1 ;;;; the implementation of the programmer's interface to writing
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;; FIXME: There are an awful lot of package prefixes in this code.
16 ;;; Couldn't we have SB-DI use the SB-C and SB-VM packages?
20 ;;;; The interface to building debugging tools signals conditions that
21 ;;;; prevent it from adhering to its contract. These are
22 ;;;; serious-conditions because the program using the interface must
23 ;;;; handle them before it can correctly continue execution. These
24 ;;;; debugging conditions are not errors since it is no fault of the
25 ;;;; programmers that the conditions occur. The interface does not
26 ;;;; provide for programs to detect these situations other than
27 ;;;; calling a routine that detects them and signals a condition. For
28 ;;;; example, programmers call A which may fail to return successfully
29 ;;;; due to a lack of debug information, and there is no B the they
30 ;;;; could have called to realize A would fail. It is not an error to
31 ;;;; have called A, but it is an error for the program to then ignore
32 ;;;; the signal generated by A since it cannot continue without A's
33 ;;;; correctly returning a value or performing some operation.
35 ;;;; Use DEBUG-SIGNAL to signal these conditions.
37 (define-condition debug-condition (serious-condition)
41 "All DEBUG-CONDITIONs inherit from this type. These are serious conditions
42 that must be handled, but they are not programmer errors."))
44 (define-condition no-debug-fun-returns (debug-condition)
45 ((debug-fun :reader no-debug-fun-returns-debug-fun
49 "The system could not return values from a frame with DEBUG-FUN since
50 it lacked information about returning values.")
51 (:report (lambda (condition stream)
52 (let ((fun (debug-fun-fun
53 (no-debug-fun-returns-debug-fun condition))))
55 "~&Cannot return values from ~:[frame~;~:*~S~] since ~
56 the debug information lacks details about returning ~
60 (define-condition no-debug-blocks (debug-condition)
61 ((debug-fun :reader no-debug-blocks-debug-fun
64 (:documentation "The debug-fun has no debug-block information.")
65 (:report (lambda (condition stream)
66 (format stream "~&~S has no debug-block information."
67 (no-debug-blocks-debug-fun condition)))))
69 (define-condition no-debug-vars (debug-condition)
70 ((debug-fun :reader no-debug-vars-debug-fun
73 (:documentation "The DEBUG-FUN has no DEBUG-VAR information.")
74 (:report (lambda (condition stream)
75 (format stream "~&~S has no debug variable information."
76 (no-debug-vars-debug-fun condition)))))
78 (define-condition lambda-list-unavailable (debug-condition)
79 ((debug-fun :reader lambda-list-unavailable-debug-fun
83 "The DEBUG-FUN has no lambda list since argument DEBUG-VARs are
85 (:report (lambda (condition stream)
86 (format stream "~&~S has no lambda-list information available."
87 (lambda-list-unavailable-debug-fun condition)))))
89 (define-condition invalid-value (debug-condition)
90 ((debug-var :reader invalid-value-debug-var :initarg :debug-var)
91 (frame :reader invalid-value-frame :initarg :frame))
92 (:report (lambda (condition stream)
93 (format stream "~&~S has :invalid or :unknown value in ~S."
94 (invalid-value-debug-var condition)
95 (invalid-value-frame condition)))))
97 (define-condition ambiguous-var-name (debug-condition)
98 ((name :reader ambiguous-var-name-name :initarg :name)
99 (frame :reader ambiguous-var-name-frame :initarg :frame))
100 (:report (lambda (condition stream)
101 (format stream "~&~S names more than one valid variable in ~S."
102 (ambiguous-var-name-name condition)
103 (ambiguous-var-name-frame condition)))))
105 ;;;; errors and DEBUG-SIGNAL
107 ;;; The debug-internals code tries to signal all programmer errors as
108 ;;; subtypes of DEBUG-ERROR. There are calls to ERROR signalling
109 ;;; SIMPLE-ERRORs, but these dummy checks in the code and shouldn't
112 ;;; While under development, this code also signals errors in code
113 ;;; branches that remain unimplemented.
115 (define-condition debug-error (error) ()
118 "All programmer errors from using the interface for building debugging
119 tools inherit from this type."))
121 (define-condition unhandled-debug-condition (debug-error)
122 ((condition :reader unhandled-debug-condition-condition :initarg :condition))
123 (:report (lambda (condition stream)
124 (format stream "~&unhandled DEBUG-CONDITION:~%~A"
125 (unhandled-debug-condition-condition condition)))))
127 (define-condition unknown-code-location (debug-error)
128 ((code-location :reader unknown-code-location-code-location
129 :initarg :code-location))
130 (:report (lambda (condition stream)
131 (format stream "~&invalid use of an unknown code-location: ~S"
132 (unknown-code-location-code-location condition)))))
134 (define-condition unknown-debug-var (debug-error)
135 ((debug-var :reader unknown-debug-var-debug-var :initarg :debug-var)
136 (debug-fun :reader unknown-debug-var-debug-fun
137 :initarg :debug-fun))
138 (:report (lambda (condition stream)
139 (format stream "~&~S is not in ~S."
140 (unknown-debug-var-debug-var condition)
141 (unknown-debug-var-debug-fun condition)))))
143 (define-condition invalid-control-stack-pointer (debug-error)
145 (:report (lambda (condition stream)
146 (declare (ignore condition))
148 (write-string "invalid control stack pointer" stream))))
150 (define-condition frame-fun-mismatch (debug-error)
151 ((code-location :reader frame-fun-mismatch-code-location
152 :initarg :code-location)
153 (frame :reader frame-fun-mismatch-frame :initarg :frame)
154 (form :reader frame-fun-mismatch-form :initarg :form))
155 (:report (lambda (condition stream)
158 "~&Form was preprocessed for ~S,~% but called on ~S:~% ~S"
159 (frame-fun-mismatch-code-location condition)
160 (frame-fun-mismatch-frame condition)
161 (frame-fun-mismatch-form condition)))))
163 ;;; This signals debug-conditions. If they go unhandled, then signal
164 ;;; an UNHANDLED-DEBUG-CONDITION error.
166 ;;; ??? Get SIGNAL in the right package!
167 (defmacro debug-signal (datum &rest arguments)
168 `(let ((condition (make-condition ,datum ,@arguments)))
170 (error 'unhandled-debug-condition :condition condition)))
174 ;;;; Most of these structures model information stored in internal
175 ;;;; data structures created by the compiler. Whenever comments
176 ;;;; preface an object or type with "compiler", they refer to the
177 ;;;; internal compiler thing, not to the object or type with the same
178 ;;;; name in the "SB-DI" package.
182 ;;; These exist for caching data stored in packed binary form in
183 ;;; compiler DEBUG-FUNs.
184 (defstruct (debug-var (:constructor nil)
186 ;; the name of the variable
187 (symbol (missing-arg) :type symbol)
188 ;; a unique integer identification relative to other variables with the same
191 ;; Does the variable always have a valid value?
192 (alive-p nil :type boolean))
193 (def!method print-object ((debug-var debug-var) stream)
194 (print-unreadable-object (debug-var stream :type t :identity t)
197 (debug-var-symbol debug-var)
198 (debug-var-id debug-var))))
201 (setf (fdocumentation 'debug-var-id 'function)
202 "Return the integer that makes DEBUG-VAR's name and package unique
203 with respect to other DEBUG-VARs in the same function.")
205 (defstruct (compiled-debug-var
207 (:constructor make-compiled-debug-var
208 (symbol id alive-p sc-offset save-sc-offset))
210 ;; storage class and offset (unexported)
211 (sc-offset nil :type sb!c:sc-offset)
212 ;; storage class and offset when saved somewhere
213 (save-sc-offset nil :type (or sb!c:sc-offset null)))
217 ;;; These represent call frames on the stack.
218 (defstruct (frame (:constructor nil)
220 ;; the next frame up, or NIL when top frame
221 (up nil :type (or frame null))
222 ;; the previous frame down, or NIL when the bottom frame. Before
223 ;; computing the next frame down, this slot holds the frame pointer
224 ;; to the control stack for the given frame. This lets us get the
225 ;; next frame down and the return-pc for that frame.
226 (%down :unparsed :type (or frame (member nil :unparsed)))
227 ;; the DEBUG-FUN for the function whose call this frame represents
228 (debug-fun nil :type debug-fun)
229 ;; the CODE-LOCATION where the frame's DEBUG-FUN will continue
230 ;; running when program execution returns to this frame. If someone
231 ;; interrupted this frame, the result could be an unknown
233 (code-location nil :type code-location)
234 ;; an a-list of catch-tags to code-locations
235 (%catches :unparsed :type (or list (member :unparsed)))
236 ;; pointer to frame on control stack (unexported)
238 ;; This is the frame's number for prompt printing. Top is zero.
239 (number 0 :type index))
241 (defstruct (compiled-frame
243 (:constructor make-compiled-frame
244 (pointer up debug-fun code-location number
247 ;; This indicates whether someone interrupted the frame.
248 ;; (unexported). If escaped, this is a pointer to the state that was
249 ;; saved when we were interrupted, an os_context_t, i.e. the third
250 ;; argument to an SA_SIGACTION-style signal handler.
252 (def!method print-object ((obj compiled-frame) str)
253 (print-unreadable-object (obj str :type t)
255 "~S~:[~;, interrupted~]"
256 (debug-fun-name (frame-debug-fun obj))
257 (compiled-frame-escaped obj))))
261 ;;; These exist for caching data stored in packed binary form in
262 ;;; compiler DEBUG-FUNs. *COMPILED-DEBUG-FUNS* maps a SB!C::DEBUG-FUN
263 ;;; to a DEBUG-FUN. There should only be one DEBUG-FUN in existence
264 ;;; for any function; that is, all CODE-LOCATIONs and other objects
265 ;;; that reference DEBUG-FUNs point to unique objects. This is
266 ;;; due to the overhead in cached information.
267 (defstruct (debug-fun (:constructor nil)
269 ;; some representation of the function arguments. See
270 ;; DEBUG-FUN-LAMBDA-LIST.
271 ;; NOTE: must parse vars before parsing arg list stuff.
272 (%lambda-list :unparsed)
273 ;; cached DEBUG-VARS information (unexported).
274 ;; These are sorted by their name.
275 (%debug-vars :unparsed :type (or simple-vector null (member :unparsed)))
276 ;; cached debug-block information. This is NIL when we have tried to
277 ;; parse the packed binary info, but none is available.
278 (blocks :unparsed :type (or simple-vector null (member :unparsed)))
279 ;; the actual function if available
280 (%function :unparsed :type (or null function (member :unparsed))))
281 (def!method print-object ((obj debug-fun) stream)
282 (print-unreadable-object (obj stream :type t)
283 (prin1 (debug-fun-name obj) stream)))
285 (defstruct (compiled-debug-fun
287 (:constructor %make-compiled-debug-fun
288 (compiler-debug-fun component))
290 ;; compiler's dumped DEBUG-FUN information (unexported)
291 (compiler-debug-fun nil :type sb!c::compiled-debug-fun)
292 ;; code object (unexported).
294 ;; the :FUN-START breakpoint (if any) used to facilitate
295 ;; function end breakpoints
296 (end-starter nil :type (or null breakpoint)))
298 ;;; This maps SB!C::COMPILED-DEBUG-FUNs to
299 ;;; COMPILED-DEBUG-FUNs, so we can get at cached stuff and not
300 ;;; duplicate COMPILED-DEBUG-FUN structures.
301 (defvar *compiled-debug-funs* (make-hash-table :test 'eq))
303 ;;; Make a COMPILED-DEBUG-FUN for a SB!C::COMPILER-DEBUG-FUN
304 ;;; and its component. This maps the latter to the former in
305 ;;; *COMPILED-DEBUG-FUNS*. If there already is a
306 ;;; COMPILED-DEBUG-FUN, then this returns it from
307 ;;; *COMPILED-DEBUG-FUNS*.
308 (defun make-compiled-debug-fun (compiler-debug-fun component)
309 (or (gethash compiler-debug-fun *compiled-debug-funs*)
310 (setf (gethash compiler-debug-fun *compiled-debug-funs*)
311 (%make-compiled-debug-fun compiler-debug-fun component))))
313 (defstruct (bogus-debug-fun
315 (:constructor make-bogus-debug-fun
324 (defvar *ir1-lambda-debug-fun* (make-hash-table :test 'eq))
328 ;;; These exist for caching data stored in packed binary form in compiler
330 (defstruct (debug-block (:constructor nil)
332 ;; Code-locations where execution continues after this block.
333 (successors nil :type list)
334 ;; This indicates whether the block is a special glob of code shared
335 ;; by various functions and tucked away elsewhere in a component.
336 ;; This kind of block has no start code-location. This slot is in
337 ;; all debug-blocks since it is an exported interface.
338 (elsewhere-p nil :type boolean))
339 (def!method print-object ((obj debug-block) str)
340 (print-unreadable-object (obj str :type t)
341 (prin1 (debug-block-fun-name obj) str)))
344 (setf (fdocumentation 'debug-block-successors 'function)
345 "Return the list of possible code-locations where execution may continue
346 when the basic-block represented by debug-block completes its execution.")
349 (setf (fdocumentation 'debug-block-elsewhere-p 'function)
350 "Return whether debug-block represents elsewhere code.")
352 (defstruct (compiled-debug-block (:include debug-block)
354 make-compiled-debug-block
355 (code-locations successors elsewhere-p))
357 ;; code-location information for the block
358 (code-locations nil :type simple-vector))
360 (defvar *ir1-block-debug-block* (make-hash-table :test 'eq))
364 ;;; This is an internal structure that manages information about a
365 ;;; breakpoint locations. See *COMPONENT-BREAKPOINT-OFFSETS*.
366 (defstruct (breakpoint-data (:constructor make-breakpoint-data
369 ;; This is the component in which the breakpoint lies.
371 ;; This is the byte offset into the component.
372 (offset nil :type index)
373 ;; The original instruction replaced by the breakpoint.
374 (instruction nil :type (or null sb!vm::word))
375 ;; A list of user breakpoints at this location.
376 (breakpoints nil :type list))
377 (def!method print-object ((obj breakpoint-data) str)
378 (print-unreadable-object (obj str :type t)
379 (format str "~S at ~S"
381 (debug-fun-from-pc (breakpoint-data-component obj)
382 (breakpoint-data-offset obj)))
383 (breakpoint-data-offset obj))))
385 (defstruct (breakpoint (:constructor %make-breakpoint
386 (hook-fun what kind %info))
388 ;; This is the function invoked when execution encounters the
389 ;; breakpoint. It takes a frame, the breakpoint, and optionally a
390 ;; list of values. Values are supplied for :FUN-END breakpoints as
391 ;; values to return for the function containing the breakpoint.
392 ;; :FUN-END breakpoint hook functions also take a cookie argument.
393 ;; See the COOKIE-FUN slot.
394 (hook-fun (required-arg) :type function)
395 ;; CODE-LOCATION or DEBUG-FUN
396 (what nil :type (or code-location debug-fun))
397 ;; :CODE-LOCATION, :FUN-START, or :FUN-END for that kind
398 ;; of breakpoint. :UNKNOWN-RETURN-PARTNER if this is the partner of
399 ;; a :code-location breakpoint at an :UNKNOWN-RETURN code-location.
400 (kind nil :type (member :code-location :fun-start :fun-end
401 :unknown-return-partner))
402 ;; Status helps the user and the implementation.
403 (status :inactive :type (member :active :inactive :deleted))
404 ;; This is a backpointer to a breakpoint-data.
405 (internal-data nil :type (or null breakpoint-data))
406 ;; With code-locations whose type is :UNKNOWN-RETURN, there are
407 ;; really two breakpoints: one at the multiple-value entry point,
408 ;; and one at the single-value entry point. This slot holds the
409 ;; breakpoint for the other one, or NIL if this isn't at an
410 ;; :UNKNOWN-RETURN code location.
411 (unknown-return-partner nil :type (or null breakpoint))
412 ;; :FUN-END breakpoints use a breakpoint at the :FUN-START
413 ;; to establish the end breakpoint upon function entry. We do this
414 ;; by frobbing the LRA to jump to a special piece of code that
415 ;; breaks and provides the return values for the returnee. This slot
416 ;; points to the start breakpoint, so we can activate, deactivate,
418 (start-helper nil :type (or null breakpoint))
419 ;; This is a hook users supply to get a dynamically unique cookie
420 ;; for identifying :FUN-END breakpoint executions. That is, if
421 ;; there is one :FUN-END breakpoint, but there may be multiple
422 ;; pending calls of its function on the stack. This function takes
423 ;; the cookie, and the hook function takes the cookie too.
424 (cookie-fun nil :type (or null function))
425 ;; This slot users can set with whatever information they find useful.
