignum-index len))
1314 (multiple-value-bind (word-index bit-index)
1315 (floor index digit-size)
1316 (if (>= word-index len)
1317 (not (bignum-plus-p bignum))
1318 (not (zerop (logand (%bignum-ref bignum word-index)
1319 (ash 1 bit-index))))))))
1321 (defun bignum-logcount (bignum)
1322 (declare (type bignum-type bignum))
1323 (let* ((length (%bignum-length bignum))
1324 (plusp (%bignum-0-or-plusp bignum length))
1326 (declare (type bignum-index length)
1328 (do ((index 0 (1+ index)))
1329 ((= index length) result)
1330 (let ((digit (%bignum-ref bignum index)))
1331 (declare (type bignum-element-type digit))
1332 (incf result (logcount (if plusp digit (%lognot digit))))))))
1334 ;;;; logical operations
1338 (defun bignum-logical-not (a)
1339 (declare (type bignum-type a))
1340 (let* ((len (%bignum-length a))
1341 (res (%allocate-bignum len)))
1342 (declare (type bignum-index len))
1343 (dotimes (i len res)
1344 (declare (type bignum-index i))
1345 (setf (%bignum-ref res i) (%lognot (%bignum-ref a i))))))
1349 (defun bignum-logical-and (a b)
1350 (declare (type bignum-type a b))
1351 (let* ((len-a (%bignum-length a))
1352 (len-b (%bignum-length b))
1353 (a-plusp (%bignum-0-or-plusp a len-a))
1354 (b-plusp (%bignum-0-or-plusp b len-b)))
1355 (declare (type bignum-index len-a len-b))
1359 (logand-shorter-positive a len-a b (%allocate-bignum len-a))
1360 (logand-shorter-negative a len-a b len-b (%allocate-bignum len-b))))
1363 (logand-shorter-positive b len-b a (%allocate-bignum len-b))
1364 (logand-shorter-negative b len-b a len-a (%allocate-bignum len-a))))
1365 (t (logand-shorter-positive a len-a b (%allocate-bignum len-a))))))
1367 ;;; This takes a shorter bignum, a and len-a, that is positive. Because this
1368 ;;; is AND, we don't care about any bits longer than a's since its infinite 0
1369 ;;; sign bits will mask the other bits out of b. The result is len-a big.
1370 (defun logand-shorter-positive (a len-a b res)
1371 (declare (type bignum-type a b res)
1372 (type bignum-index len-a))
1374 (declare (type bignum-index i))
1375 (setf (%bignum-ref res i)
1376 (%logand (%bignum-ref a i) (%bignum-ref b i))))
1377 (%normalize-bignum res len-a))
1379 ;;; This takes a shorter bignum, a and len-a, that is negative. Because this
1380 ;;; is AND, we just copy any bits longer than a's since its infinite 1 sign
1381 ;;; bits will include any bits from b. The result is len-b big.
1382 (defun logand-shorter-negative (a len-a b len-b res)
1383 (declare (type bignum-type a b res)
1384 (type bignum-index len-a len-b))
1386 (declare (type bignum-index i))
1387 (setf (%bignum-ref res i)
1388 (%logand (%bignum-ref a i) (%bignum-ref b i))))
1389 (do ((i len-a (1+ i)))
1391 (declare (type bignum-index i))
1392 (setf (%bignum-ref res i) (%bignum-ref b i)))
1393 (%normalize-bignum res len-b))
1397 (defun bignum-logical-ior (a b)
1398 (declare (type bignum-type a b))
1399 (let* ((len-a (%bignum-length a))
1400 (len-b (%bignum-length b))
1401 (a-plusp (%bignum-0-or-plusp a len-a))
1402 (b-plusp (%bignum-0-or-plusp b len-b)))
1403 (declare (type bignum-index len-a len-b))
1407 (logior-shorter-positive a len-a b len-b (%allocate-bignum len-b))
1408 (logior-shorter-negative a len-a b len-b (%allocate-bignum len-b))))
1411 (logior-shorter-positive b len-b a len-a (%allocate-bignum len-a))
1412 (logior-shorter-negative b len-b a len-a (%allocate-bignum len-a))))
1413 (t (logior-shorter-positive a len-a b len-b (%allocate-bignum len-a))))))
1415 ;;; This takes a shorter bignum, a and len-a, that is positive. Because this
1416 ;;; is IOR, we don't care about any bits longer than a's since its infinite
1417 ;;; 0 sign bits will mask the other bits out of b out to len-b. The result
1419 (defun logior-shorter-positive (a len-a b len-b res)
1420 (declare (type bignum-type a b res)
1421 (type bignum-index len-a len-b))
1423 (declare (type bignum-index i))
1424 (setf (%bignum-ref res i)
1425 (%logior (%bignum-ref a i) (%bignum-ref b i))))
1426 (do ((i len-a (1+ i)))
1428 (declare (type bignum-index i))
1429 (setf (%bignum-ref res i) (%bignum-ref b i)))
1430 (%normalize-bignum res len-b))
1432 ;;; This takes a shorter bignum, a and len-a, that is negative. Because this
1433 ;;; is IOR, we just copy any bits longer than a's since its infinite 1 sign
1434 ;;; bits will include any bits from b. The result is len-b long.
1435 (defun logior-shorter-negative (a len-a b len-b res)
1436 (declare (type bignum-type a b res)
1437 (type bignum-index len-a len-b))
1439 (declare (type bignum-index i))
1440 (setf (%bignum-ref res i)
1441 (%logior (%bignum-ref a i) (%bignum-ref b i))))
1442 (do ((i len-a (1+ i))
1443 (sign (%sign-digit a len-a)))
1445 (declare (type bignum-index i))
1446 (setf (%bignum-ref res i) sign))
1447 (%normalize-bignum res len-b))
1451 (defun bignum-logical-xor (a b)
1452 (declare (type bignum-type a b))
1453 (let ((len-a (%bignum-length a))
1454 (len-b (%bignum-length b)))
1455 (declare (type bignum-index len-a len-b))
1457 (bignum-logical-xor-aux a len-a b len-b (%allocate-bignum len-b))
1458 (bignum-logical-xor-aux b len-b a len-a (%allocate-bignum len-a)))))
1460 ;;; This takes the shorter of two bignums in a and len-a. Res is len-b
1461 ;;; long. Do the XOR.
1462 (defun bignum-logical-xor-aux (a len-a b len-b res)
1463 (declare (type bignum-type a b res)
1464 (type bignum-index len-a len-b))
1466 (declare (type bignum-index i))
1467 (setf (%bignum-ref res i)
1468 (%logxor (%bignum-ref a i) (%bignum-ref b i))))
1469 (do ((i len-a (1+ i))
1470 (sign (%sign-digit a len-a)))
1472 (declare (type bignum-index i))
1473 (setf (%bignum-ref res i) (%logxor sign (%bignum-ref b i))))
1474 (%normalize-bignum res len-b))
1476 ;;;; LDB (load byte)
1479 FOR NOW WE DON'T USE LDB OR DPB. WE USE SHIFTS AND MASKS IN NUMBERS.LISP WHICH
1480 IS LESS EFFICIENT BUT EASIER TO MAINTAIN. BILL SAYS THIS CODE CERTAINLY WORKS!
1482 (defconstant maximum-fixnum-bits (- sb!vm:n-word-bits sb!vm:n-lowtag-bits))
1484 (defun bignum-load-byte (byte bignum)
1485 (declare (type bignum-type bignum))
1486 (let ((byte-len (byte-size byte))
1487 (byte-pos (byte-position byte)))
1488 (if (< byte-len maximum-fixnum-bits)
1489 (bignum-ldb-fixnum-res bignum byte-len byte-pos)
1490 (bignum-ldb-bignum-res bignum byte-len byte-pos))))
1492 ;;; This returns a fixnum result of loading a byte from a bignum. In order, we
1493 ;;; check for the following conditions:
1494 ;;; Insufficient bignum digits to start loading a byte --
1495 ;;; Return 0 or byte-len 1's depending on sign of bignum.