427 (def!method print-object ((obj breakpoint) str)
428 (let ((what (breakpoint-what obj)))
429 (print-unreadable-object (obj str :type t)
434 (debug-fun (debug-fun-name what)))
437 (debug-fun (breakpoint-kind obj)))))))
441 (defstruct (code-location (:constructor nil)
443 ;; the DEBUG-FUN containing this CODE-LOCATION
444 (debug-fun nil :type debug-fun)
445 ;; This is initially :UNSURE. Upon first trying to access an
446 ;; :UNPARSED slot, if the data is unavailable, then this becomes T,
447 ;; and the code-location is unknown. If the data is available, this
448 ;; becomes NIL, a known location. We can't use a separate type
449 ;; code-location for this since we must return code-locations before
450 ;; we can tell whether they're known or unknown. For example, when
451 ;; parsing the stack, we don't want to unpack all the variables and
452 ;; blocks just to make frames.
453 (%unknown-p :unsure :type (member t nil :unsure))
454 ;; the DEBUG-BLOCK containing CODE-LOCATION. XXX Possibly toss this
455 ;; out and just find it in the blocks cache in DEBUG-FUN.
456 (%debug-block :unparsed :type (or debug-block (member :unparsed)))
457 ;; This is the number of forms processed by the compiler or loader
458 ;; before the top level form containing this code-location.
459 (%tlf-offset :unparsed :type (or index (member :unparsed)))
460 ;; This is the depth-first number of the node that begins
461 ;; code-location within its top level form.
462 (%form-number :unparsed :type (or index (member :unparsed))))
463 (def!method print-object ((obj code-location) str)
464 (print-unreadable-object (obj str :type t)
465 (prin1 (debug-fun-name (code-location-debug-fun obj))
468 (defstruct (compiled-code-location
469 (:include code-location)
470 (:constructor make-known-code-location
471 (pc debug-fun %tlf-offset %form-number
472 %live-set kind step-info &aux (%unknown-p nil)))
473 (:constructor make-compiled-code-location (pc debug-fun))
475 ;; an index into DEBUG-FUN's component slot
477 ;; a bit-vector indexed by a variable's position in
478 ;; DEBUG-FUN-DEBUG-VARS indicating whether the variable has a
479 ;; valid value at this code-location. (unexported).
480 (%live-set :unparsed :type (or simple-bit-vector (member :unparsed)))
481 ;; (unexported) To see SB!C::LOCATION-KIND, do
482 ;; (SB!KERNEL:TYPE-EXPAND 'SB!C::LOCATION-KIND).
483 (kind :unparsed :type (or (member :unparsed) sb!c::location-kind))
484 (step-info :unparsed :type (or (member :unparsed :foo) simple-string)))
488 ;;; Return the number of top level forms processed by the compiler
489 ;;; before compiling this source. If this source is uncompiled, this
490 ;;; is zero. This may be zero even if the source is compiled since the
491 ;;; first form in the first file compiled in one compilation, for
492 ;;; example, must have a root number of zero -- the compiler saw no
493 ;;; other top level forms before it.
494 (defun debug-source-root-number (debug-source)
495 (sb!c::debug-source-source-root debug-source))
499 ;;; This is used in FIND-ESCAPED-FRAME and with the bogus components
500 ;;; and LRAs used for :FUN-END breakpoints. When a component's
501 ;;; debug-info slot is :BOGUS-LRA, then the REAL-LRA-SLOT contains the
502 ;;; real component to continue executing, as opposed to the bogus
503 ;;; component which appeared in some frame's LRA location.
504 (defconstant real-lra-slot sb!vm:code-constants-offset)
506 ;;; These are magically converted by the compiler.
507 (defun current-sp () (current-sp))
508 (defun current-fp () (current-fp))
509 (defun stack-ref (s n) (stack-ref s n))
510 (defun %set-stack-ref (s n value) (%set-stack-ref s n value))
511 (defun fun-code-header (fun) (fun-code-header fun))
512 (defun lra-code-header (lra) (lra-code-header lra))
513 (defun make-lisp-obj (value) (make-lisp-obj value))
514 (defun get-lisp-obj-address (thing) (get-lisp-obj-address thing))
515 (defun fun-word-offset (fun) (fun-word-offset fun))
517 #!-sb-fluid (declaim (inline control-stack-pointer-valid-p))
518 (defun control-stack-pointer-valid-p (x)
519 (declare (type system-area-pointer x))
520 (let* (#!-stack-grows-downward-not-upward
522 (descriptor-sap *control-stack-start*))
523 #!+stack-grows-downward-not-upward
525 (descriptor-sap *control-stack-end*)))
526 #!-stack-grows-downward-not-upward
527 (and (sap< x (current-sp))
528 (sap<= control-stack-start x)
529 (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask)))
530 #!+stack-grows-downward-not-upward
531 (and (sap>= x (current-sp))
532 (sap> control-stack-end x)
533 (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask)))))
535 (declaim (inline component-ptr-from-pc))
536 (sb!alien:define-alien-routine component-ptr-from-pc (system-area-pointer)
537 (pc system-area-pointer))
539 (declaim (inline component-from-component-ptr))
540 (defun component-from-component-ptr (component-ptr)
541 (declare (type system-area-pointer component-ptr))
542 (make-lisp-obj (logior (sap-int component-ptr)
543 sb!vm:other-pointer-lowtag)))
545 ;;;; (OR X86 X86-64) support
547 (defun compute-lra-data-from-pc (pc)
548 (declare (type system-area-pointer pc))
549 (let ((component-ptr (component-ptr-from-pc pc)))
550 (unless (sap= component-ptr (int-sap #x0))
551 (let* ((code (component-from-component-ptr component-ptr))
552 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes))
553 (pc-offset (- (sap-int pc)
554 (- (get-lisp-obj-address code)
555 sb!vm:other-pointer-lowtag)
557 ; (format t "c-lra-fpc ~A ~A ~A~%" pc code pc-offset)
558 (values pc-offset code)))))
563 (defconstant sb!vm::nargs-offset #.sb!vm::ecx-offset)
565 ;;; Check for a valid return address - it could be any valid C/Lisp
568 ;;; XXX Could be a little smarter.
569 #!-sb-fluid (declaim (inline ra-pointer-valid-p))
570 (defun ra-pointer-valid-p (ra)
571 (declare (type system-area-pointer ra))
573 ;; not the first page (which is unmapped)
575 ;; FIXME: Where is this documented? Is it really true of every CPU
576 ;; architecture? Is it even necessarily true in current SBCL?
577 (>= (sap-int ra) 4096)
578 ;; not a Lisp stack pointer
579 (not (control-stack-pointer-valid-p ra))))
581 ;;; Try to find a valid previous stack. This is complex on the x86 as
582 ;;; it can jump between C and Lisp frames. To help find a valid frame
583 ;;; it searches backwards.
585 ;;; XXX Should probably check whether it has reached the bottom of the
588 ;;; XXX Should handle interrupted frames, both Lisp and C. At present
589 ;;; it manages to find a fp trail, see linux hack below.
590 (declaim (maybe-inline x86-call-context))
591 (defun x86-call-context (fp)
592 (declare (type system-area-pointer fp))
599 ((not (control-stack-pointer-valid-p fp))
602 ;; Check the two possible frame pointers.
603 (let ((lisp-ocfp (sap-ref-sap fp (- (* (1+ ocfp-save-offset)
604 sb!vm::n-word-bytes))))
605 (lisp-ra (sap-ref-sap fp (- (* (1+ return-pc-save-offset)
606 sb!vm::n-word-bytes))))
607 (c-ocfp (sap-ref-sap fp (* 0 sb!vm:n-word-bytes)))
608 (c-ra (sap-ref-sap fp (* 1 sb!vm:n-word-bytes))))
609 (cond ((and (sap> lisp-ocfp fp)
610 (control-stack-pointer-valid-p lisp-ocfp)
611 (ra-pointer-valid-p lisp-ra)
613 (control-stack-pointer-valid-p c-ocfp)
614 (ra-pointer-valid-p c-ra))
615 ;; Look forward another step to check their validity.
616 (let ((lisp-ok (handle lisp-ocfp))
617 (c-ok (handle c-ocfp)))
618 (cond ((and lisp-ok c-ok)
619 ;; Both still seem valid - choose the lisp frame.
621 (if (sap> lisp-ocfp c-ocfp)
622 (values t lisp-ra lisp-ocfp)
623 (values t c-ra c-ocfp))
625 (values t lisp-ra lisp-ocfp))
627 ;; The lisp convention is looking good.
628 (values t lisp-ra lisp-ocfp))
630 ;; The C convention is looking good.
631 (values t c-ra c-ocfp))
633 ;; Neither seems right?
635 ((and (sap> lisp-ocfp fp)
636 (control-stack-pointer-valid-p lisp-ocfp)
637 (ra-pointer-valid-p lisp-ra))
638 ;; The lisp convention is looking good.
639 (values t lisp-ra lisp-ocfp))
640 ((and (sap> c-ocfp fp)
641 (control-stack-pointer-valid-p c-ocfp)
642 #!-linux (ra-pointer-valid-p c-ra))
643 ;; The C convention is looking good.
644 (values t c-ra c-ocfp))
651 ;;; Convert the descriptor into a SAP. The bits all stay the same, we just
652 ;;; change our notion of what we think they are.
653 #!-sb-fluid (declaim (inline descriptor-sap))
654 (defun descriptor-sap (x)
655 (int-sap (get-lisp-obj-address x)))
657 ;;; Return the top frame of the control stack as it was before calling
660 (/noshow0 "entering TOP-FRAME")
661 (multiple-value-bind (fp pc) (%caller-frame-and-pc)
662 (compute-calling-frame (descriptor-sap fp) pc nil)))
664 ;;; Flush all of the frames above FRAME, and renumber all the frames
666 (defun flush-frames-above (frame)
667 (setf (frame-up frame) nil)
668 (do ((number 0 (1+ number))
669 (frame frame (frame-%down frame)))
670 ((not (frame-p frame)))
671 (setf (frame-number frame) number)))
673 ;;; Return the frame immediately below FRAME on the stack; or when
674 ;;; FRAME is the bottom of the stack, return NIL.
675 (defun frame-down (frame)
676 (/noshow0 "entering FRAME-DOWN")
677 ;; We have to access the old-fp and return-pc out of frame and pass
678 ;; them to COMPUTE-CALLING-FRAME.
679 (let ((down (frame-%down frame)))
680 (if (eq down :unparsed)
681 (let ((debug-fun (frame-debug-fun frame)))
682 (/noshow0 "in DOWN :UNPARSED case")
683 (setf (frame-%down frame)
686 (let ((c-d-f (compiled-debug-fun-compiler-debug-fun
688 (compute-calling-frame
691 frame ocfp-save-offset
692 (sb!c::compiled-debug-fun-old-fp c-d-f)))
694 frame lra-save-offset
695 (sb!c::compiled-debug-fun-return-pc c-d-f))
698 (let ((fp (frame-pointer frame)))
699 (when (control-stack-pointer-valid-p fp)
701 (multiple-value-bind (ok ra ofp) (x86-call-context fp)
703 (compute-calling-frame ofp ra frame)))
705 (compute-calling-frame
707 (sap-ref-sap fp (* ocfp-save-offset
711 (sap-ref-32 fp (* ocfp-save-offset
712 sb!vm:n-word-bytes)))
714 (stack-ref fp lra-save-offset)
719 ;;; Get the old FP or return PC out of FRAME. STACK-SLOT is the
720 ;;; standard save location offset on the stack. LOC is the saved
721 ;;; SC-OFFSET describing the main location.
722 (defun get-context-value (frame stack-slot loc)
723 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
724 (type sb!c:sc-offset loc))
725 (let ((pointer (frame-pointer frame))
726 (escaped (compiled-frame-escaped frame)))
728 (sub-access-debug-var-slot pointer loc escaped)
730 (stack-ref pointer stack-slot)
734 (stack-ref pointer stack-slot))
736 (sap-ref-sap pointer (- (* (1+ stack-slot)
737 sb!vm::n-word-bytes))))))))
739 (defun (setf get-context-value) (value frame stack-slot loc)
740 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
741 (type sb!c:sc-offset loc))
742 (let ((pointer (frame-pointer frame))
743 (escaped (compiled-frame-escaped frame)))
745 (sub-set-debug-var-slot pointer loc value escaped)
747 (setf (stack-ref pointer stack-slot) value)
751 (setf (stack-ref pointer stack-slot) value))
753 (setf (sap-ref-sap pointer (- (* (1+ stack-slot)
754 sb!vm::n-word-bytes))) value))))))
756 (defun foreign-function-backtrace-name (sap)
757 (let ((name (sap-foreign-symbol sap)))
759 (format nil "foreign function: ~A" name)
760 (format nil "foreign function: #x~X" (sap-int sap)))))
762 ;;; This returns a frame for the one existing in time immediately
763 ;;; prior to the frame referenced by current-fp. This is current-fp's
764 ;;; caller or the next frame down the control stack. If there is no
765 ;;; down frame, this returns NIL for the bottom of the stack. UP-FRAME
766 ;;; is the up link for the resulting frame object, and it is null when
767 ;;; we call this to get the top of the stack.
769 ;;; The current frame contains the pointer to the temporally previous
770 ;;; frame we want, and the current frame contains the pc at which we
771 ;;; will continue executing upon returning to that previous frame.
773 ;;; Note: Sometimes LRA is actually a fixnum. This happens when lisp
774 ;;; calls into C. In this case, the code object is stored on the stack
775 ;;; after the LRA, and the LRA is the word offset.
777 (defun compute-calling-frame (caller lra up-frame)
778 (declare (type system-area-pointer caller))
779 (when (control-stack-pointer-valid-p caller)
780 (multiple-value-bind (code pc-offset escaped)
782 (multiple-value-bind (word-offset code)
784 (let ((fp (frame-pointer up-frame)))
786 (stack-ref fp (1+ lra-save-offset))))
787 (values (get-header-data lra)
788 (lra-code-header lra)))
791 (* (1+ (- word-offset (get-header-data code)))
794 (values :foreign-function
797 (find-escaped-frame caller))
798 (if (and (code-component-p code)
799 (eq (%code-debug-info code) :bogus-lra))
800 (let ((real-lra (code-header-ref code real-lra-slot)))
801 (compute-calling-frame caller real-lra up-frame))
802 (let ((d-fun (case code
804 (make-bogus-debug-fun
805 "undefined function"))
807 (make-bogus-debug-fun
808 (foreign-function-backtrace-name
809 (int-sap (get-lisp-obj-address lra)))))
811 (make-bogus-debug-fun
812 "bogus stack frame"))
814 (debug-fun-from-pc code pc-offset)))))
815 (make-compiled-frame caller up-frame d-fun
816 (code-location-from-pc d-fun pc-offset
818 (if up-frame (1+ (frame-number up-frame)) 0)
822 (defun compute-calling-frame (caller ra up-frame)
823 (declare (type system-area-pointer caller ra))
824 (/noshow0 "entering COMPUTE-CALLING-FRAME")
825 (when (control-stack-pointer-valid-p caller)
827 ;; First check for an escaped frame.
828 (multiple-value-bind (code pc-offset escaped) (find-escaped-frame caller)
831 ;; If it's escaped it may be a function end breakpoint trap.
832 (when (and (code-component-p code)
833 (eq (%code-debug-info code) :bogus-lra))
834 ;; If :bogus-lra grab the real lra.
835 (setq pc-offset (code-header-ref
836 code (1+ real-lra-slot)))
837 (setq code (code-header-ref code real-lra-slot))
840 (multiple-value-setq (pc-offset code)
841 (compute-lra-data-from-pc ra))
843 (setf code :foreign-function
845 (let ((d-fun (case code
847 (make-bogus-debug-fun
848 "undefined function"))
850 (make-bogus-debug-fun
851 (foreign-function-backtrace-name ra)))
853 (make-bogus-debug-fun
854 "bogus stack frame"))
856 (debug-fun-from-pc code pc-offset)))))
857 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
858 (make-compiled-frame caller up-frame d-fun
859 (code-location-from-pc d-fun pc-offset
861 (if up-frame (1+ (frame-number up-frame)) 0)
864 (defun nth-interrupt-context (n)
865 (declare (type (unsigned-byte 32) n)
866 (optimize (speed 3) (safety 0)))
867 (sb!alien:sap-alien (sb!vm::current-thread-offset-sap
868 (+ sb!vm::thread-interrupt-contexts-offset n))
872 (defun find-escaped-frame (frame-pointer)
873 (declare (type system-area-pointer frame-pointer))
874 (/noshow0 "entering FIND-ESCAPED-FRAME")
875 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
876 (/noshow0 "at head of WITH-ALIEN")
877 (let ((context (nth-interrupt-context index)))
878 (/noshow0 "got CONTEXT")
879 (when (= (sap-int frame-pointer)
880 (sb!vm:context-register context sb!vm::cfp-offset))
882 (/noshow0 "in WITHOUT-GCING")
883 (let* ((component-ptr (component-ptr-from-pc
884 (sb!vm:context-pc context)))
885 (code (unless (sap= component-ptr (int-sap #x0))
886 (component-from-component-ptr component-ptr))))
887 (/noshow0 "got CODE")
889 (return (values code 0 context)))
890 (let* ((code-header-len (* (get-header-data code)
893 (- (sap-int (sb!vm:context-pc context))
894 (- (get-lisp-obj-address code)
895 sb!vm:other-pointer-lowtag)
897 (/noshow "got PC-OFFSET")
898 (unless (<= 0 pc-offset
899 (* (code-header-ref code sb!vm:code-code-size-slot)
901 ;; We were in an assembly routine. Therefore, use the
904 ;; FIXME: Should this be WARN or ERROR or what?