1496 ;;; One bignum digit containing the whole byte spec --
1497 ;;; Grab 'em, shift 'em, and mask out what we don't want.
1498 ;;; Insufficient bignum digits to cover crossing a digit boundary --
1499 ;;; Grab the available bits in the last digit, and or in whatever
1500 ;;; virtual sign bits we need to return a full byte spec.
1501 ;;; Else (we cross a digit boundary with all bits available) --
1502 ;;; Make a couple masks, grab what we want, shift it around, and
1503 ;;; LOGIOR it all together.
1504 ;;; Because (< maximum-fixnum-bits digit-size) and
1505 ;;; (< byte-len maximum-fixnum-bits),
1506 ;;; we only cross one digit boundary if any.
1507 (defun bignum-ldb-fixnum-res (bignum byte-len byte-pos)
1508 (multiple-value-bind (skipped-digits pos) (truncate byte-pos digit-size)
1509 (let ((bignum-len (%bignum-length bignum))
1510 (s-digits+1 (1+ skipped-digits)))
1511 (declare (type bignum-index bignum-len s-digits+1))
1512 (if (>= skipped-digits bignum-len)
1513 (if (%bignum-0-or-plusp bignum bignum-len)
1515 (%make-ones byte-len))
1516 (let ((end (+ pos byte-len)))
1517 (cond ((<= end digit-size)
1518 (logand (ash (%bignum-ref bignum skipped-digits) (- pos))
1519 ;; Must LOGAND after shift here.
1520 (%make-ones byte-len)))
1521 ((>= s-digits+1 bignum-len)
1522 (let* ((available-bits (- digit-size pos))
1523 (res (logand (ash (%bignum-ref bignum skipped-digits)
1525 ;; LOGAND should be unnecessary here
1526 ;; with a logical right shift or a
1527 ;; correct digit-sized one.
1528 (%make-ones available-bits))))
1529 (if (%bignum-0-or-plusp bignum bignum-len)
1531 (logior (%ashl (%make-ones (- end digit-size))
1535 (let* ((high-bits-in-first-digit (- digit-size pos))
1536 (high-mask (%make-ones high-bits-in-first-digit))
1537 (low-bits-in-next-digit (- end digit-size))
1538 (low-mask (%make-ones low-bits-in-next-digit)))
1539 (declare (type bignum-element-type high-mask low-mask))
1540 (logior (%ashl (logand (%bignum-ref bignum s-digits+1)
1542 high-bits-in-first-digit)
1543 (logand (ash (%bignum-ref bignum skipped-digits)
1545 ;; LOGAND should be unnecessary here with
1546 ;; a logical right shift or a correct
1550 ;;; This returns a bignum result of loading a byte from a bignum. In order, we
1551 ;;; check for the following conditions:
1552 ;;; Insufficient bignum digits to start loading a byte --
1553 ;;; Byte-pos starting on a digit boundary --
1554 ;;; Byte spec contained in one bignum digit --
1555 ;;; Grab the bits we want and stick them in a single digit result.
1556 ;;; Since we know byte-pos is non-zero here, we know our single digit
1557 ;;; will have a zero high sign bit.
1558 ;;; Else (unaligned multiple digits) --
1559 ;;; This is like doing a shift right combined with either masking
1560 ;;; out unwanted high bits from bignum or filling in virtual sign
1561 ;;; bits if bignum had insufficient bits. We use SHIFT-RIGHT-ALIGNED
1562 ;;; and reference lots of local variables this macro establishes.
1563 (defun bignum-ldb-bignum-res (bignum byte-len byte-pos)
1564 (multiple-value-bind (skipped-digits pos) (truncate byte-pos digit-size)
1565 (let ((bignum-len (%bignum-length bignum)))
1566 (declare (type bignum-index bignum-len))
1568 ((>= skipped-digits bignum-len)
1569 (make-bignum-virtual-ldb-bits bignum bignum-len byte-len))
1571 (make-aligned-ldb-bignum bignum bignum-len byte-len skipped-digits))
1572 ((< (+ pos byte-len) digit-size)
1573 (let ((res (%allocate-bignum 1)))
1574 (setf (%bignum-ref res 0)
1575 (logand (%ashr (%bignum-ref bignum skipped-digits) pos)
1576 (%make-ones byte-len)))
1579 (make-unaligned-ldb-bignum bignum bignum-len
1580 byte-len skipped-digits pos))))))
1582 ;;; This returns bits from bignum that don't physically exist. These are
1583 ;;; all zero or one depending on the sign of the bignum.
1584 (defun make-bignum-virtual-ldb-bits (bignum bignum-len byte-len)
1585 (if (%bignum-0-or-plusp bignum bignum-len)
1587 (multiple-value-bind (res-len-1 extra) (truncate byte-len digit-size)
1588 (declare (type bignum-index res-len-1))
1589 (let* ((res-len (1+ res-len-1))
1590 (res (%allocate-bignum res-len)))
1591 (declare (type bignum-index res-len))
1594 (setf (%bignum-ref res j) (%make-ones extra))
1595 (%normalize-bignum res res-len))
1596 (declare (type bignum-index j))
1597 (setf (%bignum-ref res j) all-ones-digit))))))
1599 ;;; Since we are picking up aligned digits, we just copy the whole digits
1600 ;;; we want and fill in extra bits. We might have a byte-len that extends
1601 ;;; off the end of the bignum, so we may have to fill in extra 1's if the
1602 ;;; bignum is negative.
1603 (defun make-aligned-ldb-bignum (bignum bignum-len byte-len skipped-digits)
1604 (multiple-value-bind (res-len-1 extra) (truncate byte-len digit-size)
1605 (declare (type bignum-index res-len-1))
1606 (let* ((res-len (1+ res-len-1))
1607 (res (%allocate-bignum res-len)))
1608 (declare (type bignum-index res-len))
1609 (do ((i skipped-digits (1+ i))
1611 ((or (= j res-len-1) (= i bignum-len))
1612 (cond ((< i bignum-len)
1613 (setf (%bignum-ref res j)
1614 (logand (%bignum-ref bignum i)
1615 (the bignum-element-type (%make-ones extra)))))
1616 ((%bignum-0-or-plusp bignum bignum-len))
1620 (setf (%bignum-ref res j) (%make-ones extra)))
1621 (setf (%bignum-ref res j) all-ones-digit))))
1622 (%normalize-bignum res res-len))
1623 (declare (type bignum-index i j))
1624 (setf (%bignum-ref res j) (%bignum-ref bignum i))))))
1626 ;;; This grabs unaligned bignum bits from bignum assuming byte-len causes at
1627 ;;; least one digit boundary crossing. We use SHIFT-RIGHT-UNALIGNED referencing
1628 ;;; lots of local variables established by it.
1629 (defun make-unaligned-ldb-bignum (bignum
1634 (multiple-value-bind (res-len-1 extra) (truncate byte-len digit-size)
1635 (shift-right-unaligned
1636 bignum skipped-digits pos (1+ res-len-1)
1637 ((or (= j res-len-1) (= i+1 bignum-len))
1638 (cond ((= j res-len-1)
1640 ((< extra high-bits-in-first-digit)
1641 (setf (%bignum-ref res j)
1642 (logand (ash (%bignum-ref bignum i) minus-start-pos)
1643 ;; Must LOGAND after shift here.