905 (format t "** pc-offset ~S not in code obj ~S?~%"
907 (/noshow0 "returning from FIND-ESCAPED-FRAME")
909 (values code pc-offset context)))))))))
912 (defun find-escaped-frame (frame-pointer)
913 (declare (type system-area-pointer frame-pointer))
914 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
915 (let ((scp (nth-interrupt-context index)))
916 (when (= (sap-int frame-pointer)
917 (sb!vm:context-register scp sb!vm::cfp-offset))
919 (let ((code (code-object-from-bits
920 (sb!vm:context-register scp sb!vm::code-offset))))
922 (return (values code 0 scp)))
923 (let* ((code-header-len (* (get-header-data code)
926 (- (sap-int (sb!vm:context-pc scp))
927 (- (get-lisp-obj-address code)
928 sb!vm:other-pointer-lowtag)
930 (let ((code-size (* (code-header-ref code
931 sb!vm:code-code-size-slot)
932 sb!vm:n-word-bytes)))
933 (unless (<= 0 pc-offset code-size)
934 ;; We were in an assembly routine.
935 (multiple-value-bind (new-pc-offset computed-return)
936 (find-pc-from-assembly-fun code scp)
937 (setf pc-offset new-pc-offset)
938 (unless (<= 0 pc-offset code-size)
940 "Set PC-OFFSET to zero and continue backtrace."
943 "~@<PC-OFFSET (~D) not in code object. Frame details:~
944 ~2I~:@_PC: #X~X~:@_CODE: ~S~:@_CODE FUN: ~S~:@_LRA: ~
945 #X~X~:@_COMPUTED RETURN: #X~X.~:>"
948 (sap-int (sb!vm:context-pc scp))
950 (%code-entry-points code)
951 (sb!vm:context-register scp sb!vm::lra-offset)
953 ;; We failed to pinpoint where PC is, but set
954 ;; pc-offset to 0 to keep the backtrace from
956 (setf pc-offset 0)))))
958 (if (eq (%code-debug-info code) :bogus-lra)
959 (let ((real-lra (code-header-ref code
961 (values (lra-code-header real-lra)
962 (get-header-data real-lra)
964 (values code pc-offset scp))))))))))
967 (defun find-pc-from-assembly-fun (code scp)
968 "Finds the PC for the return from an assembly routine properly.
969 For some architectures (such as PPC) this will not be the $LRA
971 (let ((return-machine-address (sb!vm::return-machine-address scp))
972 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes)))
973 (values (- return-machine-address
974 (- (get-lisp-obj-address code)
975 sb!vm:other-pointer-lowtag)
977 return-machine-address)))
979 ;;; Find the code object corresponding to the object represented by
980 ;;; bits and return it. We assume bogus functions correspond to the
981 ;;; undefined-function.
983 (defun code-object-from-bits (bits)
984 (declare (type (unsigned-byte 32) bits))
985 (let ((object (make-lisp-obj bits)))
986 (if (functionp object)
987 (or (fun-code-header object)
989 (let ((lowtag (lowtag-of object)))
990 (when (= lowtag sb!vm:other-pointer-lowtag)
991 (let ((widetag (widetag-of object)))
992 (cond ((= widetag sb!vm:code-header-widetag)
994 ((= widetag sb!vm:return-pc-header-widetag)
995 (lra-code-header object))
1001 ;;; This returns a COMPILED-DEBUG-FUN for COMPONENT and PC. We fetch the
1002 ;;; SB!C::DEBUG-INFO and run down its FUN-MAP to get a
1003 ;;; SB!C::COMPILED-DEBUG-FUN from the PC. The result only needs to
1004 ;;; reference the COMPONENT, for function constants, and the
1005 ;;; SB!C::COMPILED-DEBUG-FUN.
1006 (defun debug-fun-from-pc (component pc)
1007 (let ((info (%code-debug-info component)))
1010 ;; FIXME: It seems that most of these (at least on x86) are
1011 ;; actually assembler routines, and could be named by looking
1012 ;; at the sb-fasl:*assembler-routines*.
1013 (make-bogus-debug-fun "no debug information for frame"))
1014 ((eq info :bogus-lra)
1015 (make-bogus-debug-fun "function end breakpoint"))
1017 (let* ((fun-map (sb!c::compiled-debug-info-fun-map info))
1018 (len (length fun-map)))
1019 (declare (type simple-vector fun-map))
1021 (make-compiled-debug-fun (svref fun-map 0) component)
1024 (>= pc (sb!c::compiled-debug-fun-elsewhere-pc
1025 (svref fun-map 0)))))
1026 (declare (type sb!int:index i))
1029 (< pc (if elsewhere-p
1030 (sb!c::compiled-debug-fun-elsewhere-pc
1031 (svref fun-map (1+ i)))
1032 (svref fun-map i))))
1033 (return (make-compiled-debug-fun
1034 (svref fun-map (1- i))
1038 ;;; This returns a code-location for the COMPILED-DEBUG-FUN,
1039 ;;; DEBUG-FUN, and the pc into its code vector. If we stopped at a
1040 ;;; breakpoint, find the CODE-LOCATION for that breakpoint. Otherwise,
1041 ;;; make an :UNSURE code location, so it can be filled in when we
1042 ;;; figure out what is going on.
1043 (defun code-location-from-pc (debug-fun pc escaped)
1044 (or (and (compiled-debug-fun-p debug-fun)
1046 (let ((data (breakpoint-data
1047 (compiled-debug-fun-component debug-fun)
1049 (when (and data (breakpoint-data-breakpoints data))
1050 (let ((what (breakpoint-what
1051 (first (breakpoint-data-breakpoints data)))))
1052 (when (compiled-code-location-p what)
1054 (make-compiled-code-location pc debug-fun)))
1056 ;;; Return an alist mapping catch tags to CODE-LOCATIONs. These are
1057 ;;; CODE-LOCATIONs at which execution would continue with frame as the
1058 ;;; top frame if someone threw to the corresponding tag.
1059 (defun frame-catches (frame)
1060 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1061 (reversed-result nil)
1062 (fp (frame-pointer frame)))
1063 (loop until (zerop (sap-int catch))
1064 finally (return (nreverse reversed-result))
1069 (* sb!vm:catch-block-current-cont-slot
1070 sb!vm:n-word-bytes))
1074 (* sb!vm:catch-block-current-cont-slot
1075 sb!vm:n-word-bytes))))
1076 (let* (#!-(or x86 x86-64)
1077 (lra (stack-ref catch sb!vm:catch-block-entry-pc-slot))
1080 catch (* sb!vm:catch-block-entry-pc-slot
1081 sb!vm:n-word-bytes)))
1084 (stack-ref catch sb!vm:catch-block-current-code-slot))
1086 (component (component-from-component-ptr
1087 (component-ptr-from-pc ra)))
1090 (* (- (1+ (get-header-data lra))
1091 (get-header-data component))
1095 (- (get-lisp-obj-address component)
1096 sb!vm:other-pointer-lowtag)
1097 (* (get-header-data component) sb!vm:n-word-bytes))))
1098 (push (cons #!-(or x86 x86-64)
1099 (stack-ref catch sb!vm:catch-block-tag-slot)
1102 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1103 sb!vm:n-word-bytes)))
1104 (make-compiled-code-location
1105 offset (frame-debug-fun frame)))
1110 (* sb!vm:catch-block-previous-catch-slot
1111 sb!vm:n-word-bytes))
1115 (* sb!vm:catch-block-previous-catch-slot
1116 sb!vm:n-word-bytes)))))))
1118 ;;; Modify the value of the OLD-TAG catches in FRAME to NEW-TAG
1119 (defun replace-frame-catch-tag (frame old-tag new-tag)
1120 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1121 (fp (frame-pointer frame)))
1122 (loop until (zerop (sap-int catch))
1126 (* sb!vm:catch-block-current-cont-slot
1127 sb!vm:n-word-bytes))
1131 (* sb!vm:catch-block-current-cont-slot
1132 sb!vm:n-word-bytes))))
1135 (stack-ref catch sb!vm:catch-block-tag-slot)
1138 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1139 sb!vm:n-word-bytes)))))
1140 (when (eq current-tag old-tag)
1142 (setf (stack-ref catch sb!vm:catch-block-tag-slot) new-tag)
1144 (setf (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1145 sb!vm:n-word-bytes))
1146 (get-lisp-obj-address new-tag)))))
1150 (* sb!vm:catch-block-previous-catch-slot
1151 sb!vm:n-word-bytes))
1155 (* sb!vm:catch-block-previous-catch-slot
1156 sb!vm:n-word-bytes)))))))
1160 ;;;; operations on DEBUG-FUNs
1162 ;;; Execute the forms in a context with BLOCK-VAR bound to each
1163 ;;; DEBUG-BLOCK in DEBUG-FUN successively. Result is an optional
1164 ;;; form to execute for return values, and DO-DEBUG-FUN-BLOCKS
1165 ;;; returns nil if there is no result form. This signals a
1166 ;;; NO-DEBUG-BLOCKS condition when the DEBUG-FUN lacks
1167 ;;; DEBUG-BLOCK information.
1168 (defmacro do-debug-fun-blocks ((block-var debug-fun &optional result)
1170 (let ((blocks (gensym))
1172 `(let ((,blocks (debug-fun-debug-blocks ,debug-fun)))
1173 (declare (simple-vector ,blocks))
1174 (dotimes (,i (length ,blocks) ,result)
1175 (let ((,block-var (svref ,blocks ,i)))
1178 ;;; Execute body in a context with VAR bound to each DEBUG-VAR in
1179 ;;; DEBUG-FUN. This returns the value of executing result (defaults to
1180 ;;; nil). This may iterate over only some of DEBUG-FUN's variables or
1181 ;;; none depending on debug policy; for example, possibly the
1182 ;;; compilation only preserved argument information.
1183 (defmacro do-debug-fun-vars ((var debug-fun &optional result) &body body)
1184 (let ((vars (gensym))
1186 `(let ((,vars (debug-fun-debug-vars ,debug-fun)))
1187 (declare (type (or null simple-vector) ,vars))
1189 (dotimes (,i (length ,vars) ,result)
1190 (let ((,var (svref ,vars ,i)))
1194 ;;; Return the object of type FUNCTION associated with the DEBUG-FUN,
1195 ;;; or NIL if the function is unavailable or is non-existent as a user
1196 ;;; callable function object.
1197 (defun debug-fun-fun (debug-fun)
1198 (let ((cached-value (debug-fun-%function debug-fun)))
1199 (if (eq cached-value :unparsed)
1200 (setf (debug-fun-%function debug-fun)
1201 (etypecase debug-fun
1204 (compiled-debug-fun-component debug-fun))
1206 (sb!c::compiled-debug-fun-start-pc
1207 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1208 (do ((entry (%code-entry-points component)
1209 (%simple-fun-next entry)))
1212 (sb!c::compiled-debug-fun-start-pc
1213 (compiled-debug-fun-compiler-debug-fun
1214 (fun-debug-fun entry))))
1216 (bogus-debug-fun nil)))
1219 ;;; Return the name of the function represented by DEBUG-FUN. This may
1220 ;;; be a string or a cons; do not assume it is a symbol.
1221 (defun debug-fun-name (debug-fun)
1222 (declare (type debug-fun debug-fun))
1223 (etypecase debug-fun
1225 (sb!c::compiled-debug-fun-name
1226 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1228 (bogus-debug-fun-%name debug-fun))))
1230 ;;; Return a DEBUG-FUN that represents debug information for FUN.
1231 (defun fun-debug-fun (fun)
1232 (declare (type function fun))
1233 (ecase (widetag-of fun)
1234 (#.sb!vm:closure-header-widetag
1235 (fun-debug-fun (%closure-fun fun)))
1236 (#.sb!vm:funcallable-instance-header-widetag
1237 (fun-debug-fun (funcallable-instance-fun fun)))
1238 (#.sb!vm:simple-fun-header-widetag
1239 (let* ((name (%simple-fun-name fun))
1240 (component (fun-code-header fun))
1243 (and (sb!c::compiled-debug-fun-p x)
1244 (eq (sb!c::compiled-debug-fun-name x) name)
1245 (eq (sb!c::compiled-debug-fun-kind x) nil)))
1246 (sb!c::compiled-debug-info-fun-map
1247 (%code-debug-info component)))))
1249 (make-compiled-debug-fun res component)
1250 ;; KLUDGE: comment from CMU CL:
1251 ;; This used to be the non-interpreted branch, but
1252 ;; William wrote it to return the debug-fun of fun's XEP
1253 ;; instead of fun's debug-fun. The above code does this
1254 ;; more correctly, but it doesn't get or eliminate all
1255 ;; appropriate cases. It mostly works, and probably
1256 ;; works for all named functions anyway.
1258 (debug-fun-from-pc component
1259 (* (- (fun-word-offset fun)
1260 (get-header-data component))
1261 sb!vm:n-word-bytes)))))))
1263 ;;; Return the kind of the function, which is one of :OPTIONAL,
1264 ;;; :EXTERNAL, :TOPLEVEL, :CLEANUP, or NIL.
1265 (defun debug-fun-kind (debug-fun)
1266 ;; FIXME: This "is one of" information should become part of the function
1267 ;; declamation, not just a doc string
1268 (etypecase debug-fun
1270 (sb!c::compiled-debug-fun-kind
1271 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1275 ;;; Is there any variable information for DEBUG-FUN?
1276 (defun debug-var-info-available (debug-fun)
1277 (not (not (debug-fun-debug-vars debug-fun))))
1279 ;;; Return a list of DEBUG-VARs in DEBUG-FUN having the same name
1280 ;;; and package as SYMBOL. If SYMBOL is uninterned, then this returns
1281 ;;; a list of DEBUG-VARs without package names and with the same name
1282 ;;; as symbol. The result of this function is limited to the
1283 ;;; availability of variable information in DEBUG-FUN; for
1284 ;;; example, possibly DEBUG-FUN only knows about its arguments.
1285 (defun debug-fun-symbol-vars (debug-fun symbol)
1286 (let ((vars (ambiguous-debug-vars debug-fun (symbol-name symbol)))
1287 (package (and (symbol-package symbol)
1288 (package-name (symbol-package symbol)))))
1289 (delete-if (if (stringp package)
1291 (let ((p (debug-var-package-name var)))
1292 (or (not (stringp p))
1293 (string/= p package))))
1295 (stringp (debug-var-package-name var))))
1298 ;;; Return a list of DEBUG-VARs in DEBUG-FUN whose names contain
1299 ;;; NAME-PREFIX-STRING as an initial substring. The result of this
1300 ;;; function is limited to the availability of variable information in
1301 ;;; debug-fun; for example, possibly debug-fun only knows
1302 ;;; about its arguments.
1303 (defun ambiguous-debug-vars (debug-fun name-prefix-string)
1304 (declare (simple-string name-prefix-string))
1305 (let ((variables (debug-fun-debug-vars debug-fun)))
1306 (declare (type (or null simple-vector) variables))
1308 (let* ((len (length variables))
1309 (prefix-len (length name-prefix-string))
1310 (pos (find-var name-prefix-string variables len))
1313 ;; Find names from pos to variable's len that contain prefix.
1314 (do ((i pos (1+ i)))
1316 (let* ((var (svref variables i))
1317 (name (debug-var-symbol-name var))
1318 (name-len (length name)))
1319 (declare (simple-string name))
1320 (when (/= (or (string/= name-prefix-string name
1321 :end1 prefix-len :end2 name-len)
1326 (setq res (nreverse res)))
1329 ;;; This returns a position in VARIABLES for one containing NAME as an
1330 ;;; initial substring. END is the length of VARIABLES if supplied.
1331 (defun find-var (name variables &optional end)
1332 (declare (simple-vector variables)
1333 (simple-string name))
1334 (let ((name-len (length name)))
1335 (position name variables
1337 (let* ((y (debug-var-symbol-name y))
1339 (declare (simple-string y))
1340 (and (>= y-len name-len)
1341 (string= x y :end1 name-len :end2 name-len))))
1342 :end (or end (length variables)))))
1344 ;;; Return a list representing the lambda-list for DEBUG-FUN. The
1345 ;;; list has the following structure:
1346 ;;; (required-var1 required-var2
1348 ;;; (:optional var3 suppliedp-var4)
1349 ;;; (:optional var5)
1351 ;;; (:rest var6) (:rest var7)
1353 ;;; (:keyword keyword-symbol var8 suppliedp-var9)
1354 ;;; (:keyword keyword-symbol var10)
1357 ;;; Each VARi is a DEBUG-VAR; however it may be the symbol :DELETED if
1358 ;;; it is unreferenced in DEBUG-FUN. This signals a
1359 ;;; LAMBDA-LIST-UNAVAILABLE condition when there is no argument list
1361 (defun debug-fun-lambda-list (debug-fun)
1362 (etypecase debug-fun
1363 (compiled-debug-fun (compiled-debug-fun-lambda-list debug-fun))
1364 (bogus-debug-fun nil)))
1366 ;;; Note: If this has to compute the lambda list, it caches it in DEBUG-FUN.
1367 (defun compiled-debug-fun-lambda-list (debug-fun)
1368 (let ((lambda-list (debug-fun-%lambda-list debug-fun)))
1369 (cond ((eq lambda-list :unparsed)
1370 (multiple-value-bind (args argsp)
1371 (parse-compiled-debug-fun-lambda-list debug-fun)
1372 (setf (debug-fun-%lambda-list debug-fun) args)
1375 (debug-signal 'lambda-list-unavailable
1376 :debug-fun debug-fun))))
1378 ((bogus-debug-fun-p debug-fun)
1380 ((sb!c::compiled-debug-fun-arguments
1381 (compiled-debug-fun-compiler-debug-fun debug-fun))
1382 ;; If the packed information is there (whether empty or not) as
1383 ;; opposed to being nil, then returned our cached value (nil).
1386 ;; Our cached value is nil, and the packed lambda-list information
1387 ;; is nil, so we don't have anything available.
1388 (debug-signal 'lambda-list-unavailable
1389 :debug-fun debug-fun)))))
1391 ;;; COMPILED-DEBUG-FUN-LAMBDA-LIST calls this when a
1392 ;;; COMPILED-DEBUG-FUN has no lambda list information cached. It
1393 ;;; returns the lambda list as the first value and whether there was
1394 ;;; any argument information as the second value. Therefore,
1395 ;;; (VALUES NIL T) means there were no arguments, but (VALUES NIL NIL)
1396 ;;; means there was no argument information.
1397 (defun parse-compiled-debug-fun-lambda-list (debug-fun)
1398 (let ((args (sb!c::compiled-debug-fun-arguments
1399 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1404 (values (coerce (debug-fun-debug-vars debug-fun) 'list)
1407 (let ((vars (debug-fun-debug-vars debug-fun))
1412 (declare (type (or null simple-vector) vars))
1414 (when (>= i len) (return))
1415 (let ((ele (aref args i)))
1420 ;; Deleted required arg at beginning of args array.
1421 (push :deleted res))
1422 (sb!c::optional-args
1425 ;; SUPPLIED-P var immediately following keyword or
1426 ;; optional. Stick the extra var in the result
1427 ;; element representing the keyword or optional,
1428 ;; which is the previous one.
1430 ;; FIXME: NCONC used for side-effect: the effect is defined,
1431 ;; but this is bad style no matter what.
1433 (list (compiled-debug-fun-lambda-list-var
1434 args (incf i) vars))))
1437 (compiled-debug-fun-lambda-list-var
1438 args (incf i) vars))
1441 ;; Just ignore the fact that the next two args are
1442 ;; the &MORE arg context and count, and act like they
1443 ;; are regular arguments.
1447 (push (list :keyword
1449 (compiled-debug-fun-lambda-list-var
1450 args (incf i) vars))
1453 ;; We saw an optional marker, so the following
1454 ;; non-symbols are indexes indicating optional
1456 (push (list :optional (svref vars ele)) res))
1458 ;; Required arg at beginning of args array.
1459 (push (svref vars ele) res))))
1461 (values (nreverse res) t))))))
1463 ;;; This is used in COMPILED-DEBUG-FUN-LAMBDA-LIST.
1464 (defun compiled-debug-fun-lambda-list-var (args i vars)
1465 (declare (type (simple-array * (*)) args)
1466 (simple-vector vars))
1467 (let ((ele (aref args i)))
1468 (cond ((not (symbolp ele)) (svref vars ele))
1469 ((eq ele 'sb!c::deleted) :deleted)
1470 (t (error "malformed arguments description")))))
1472 (defun compiled-debug-fun-debug-info (debug-fun)
1473 (%code-debug-info (compiled-debug-fun-component debug-fun)))
1475 ;;;; unpacking variable and basic block data
1477 (defvar *parsing-buffer*
1478 (make-array 20 :adjustable t :fill-pointer t))
1479 (defvar *other-parsing-buffer*
1480 (make-array 20 :adjustable t :fill-pointer t))
1481 ;;; PARSE-DEBUG-BLOCKS and PARSE-DEBUG-VARS
1482 ;;; use this to unpack binary encoded information. It returns the
1483 ;;; values returned by the last form in body.
1485 ;;; This binds buffer-var to *parsing-buffer*, makes sure it starts at
1486 ;;; element zero, and makes sure if we unwind, we nil out any set
1487 ;;; elements for GC purposes.
1489 ;;; This also binds other-var to *other-parsing-buffer* when it is
1490 ;;; supplied, making sure it starts at element zero and that we nil
1491 ;;; out any elements if we unwind.
1493 ;;; This defines the local macro RESULT that takes a buffer, copies
1494 ;;; its elements to a resulting simple-vector, nil's out elements, and
1495 ;;; restarts the buffer at element zero. RESULT returns the
1497 (eval-when (:compile-toplevel :execute)
1498 (sb!xc:defmacro with-parsing-buffer ((buffer-var &optional other-var)
1500 (let ((len (gensym))
1503 (let ((,buffer-var *parsing-buffer*)
1504 ,@(if other-var `((,other-var *other-parsing-buffer*))))
1505 (setf (fill-pointer ,buffer-var) 0)
1506 ,@(if other-var `((setf (fill-pointer ,other-var) 0)))
1507 (macrolet ((result (buf)
1508 `(let* ((,',len (length ,buf))
1509 (,',res (make-array ,',len)))
1510 (replace ,',res ,buf :end1 ,',len :end2 ,',len)
1511 (fill ,buf nil :end ,',len)
1512 (setf (fill-pointer ,buf) 0)
1515 (fill *parsing-buffer* nil)
1516 ,@(if other-var `((fill *other-parsing-buffer* nil))))))
1519 ;;; The argument is a debug internals structure. This returns the
1520 ;;; DEBUG-BLOCKs for DEBUG-FUN, regardless of whether we have unpacked
1521 ;;; them yet. It signals a NO-DEBUG-BLOCKS condition if it can't
1522 ;;; return the blocks.
1523 (defun debug-fun-debug-blocks (debug-fun)
1524 (let ((blocks (debug-fun-blocks debug-fun)))
1525 (cond ((eq blocks :unparsed)
1526 (setf (debug-fun-blocks debug-fun)
1527 (parse-debug-blocks debug-fun))
1528 (unless (debug-fun-blocks debug-fun)
1529 (debug-signal 'no-debug-blocks
1530 :debug-fun debug-fun))
1531 (debug-fun-blocks debug-fun))
1534 (debug-signal 'no-debug-blocks
1535 :debug-fun debug-fun)))))
1537 ;;; Return a SIMPLE-VECTOR of DEBUG-BLOCKs or NIL. NIL indicates there
1538 ;;; was no basic block information.
1539 (defun parse-debug-blocks (debug-fun)
1540 (etypecase debug-fun
1542 (parse-compiled-debug-blocks debug-fun))
1544 (debug-signal 'no-debug-blocks :debug-fun debug-fun))))
1546 ;;; This does some of the work of PARSE-DEBUG-BLOCKS.
1547 (defun parse-compiled-debug-blocks (debug-fun)
1548 (let* ((var-count (length (debug-fun-debug-vars debug-fun)))
1549 (compiler-debug-fun (compiled-debug-fun-compiler-debug-fun
1551 (blocks (sb!c::compiled-debug-fun-blocks compiler-debug-fun))
1552 ;; KLUDGE: 8 is a hard-wired constant in the compiler for the
1553 ;; element size of the packed binary representation of the
1555 (live-set-len (ceiling var-count 8))
1556 (tlf-number (sb!c::compiled-debug-fun-tlf-number compiler-debug-fun)))
1558 (return-from parse-compiled-debug-blocks nil))
1559 (macrolet ((aref+ (a i) `(prog1 (aref ,a ,i) (incf ,i))))
1560 (with-parsing-buffer (blocks-buffer locations-buffer)
1562 (len (length blocks))
1565 (when (>= i len) (return))
1566 (let ((succ-and-flags (aref+ blocks i))
1568 (declare (type (unsigned-byte 8) succ-and-flags)
1570 (dotimes (k (ldb sb!c::compiled-debug-block-nsucc-byte
1572 (push (sb!c:read-var-integer blocks i) successors))
1574 (dotimes (k (sb!c:read-var-integer blocks i)
1575 (result locations-buffer))
1576 (let ((kind (svref sb!c::*compiled-code-location-kinds*
1579 (sb!c:read-var-integer blocks i)))
1580 (tlf-offset (or tlf-number
1581 (sb!c:read-var-integer blocks i)))
1582 (form-number (sb!c:read-var-integer blocks i))
1583 (live-set (sb!c:read-packed-bit-vector
1584 live-set-len blocks i))
1585 (step-info (sb!c:read-var-string blocks i)))
1586 (vector-push-extend (make-known-code-location
1587 pc debug-fun tlf-offset
1588 form-number live-set kind
1591 (setf last-pc pc))))
1592 (block (make-compiled-debug-block
1593 locations successors
1595 sb!c::compiled-debug-block-elsewhere-p
1596 succ-and-flags))))))
1597 (vector-push-extend block blocks-buffer)
1598 (dotimes (k (length locations))
1599 (setf (code-location-%debug-block (svref locations k))
1601 (let ((res (result blocks-buffer)))
1602 (declare (simple-vector res))
1603 (dotimes (i (length res))
1604 (let* ((block (svref res i))
1606 (dolist (ele (debug-block-successors block))
1607 (push (svref res ele) succs))
1608 (setf (debug-block-successors block) succs)))
1611 ;;; The argument is a debug internals structure. This returns NIL if
1612 ;;; there is no variable information. It returns an empty
1613 ;;; simple-vector if there were no locals in the function. Otherwise
1614 ;;; it returns a SIMPLE-VECTOR of DEBUG-VARs.
1615 (defun debug-fun-debug-vars (debug-fun)
1616 (let ((vars (debug-fun-%debug-vars debug-fun)))
1617 (if (eq vars :unparsed)
1618 (setf (debug-fun-%debug-vars debug-fun)
1619 (etypecase debug-fun
1621 (parse-compiled-debug-vars debug-fun))
1622 (bogus-debug-fun nil)))
1625 ;;; VARS is the parsed variables for a minimal debug function. We need
1626 ;;; to assign names of the form ARG-NNN. We must pad with leading
1627 ;;; zeros, since the arguments must be in alphabetical order.
1628 (defun assign-minimal-var-names (vars)
1629 (declare (simple-vector vars))
1630 (let* ((len (length vars))
1631 (width (length (format nil "~W" (1- len)))))
1633 (without-package-locks
1634 (setf (compiled-debug-var-symbol (svref vars i))
1635 (intern (format nil "ARG-~V,'0D" width i)
1636 ;; KLUDGE: It's somewhat nasty to have a bare
1637 ;; package name string here. It would be
1638 ;; nicer to have #.(FIND-PACKAGE "SB!DEBUG")
1639 ;; instead, since then at least it would transform
1640 ;; correctly under package renaming and stuff.
1641 ;; However, genesis can't handle dumped packages..
1644 ;; FIXME: Maybe this could be fixed by moving the
1645 ;; whole debug-int.lisp file to warm init? (after
1646 ;; which dumping a #.(FIND-PACKAGE ..) expression
1647 ;; would work fine) If this is possible, it would
1648 ;; probably be a good thing, since minimizing the
1649 ;; amount of stuff in cold init is basically good.
1650 (or (find-package "SB-DEBUG")
1651 (find-package "SB!DEBUG"))))))))
1653 ;;; Parse the packed representation of DEBUG-VARs from
1654 ;;; DEBUG-FUN's SB!C::COMPILED-DEBUG-FUN, returning a vector
1655 ;;; of DEBUG-VARs, or NIL if there was no information to parse.
1656 (defun parse-compiled-debug-vars (debug-fun)
1657 (let* ((cdebug-fun (compiled-debug-fun-compiler-debug-fun
1659 (packed-vars (sb!c::compiled-debug-fun-vars cdebug-fun))
1660 (args-minimal (eq (sb!c::compiled-debug-fun-arguments cdebug-fun)
1664 (buffer (make-array 0 :fill-pointer 0 :adjustable t)))
1665 ((>= i (length packed-vars))
1666 (let ((result (coerce buffer 'simple-vector)))
1668 (assign-minimal-var-names result))
1670 (flet ((geti () (prog1 (aref packed-vars i) (incf i))))
1671 (let* ((flags (geti))
1672 (minimal (logtest sb!c::compiled-debug-var-minimal-p flags))
1673 (deleted (logtest sb!c::compiled-debug-var-deleted-p flags))
1674 (live (logtest sb!c::compiled-debug-var-environment-live
1676 (save (logtest sb!c::compiled-debug-var-save-loc-p flags))
1677 (symbol (if minimal nil (geti)))
1678 (id (if (logtest sb!c::compiled-debug-var-id-p flags)
1681 (sc-offset (if deleted 0 (geti)))
1682 (save-sc-offset (if save (geti) nil)))
1683 (aver (not (and args-minimal (not minimal))))
1684 (vector-push-extend (make-compiled-debug-var symbol
1693 ;;; If we're sure of whether code-location is known, return T or NIL.
1694 ;;; If we're :UNSURE, then try to fill in the code-location's slots.
1695 ;;; This determines whether there is any debug-block information, and
1696 ;;; if code-location is known.
1698 ;;; ??? IF this conses closures every time it's called, then break off the
1699 ;;; :UNSURE part to get the HANDLER-CASE into another function.
1700 (defun code-location-unknown-p (basic-code-location)
1701 (ecase (code-location-%unknown-p basic-code-location)
1705 (setf (code-location-%unknown-p basic-code-location)
1706 (handler-case (not (fill-in-code-location basic-code-location))
1707 (no-debug-blocks () t))))))
1709 ;;; Return the DEBUG-BLOCK containing code-location if it is available.
1710 ;;; Some debug policies inhibit debug-block information, and if none
1711 ;;; is available, then this signals a NO-DEBUG-BLOCKS condition.
1712 (defun code-location-debug-block (basic-code-location)
1713 (let ((block (code-location-%debug-block basic-code-location)))
1714 (if (eq block :unparsed)
1715 (etypecase basic-code-location
1716 (compiled-code-location
1717 (compute-compiled-code-location-debug-block basic-code-location))
1718 ;; (There used to be more cases back before sbcl-0.7.0, when
1719 ;; we did special tricks to debug the IR1 interpreter.)
1723 ;;; Store and return BASIC-CODE-LOCATION's debug-block. We determines
1724 ;;; the correct one using the code-location's pc. We use
1725 ;;; DEBUG-FUN-DEBUG-BLOCKS to return the cached block information
1726 ;;; or signal a NO-DEBUG-BLOCKS condition. The blocks are sorted by
1727 ;;; their first code-location's pc, in ascending order. Therefore, as
1728 ;;; soon as we find a block that starts with a pc greater than
1729 ;;; basic-code-location's pc, we know the previous block contains the
1730 ;;; pc. If we get to the last block, then the code-location is either
1731 ;;; in the second to last block or the last block, and we have to be
1732 ;;; careful in determining this since the last block could be code at
1733 ;;; the end of the function. We have to check for the last block being
1734 ;;; code first in order to see how to compare the code-location's pc.
1735 (defun compute-compiled-code-location-debug-block (basic-code-location)
1736 (let* ((pc (compiled-code-location-pc basic-code-location))
1737 (debug-fun (code-location-debug-fun
1738 basic-code-location))
1739 (blocks (debug-fun-debug-blocks debug-fun))
1740 (len (length blocks)))
1741 (declare (simple-vector blocks))
1742 (setf (code-location-%debug-block basic-code-location)
1748 (let ((last (svref blocks end)))
1750 ((debug-block-elsewhere-p last)
1752 (sb!c::compiled-debug-fun-elsewhere-pc
1753 (compiled-debug-fun-compiler-debug-fun
1755 (svref blocks (1- end))
1758 (compiled-code-location-pc
1759 (svref (compiled-debug-block-code-locations last)
1761 (svref blocks (1- end)))
1763 (declare (type index i end))
1765 (compiled-code-location-pc
1766 (svref (compiled-debug-block-code-locations
1769 (return (svref blocks (1- i)))))))))
1771 ;;; Return the CODE-LOCATION's DEBUG-SOURCE.
1772 (defun code-location-debug-source (code-location)
1773 (let ((info (compiled-debug-fun-debug-info
1774 (code-location-debug-fun code-location))))
1775 (or (sb!c::debug-info-source info)
1776 (debug-signal 'no-debug-blocks :debug-fun
1777 (code-location-debug-fun code-location)))))
1779 ;;; Returns the number of top level forms before the one containing
1780 ;;; CODE-LOCATION as seen by the compiler in some compilation unit. (A
1781 ;;; compilation unit is not necessarily a single file, see the section
1782 ;;; on debug-sources.)