1644 (%make-ones extra))))
1646 (setf (%bignum-ref res j)
1647 (logand (ash (%bignum-ref bignum i) minus-start-pos)
1648 ;; LOGAND should be unnecessary here with a logical
1649 ;; right shift or a correct digit-sized one.
1651 (when (%bignum-0-or-plusp bignum bignum-len)
1652 (setf (%bignum-ref res j)
1653 (logior (%bignum-ref res j)
1655 (- extra high-bits-in-first-digit))
1656 high-bits-in-first-digit)))))))
1658 (setf (%bignum-ref res j)
1659 (logand (ash (%bignum-ref bignum i) minus-start-pos)
1660 ;; LOGAND should be unnecessary here with a logical
1661 ;; right shift or a correct digit-sized one.
1663 (unless (%bignum-0-or-plusp bignum bignum-len)
1664 ;; Fill in upper half of this result digit with 1's.
1665 (setf (%bignum-ref res j)
1666 (logior (%bignum-ref res j)
1667 (%ashl low-mask high-bits-in-first-digit)))
1668 ;; Fill in any extra 1's we need to be byte-len long.
1669 (do ((j (1+ j) (1+ j)))
1671 (setf (%bignum-ref res j) (%make-ones extra)))
1672 (setf (%bignum-ref res j) all-ones-digit)))))
1673 (%normalize-bignum res res-len))
1676 ;;;; DPB (deposit byte)
1678 (defun bignum-deposit-byte (new-byte byte-spec bignum)
1679 (declare (type bignum-type bignum))
1680 (let* ((byte-len (byte-size byte-spec))
1681 (byte-pos (byte-position byte-spec))
1682 (bignum-len (%bignum-length bignum))
1683 (bignum-plusp (%bignum-0-or-plusp bignum bignum-len))
1684 (byte-end (+ byte-pos byte-len))
1685 (res-len (1+ (max (ceiling byte-end digit-size) bignum-len)))
1686 (res (%allocate-bignum res-len)))
1687 (declare (type bignum-index bignum-len res-len))
1688 ;; Fill in an extra sign digit in case we set what would otherwise be the
1689 ;; last digit's last bit. Normalize at the end in case this was
1691 (unless bignum-plusp
1692 (setf (%bignum-ref res (1- res-len)) all-ones-digit))
1693 (multiple-value-bind (end-digit end-bits) (truncate byte-end digit-size)
1694 (declare (type bignum-index end-digit))
1695 ;; Fill in bits from bignum up to byte-pos.
1696 (multiple-value-bind (pos-digit pos-bits) (truncate byte-pos digit-size)
1697 (declare (type bignum-index pos-digit))
1699 (end (min pos-digit bignum-len)))
1701 (cond ((< i bignum-len)
1702 (unless (zerop pos-bits)
1703 (setf (%bignum-ref res i)
1704 (logand (%bignum-ref bignum i)
1705 (%make-ones pos-bits)))))
1710 (unless (zerop pos-bits)
1711 (setf (%bignum-ref res i) (%make-ones pos-bits))))
1712 (setf (%bignum-ref res i) all-ones-digit)))))
1713 (setf (%bignum-ref res i) (%bignum-ref bignum i)))
1714 ;; Fill in bits from new-byte.
1715 (if (typep new-byte 'fixnum)
1716 (deposit-fixnum-bits new-byte byte-len pos-digit pos-bits
1717 end-digit end-bits res)
1718 (deposit-bignum-bits new-byte byte-len pos-digit pos-bits
1719 end-digit end-bits res)))
1720 ;; Fill in remaining bits from bignum after byte-spec.
1721 (when (< end-digit bignum-len)
1722 (setf (%bignum-ref res end-digit)
1723 (logior (logand (%bignum-ref bignum end-digit)
1724 (%ashl (%make-ones (- digit-size end-bits))
1726 ;; DEPOSIT-FIXNUM-BITS and DEPOSIT-BIGNUM-BITS only store
1727 ;; bits from new-byte into res's end-digit element, so
1728 ;; we don't need to mask out unwanted high bits.
1729 (%bignum-ref res end-digit)))
1730 (do ((i (1+ end-digit) (1+ i)))
1732 (setf (%bignum-ref res i) (%bignum-ref bignum i)))))
1733 (%normalize-bignum res res-len)))
1735 ;;; This starts at result's pos-digit skipping pos-bits, and it stores bits
1736 ;;; from new-byte, a fixnum, into result. It effectively stores byte-len
1737 ;;; number of bits, but never stores past end-digit and end-bits in result.
1738 ;;; The first branch fires when all the bits we want from new-byte are present;
1739 ;;; if byte-len crosses from the current result digit into the next, the last
1740 ;;; argument to DEPOSIT-FIXNUM-DIGIT is a mask for those bits. The second
1741 ;;; branch handles the need to grab more bits than the fixnum new-byte has, but
1742 ;;; new-byte is positive; therefore, any virtual bits are zero. The mask for
1743 ;;; bits that don't fit in the current result digit is simply the remaining
1744 ;;; bits in the bignum digit containing new-byte; we don't care if we store
1745 ;;; some extra in the next result digit since they will be zeros. The last
1746 ;;; branch handles the need to grab more bits than the fixnum new-byte has, but
1747 ;;; new-byte is negative; therefore, any virtual bits must be explicitly filled
1748 ;;; in as ones. We call DEPOSIT-FIXNUM-DIGIT to grab what bits actually exist
1749 ;;; and to fill in the current result digit.
1750 (defun deposit-fixnum-bits (new-byte byte-len pos-digit pos-bits
1751 end-digit end-bits result)
1752 (declare (type bignum-index pos-digit end-digit))
1753 (let ((other-bits (- digit-size pos-bits))
1754 (new-byte-digit (%fixnum-to-digit new-byte)))
1755 (declare (type bignum-element-type new-byte-digit))
1756 (cond ((< byte-len maximum-fixnum-bits)
1757 (deposit-fixnum-digit new-byte-digit byte-len pos-digit pos-bits
1759 (- byte-len other-bits)))
1760 ((or (plusp new-byte) (zerop new-byte))
1761 (deposit-fixnum-digit new-byte-digit byte-len pos-digit pos-bits
1762 other-bits result pos-bits))
1764 (multiple-value-bind (digit bits)
1765 (deposit-fixnum-digit new-byte-digit byte-len pos-digit pos-bits
1767 (if (< (- byte-len other-bits) digit-size)
1768 (- byte-len other-bits)
1770 (declare (type bignum-index digit))
1771 (cond ((< digit end-digit)
1772 (setf (%bignum-ref result digit)
1773 (logior (%bignum-ref result digit)
1774 (%ashl (%make-ones (- digit-size bits)) bits)))
1775 (do ((i (1+ digit) (1+ i)))
1777 (setf (%bignum-ref result i) (%make-ones end-bits)))
1778 (setf (%bignum-ref result i) all-ones-digit)))
1779 ((> digit end-digit))
1781 (setf (%bignum-ref result digit)
1782 (logior (%bignum-ref result digit)
1783 (%ashl (%make-ones (- end-bits bits))
1786 ;;; This fills in the current result digit from new-byte-digit. The first case
1787 ;;; handles everything we want fitting in the current digit, and other-bits is
1788 ;;; the number of bits remaining to be filled in result's current digit. This
1789 ;;; number is digit-size minus pos-bits. The second branch handles filling in
1790 ;;; result's current digit, and it shoves the unused bits of new-byte-digit
1791 ;;; into the next result digit. This is correct regardless of new-byte-digit's
1792 ;;; sign. It returns the new current result digit and how many bits already
1793 ;;; filled in the result digit.