1783 (defun code-location-toplevel-form-offset (code-location)
1784 (when (code-location-unknown-p code-location)
1785 (error 'unknown-code-location :code-location code-location))
1786 (let ((tlf-offset (code-location-%tlf-offset code-location)))
1787 (cond ((eq tlf-offset :unparsed)
1788 (etypecase code-location
1789 (compiled-code-location
1790 (unless (fill-in-code-location code-location)
1791 ;; This check should be unnecessary. We're missing
1792 ;; debug info the compiler should have dumped.
1793 (bug "unknown code location"))
1794 (code-location-%tlf-offset code-location))
1795 ;; (There used to be more cases back before sbcl-0.7.0,,
1796 ;; when we did special tricks to debug the IR1
1801 ;;; Return the number of the form corresponding to CODE-LOCATION. The
1802 ;;; form number is derived by a walking the subforms of a top level
1803 ;;; form in depth-first order.
1804 (defun code-location-form-number (code-location)
1805 (when (code-location-unknown-p code-location)
1806 (error 'unknown-code-location :code-location code-location))
1807 (let ((form-num (code-location-%form-number code-location)))
1808 (cond ((eq form-num :unparsed)
1809 (etypecase code-location
1810 (compiled-code-location
1811 (unless (fill-in-code-location code-location)
1812 ;; This check should be unnecessary. We're missing
1813 ;; debug info the compiler should have dumped.
1814 (bug "unknown code location"))
1815 (code-location-%form-number code-location))
1816 ;; (There used to be more cases back before sbcl-0.7.0,,
1817 ;; when we did special tricks to debug the IR1
1822 ;;; Return the kind of CODE-LOCATION, one of:
1823 ;;; :INTERPRETED, :UNKNOWN-RETURN, :KNOWN-RETURN, :INTERNAL-ERROR,
1824 ;;; :NON-LOCAL-EXIT, :BLOCK-START, :CALL-SITE, :SINGLE-VALUE-RETURN,
1825 ;;; :NON-LOCAL-ENTRY
1826 (defun code-location-kind (code-location)
1827 (when (code-location-unknown-p code-location)
1828 (error 'unknown-code-location :code-location code-location))
1829 (etypecase code-location
1830 (compiled-code-location
1831 (let ((kind (compiled-code-location-kind code-location)))
1832 (cond ((not (eq kind :unparsed)) kind)
1833 ((not (fill-in-code-location code-location))
1834 ;; This check should be unnecessary. We're missing
1835 ;; debug info the compiler should have dumped.
1836 (bug "unknown code location"))
1838 (compiled-code-location-kind code-location)))))
1839 ;; (There used to be more cases back before sbcl-0.7.0,,
1840 ;; when we did special tricks to debug the IR1
1844 ;;; This returns CODE-LOCATION's live-set if it is available. If
1845 ;;; there is no debug-block information, this returns NIL.
1846 (defun compiled-code-location-live-set (code-location)
1847 (if (code-location-unknown-p code-location)
1849 (let ((live-set (compiled-code-location-%live-set code-location)))
1850 (cond ((eq live-set :unparsed)
1851 (unless (fill-in-code-location code-location)
1852 ;; This check should be unnecessary. We're missing
1853 ;; debug info the compiler should have dumped.
1855 ;; FIXME: This error and comment happen over and over again.
1856 ;; Make them a shared function.
1857 (bug "unknown code location"))
1858 (compiled-code-location-%live-set code-location))
1861 ;;; true if OBJ1 and OBJ2 are the same place in the code
1862 (defun code-location= (obj1 obj2)
1864 (compiled-code-location
1866 (compiled-code-location
1867 (and (eq (code-location-debug-fun obj1)
1868 (code-location-debug-fun obj2))
1869 (sub-compiled-code-location= obj1 obj2)))
1870 ;; (There used to be more cases back before sbcl-0.7.0,,
1871 ;; when we did special tricks to debug the IR1
1874 ;; (There used to be more cases back before sbcl-0.7.0,,
1875 ;; when we did special tricks to debug IR1-interpreted code.)
1877 (defun sub-compiled-code-location= (obj1 obj2)
1878 (= (compiled-code-location-pc obj1)
1879 (compiled-code-location-pc obj2)))
1881 ;;; Fill in CODE-LOCATION's :UNPARSED slots, returning T or NIL
1882 ;;; depending on whether the code-location was known in its
1883 ;;; DEBUG-FUN's debug-block information. This may signal a
1884 ;;; NO-DEBUG-BLOCKS condition due to DEBUG-FUN-DEBUG-BLOCKS, and
1885 ;;; it assumes the %UNKNOWN-P slot is already set or going to be set.
1886 (defun fill-in-code-location (code-location)
1887 (declare (type compiled-code-location code-location))
1888 (let* ((debug-fun (code-location-debug-fun code-location))
1889 (blocks (debug-fun-debug-blocks debug-fun)))
1890 (declare (simple-vector blocks))
1891 (dotimes (i (length blocks) nil)
1892 (let* ((block (svref blocks i))
1893 (locations (compiled-debug-block-code-locations block)))
1894 (declare (simple-vector locations))
1895 (dotimes (j (length locations))
1896 (let ((loc (svref locations j)))
1897 (when (sub-compiled-code-location= code-location loc)
1898 (setf (code-location-%debug-block code-location) block)
1899 (setf (code-location-%tlf-offset code-location)
1900 (code-location-%tlf-offset loc))
1901 (setf (code-location-%form-number code-location)
1902 (code-location-%form-number loc))
1903 (setf (compiled-code-location-%live-set code-location)
1904 (compiled-code-location-%live-set loc))
1905 (setf (compiled-code-location-kind code-location)
1906 (compiled-code-location-kind loc))
1907 (setf (compiled-code-location-step-info code-location)
1908 (compiled-code-location-step-info loc))
1909 (return-from fill-in-code-location t))))))))
1911 ;;;; operations on DEBUG-BLOCKs
1913 ;;; Execute FORMS in a context with CODE-VAR bound to each
1914 ;;; CODE-LOCATION in DEBUG-BLOCK, and return the value of RESULT.
1915 (defmacro do-debug-block-locations ((code-var debug-block &optional result)
1917 (let ((code-locations (gensym))
1919 `(let ((,code-locations (debug-block-code-locations ,debug-block)))
1920 (declare (simple-vector ,code-locations))
1921 (dotimes (,i (length ,code-locations) ,result)
1922 (let ((,code-var (svref ,code-locations ,i)))
1925 ;;; Return the name of the function represented by DEBUG-FUN.
1926 ;;; This may be a string or a cons; do not assume it is a symbol.
1927 (defun debug-block-fun-name (debug-block)
1928 (etypecase debug-block
1929 (compiled-debug-block
1930 (let ((code-locs (compiled-debug-block-code-locations debug-block)))
1931 (declare (simple-vector code-locs))
1932 (if (zerop (length code-locs))
1933 "??? Can't get name of debug-block's function."
1935 (code-location-debug-fun (svref code-locs 0))))))
1936 ;; (There used to be more cases back before sbcl-0.7.0, when we
1937 ;; did special tricks to debug the IR1 interpreter.)
1940 (defun debug-block-code-locations (debug-block)
1941 (etypecase debug-block
1942 (compiled-debug-block
1943 (compiled-debug-block-code-locations debug-block))
1944 ;; (There used to be more cases back before sbcl-0.7.0, when we
1945 ;; did special tricks to debug the IR1 interpreter.)
1948 ;;;; operations on debug variables
1950 (defun debug-var-symbol-name (debug-var)
1951 (symbol-name (debug-var-symbol debug-var)))
1953 ;;; FIXME: Make sure that this isn't called anywhere that it wouldn't
1954 ;;; be acceptable to have NIL returned, or that it's only called on
1955 ;;; DEBUG-VARs whose symbols have non-NIL packages.
1956 (defun debug-var-package-name (debug-var)
1957 (package-name (symbol-package (debug-var-symbol debug-var))))
1959 ;;; Return the value stored for DEBUG-VAR in frame, or if the value is
1960 ;;; not :VALID, then signal an INVALID-VALUE error.
1961 (defun debug-var-valid-value (debug-var frame)
1962 (unless (eq (debug-var-validity debug-var (frame-code-location frame))
1964 (error 'invalid-value :debug-var debug-var :frame frame))
1965 (debug-var-value debug-var frame))
1967 ;;; Returns the value stored for DEBUG-VAR in frame. The value may be
1968 ;;; invalid. This is SETFable.
1969 (defun debug-var-value (debug-var frame)
1970 (aver (typep frame 'compiled-frame))
1971 (let ((res (access-compiled-debug-var-slot debug-var frame)))
1972 (if (indirect-value-cell-p res)
1973 (value-cell-ref res)
1976 ;;; This returns what is stored for the variable represented by
1977 ;;; DEBUG-VAR relative to the FRAME. This may be an indirect value
1978 ;;; cell if the variable is both closed over and set.
1979 (defun access-compiled-debug-var-slot (debug-var frame)
1980 (declare (optimize (speed 1)))
1981 (let ((escaped (compiled-frame-escaped frame)))
1983 (sub-access-debug-var-slot
1984 (frame-pointer frame)
1985 (compiled-debug-var-sc-offset debug-var)
1987 (sub-access-debug-var-slot
1988 (frame-pointer frame)
1989 (or (compiled-debug-var-save-sc-offset debug-var)
1990 (compiled-debug-var-sc-offset debug-var))))))
1992 ;;; a helper function for working with possibly-invalid values:
1993 ;;; Do (MAKE-LISP-OBJ VAL) only if the value looks valid.
1995 ;;; (Such values can arise in registers on machines with conservative
1996 ;;; GC, and might also arise in debug variable locations when
1997 ;;; those variables are invalid.)
1998 (defun make-valid-lisp-obj (val)
2001 (zerop (logand val sb!vm:fixnum-tag-mask))
2002 ;; immediate single float, 64-bit only
2003 #!+#.(cl:if (cl:= sb!vm::n-machine-word-bits 64) '(and) '(or))
2004 (= (logand val #xff) sb!vm:single-float-widetag)
2006 (and (zerop (logandc2 val #x1fffffff)) ; Top bits zero
2007 (= (logand val #xff) sb!vm:character-widetag)) ; char tag
2009 (= val sb!vm:unbound-marker-widetag)
2011 (and (logbitp 0 val)
2012 ;; Check that the pointer is valid. XXX Could do a better
2013 ;; job. FIXME: e.g. by calling out to an is_valid_pointer
2014 ;; routine in the C runtime support code
2015 (or (< sb!vm:read-only-space-start val
2016 (* sb!vm:*read-only-space-free-pointer*
2017 sb!vm:n-word-bytes))
2018 (< sb!vm:static-space-start val
2019 (* sb!vm:*static-space-free-pointer*
2020 sb!vm:n-word-bytes))
2021 (< (current-dynamic-space-start) val
2022 (sap-int (dynamic-space-free-pointer))))))
2027 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2028 (macrolet ((with-escaped-value ((var) &body forms)
2030 (let ((,var (sb!vm:context-register
2032 (sb!c:sc-offset-offset sc-offset))))
2034 :invalid-value-for-unescaped-register-storage))
2035 (escaped-float-value (format)
2037 (sb!vm:context-float-register
2039 (sb!c:sc-offset-offset sc-offset)
2041 :invalid-value-for-unescaped-register-storage))
2042 (with-nfp ((var) &body body)
2043 `(let ((,var (if escaped
2045 (sb!vm:context-register escaped
2048 (sb!sys:sap-ref-sap fp (* nfp-save-offset
2049 sb!vm:n-word-bytes))
2051 (sb!vm::make-number-stack-pointer
2052 (sb!sys:sap-ref-32 fp (* nfp-save-offset
2053 sb!vm:n-word-bytes))))))
2055 (ecase (sb!c:sc-offset-scn sc-offset)
2056 ((#.sb!vm:any-reg-sc-number
2057 #.sb!vm:descriptor-reg-sc-number
2058 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2059 (sb!sys:without-gcing
2060 (with-escaped-value (val) (sb!kernel:make-lisp-obj val))))
2062 (#.sb!vm:character-reg-sc-number
2063 (with-escaped-value (val)
2065 (#.sb!vm:sap-reg-sc-number
2066 (with-escaped-value (val)
2067 (sb!sys:int-sap val)))
2068 (#.sb!vm:signed-reg-sc-number
2069 (with-escaped-value (val)
2070 (if (logbitp (1- sb!vm:n-word-bits) val)
2071 (logior val (ash -1 sb!vm:n-word-bits))
2073 (#.sb!vm:unsigned-reg-sc-number
2074 (with-escaped-value (val)
2076 (#.sb!vm:non-descriptor-reg-sc-number
2077 (error "Local non-descriptor register access?"))
2078 (#.sb!vm:interior-reg-sc-number
2079 (error "Local interior register access?"))
2080 (#.sb!vm:single-reg-sc-number
2081 (escaped-float-value single-float))
2082 (#.sb!vm:double-reg-sc-number
2083 (escaped-float-value double-float))
2085 (#.sb!vm:long-reg-sc-number
2086 (escaped-float-value long-float))
2087 (#.sb!vm:complex-single-reg-sc-number
2090 (sb!vm:context-float-register
2091 escaped (sb!c:sc-offset-offset sc-offset) 'single-float)
2092 (sb!vm:context-float-register
2093 escaped (1+ (sb!c:sc-offset-offset sc-offset)) 'single-float))
2094 :invalid-value-for-unescaped-register-storage))
2095 (#.sb!vm:complex-double-reg-sc-number
2098 (sb!vm:context-float-register
2099 escaped (sb!c:sc-offset-offset sc-offset) 'double-float)
2100 (sb!vm:context-float-register
2101 escaped (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 2 #!-sparc 1)
2103 :invalid-value-for-unescaped-register-storage))
2105 (#.sb!vm:complex-long-reg-sc-number
2108 (sb!vm:context-float-register
2109 escaped (sb!c:sc-offset-offset sc-offset) 'long-float)
2110 (sb!vm:context-float-register
2111 escaped (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2113 :invalid-value-for-unescaped-register-storage))
2114 (#.sb!vm:single-stack-sc-number
2116 (sb!sys:sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2117 sb!vm:n-word-bytes))))
2118 (#.sb!vm:double-stack-sc-number
2120 (sb!sys:sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2121 sb!vm:n-word-bytes))))
2123 (#.sb!vm:long-stack-sc-number
2125 (sb!sys:sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2126 sb!vm:n-word-bytes))))
2127 (#.sb!vm:complex-single-stack-sc-number
2130 (sb!sys:sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2131 sb!vm:n-word-bytes))
2132 (sb!sys:sap-ref-single nfp (* (1+ (sb!c:sc-offset-offset sc-offset))
2133 sb!vm:n-word-bytes)))))
2134 (#.sb!vm:complex-double-stack-sc-number
2137 (sb!sys:sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2138 sb!vm:n-word-bytes))
2139 (sb!sys:sap-ref-double nfp (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2140 sb!vm:n-word-bytes)))))
2142 (#.sb!vm:complex-long-stack-sc-number
2145 (sb!sys:sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2146 sb!vm:n-word-bytes))
2147 (sb!sys:sap-ref-long nfp (* (+ (sb!c:sc-offset-offset sc-offset)
2149 sb!vm:n-word-bytes)))))
2150 (#.sb!vm:control-stack-sc-number
2151 (sb!kernel:stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2152 (#.sb!vm:character-stack-sc-number
2154 (code-char (sb!sys:sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2155 sb!vm:n-word-bytes)))))
2156 (#.sb!vm:unsigned-stack-sc-number
2158 (sb!sys:sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2159 sb!vm:n-word-bytes))))
2160 (#.sb!vm:signed-stack-sc-number
2162 (sb!sys:signed-sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2163 sb!vm:n-word-bytes))))
2164 (#.sb!vm:sap-stack-sc-number
2166 (sb!sys:sap-ref-sap nfp (* (sb!c:sc-offset-offset sc-offset)
2167 sb!vm:n-word-bytes)))))))
2170 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2171 (declare (type system-area-pointer fp))
2172 (macrolet ((with-escaped-value ((var) &body forms)
2174 (let ((,var (sb!vm:context-register
2176 (sb!c:sc-offset-offset sc-offset))))
2178 :invalid-value-for-unescaped-register-storage))
2179 (escaped-float-value (format)
2181 (sb!vm:context-float-register
2182 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2183 :invalid-value-for-unescaped-register-storage))
2184 (escaped-complex-float-value (format)
2187 (sb!vm:context-float-register
2188 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2189 (sb!vm:context-float-register
2190 escaped (1+ (sb!c:sc-offset-offset sc-offset)) ',format))
2191 :invalid-value-for-unescaped-register-storage)))
2192 (ecase (sb!c:sc-offset-scn sc-offset)
2193 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2195 (with-escaped-value (val)
2196 (make-valid-lisp-obj val))))
2197 (#.sb!vm:character-reg-sc-number
2198 (with-escaped-value (val)
2200 (#.sb!vm:sap-reg-sc-number
2201 (with-escaped-value (val)
2203 (#.sb!vm:signed-reg-sc-number
2204 (with-escaped-value (val)
2205 (if (logbitp (1- sb!vm:n-word-bits) val)
2206 (logior val (ash -1 sb!vm:n-word-bits))
2208 (#.sb!vm:unsigned-reg-sc-number
2209 (with-escaped-value (val)
2211 (#.sb!vm:single-reg-sc-number
2212 (escaped-float-value single-float))
2213 (#.sb!vm:double-reg-sc-number
2214 (escaped-float-value double-float))
2216 (#.sb!vm:long-reg-sc-number
2217 (escaped-float-value long-float))
2218 (#.sb!vm:complex-single-reg-sc-number
2219 (escaped-complex-float-value single-float))
2220 (#.sb!vm:complex-double-reg-sc-number
2221 (escaped-complex-float-value double-float))
2223 (#.sb!vm:complex-long-reg-sc-number
2224 (escaped-complex-float-value long-float))
2225 (#.sb!vm:single-stack-sc-number
2226 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2227 sb!vm:n-word-bytes))))
2228 (#.sb!vm:double-stack-sc-number
2229 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2230 sb!vm:n-word-bytes))))
2232 (#.sb!vm:long-stack-sc-number
2233 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2234 sb!vm:n-word-bytes))))
2235 (#.sb!vm:complex-single-stack-sc-number
2237 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2238 sb!vm:n-word-bytes)))
2239 (sap-ref-single fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2240 sb!vm:n-word-bytes)))))
2241 (#.sb!vm:complex-double-stack-sc-number
2243 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2244 sb!vm:n-word-bytes)))
2245 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2246 sb!vm:n-word-bytes)))))
2248 (#.sb!vm:complex-long-stack-sc-number
2250 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2251 sb!vm:n-word-bytes)))
2252 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2253 sb!vm:n-word-bytes)))))
2254 (#.sb!vm:control-stack-sc-number
2255 (stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2256 (#.sb!vm:character-stack-sc-number
2258 (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2259 sb!vm:n-word-bytes)))))
2260 (#.sb!vm:unsigned-stack-sc-number
2261 (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2262 sb!vm:n-word-bytes))))
2263 (#.sb!vm:signed-stack-sc-number
2264 (signed-sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2265 sb!vm:n-word-bytes))))
2266 (#.sb!vm:sap-stack-sc-number
2267 (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2268 sb!vm:n-word-bytes)))))))
2270 ;;; This stores value as the value of DEBUG-VAR in FRAME. In the
2271 ;;; COMPILED-DEBUG-VAR case, access the current value to determine if
2272 ;;; it is an indirect value cell. This occurs when the variable is
2273 ;;; both closed over and set.
2274 (defun %set-debug-var-value (debug-var frame new-value)
2275 (aver (typep frame 'compiled-frame))
2276 (let ((old-value (access-compiled-debug-var-slot debug-var frame)))
2277 (if (indirect-value-cell-p old-value)
2278 (value-cell-set old-value new-value)
2279 (set-compiled-debug-var-slot debug-var frame new-value)))
2282 ;;; This stores VALUE for the variable represented by debug-var
2283 ;;; relative to the frame. This assumes the location directly contains
2284 ;;; the variable's value; that is, there is no indirect value cell
2285 ;;; currently there in case the variable is both closed over and set.
2286 (defun set-compiled-debug-var-slot (debug-var frame value)
2287 (let ((escaped (compiled-frame-escaped frame)))
2289 (sub-set-debug-var-slot (frame-pointer frame)
2290 (compiled-debug-var-sc-offset debug-var)
2292 (sub-set-debug-var-slot
2293 (frame-pointer frame)
2294 (or (compiled-debug-var-save-sc-offset debug-var)
2295 (compiled-debug-var-sc-offset debug-var))
2299 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2300 (macrolet ((set-escaped-value (val)
2302 (setf (sb!vm:context-register
2304 (sb!c:sc-offset-offset sc-offset))
2307 (set-escaped-float-value (format val)
2309 (setf (sb!vm:context-float-register
2311 (sb!c:sc-offset-offset sc-offset)
2315 (with-nfp ((var) &body body)
2316 `(let ((,var (if escaped
2318 (sb!vm:context-register escaped
2323 sb!vm:n-word-bytes))
2325 (sb!vm::make-number-stack-pointer
2328 sb!vm:n-word-bytes))))))
2330 (ecase (sb!c:sc-offset-scn sc-offset)
2331 ((#.sb!vm:any-reg-sc-number
2332 #.sb!vm:descriptor-reg-sc-number
2333 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2336 (get-lisp-obj-address value))))
2337 (#.sb!vm:character-reg-sc-number
2338 (set-escaped-value (char-code value)))
2339 (#.sb!vm:sap-reg-sc-number
2340 (set-escaped-value (sap-int value)))
2341 (#.sb!vm:signed-reg-sc-number
2342 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2343 (#.sb!vm:unsigned-reg-sc-number
2344 (set-escaped-value value))
2345 (#.sb!vm:non-descriptor-reg-sc-number
2346 (error "Local non-descriptor register access?"))
2347 (#.sb!vm:interior-reg-sc-number
2348 (error "Local interior register access?"))
2349 (#.sb!vm:single-reg-sc-number
2350 (set-escaped-float-value single-float value))
2351 (#.sb!vm:double-reg-sc-number
2352 (set-escaped-float-value double-float value))
2354 (#.sb!vm:long-reg-sc-number
2355 (set-escaped-float-value long-float value))
2356 (#.sb!vm:complex-single-reg-sc-number
2358 (setf (sb!vm:context-float-register escaped
2359 (sb!c:sc-offset-offset sc-offset)
2362 (setf (sb!vm:context-float-register
2363 escaped (1+ (sb!c:sc-offset-offset sc-offset))
2367 (#.sb!vm:complex-double-reg-sc-number
2369 (setf (sb!vm:context-float-register
2370 escaped (sb!c:sc-offset-offset sc-offset) 'double-float)
2372 (setf (sb!vm:context-float-register
2374 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 2 #!-sparc 1)
2379 (#.sb!vm:complex-long-reg-sc-number
2381 (setf (sb!vm:context-float-register
2382 escaped (sb!c:sc-offset-offset sc-offset) 'long-float)
2384 (setf (sb!vm:context-float-register
2386 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2390 (#.sb!vm:single-stack-sc-number
2392 (setf (sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2393 sb!vm:n-word-bytes))
2394 (the single-float value))))
2395 (#.sb!vm:double-stack-sc-number
2397 (setf (sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2398 sb!vm:n-word-bytes))
2399 (the double-float value))))
2401 (#.sb!vm:long-stack-sc-number
2403 (setf (sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2404 sb!vm:n-word-bytes))
2405 (the long-float value))))
2406 (#.sb!vm:complex-single-stack-sc-number
2408 (setf (sap-ref-single
2409 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2410 (the single-float (realpart value)))
2411 (setf (sap-ref-single
2412 nfp (* (1+ (sb!c:sc-offset-offset sc-offset))
2413 sb!vm:n-word-bytes))
2414 (the single-float (realpart value)))))
2415 (#.sb!vm:complex-double-stack-sc-number
2417 (setf (sap-ref-double
2418 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2419 (the double-float (realpart value)))
2420 (setf (sap-ref-double
2421 nfp (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2422 sb!vm:n-word-bytes))
2423 (the double-float (realpart value)))))
2425 (#.sb!vm:complex-long-stack-sc-number
2428 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2429 (the long-float (realpart value)))
2431 nfp (* (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2432 sb!vm:n-word-bytes))
2433 (the long-float (realpart value)))))
2434 (#.sb!vm:control-stack-sc-number
2435 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2436 (#.sb!vm:character-stack-sc-number
2438 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2439 sb!vm:n-word-bytes))
2440 (char-code (the character value)))))
2441 (#.sb!vm:unsigned-stack-sc-number
2443 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2444 sb!vm:n-word-bytes))
2445 (the (unsigned-byte 32) value))))
2446 (#.sb!vm:signed-stack-sc-number
2448 (setf (signed-sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2449 sb!vm:n-word-bytes))
2450 (the (signed-byte 32) value))))
2451 (#.sb!vm:sap-stack-sc-number
2453 (setf (sap-ref-sap nfp (* (sb!c:sc-offset-offset sc-offset)
2454 sb!vm:n-word-bytes))
2455 (the system-area-pointer value)))))))
2458 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2459 (macrolet ((set-escaped-value (val)
2461 (setf (sb!vm:context-register
2463 (sb!c:sc-offset-offset sc-offset))
2466 (ecase (sb!c:sc-offset-scn sc-offset)
2467 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2470 (get-lisp-obj-address value))))
2471 (#.sb!vm:character-reg-sc-number
2472 (set-escaped-value (char-code value)))
2473 (#.sb!vm:sap-reg-sc-number
2474 (set-escaped-value (sap-int value)))
2475 (#.sb!vm:signed-reg-sc-number
2476 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2477 (#.sb!vm:unsigned-reg-sc-number
2478 (set-escaped-value value))
2479 (#.sb!vm:single-reg-sc-number
2480 #+nil ;; don't have escaped floats.
2481 (set-escaped-float-value single-float value))
2482 (#.sb!vm:double-reg-sc-number
2483 #+nil ;; don't have escaped floats -- still in npx?
2484 (set-escaped-float-value double-float value))
2486 (#.sb!vm:long-reg-sc-number
2487 #+nil ;; don't have escaped floats -- still in npx?
2488 (set-escaped-float-value long-float value))
2489 (#.sb!vm:single-stack-sc-number
2490 (setf (sap-ref-single
2491 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2492 sb!vm:n-word-bytes)))
2493 (the single-float value)))
2494 (#.sb!vm:double-stack-sc-number
2495 (setf (sap-ref-double
2496 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2497 sb!vm:n-word-bytes)))
2498 (the double-float value)))
2500 (#.sb!vm:long-stack-sc-number
2502 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2503 sb!vm:n-word-bytes)))
2504 (the long-float value)))
2505 (#.sb!vm:complex-single-stack-sc-number
2506 (setf (sap-ref-single
2507 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2508 sb!vm:n-word-bytes)))
2509 (realpart (the (complex single-float) value)))
2510 (setf (sap-ref-single
2511 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2512 sb!vm:n-word-bytes)))
2513 (imagpart (the (complex single-float) value))))
2514 (#.sb!vm:complex-double-stack-sc-number
2515 (setf (sap-ref-double
2516 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2517 sb!vm:n-word-bytes)))
2518 (realpart (the (complex double-float) value)))
2519 (setf (sap-ref-double
2520 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2521 sb!vm:n-word-bytes)))
2522 (imagpart (the (complex double-float) value))))
2524 (#.sb!vm:complex-long-stack-sc-number
2526 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2527 sb!vm:n-word-bytes)))
2528 (realpart (the (complex long-float) value)))
2530 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2531 sb!vm:n-word-bytes)))
2532 (imagpart (the (complex long-float) value))))
2533 (#.sb!vm:control-stack-sc-number
2534 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2535 (#.sb!vm:character-stack-sc-number
2536 (setf (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2537 sb!vm:n-word-bytes)))
2538 (char-code (the character value))))
2539 (#.sb!vm:unsigned-stack-sc-number
2540 (setf (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2541 sb!vm:n-word-bytes)))
2542 (the sb!vm:word value)))
2543 (#.sb!vm:signed-stack-sc-number
2544 (setf (signed-sap-ref-word
2545 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2546 sb!vm:n-word-bytes)))
2547 (the (signed-byte #.sb!vm:n-word-bits) value)))
2548 (#.sb!vm:sap-stack-sc-number
2549 (setf (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2550 sb!vm:n-word-bytes)))
2551 (the system-area-pointer value))))))
2553 ;;; The method for setting and accessing COMPILED-DEBUG-VAR values use
2554 ;;; this to determine if the value stored is the actual value or an
2555 ;;; indirection cell.
2556 (defun indirect-value-cell-p (x)
2557 (and (= (lowtag-of x) sb!vm:other-pointer-lowtag)
2558 (= (widetag-of x) sb!vm:value-cell-header-widetag)))
2560 ;;; Return three values reflecting the validity of DEBUG-VAR's value
2561 ;;; at BASIC-CODE-LOCATION:
2562 ;;; :VALID The value is known to be available.
2563 ;;; :INVALID The value is known to be unavailable.
2564 ;;; :UNKNOWN The value's availability is unknown.
2566 ;;; If the variable is always alive, then it is valid. If the
2567 ;;; code-location is unknown, then the variable's validity is
2568 ;;; :unknown. Once we've called CODE-LOCATION-UNKNOWN-P, we know the
2569 ;;; live-set information has been cached in the code-location.
2570 (defun debug-var-validity (debug-var basic-code-location)
2571 (etypecase debug-var
2573 (compiled-debug-var-validity debug-var basic-code-location))
2574 ;; (There used to be more cases back before sbcl-0.7.0, when
2575 ;; we did special tricks to debug the IR1 interpreter.)
2578 ;;; This is the method for DEBUG-VAR-VALIDITY for COMPILED-DEBUG-VARs.
2579 ;;; For safety, make sure basic-code-location is what we think.
2580 (defun compiled-debug-var-validity (debug-var basic-code-location)
2581 (declare (type compiled-code-location basic-code-location))
2582 (cond ((debug-var-alive-p debug-var)
2583 (let ((debug-fun (code-location-debug-fun basic-code-location)))
2584 (if (>= (compiled-code-location-pc basic-code-location)
2585 (sb!c::compiled-debug-fun-start-pc
2586 (compiled-debug-fun-compiler-debug-fun debug-fun)))
2589 ((code-location-unknown-p basic-code-location) :unknown)
2591 (let ((pos (position debug-var
2592 (debug-fun-debug-vars
2593 (code-location-debug-fun
2594 basic-code-location)))))
2596 (error 'unknown-debug-var
2597 :debug-var debug-var
2599 (code-location-debug-fun basic-code-location)))
2600 ;; There must be live-set info since basic-code-location is known.
2601 (if (zerop (sbit (compiled-code-location-live-set
2602 basic-code-location)
2609 ;;; This code produces and uses what we call source-paths. A
2610 ;;; source-path is a list whose first element is a form number as
2611 ;;; returned by CODE-LOCATION-FORM-NUMBER and whose last element is a
2612 ;;; top level form number as returned by
2613 ;;; CODE-LOCATION-TOPLEVEL-FORM-NUMBER. The elements from the last to
2614 ;;; the first, exclusively, are the numbered subforms into which to
2615 ;;; descend. For example:
2617 ;;; (let ((a (aref x 3)))
2619 ;;; The call to AREF in this example is form number 5. Assuming this
2620 ;;; DEFUN is the 11'th top level form, the source-path for the AREF
2621 ;;; call is as follows:
2623 ;;; Given the DEFUN, 3 gets you the LET, 1 gets you the bindings, 0
2624 ;;; gets the first binding, and 1 gets the AREF form.
2626 ;;; temporary buffer used to build form-number => source-path translation in
2627 ;;; FORM-NUMBER-TRANSLATIONS
2628 (defvar *form-number-temp* (make-array 10 :fill-pointer 0 :adjustable t))
2630 ;;; table used to detect CAR circularities in FORM-NUMBER-TRANSLATIONS
2631 (defvar *form-number-circularity-table* (make-hash-table :test 'eq))
2633 ;;; This returns a table mapping form numbers to source-paths. A
2634 ;;; source-path indicates a descent into the TOPLEVEL-FORM form,
2635 ;;; going directly to the subform corressponding to the form number.
2637 ;;; The vector elements are in the same format as the compiler's
2638 ;;; NODE-SOURCE-PATH; that is, the first element is the form number and
2639 ;;; the last is the TOPLEVEL-FORM number.
2640 (defun form-number-translations (form tlf-number)
2641 (clrhash *form-number-circularity-table*)
2642 (setf (fill-pointer *form-number-temp*) 0)
2643 (sub-translate-form-numbers form (list tlf-number))
2644 (coerce *form-number-temp* 'simple-vector))
2645 (defun sub-translate-form-numbers (form path)
2646 (unless (gethash form *form-number-circularity-table*)
2647 (setf (gethash form *form-number-circularity-table*) t)
2648 (vector-push-extend (cons (fill-pointer *form-number-temp*) path)
2653 (declare (fixnum pos))
2656 (when (atom subform) (return))
2657 (let ((fm (car subform)))
2659 (sub-translate-form-numbers fm (cons pos path)))
2661 (setq subform (cdr subform))
2662 (when (eq subform trail) (return)))))
2666 (setq trail (cdr trail)))))))
2668 ;;; FORM is a top level form, and path is a source-path into it. This
2669 ;;; returns the form indicated by the source-path. Context is the
2670 ;;; number of enclosing forms to return instead of directly returning
2671 ;;; the source-path form. When context is non-zero, the form returned
2672 ;;; contains a marker, #:****HERE****, immediately before the form
2673 ;;; indicated by path.