1794 (defun deposit-fixnum-digit (new-byte-digit byte-len pos-digit pos-bits
1795 other-bits result next-digit-bits-needed)
1796 (declare (type bignum-index pos-digit)
1797 (type bignum-element-type new-byte-digit next-digit-mask))
1798 (cond ((<= byte-len other-bits)
1799 ;; Bits from new-byte fit in the current result digit.
1800 (setf (%bignum-ref result pos-digit)
1801 (logior (%bignum-ref result pos-digit)
1802 (%ashl (logand new-byte-digit (%make-ones byte-len))
1804 (if (= byte-len other-bits)
1805 (values (1+ pos-digit) 0)
1806 (values pos-digit (+ byte-len pos-bits))))
1808 ;; Some of new-byte's bits go in current result digit.
1809 (setf (%bignum-ref result pos-digit)
1810 (logior (%bignum-ref result pos-digit)
1811 (%ashl (logand new-byte-digit (%make-ones other-bits))
1813 (let ((pos-digit+1 (1+ pos-digit)))
1814 ;; The rest of new-byte's bits go in the next result digit.
1815 (setf (%bignum-ref result pos-digit+1)
1816 (logand (ash new-byte-digit (- other-bits))
1817 ;; Must LOGAND after shift here.
1818 (%make-ones next-digit-bits-needed)))
1819 (if (= next-digit-bits-needed digit-size)
1820 (values (1+ pos-digit+1) 0)
1821 (values pos-digit+1 next-digit-bits-needed))))))
1823 ;;; This starts at result's pos-digit skipping pos-bits, and it stores bits
1824 ;;; from new-byte, a bignum, into result. It effectively stores byte-len
1825 ;;; number of bits, but never stores past end-digit and end-bits in result.
1826 ;;; When handling a starting bit unaligned with a digit boundary, we check
1827 ;;; in the second branch for the byte spec fitting into the pos-digit element
1828 ;;; after after pos-bits; DEPOSIT-UNALIGNED-BIGNUM-BITS expects at least one
1829 ;;; digit boundary crossing.
1830 (defun deposit-bignum-bits (bignum-byte byte-len pos-digit pos-bits
1831 end-digit end-bits result)
1832 (declare (type bignum-index pos-digit end-digit))
1833 (cond ((zerop pos-bits)
1834 (deposit-aligned-bignum-bits bignum-byte pos-digit end-digit end-bits
1836 ((or (= end-digit pos-digit)
1837 (and (= end-digit (1+ pos-digit))
1839 (setf (%bignum-ref result pos-digit)
1840 (logior (%bignum-ref result pos-digit)
1841 (%ashl (logand (%bignum-ref bignum-byte 0)
1842 (%make-ones byte-len))
1844 (t (deposit-unaligned-bignum-bits bignum-byte pos-digit pos-bits
1845 end-digit end-bits result))))
1847 ;;; This deposits bits from bignum-byte into result starting at pos-digit and
1848 ;;; the zero'th bit. It effectively only stores bits to end-bits in the
1849 ;;; end-digit element of result. The loop termination code takes care of
1850 ;;; picking up the last digit's bits or filling in virtual negative sign bits.
1851 (defun deposit-aligned-bignum-bits (bignum-byte pos-digit end-digit end-bits
1853 (declare (type bignum-index pos-digit end-digit))
1854 (let* ((bignum-len (%bignum-length bignum-byte))
1855 (bignum-plusp (%bignum-0-or-plusp bignum-byte bignum-len)))
1856 (declare (type bignum-index bignum-len))
1858 (j pos-digit (1+ j)))
1859 ((or (= j end-digit) (= i bignum-len))
1860 (cond ((= j end-digit)
1861 (cond ((< i bignum-len)
1862 (setf (%bignum-ref result j)
1863 (logand (%bignum-ref bignum-byte i)
1864 (%make-ones end-bits))))
1867 (setf (%bignum-ref result j) (%make-ones end-bits)))))
1872 (setf (%bignum-ref result j) (%make-ones end-bits)))
1873 (setf (%bignum-ref result j) all-ones-digit)))))
1874 (setf (%bignum-ref result j) (%bignum-ref bignum-byte i)))))
1876 ;;; This assumes at least one digit crossing.
1877 (defun deposit-unaligned-bignum-bits (bignum-byte pos-digit pos-bits
1878 end-digit end-bits result)
1879 (declare (type bignum-index pos-digit end-digit))
1880 (let* ((bignum-len (%bignum-length bignum-byte))
1881 (bignum-plusp (%bignum-0-or-plusp bignum-byte bignum-len))
1882 (low-mask (%make-ones pos-bits))
1883 (bits-past-pos-bits (- digit-size pos-bits))
1884 (high-mask (%make-ones bits-past-pos-bits))
1885 (minus-high-bits (- bits-past-pos-bits)))
1886 (declare (type bignum-element-type low-mask high-mask)
1887 (type bignum-index bignum-len))
1890 (j+1 (1+ pos-digit) (1+ j+1)))
1891 ((or (= j end-digit) (= i bignum-len))
1894 (setf (%bignum-ref result j)
1896 ((>= pos-bits end-bits)
1897 (logand (%bignum-ref result j) (%make-ones end-bits)))
1899 (logior (%bignum-ref result j)
1900 (%ashl (logand (%bignum-ref bignum-byte i)
1901 (%make-ones (- end-bits pos-bits)))
1904 (logand (%bignum-ref result j)
1905 ;; 0's between pos-bits and end-bits positions.
1906 (logior (%ashl (%make-ones (- digit-size end-bits))
1909 (t (logior (%bignum-ref result j)
1910 (%ashl (%make-ones (- end-bits pos-bits))
1914 (setf (%bignum-ref result j)
1915 (%ashl (%make-ones bits-past-pos-bits) pos-bits))
1916 (do ((j j+1 (1+ j)))
1918 (setf (%bignum-ref result j) (%make-ones end-bits)))
1919 (declare (type bignum-index j))
1920 (setf (%bignum-ref result j) all-ones-digit)))))
1921 (declare (type bignum-index i j j+1))
1922 (let ((digit (%bignum-ref bignum-byte i)))
1923 (declare (type bignum-element-type digit))
1924 (setf (%bignum-ref result j)
1925 (logior (%bignum-ref result j)
1926 (%ashl (logand digit high-mask) pos-bits)))
1927 (setf (%bignum-ref result j+1)
1928 (logand (ash digit minus-high-bits)
1929 ;; LOGAND should be unnecessary here with a logical right
1930 ;; shift or a correct digit-sized one.
1936 ;;; This is the original sketch of the algorithm from which I implemented this
1937 ;;; TRUNCATE, assuming both operands are bignums. I should modify this to work
1938 ;;; with the documentation on my functions, as a general introduction. I've
1939 ;;; left this here just in case someone needs it in the future. Don't look at
1940 ;;; this unless reading the functions' comments leaves you at a loss. Remember
1941 ;;; this comes from Knuth, so the book might give you the right general
1946 ;;; If X's magnitude is less than Y's, then result is 0 with remainder X.
1948 ;;; Make x and y positive, copying x if it is already positive.
1950 ;;; Shift y left until there's a 1 in the 30'th bit (most significant, non-sign
1952 ;;; Just do most sig digit to determine how much to shift whole number.