2674 (defun source-path-context (form path context)
2675 (declare (type unsigned-byte context))
2676 ;; Get to the form indicated by path or the enclosing form indicated
2677 ;; by context and path.
2678 (let ((path (reverse (butlast (cdr path)))))
2679 (dotimes (i (- (length path) context))
2680 (let ((index (first path)))
2681 (unless (and (listp form) (< index (length form)))
2682 (error "Source path no longer exists."))
2683 (setq form (elt form index))
2684 (setq path (rest path))))
2685 ;; Recursively rebuild the source form resulting from the above
2686 ;; descent, copying the beginning of each subform up to the next
2687 ;; subform we descend into according to path. At the bottom of the
2688 ;; recursion, we return the form indicated by path preceded by our
2689 ;; marker, and this gets spliced into the resulting list structure
2690 ;; on the way back up.
2691 (labels ((frob (form path level)
2692 (if (or (zerop level) (null path))
2695 `(#:***here*** ,form))
2696 (let ((n (first path)))
2697 (unless (and (listp form) (< n (length form)))
2698 (error "Source path no longer exists."))
2699 (let ((res (frob (elt form n) (rest path) (1- level))))
2700 (nconc (subseq form 0 n)
2701 (cons res (nthcdr (1+ n) form))))))))
2702 (frob form path context))))
2704 ;;;; PREPROCESS-FOR-EVAL
2706 ;;; Return a function of one argument that evaluates form in the
2707 ;;; lexical context of the BASIC-CODE-LOCATION LOC, or signal a
2708 ;;; NO-DEBUG-VARS condition when the LOC's DEBUG-FUN has no
2709 ;;; DEBUG-VAR information available.
2711 ;;; The returned function takes the frame to get values from as its
2712 ;;; argument, and it returns the values of FORM. The returned function
2713 ;;; can signal the following conditions: INVALID-VALUE,
2714 ;;; AMBIGUOUS-VAR-NAME, and FRAME-FUN-MISMATCH.
2715 (defun preprocess-for-eval (form loc)
2716 (declare (type code-location loc))
2717 (let ((n-frame (gensym))
2718 (fun (code-location-debug-fun loc)))
2719 (unless (debug-var-info-available fun)
2720 (debug-signal 'no-debug-vars :debug-fun fun))
2721 (sb!int:collect ((binds)
2723 (do-debug-fun-vars (var fun)
2724 (let ((validity (debug-var-validity var loc)))
2725 (unless (eq validity :invalid)
2726 (let* ((sym (debug-var-symbol var))
2727 (found (assoc sym (binds))))
2729 (setf (second found) :ambiguous)
2730 (binds (list sym validity var)))))))
2731 (dolist (bind (binds))
2732 (let ((name (first bind))
2734 (ecase (second bind)
2736 (specs `(,name (debug-var-value ',var ,n-frame))))
2738 (specs `(,name (debug-signal 'invalid-value
2742 (specs `(,name (debug-signal 'ambiguous-var-name
2744 :frame ,n-frame)))))))
2745 (let ((res (coerce `(lambda (,n-frame)
2746 (declare (ignorable ,n-frame))
2747 (symbol-macrolet ,(specs) ,form))
2750 ;; This prevents these functions from being used in any
2751 ;; location other than a function return location, so maybe
2752 ;; this should only check whether FRAME's DEBUG-FUN is the
2754 (unless (code-location= (frame-code-location frame) loc)
2755 (debug-signal 'frame-fun-mismatch
2756 :code-location loc :form form :frame frame))
2757 (funcall res frame))))))
2761 ;;;; user-visible interface
2763 ;;; Create and return a breakpoint. When program execution encounters
2764 ;;; the breakpoint, the system calls HOOK-FUN. HOOK-FUN takes the
2765 ;;; current frame for the function in which the program is running and
2766 ;;; the breakpoint object.
2768 ;;; WHAT and KIND determine where in a function the system invokes
2769 ;;; HOOK-FUN. WHAT is either a code-location or a DEBUG-FUN. KIND is
2770 ;;; one of :CODE-LOCATION, :FUN-START, or :FUN-END. Since the starts
2771 ;;; and ends of functions may not have code-locations representing
2772 ;;; them, designate these places by supplying WHAT as a DEBUG-FUN and
2773 ;;; KIND indicating the :FUN-START or :FUN-END. When WHAT is a
2774 ;;; DEBUG-FUN and kind is :FUN-END, then HOOK-FUN must take two
2775 ;;; additional arguments, a list of values returned by the function
2776 ;;; and a FUN-END-COOKIE.
2778 ;;; INFO is information supplied by and used by the user.
2780 ;;; FUN-END-COOKIE is a function. To implement :FUN-END
2781 ;;; breakpoints, the system uses starter breakpoints to establish the
2782 ;;; :FUN-END breakpoint for each invocation of the function. Upon
2783 ;;; each entry, the system creates a unique cookie to identify the
2784 ;;; invocation, and when the user supplies a function for this
2785 ;;; argument, the system invokes it on the frame and the cookie. The
2786 ;;; system later invokes the :FUN-END breakpoint hook on the same
2787 ;;; cookie. The user may save the cookie for comparison in the hook
2790 ;;; Signal an error if WHAT is an unknown code-location.
2791 (defun make-breakpoint (hook-fun what
2792 &key (kind :code-location) info fun-end-cookie)
2795 (when (code-location-unknown-p what)
2796 (error "cannot make a breakpoint at an unknown code location: ~S"
2798 (aver (eq kind :code-location))
2799 (let ((bpt (%make-breakpoint hook-fun what kind info)))
2801 (compiled-code-location
2802 ;; This slot is filled in due to calling CODE-LOCATION-UNKNOWN-P.
2803 (when (eq (compiled-code-location-kind what) :unknown-return)
2804 (let ((other-bpt (%make-breakpoint hook-fun what
2805 :unknown-return-partner
2807 (setf (breakpoint-unknown-return-partner bpt) other-bpt)
2808 (setf (breakpoint-unknown-return-partner other-bpt) bpt))))
2809 ;; (There used to be more cases back before sbcl-0.7.0,,
2810 ;; when we did special tricks to debug the IR1
2817 (%make-breakpoint hook-fun what kind info))
2819 (unless (eq (sb!c::compiled-debug-fun-returns
2820 (compiled-debug-fun-compiler-debug-fun what))
2822 (error ":FUN-END breakpoints are currently unsupported ~
2823 for the known return convention."))
2825 (let* ((bpt (%make-breakpoint hook-fun what kind info))
2826 (starter (compiled-debug-fun-end-starter what)))
2828 (setf starter (%make-breakpoint #'list what :fun-start nil))
2829 (setf (breakpoint-hook-fun starter)
2830 (fun-end-starter-hook starter what))
2831 (setf (compiled-debug-fun-end-starter what) starter))
2832 (setf (breakpoint-start-helper bpt) starter)
2833 (push bpt (breakpoint-%info starter))
2834 (setf (breakpoint-cookie-fun bpt) fun-end-cookie)
2837 ;;; These are unique objects created upon entry into a function by a
2838 ;;; :FUN-END breakpoint's starter hook. These are only created
2839 ;;; when users supply :FUN-END-COOKIE to MAKE-BREAKPOINT. Also,
2840 ;;; the :FUN-END breakpoint's hook is called on the same cookie
2841 ;;; when it is created.
2842 (defstruct (fun-end-cookie
2843 (:print-object (lambda (obj str)
2844 (print-unreadable-object (obj str :type t))))
2845 (:constructor make-fun-end-cookie (bogus-lra debug-fun))
2847 ;; a pointer to the bogus-lra created for :FUN-END breakpoints
2849 ;; the DEBUG-FUN associated with this cookie
2852 ;;; This maps bogus-lra-components to cookies, so that
2853 ;;; HANDLE-FUN-END-BREAKPOINT can find the appropriate cookie for the
2854 ;;; breakpoint hook.
2855 (defvar *fun-end-cookies* (make-hash-table :test 'eq))
2857 ;;; This returns a hook function for the start helper breakpoint
2858 ;;; associated with a :FUN-END breakpoint. The returned function
2859 ;;; makes a fake LRA that all returns go through, and this piece of
2860 ;;; fake code actually breaks. Upon return from the break, the code
2861 ;;; provides the returnee with any values. Since the returned function
2862 ;;; effectively activates FUN-END-BPT on each entry to DEBUG-FUN's
2863 ;;; function, we must establish breakpoint-data about FUN-END-BPT.
2864 (defun fun-end-starter-hook (starter-bpt debug-fun)
2865 (declare (type breakpoint starter-bpt)
2866 (type compiled-debug-fun debug-fun))
2867 (lambda (frame breakpoint)
2868 (declare (ignore breakpoint)
2870 (let ((lra-sc-offset
2871 (sb!c::compiled-debug-fun-return-pc
2872 (compiled-debug-fun-compiler-debug-fun debug-fun))))
2873 (multiple-value-bind (lra component offset)
2875 (get-context-value frame
2878 (setf (get-context-value frame
2882 (let ((end-bpts (breakpoint-%info starter-bpt)))
2883 (let ((data (breakpoint-data component offset)))
2884 (setf (breakpoint-data-breakpoints data) end-bpts)
2885 (dolist (bpt end-bpts)
2886 (setf (breakpoint-internal-data bpt) data)))
2887 (let ((cookie (make-fun-end-cookie lra debug-fun)))
2888 (setf (gethash component *fun-end-cookies*) cookie)
2889 (dolist (bpt end-bpts)
2890 (let ((fun (breakpoint-cookie-fun bpt)))
2891 (when fun (funcall fun frame cookie))))))))))
2893 ;;; This takes a FUN-END-COOKIE and a frame, and it returns
2894 ;;; whether the cookie is still valid. A cookie becomes invalid when
2895 ;;; the frame that established the cookie has exited. Sometimes cookie
2896 ;;; holders are unaware of cookie invalidation because their
2897 ;;; :FUN-END breakpoint hooks didn't run due to THROW'ing.
2899 ;;; This takes a frame as an efficiency hack since the user probably
2900 ;;; has a frame object in hand when using this routine, and it saves
2901 ;;; repeated parsing of the stack and consing when asking whether a
2902 ;;; series of cookies is valid.
2903 (defun fun-end-cookie-valid-p (frame cookie)
2904 (let ((lra (fun-end-cookie-bogus-lra cookie))
2905 (lra-sc-offset (sb!c::compiled-debug-fun-return-pc
2906 (compiled-debug-fun-compiler-debug-fun
2907 (fun-end-cookie-debug-fun cookie)))))
2908 (do ((frame frame (frame-down frame)))
2910 (when (and (compiled-frame-p frame)
2911 (#!-(or x86 x86-64) eq #!+(or x86 x86-64) sap=
2913 (get-context-value frame lra-save-offset lra-sc-offset)))
2916 ;;;; ACTIVATE-BREAKPOINT
2918 ;;; Cause the system to invoke the breakpoint's hook function until
2919 ;;; the next call to DEACTIVATE-BREAKPOINT or DELETE-BREAKPOINT. The
2920 ;;; system invokes breakpoint hook functions in the opposite order
2921 ;;; that you activate them.
2922 (defun activate-breakpoint (breakpoint)
2923 (when (eq (breakpoint-status breakpoint) :deleted)
2924 (error "cannot activate a deleted breakpoint: ~S" breakpoint))
2925 (unless (eq (breakpoint-status breakpoint) :active)
2926 (ecase (breakpoint-kind breakpoint)
2928 (let ((loc (breakpoint-what breakpoint)))
2930 (compiled-code-location
2931 (activate-compiled-code-location-breakpoint breakpoint)
2932 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2934 (activate-compiled-code-location-breakpoint other))))
2935 ;; (There used to be more cases back before sbcl-0.7.0, when
2936 ;; we did special tricks to debug the IR1 interpreter.)
2939 (etypecase (breakpoint-what breakpoint)
2941 (activate-compiled-fun-start-breakpoint breakpoint))
2942 ;; (There used to be more cases back before sbcl-0.7.0, when
2943 ;; we did special tricks to debug the IR1 interpreter.)
2946 (etypecase (breakpoint-what breakpoint)
2948 (let ((starter (breakpoint-start-helper breakpoint)))
2949 (unless (eq (breakpoint-status starter) :active)
2950 ;; may already be active by some other :FUN-END breakpoint
2951 (activate-compiled-fun-start-breakpoint starter)))
2952 (setf (breakpoint-status breakpoint) :active))
2953 ;; (There used to be more cases back before sbcl-0.7.0, when
2954 ;; we did special tricks to debug the IR1 interpreter.)
2958 (defun activate-compiled-code-location-breakpoint (breakpoint)
2959 (declare (type breakpoint breakpoint))
2960 (let ((loc (breakpoint-what breakpoint)))
2961 (declare (type compiled-code-location loc))
2962 (sub-activate-breakpoint
2964 (breakpoint-data (compiled-debug-fun-component
2965 (code-location-debug-fun loc))
2966 (+ (compiled-code-location-pc loc)
2967 (if (or (eq (breakpoint-kind breakpoint)
2968 :unknown-return-partner)
2969 (eq (compiled-code-location-kind loc)
2970 :single-value-return))
2971 sb!vm:single-value-return-byte-offset
2974 (defun activate-compiled-fun-start-breakpoint (breakpoint)
2975 (declare (type breakpoint breakpoint))
2976 (let ((debug-fun (breakpoint-what breakpoint)))
2977 (sub-activate-breakpoint
2979 (breakpoint-data (compiled-debug-fun-component debug-fun)
2980 (sb!c::compiled-debug-fun-start-pc
2981 (compiled-debug-fun-compiler-debug-fun
2984 (defun sub-activate-breakpoint (breakpoint data)
2985 (declare (type breakpoint breakpoint)
2986 (type breakpoint-data data))
2987 (setf (breakpoint-status breakpoint) :active)
2989 (unless (breakpoint-data-breakpoints data)
2990 (setf (breakpoint-data-instruction data)
2992 (breakpoint-install (get-lisp-obj-address
2993 (breakpoint-data-component data))
2994 (breakpoint-data-offset data)))))
2995 (setf (breakpoint-data-breakpoints data)
2996 (append (breakpoint-data-breakpoints data) (list breakpoint)))
2997 (setf (breakpoint-internal-data breakpoint) data)))
2999 ;;;; DEACTIVATE-BREAKPOINT
3001 ;;; Stop the system from invoking the breakpoint's hook function.
3002 (defun deactivate-breakpoint (breakpoint)
3003 (when (eq (breakpoint-status breakpoint) :active)
3005 (let ((loc (breakpoint-what breakpoint)))
3007 ((or compiled-code-location compiled-debug-fun)
3008 (deactivate-compiled-breakpoint breakpoint)
3009 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3011 (deactivate-compiled-breakpoint other))))
3012 ;; (There used to be more cases back before sbcl-0.7.0, when
3013 ;; we did special tricks to debug the IR1 interpreter.)
3017 (defun deactivate-compiled-breakpoint (breakpoint)
3018 (if (eq (breakpoint-kind breakpoint) :fun-end)
3019 (let ((starter (breakpoint-start-helper breakpoint)))
3020 (unless (find-if (lambda (bpt)
3021 (and (not (eq bpt breakpoint))
3022 (eq (breakpoint-status bpt) :active)))
3023 (breakpoint-%info starter))
3024 (deactivate-compiled-breakpoint starter)))
3025 (let* ((data (breakpoint-internal-data breakpoint))
3026 (bpts (delete breakpoint (breakpoint-data-breakpoints data))))
3027 (setf (breakpoint-internal-data breakpoint) nil)
3028 (setf (breakpoint-data-breakpoints data) bpts)
3031 (breakpoint-remove (get-lisp-obj-address
3032 (breakpoint-data-component data))
3033 (breakpoint-data-offset data)
3034 (breakpoint-data-instruction data)))
3035 (delete-breakpoint-data data))))
3036 (setf (breakpoint-status breakpoint) :inactive)
3039 ;;;; BREAKPOINT-INFO
3041 ;;; Return the user-maintained info associated with breakpoint. This
3043 (defun breakpoint-info (breakpoint)
3044 (breakpoint-%info breakpoint))
3045 (defun %set-breakpoint-info (breakpoint value)
3046 (setf (breakpoint-%info breakpoint) value)
3047 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3049 (setf (breakpoint-%info other) value))))
3051 ;;;; BREAKPOINT-ACTIVE-P and DELETE-BREAKPOINT
3053 (defun breakpoint-active-p (breakpoint)
3054 (ecase (breakpoint-status breakpoint)
3056 ((:inactive :deleted) nil)))
3058 ;;; Free system storage and remove computational overhead associated
3059 ;;; with breakpoint. After calling this, breakpoint is completely
3060 ;;; impotent and can never become active again.