1953 ;;; Shift x this much too.
1954 ;;; Remember this initial shift count.
1956 ;;; Allocate q to be len-x minus len-y quantity plus 1.
1958 ;;; i = last digit of x.
1959 ;;; k = last digit of q.
1963 ;;; j = last digit of y.
1966 ;;; if x[i] = y[j] then g = (1- (ash 1 digit-size))
1967 ;;; else g = x[i]x[i-1]/y[j].
1970 ;;; %UNSIGNED-MULTIPLY returns b and c defined below.
1971 ;;; a = x[i-1] - (logand (* g y[j]) #xFFFFFFFF).
1972 ;;; Use %UNSIGNED-MULTIPLY taking low-order result.
1973 ;;; b = (logand (ash (* g y[j-1]) (- digit-size)) (1- (ash 1 digit-size))).
1974 ;;; c = (logand (* g y[j-1]) (1- (ash 1 digit-size))).
1976 ;;; if a > b, guess is too high
1977 ;;; g = g - 1; go back to "check guess".
1978 ;;; if a = b and c > x[i-2], guess is too high
1979 ;;; g = g - 1; go back to "check guess".
1980 ;;; GUESS IS 32-BIT NUMBER, SO USE THING TO KEEP IN SPECIAL REGISTER
1981 ;;; SAME FOR A, B, AND C.
1983 ;;; Subtract g * y from x[i - len-y+1]..x[i]. See paper for doing this in step.
1984 ;;; If x[i] < 0, guess is screwed up.
1985 ;;; negative g, then add 1
1986 ;;; zero or positive g, then subtract 1
1987 ;;; AND add y back into x[len-y+1..i].
1993 ;;; If k>=0, goto LOOP.
1995 ;;; Now quotient is good, but remainder is not.
1996 ;;; Shift x right by saved initial left shifting count.
1998 ;;; Check quotient and remainder signs.
1999 ;;; x pos y pos --> q pos r pos
2000 ;;; x pos y neg --> q neg r pos
2001 ;;; x neg y pos --> q neg r neg
2002 ;;; x neg y neg --> q pos r neg
2004 ;;; Normalize quotient and remainder. Cons result if necessary.
2007 ;;; This used to be split into multiple functions, which shared state
2008 ;;; in special variables *TRUNCATE-X* and *TRUNCATE-Y*. Having so many
2009 ;;; special variable accesses in tight inner loops was having a large
2010 ;;; effect on performance, so the helper functions have now been
2011 ;;; refactored into local functions and the special variables into
2012 ;;; lexicals. There was also a lot of boxing and unboxing of
2013 ;;; (UNSIGNED-BYTE 32)'s going on, which this refactoring
2014 ;;; eliminated. This improves the performance on some CL-BENCH tests
2015 ;;; by up to 50%, which is probably signigicant enough to justify the
2016 ;;; reduction in readability that was introduced. --JES, 2004-08-07
2017 (defun bignum-truncate (x y)
2018 (declare (type bignum-type x y))
2019 (let (truncate-x truncate-y)
2021 ;;; Divide X by Y when Y is a single bignum digit. BIGNUM-TRUNCATE
2022 ;;; fixes up the quotient and remainder with respect to sign and
2025 ;;; We don't have to worry about shifting Y to make its most
2026 ;;; significant digit sufficiently large for %FLOOR to return
2027 ;;; digit-size quantities for the q-digit and r-digit. If Y is
2028 ;;; a single digit bignum, it is already large enough for
2029 ;;; %FLOOR. That is, it has some bits on pretty high in the
2031 ((bignum-truncate-single-digit (x len-x y)
2032 (declare (type bignum-index len-x))
2033 (let ((q (%allocate-bignum len-x))
2035 (y (%bignum-ref y 0)))
2036 (declare (type bignum-element-type r y))
2037 (do ((i (1- len-x) (1- i)))
2039 (multiple-value-bind (q-digit r-digit)
2040 (%floor r (%bignum-ref x i) y)
2041 (declare (type bignum-element-type q-digit r-digit))
2042 (setf (%bignum-ref q i) q-digit)
2044 (let ((rem (%allocate-bignum 1)))
2045 (setf (%bignum-ref rem 0) r)
2047 ;;; This returns a guess for the next division step. Y1 is the
2048 ;;; highest y digit, and y2 is the second to highest y
2049 ;;; digit. The x... variables are the three highest x digits
2050 ;;; for the next division step.
2052 ;;; From Knuth, our guess is either all ones or x-i and x-i-1
2053 ;;; divided by y1, depending on whether x-i and y1 are the
2054 ;;; same. We test this guess by determining whether guess*y2
2055 ;;; is greater than the three high digits of x minus guess*y1
2056 ;;; shifted left one digit:
2057 ;;; ------------------------------
2058 ;;; | x-i | x-i-1 | x-i-2 |
2059 ;;; ------------------------------
2060 ;;; ------------------------------
2061 ;;; - | g*y1 high | g*y1 low | 0 |
2062 ;;; ------------------------------
2063 ;;; ... < guess*y2 ???
2064 ;;; If guess*y2 is greater, then we decrement our guess by one
2065 ;;; and try again. This returns a guess that is either
2066 ;;; correct or one too large.
2067 (bignum-truncate-guess (y1 y2 x-i x-i-1 x-i-2)
2068 (declare (type bignum-element-type y1 y2 x-i x-i-1 x-i-2))
2069 (let ((guess (if (%digit-compare x-i y1)
2071 (%floor x-i x-i-1 y1))))
2072 (declare (type bignum-element-type guess))
2074 (multiple-value-bind (high-guess*y1 low-guess*y1)
2075 (%multiply guess y1)
2076 (declare (type bignum-element-type low-guess*y1
2078 (multiple-value-bind (high-guess*y2 low-guess*y2)
2079 (%multiply guess y2)
2080 (declare (type bignum-element-type high-guess*y2
2082 (multiple-value-bind (middle-digit borrow)
2083 (%subtract-with-borrow x-i-1 low-guess*y1 1)
2084 (declare (type bignum-element-type middle-digit)
2086 ;; Supplying borrow of 1 means there was no
2087 ;; borrow, and we know x-i-2 minus 0 requires
2089 (let ((high-digit (%subtract-with-borrow x-i
2092 (declare (type bignum-element-type high-digit))
2093 (if (and (%digit-compare high-digit 0)
2094 (or (%digit-greater high-guess*y2
2096 (and (%digit-compare middle-digit
2098 (%digit-greater low-guess*y2
2100 (setf guess (%subtract-with-borrow guess 1 1))
2101 (return guess)))))))))
2102 ;;; Divide TRUNCATE-X by TRUNCATE-Y, returning the quotient
2103 ;;; and destructively modifying TRUNCATE-X so that it holds
2106 ;;; LEN-X and LEN-Y tell us how much of the buffers we care about.
2108 ;;; TRUNCATE-X definitely has at least three digits, and it has one
2109 ;;; more than TRUNCATE-Y. This keeps i, i-1, i-2, and low-x-digit
2110 ;;; happy. Thanks to SHIFT-AND-STORE-TRUNCATE-BUFFERS.
2111 (return-quotient-leaving-remainder (len-x len-y)
2112 (declare (type bignum-index len-x len-y))
2113 (let* ((len-q (- len-x len-y))
2114 ;; Add one for extra sign digit in case high bit is on.
2115 (q (%allocate-bignum (1+ len-q)))
2117 (y1 (%bignum-ref truncate-y (1- len-y)))
2118 (y2 (%bignum-ref truncate-y (- len-y 2)))
2122 (low-x-digit (- i len-y)))
2123 (declare (type bignum-index len-q k i i-1 i-2 low-x-digit)
2124 (type bignum-element-type y1 y2))
2126 (setf (%bignum-ref q k)
2127 (try-bignum-truncate-guess
2128 ;; This modifies TRUNCATE-X. Must access
2129 ;; elements each pass.
2130 (bignum-truncate-guess y1 y2
2131 (%bignum-ref truncate-x i)
2132 (%bignum-ref truncate-x i-1)
2133 (%bignum-ref truncate-x i-2))
2135 (cond ((zerop k) (return))
2138 (shiftf i i-1 i-2 (1- i-2)))))
2140 ;;; This takes a digit guess, multiplies it by TRUNCATE-Y for a
2141 ;;; result one greater in length than LEN-Y, and subtracts this result
2142 ;;; from TRUNCATE-X. LOW-X-DIGIT is the first digit of X to start
2143 ;;; the subtraction, and we know X is long enough to subtract a LEN-Y
2144 ;;; plus one length bignum from it. Next we check the result of the
2145 ;;; subtraction, and if the high digit in X became negative, then our
2146 ;;; guess was one too big. In this case, return one less than GUESS
2147 ;;; passed in, and add one value of Y back into X to account for
2148 ;;; subtracting one too many. Knuth shows that the guess is wrong on
2149 ;;; the order of 3/b, where b is the base (2 to the digit-size power)
2150 ;;; -- pretty rarely.
2151 (try-bignum-truncate-guess (guess len-y low-x-digit)
2152 (declare (type bignum-index low-x-digit len-y)
2153 (type bignum-element-type guess))
2154 (let ((carry-digit 0)
2157 (declare (type bignum-element-type carry-digit)
2158 (type bignum-index i)
2160 ;; Multiply guess and divisor, subtracting from dividend
2163 (multiple-value-bind (high-digit low-digit)
2164 (%multiply-and-add guess
2165 (%bignum-ref truncate-y j)
2167 (declare (type bignum-element-type high-digit low-digit))
2168 (setf carry-digit high-digit)
2169 (multiple-value-bind (x temp-borrow)
2170 (%subtract-with-borrow (%bignum-ref truncate-x i)
2173 (declare (type bignum-element-type x)
2174 (fixnum temp-borrow))
2175 (setf (%bignum-ref truncate-x i) x)
2176 (setf borrow temp-borrow)))
2178 (setf (%bignum-ref truncate-x i)
2179 (%subtract-with-borrow (%bignum-ref truncate-x i)
2180 carry-digit borrow))
2181 ;; See whether guess is off by one, adding one
2182 ;; Y back in if necessary.
2183 (cond ((%digit-0-or-plusp (%bignum-ref truncate-x i))
2186 ;; If subtraction has negative result, add one
2187 ;; divisor value back in. The guess was one too
2188 ;; large in magnitude.
2189 (let ((i low-x-digit)
2192 (multiple-value-bind (v k)
2193 (%add-with-carry (%bignum-ref truncate-y j)
2194 (%bignum-ref truncate-x i)
2196 (declare (type bignum-element-type v))
2197 (setf (%bignum-ref truncate-x i) v)
2200 (setf (%bignum-ref truncate-x i)
2201 (%add-with-carry (%bignum-ref truncate-x i)
2203 (%subtract-with-borrow guess 1 1)))))
2204 ;;; This returns the amount to shift y to place a one in the
2205 ;;; second highest bit. Y must be positive. If the last digit
2206 ;;; of y is zero, then y has a one in the previous digit's
2207 ;;; sign bit, so we know it will take one less than digit-size
2208 ;;; to get a one where we want. Otherwise, we count how many
2209 ;;; right shifts it takes to get zero; subtracting this value
2210 ;;; from digit-size tells us how many high zeros there are
2211 ;;; which is one more than the shift amount sought.
2213 ;;; Note: This is exactly the same as one less than the
2214 ;;; integer-length of the last digit subtracted from the
2217 ;;; We shift y to make it sufficiently large that doing the
2218 ;;; 2*digit-size by digit-size %FLOOR calls ensures the quotient and
2219 ;;; remainder fit in digit-size.
2220 (shift-y-for-truncate (y)
2221 (let* ((len (%bignum-length y))
2222 (last (%bignum-ref y (1- len))))
2223 (declare (type bignum-index len)
2224 (type bignum-element-type last))
2225 (- digit-size (integer-length last) 1)))
2226 ;;; Stores two bignums into the truncation bignum buffers,
2227 ;;; shifting them on the way in. This assumes x and y are
2228 ;;; positive and at least two in length, and it assumes
2229 ;;; truncate-x and truncate-y are one digit longer than x and
2231 (shift-and-store-truncate-buffers (x len-x y len-y shift)
2232 (declare (type bignum-index len-x len-y)
2233 (type (integer 0 (#.digit-size)) shift))
2234 (cond ((zerop shift)
2235 (bignum-replace truncate-x x :end1 len-x)
2236 (bignum-replace truncate-y y :end1 len-y))
2238 (bignum-ashift-left-unaligned x 0 shift (1+ len-x)
2240 (bignum-ashift-left-unaligned y 0 shift (1+ len-y)
2241 truncate-y))))) ;; LABELS
2242 ;;; Divide X by Y returning the quotient and remainder. In the
2243 ;;; general case, we shift Y to set up for the algorithm, and we
2244 ;;; use two buffers to save consing intermediate values. X gets
2245 ;;; destructively modified to become the remainder, and we have
2246 ;;; to shift it to account for the initial Y shift. After we
2247 ;;; multiple bind q and r, we first fix up the signs and then
2248 ;;; return the normalized results.
2249 (let* ((x-plusp (%bignum-0-or-plusp x (%bignum-length x)))
2250 (y-plusp (%bignum-0-or-plusp y (%bignum-length y)))
2251 (x (if x-plusp x (negate-bignum x nil)))
2252 (y (if y-plusp y (negate-bignum y nil)))
2253 (len-x (%bignum-length x))
2254 (len-y (%bignum-length y)))
2255 (multiple-value-bind (q r)
2257 (bignum-truncate-single-digit x len-x y))
2258 ((plusp (bignum-compare y x))
2259 (let ((res (%allocate-bignum len-x)))
2261 (setf (%bignum-ref res i) (%bignum-ref x i)))
2264 (let ((len-x+1 (1+ len-x)))
2265 (setf truncate-x (%allocate-bignum len-x+1))
2266 (setf truncate-y (%allocate-bignum (1+ len-y)))
2267 (let ((y-shift (shift-y-for-truncate y)))
2268 (shift-and-store-truncate-buffers x len-x y
2270 (values (return-quotient-leaving-remainder len-x+1
2272 ;; Now that RETURN-QUOTIENT-LEAVING-REMAINDER
2273 ;; has executed, we just tidy up the remainder
2274 ;; (in TRUNCATE-X) and return it.
2277 (let ((res (%allocate-bignum len-y)))
2278 (declare (type bignum-type res))
2279 (bignum-replace res truncate-x :end2 len-y)
2280 (%normalize-bignum res len-y)))
2282 (shift-right-unaligned
2283 truncate-x 0 y-shift len-y
2285 (setf (%bignum-ref res j)
2286 (%ashr (%bignum-ref truncate-x i)
2288 (%normalize-bignum res res-len))
2290 (let ((quotient (cond ((eq x-plusp y-plusp) q)
2291 ((typep q 'fixnum) (the fixnum (- q)))
2292 (t (negate-bignum-in-place q))))
2293 (rem (cond (x-plusp r)
2294 ((typep r 'fixnum) (the fixnum (- r)))
2295 (t (negate-bignum-in-place r)))))
2296 (values (if (typep quotient 'fixnum)
2298 (%normalize-bignum quotient (%bignum-length quotient)))
2299 (if (typep rem 'fixnum)
2301 (%normalize-bignum rem (%bignum-length rem))))))))))
2304 ;;;; %FLOOR primitive for BIGNUM-TRUNCATE
2306 ;;; When a machine leaves out a 2*digit-size by digit-size divide
2307 ;;; instruction (that is, two bignum-digits divided by one), we have to
2308 ;;; roll our own (the hard way). Basically, we treat the operation as
2309 ;;; four digit-size/2 digits divided by two digit-size/2 digits. This
2310 ;;; means we have duplicated most of the code above to do this nearly
2311 ;;; general digit-size/2 digit bignum divide, but we've unrolled loops
2312 ;;; and made use of other properties of this specific divide situation.
2314 ;;;; %FLOOR for machines with a 32x32 divider.
2317 (declaim (inline 32x16-subtract-with-borrow 32x16-add-with-carry
2318 32x16-divide 32x16-multiply 32x16-multiply-split))
2321 (defconstant 32x16-base-1 (1- (ash 1 (/ sb!vm:n-word-bits 2))))
2324 (deftype bignum-half-element-type () `(unsigned-byte ,(/ sb!vm:n-word-bits 2)))
2326 (defconstant half-digit-size (/ digit-size 2))
2328 ;;; This is similar to %SUBTRACT-WITH-BORROW. It returns a
2329 ;;; half-digit-size difference and a borrow. Returning a 1 for the
2330 ;;; borrow means there was no borrow, and 0 means there was one.
2332 (defun 32x16-subtract-with-borrow (a b borrow)
2333 (declare (type bignum-half-element-type a b)
2334 (type (integer 0 1) borrow))
2335 (let ((diff (+ (- a b) borrow 32x16-base-1)))
2336 (declare (type (unsigned-byte #.(1+ half-digit-size)) diff))
2337 (values (logand diff (1- (ash 1 half-digit-size)))
2338 (ash diff (- half-digit-size)))))
2340 ;;; This adds a and b, half-digit-size quantities, with the carry k. It
2341 ;;; returns a half-digit-size sum and a second value, 0 or 1, indicating
2342 ;;; whether there was a carry.
2344 (defun 32x16-add-with-carry (a b k)
2345 (declare (type bignum-half-element-type a b)
2346 (type (integer 0 1) k))
2347 (let ((res (the fixnum (+ a b k))))
2348 (declare (type (unsigned-byte #.(1+ half-digit-size)) res))
2349 (if (zerop (the fixnum (logand (ash 1 half-digit-size) res)))
2351 (values (the bignum-half-element-type (logand (1- (ash 1 half-digit-size)) res))
2354 ;;; This is probably a digit-size by digit-size divide instruction.
2356 (defun 32x16-divide (a b c)
2357 (declare (type bignum-half-element-type a b c))
2358 (floor (the bignum-element-type
2359 (logior (the bignum-element-type (ash a 16))
2363 ;;; This basically exists since we know the answer won't overflow
2364 ;;; bignum-element-type. It's probably just a basic multiply instruction, but
2365 ;;; it can't cons an intermediate bignum. The result goes in a non-descriptor
2368 (defun 32x16-multiply (a b)
2369 (declare (type bignum-half-element-type a b))
2370 (the bignum-element-type (* a b)))
2372 ;;; This multiplies a and b, half-digit-size quantities, and returns the
2373 ;;; result as two half-digit-size quantities, high and low.
2375 (defun 32x16-multiply-split (a b)
2376 (let ((res (32x16-multiply a b)))
2377 (declare (the bignum-element-type res))
2378 (values (the bignum-half-element-type (logand (1- (ash 1 half-digit-size)) (ash res (- half-digit-size))))
2379 (the bignum-half-element-type (logand (1- (ash 1 half-digit-size)) res)))))
2381 ;;; The %FLOOR below uses this buffer the same way BIGNUM-TRUNCATE uses
2382 ;;; *truncate-x*. There's no y buffer since we pass around the two
2383 ;;; half-digit-size digits and use them slightly differently than the
2384 ;;; general truncation algorithm above.
2386 (defvar *32x16-truncate-x* (make-array 4 :element-type 'bignum-half-element-type
2387 :initial-element 0))
2389 ;;; This does the same thing as the %FLOOR above, but it does it at Lisp level
2390 ;;; when there is no 64x32-bit divide instruction on the machine.
2392 ;;; It implements the higher level tactics of BIGNUM-TRUNCATE, but it
2393 ;;; makes use of special situation provided, four half-digit-size digits
2394 ;;; divided by two half-digit-size digits.
2396 (defun %floor (a b c)
2397 (declare (type bignum-element-type a b c))
2398 ;; Setup *32x16-truncate-x* buffer from a and b.
2399 (setf (aref *32x16-truncate-x* 0)
2400 (the bignum-half-element-type (logand (1- (ash 1 half-digit-size)) b)))
2401 (setf (aref *32x16-truncate-x* 1)
2402 (the bignum-half-element-type
2403 (logand (1- (ash 1 half-digit-size))
2404 (the bignum-half-element-type (ash b (- half-digit-size))))))
2405 (setf (aref *32x16-truncate-x* 2)
2406 (the bignum-half-element-type (logand (1- (ash 1 half-digit-size)) a)))
2407 (setf (aref *32x16-truncate-x* 3)
2408 (the bignum-half-element-type
2409 (logand (1- (ash 1 half-digit-size))
2410 (the bignum-half-element-type (ash a (- half-digit-size))))))
2411 ;; From DO-TRUNCATE, but unroll the loop.
2412 (let* ((y1 (logand (1- (ash 1 half-digit-size)) (ash c (- half-digit-size))))
2413 (y2 (logand (1- (ash 1 half-digit-size)) c))
2414 (q (the bignum-element-type
2415 (ash (32x16-try-bignum-truncate-guess
2416 (32x16-truncate-guess y1 y2
2417 (aref *32x16-truncate-x* 3)
2418 (aref *32x16-truncate-x* 2)
2419 (aref *32x16-truncate-x* 1))
2422 (declare (type bignum-element-type q)
2423 (type bignum-half-element-type y1 y2))
2424 (values (the bignum-element-type
2426 (the bignum-half-element-type
2427 (32x16-try-bignum-truncate-guess
2428 (32x16-truncate-guess
2430 (aref *32x16-truncate-x* 2)
2431 (aref *32x16-truncate-x* 1)
2432 (aref *32x16-truncate-x* 0))
2434 (the bignum-element-type
2435 (logior (the bignum-element-type
2436 (ash (aref *32x16-truncate-x* 1) 16))
2437 (the bignum-half-element-type
2438 (aref *32x16-truncate-x* 0)))))))
2440 ;;; This is similar to TRY-BIGNUM-TRUNCATE-GUESS, but this unrolls the two
2441 ;;; loops. This also substitutes for %DIGIT-0-OR-PLUSP the equivalent
2442 ;;; expression without any embellishment or pretense of abstraction. The first
2443 ;;; loop is unrolled, but we've put the body of the loop into the function
2444 ;;; 32X16-TRY-GUESS-ONE-RESULT-DIGIT.
2446 (defun 32x16-try-bignum-truncate-guess (guess y-high y-low low-x-digit)
2447 (declare (type bignum-index low-x-digit)
2448 (type bignum-half-element-type guess y-high y-low))
2449 (let ((high-x-digit (+ 2 low-x-digit)))
2450 ;; Multiply guess and divisor, subtracting from dividend simultaneously.
2451 (multiple-value-bind (guess*y-hold carry borrow)
2452 (32x16-try-guess-one-result-digit guess y-low 0 0 1 low-x-digit)
2453 (declare (type bignum-half-element-type guess*y-hold)
2454 (fixnum carry borrow))
2455 (multiple-value-bind (guess*y-hold carry borrow)
2456 (32x16-try-guess-one-result-digit guess y-high guess*y-hold
2457 carry borrow (1+ low-x-digit))
2458 (declare (type bignum-half-element-type guess*y-hold)
2461 (setf (aref *32x16-truncate-x* high-x-digit)
2462 (32x16-subtract-with-borrow (aref *32x16-truncate-x* high-x-digit)
2463 guess*y-hold borrow))))
2464 ;; See whether guess is off by one, adding one Y back in if necessary.
2465 (cond ((zerop (logand (ash 1 (1- half-digit-size))
2466 (aref *32x16-truncate-x* high-x-digit)))
2467 ;; The subtraction result is zero or positive.
2470 ;; If subtraction has negative result, add one divisor value back
2471 ;; in. The guess was one too large in magnitude.
2472 (multiple-value-bind (v carry)
2473 (32x16-add-with-carry y-low
2474 (aref *32x16-truncate-x* low-x-digit)
2476 (declare (type bignum-half-element-type v))
2477 (setf (aref *32x16-truncate-x* low-x-digit) v)
2478 (multiple-value-bind (v carry)
2479 (32x16-add-with-carry y-high
2480 (aref *32x16-truncate-x*
2483 (setf (aref *32x16-truncate-x* (1+ low-x-digit)) v)
2484 (setf (aref *32x16-truncate-x* high-x-digit)
2485 (32x16-add-with-carry (aref *32x16-truncate-x* high-x-digit)
2487 (if (zerop (logand (ash 1 (1- half-digit-size)) guess))
2491 ;;; This is similar to the body of the loop in TRY-BIGNUM-TRUNCATE-GUESS that
2492 ;;; multiplies the guess by y and subtracts the result from x simultaneously.
2493 ;;; This returns the digit remembered as part of the multiplication, the carry
2494 ;;; from additions done on behalf of the multiplication, and the borrow from
2495 ;;; doing the subtraction.
2497 (defun 32x16-try-guess-one-result-digit (guess y-digit guess*y-hold
2498 carry borrow x-index)
2499 (multiple-value-bind (high-digit low-digit)
2500 (32x16-multiply-split guess y-digit)
2501 (declare (type bignum-half-element-type high-digit low-digit))
2502 (multiple-value-bind (low-digit temp-carry)
2503 (32x16-add-with-carry low-digit guess*y-hold carry)
2504 (declare (type bignum-half-element-type low-digit))
2505 (multiple-value-bind (high-digit temp-carry)
2506 (32x16-add-with-carry high-digit temp-carry 0)
2507 (declare (type bignum-half-element-type high-digit))
2508 (multiple-value-bind (x temp-borrow)
2509 (32x16-subtract-with-borrow (aref *32x16-truncate-x* x-index)
2511 (declare (type bignum-half-element-type x))
2512 (setf (aref *32x16-truncate-x* x-index) x)
2513 (values high-digit temp-carry temp-borrow))))))
2515 ;;; This is similar to BIGNUM-TRUNCATE-GUESS, but instead of computing
2516 ;;; the guess exactly as described in the its comments (digit by digit),
2517 ;;; this massages the digit-size/2 quantities into digit-size quantities
2518 ;;; and performs the
2520 (defun 32x16-truncate-guess (y1 y2 x-i x-i-1 x-i-2)
2521 (declare (type bignum-half-element-type y1 y2 x-i x-i-1 x-i-2))
2522 (let ((guess (if (= x-i y1)
2523 (1- (ash 1 half-digit-size))
2524 (32x16-divide x-i x-i-1 y1))))
2525 (declare (type bignum-half-element-type guess))
2527 (let* ((guess*y1 (the bignum-element-type
2528 (ash (logand (1- (ash 1 half-digit-size))
2529 (the bignum-element-type
2530 (32x16-multiply guess y1)))
2532 (x-y (%subtract-with-borrow
2533 (the bignum-element-type
2534 (logior (the bignum-element-type
2539 (guess*y2 (the bignum-element-type (%multiply guess y2))))
2540 (declare (type bignum-element-type guess*y1 x-y guess*y2))
2541 (if (%digit-greater guess*y2 x-y)
2545 ;;;; general utilities
2547 ;;; Internal in-place operations use this to fixup remaining digits in the
2548 ;;; incoming data, such as in-place shifting. This is basically the same as
2549 ;;; the first form in %NORMALIZE-BIGNUM, but we return the length of the buffer
2550 ;;; instead of shrinking the bignum.
2551 #!-sb-fluid (declaim (sb!ext:maybe-inline %normalize-bignum-buffer))
2552 (defun %normalize-bignum-buffer (result len)
2553 (declare (type bignum-type result)
2554 (type bignum-index len))
2556 (do ((next-digit (%bignum-ref result (- len 2))
2557 (%bignum-ref result (- len 2)))
2558 (sign-digit (%bignum-ref result (1- len)) next-digit))
2559 ((not (zerop (logxor sign-digit (%ashr next-digit (1- digit-size))))))
2561 (setf (%bignum-ref result len) 0)
2566 ;;; This drops the last digit if it is unnecessary sign information. It repeats
2567 ;;; this as needed, possibly ending with a fixnum. If the resulting length from
2568 ;;; shrinking is one, see whether our one word is a fixnum. Shift the possible
2569 ;;; fixnum bits completely out of the word, and compare this with shifting the
2570 ;;; sign bit all the way through. If the bits are all 1's or 0's in both words,
2571 ;;; then there are just sign bits between the fixnum bits and the sign bit. If
2572 ;;; we do have a fixnum, shift it over for the two low-tag bits.
2573 (defun %normalize-bignum (result len)
2574 (declare (type bignum-type result)
2575 (type bignum-index len)
2576 (inline %normalize-bignum-buffer))
2577 (let ((newlen (%normalize-bignum-buffer result len)))
2578 (declare (type bignum-index newlen))
2579 (unless (= newlen len)
2580 (%bignum-set-length result newlen))
2582 (let ((digit (%bignum-ref result 0)))
2583 (if (= (%ashr digit sb!vm:n-positive-fixnum-bits)
2584 (%ashr digit (1- digit-size)))
2585 (%fixnum-digit-with-correct-sign digit)
2589 ;;; This drops the last digit if it is unnecessary sign information. It
2590 ;;; repeats this as needed, possibly ending with a fixnum magnitude but never
2591 ;;; returning a fixnum.
2592 (defun %mostly-normalize-bignum (result len)
2593 (declare (type bignum-type result)
2594 (type bignum-index len)
2595 (inline %normalize-bignum-buffer))
2596 (let ((newlen (%normalize-bignum-buffer result len)))
2597 (declare (type bignum-index newlen))
2598 (unless (= newlen len)
2599 (%bignum-set-length result newlen))
2604 ;;; the bignum case of the SXHASH function
2605 (defun sxhash-bignum (x)
2606 (let ((result 316495330))
2607 (declare (type fixnum result))
2608 (dotimes (i (%bignum-length x))
2609 (declare (type index i))
2610 (let ((xi (%bignum-ref x i)))
2612 (logand most-positive-fixnum