3061 (defun delete-breakpoint (breakpoint)
3062 (let ((status (breakpoint-status breakpoint)))
3063 (unless (eq status :deleted)
3064 (when (eq status :active)
3065 (deactivate-breakpoint breakpoint))
3066 (setf (breakpoint-status breakpoint) :deleted)
3067 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3069 (setf (breakpoint-status other) :deleted)))
3070 (when (eq (breakpoint-kind breakpoint) :fun-end)
3071 (let* ((starter (breakpoint-start-helper breakpoint))
3072 (breakpoints (delete breakpoint
3073 (the list (breakpoint-info starter)))))
3074 (setf (breakpoint-info starter) breakpoints)
3076 (delete-breakpoint starter)
3077 (setf (compiled-debug-fun-end-starter
3078 (breakpoint-what breakpoint))
3082 ;;;; C call out stubs
3084 ;;; This actually installs the break instruction in the component. It
3085 ;;; returns the overwritten bits. You must call this in a context in
3086 ;;; which GC is disabled, so that Lisp doesn't move objects around
3087 ;;; that C is pointing to.
3088 (sb!alien:define-alien-routine "breakpoint_install" sb!alien:unsigned-int
3089 (code-obj sb!alien:unsigned-long)
3090 (pc-offset sb!alien:int))
3092 ;;; This removes the break instruction and replaces the original
3093 ;;; instruction. You must call this in a context in which GC is disabled
3094 ;;; so Lisp doesn't move objects around that C is pointing to.
3095 (sb!alien:define-alien-routine "breakpoint_remove" sb!alien:void
3096 (code-obj sb!alien:unsigned-long)
3097 (pc-offset sb!alien:int)
3098 (old-inst sb!alien:unsigned-int))
3100 (sb!alien:define-alien-routine "breakpoint_do_displaced_inst" sb!alien:void
3101 (scp (* os-context-t))
3102 (orig-inst sb!alien:unsigned-int))
3104 ;;;; breakpoint handlers (layer between C and exported interface)
3106 ;;; This maps components to a mapping of offsets to BREAKPOINT-DATAs.
3107 (defvar *component-breakpoint-offsets* (make-hash-table :test 'eq))
3109 ;;; This returns the BREAKPOINT-DATA object associated with component cross
3110 ;;; offset. If none exists, this makes one, installs it, and returns it.
3111 (defun breakpoint-data (component offset &optional (create t))
3112 (flet ((install-breakpoint-data ()
3114 (let ((data (make-breakpoint-data component offset)))
3115 (push (cons offset data)
3116 (gethash component *component-breakpoint-offsets*))
3118 (let ((offsets (gethash component *component-breakpoint-offsets*)))
3120 (let ((data (assoc offset offsets)))
3123 (install-breakpoint-data)))
3124 (install-breakpoint-data)))))
3126 ;;; We use this when there are no longer any active breakpoints
3127 ;;; corresponding to DATA.
3128 (defun delete-breakpoint-data (data)
3129 (let* ((component (breakpoint-data-component data))
3130 (offsets (delete (breakpoint-data-offset data)
3131 (gethash component *component-breakpoint-offsets*)
3134 (setf (gethash component *component-breakpoint-offsets*) offsets)
3135 (remhash component *component-breakpoint-offsets*)))
3138 ;;; The C handler for interrupts calls this when it has a
3139 ;;; debugging-tool break instruction. This does *not* handle all
3140 ;;; breaks; for example, it does not handle breaks for internal
3142 (defun handle-breakpoint (offset component signal-context)
3143 (let ((data (breakpoint-data component offset nil)))
3145 (error "unknown breakpoint in ~S at offset ~S"
3146 (debug-fun-name (debug-fun-from-pc component offset))
3148 (let ((breakpoints (breakpoint-data-breakpoints data)))
3149 (if (or (null breakpoints)
3150 (eq (breakpoint-kind (car breakpoints)) :fun-end))
3151 (handle-fun-end-breakpoint-aux breakpoints data signal-context)
3152 (handle-breakpoint-aux breakpoints data
3153 offset component signal-context)))))
3155 ;;; This holds breakpoint-datas while invoking the breakpoint hooks
3156 ;;; associated with that particular component and location. While they
3157 ;;; are executing, if we hit the location again, we ignore the
3158 ;;; breakpoint to avoid infinite recursion. fun-end breakpoints
3159 ;;; must work differently since the breakpoint-data is unique for each
3161 (defvar *executing-breakpoint-hooks* nil)
3163 ;;; This handles code-location and DEBUG-FUN :FUN-START
3165 (defun handle-breakpoint-aux (breakpoints data offset component signal-context)
3167 (bug "breakpoint that nobody wants"))
3168 (unless (member data *executing-breakpoint-hooks*)
3169 (let ((*executing-breakpoint-hooks* (cons data
3170 *executing-breakpoint-hooks*)))
3171 (invoke-breakpoint-hooks breakpoints signal-context)))
3172 ;; At this point breakpoints may not hold the same list as
3173 ;; BREAKPOINT-DATA-BREAKPOINTS since invoking hooks may have allowed
3174 ;; a breakpoint deactivation. In fact, if all breakpoints were
3175 ;; deactivated then data is invalid since it was deleted and so the
3176 ;; correct one must be looked up if it is to be used. If there are
3177 ;; no more breakpoints active at this location, then the normal
3178 ;; instruction has been put back, and we do not need to
3179 ;; DO-DISPLACED-INST.
3180 (setf data (breakpoint-data component offset nil))
3181 (when (and data (breakpoint-data-breakpoints data))
3182 ;; The breakpoint is still active, so we need to execute the
3183 ;; displaced instruction and leave the breakpoint instruction
3184 ;; behind. The best way to do this is different on each machine,
3185 ;; so we just leave it up to the C code.
3186 (breakpoint-do-displaced-inst signal-context
3187 (breakpoint-data-instruction data))
3188 ;; Some platforms have no usable sigreturn() call. If your
3189 ;; implementation of arch_do_displaced_inst() _does_ sigreturn(),
3190 ;; it's polite to warn here
3191 #!+(and sparc solaris)
3192 (error "BREAKPOINT-DO-DISPLACED-INST returned?")))
3194 (defun invoke-breakpoint-hooks (breakpoints signal-context)
3195 (let* ((frame (signal-context-frame signal-context)))
3196 (dolist (bpt breakpoints)
3197 (funcall (breakpoint-hook-fun bpt)
3199 ;; If this is an :UNKNOWN-RETURN-PARTNER, then pass the
3200 ;; hook function the original breakpoint, so that users
3201 ;; aren't forced to confront the fact that some
3202 ;; breakpoints really are two.
3203 (if (eq (breakpoint-kind bpt) :unknown-return-partner)
3204 (breakpoint-unknown-return-partner bpt)
3207 (defun signal-context-frame (signal-context)
3210 (declare (optimize (inhibit-warnings 3)))
3211 (sb!alien:sap-alien signal-context (* os-context-t))))
3212 (cfp (int-sap (sb!vm:context-register scp sb!vm::cfp-offset))))
3213 (compute-calling-frame cfp
3214 (sb!vm:context-pc scp)
3217 (defun handle-fun-end-breakpoint (offset component context)
3218 (let ((data (breakpoint-data component offset nil)))
3220 (error "unknown breakpoint in ~S at offset ~S"
3221 (debug-fun-name (debug-fun-from-pc component offset))
3223 (let ((breakpoints (breakpoint-data-breakpoints data)))
3225 (aver (eq (breakpoint-kind (car breakpoints)) :fun-end))
3226 (handle-fun-end-breakpoint-aux breakpoints data context)))))
3228 ;;; Either HANDLE-BREAKPOINT calls this for :FUN-END breakpoints
3229 ;;; [old C code] or HANDLE-FUN-END-BREAKPOINT calls this directly
3231 (defun handle-fun-end-breakpoint-aux (breakpoints data signal-context)
3232 (delete-breakpoint-data data)
3235 (declare (optimize (inhibit-warnings 3)))
3236 (sb!alien:sap-alien signal-context (* os-context-t))))
3237 (frame (signal-context-frame signal-context))
3238 (component (breakpoint-data-component data))
3239 (cookie (gethash component *fun-end-cookies*)))
3240 (remhash component *fun-end-cookies*)
3241 (dolist (bpt breakpoints)
3242 (funcall (breakpoint-hook-fun bpt)
3244 (get-fun-end-breakpoint-values scp)
3247 (defun get-fun-end-breakpoint-values (scp)
3248 (let ((ocfp (int-sap (sb!vm:context-register
3250 #!-(or x86 x86-64) sb!vm::ocfp-offset
3251 #!+(or x86 x86-64) sb!vm::ebx-offset)))
3252 (nargs (make-lisp-obj
3253 (sb!vm:context-register scp sb!vm::nargs-offset)))
3254 (reg-arg-offsets '#.sb!vm::*register-arg-offsets*)
3257 (dotimes (arg-num nargs)
3258 (push (if reg-arg-offsets
3260 (sb!vm:context-register scp (pop reg-arg-offsets)))
3261 (stack-ref ocfp arg-num))
3263 (nreverse results)))
3265 ;;;; MAKE-BOGUS-LRA (used for :FUN-END breakpoints)
3267 (defconstant bogus-lra-constants
3268 #!-(or x86 x86-64) 2 #!+(or x86 x86-64) 3)
3269 (defconstant known-return-p-slot
3270 (+ sb!vm:code-constants-offset #!-(or x86 x86-64) 1 #!+(or x86 x86-64) 2))
3272 ;;; Make a bogus LRA object that signals a breakpoint trap when
3273 ;;; returned to. If the breakpoint trap handler returns, REAL-LRA is
3274 ;;; returned to. Three values are returned: the bogus LRA object, the
3275 ;;; code component it is part of, and the PC offset for the trap
3277 (defun make-bogus-lra (real-lra &optional known-return-p)
3279 ;; These are really code labels, not variables: but this way we get
3281 (let* ((src-start (foreign-symbol-sap "fun_end_breakpoint_guts"))
3282 (src-end (foreign-symbol-sap "fun_end_breakpoint_end"))
3283 (trap-loc (foreign-symbol-sap "fun_end_breakpoint_trap"))
3284 (length (sap- src-end src-start))
3286 (%primitive sb!c:allocate-code-object (1+ bogus-lra-constants)
3288 (dst-start (code-instructions code-object)))
3289 (declare (type system-area-pointer
3290 src-start src-end dst-start trap-loc)
3291 (type index length))
3292 (setf (%code-debug-info code-object) :bogus-lra)
3293 (setf (code-header-ref code-object sb!vm:code-trace-table-offset-slot)
3296 (setf (code-header-ref code-object real-lra-slot) real-lra)
3298 (multiple-value-bind (offset code) (compute-lra-data-from-pc real-lra)
3299 (setf (code-header-ref code-object real-lra-slot) code)
3300 (setf (code-header-ref code-object (1+ real-lra-slot)) offset))
3301 (setf (code-header-ref code-object known-return-p-slot)
3303 (system-area-ub8-copy src-start 0 dst-start 0 length)
3304 (sb!vm:sanctify-for-execution code-object)
3306 (values dst-start code-object (sap- trap-loc src-start))
3308 (let ((new-lra (make-lisp-obj (+ (sap-int dst-start)
3309 sb!vm:other-pointer-lowtag))))
3312 (logandc2 (+ sb!vm:code-constants-offset bogus-lra-constants 1)
3314 (sb!vm:sanctify-for-execution code-object)
3315 (values new-lra code-object (sap- trap-loc src-start))))))
3319 ;;; This appears here because it cannot go with the DEBUG-FUN
3320 ;;; interface since DO-DEBUG-BLOCK-LOCATIONS isn't defined until after
3321 ;;; the DEBUG-FUN routines.
3323 ;;; Return a code-location before the body of a function and after all
3324 ;;; the arguments are in place; or if that location can't be
3325 ;;; determined due to a lack of debug information, return NIL.
3326 (defun debug-fun-start-location (debug-fun)
3327 (etypecase debug-fun
3329 (code-location-from-pc debug-fun
3330 (sb!c::compiled-debug-fun-start-pc
3331 (compiled-debug-fun-compiler-debug-fun
3334 ;; (There used to be more cases back before sbcl-0.7.0, when
3335 ;; we did special tricks to debug the IR1 interpreter.)
3339 ;;;; Single-stepping
3341 ;;; The single-stepper works by inserting conditional trap instructions
3342 ;;; into the generated code (see src/compiler/*/call.lisp), currently:
3344 ;;; 1) Before the code generated for a function call that was
3345 ;;; translated to a VOP
3346 ;;; 2) Just before the call instruction for a full call
3348 ;;; In both cases, the trap will only be executed if stepping has been
3349 ;;; enabled, in which case it'll ultimately be handled by
3350 ;;; HANDLE-SINGLE-STEP-TRAP, which will either signal a stepping condition,
3351 ;;; or replace the function that's about to be called with a wrapper
3352 ;;; which will signal the condition.
3354 (defun handle-single-step-trap (kind callee-register-offset)
3355 (let ((context (nth-interrupt-context (1- *free-interrupt-context-index*))))
3356 ;; The following calls must get tail-call eliminated for
3357 ;; *STEP-FRAME* to get set correctly on non-x86.
3358 (if (= kind single-step-before-trap)
3359 (handle-single-step-before-trap context)
3360 (handle-single-step-around-trap context callee-register-offset))))
3362 (defvar *step-frame* nil)
3364 (defun handle-single-step-before-trap (context)
3365 (let ((step-info (single-step-info-from-context context)))
3366 ;; If there was not enough debug information available, there's no
3367 ;; sense in signaling the condition.
3371 (signal-context-frame (sb!alien::alien-sap context))
3373 ;; KLUDGE: Use the first non-foreign frame as the
3374 ;; *STACK-TOP-HINT*. Getting the frame from the signal
3375 ;; context as on x86 would be cleaner, but
3376 ;; SIGNAL-CONTEXT-FRAME doesn't seem seem to work at all
3378 (loop with frame = (frame-down (top-frame))
3380 for dfun = (frame-debug-fun frame)
3381 do (when (typep dfun 'compiled-debug-fun)
3383 do (setf frame (frame-down frame)))))
3384 (sb!impl::step-form step-info
3385 ;; We could theoretically store information in
3386 ;; the debug-info about to determine the
3387 ;; arguments here, but for now let's just pass
3391 ;;; This function will replace the fdefn / function that was in the
3392 ;;; register at CALLEE-REGISTER-OFFSET with a wrapper function. To
3393 ;;; ensure that the full call will use the wrapper instead of the
3394 ;;; original, conditional trap must be emitted before the fdefn /
3395 ;;; function is converted into a raw address.
3396 (defun handle-single-step-around-trap (context callee-register-offset)
3397 ;; Fetch the function / fdefn we're about to call from the
3398 ;; appropriate register.
3399 (let* ((callee (sb!kernel::make-lisp-obj
3400 (context-register context callee-register-offset)))
3401 (step-info (single-step-info-from-context context)))
3402 ;; If there was not enough debug information available, there's no
3403 ;; sense in signaling the condition.
3405 (return-from handle-single-step-around-trap))
3406 (let* ((fun (lambda (&rest args)
3408 (apply (typecase callee
3409 (fdefn (fdefn-fun callee))
3412 ;; Signal a step condition
3414 (let ((*step-frame* (frame-down (top-frame))))
3415 (sb!impl::step-form step-info args))))
3416 ;; And proceed based on its return value.
3418 ;; STEP-INTO was selected. Use *STEP-OUT* to
3419 ;; let the stepper know that selecting the
3420 ;; STEP-OUT restart is valid inside this
3421 (let ((sb!impl::*step-out* :maybe))
3422 ;; Pass the return values of the call to
3423 ;; STEP-VALUES, which will signal a
3424 ;; condition with them in the VALUES slot.
3426 (multiple-value-call #'sb!impl::step-values
3429 ;; If the user selected the STEP-OUT
3430 ;; restart during the call, resume
3432 (when (eq sb!impl::*step-out* t)
3433 (sb!impl::enable-stepping))))
3434 ;; STEP-NEXT / CONTINUE / OUT selected:
3435 ;; Disable the stepper for the duration of
3437 (sb!impl::with-stepping-disabled
3439 (new-callee (etypecase callee
3441 (let ((fdefn (make-fdefn (gensym))))
3442 (setf (fdefn-fun fdefn) fun)
3445 ;; And then store the wrapper in the same place.
3446 (setf (context-register context callee-register-offset)
3447 (get-lisp-obj-address new-callee)))))
3449 ;;; Given a signal context, fetch the step-info that's been stored in
3450 ;;; the debug info at the trap point.
3451 (defun single-step-info-from-context (context)
3452 (multiple-value-bind (pc-offset code)
3453 (compute-lra-data-from-pc (context-pc context))
3454 (let* ((debug-fun (debug-fun-from-pc code pc-offset))
3455 (location (code-location-from-pc debug-fun
3460 (fill-in-code-location location)
3461 (code-location-debug-source location)
3462 (compiled-code-location-step-info location))
3466 ;;; Return the frame that triggered a single-step condition. Used to
3467 ;;; provide a *STACK-TOP-HINT*.
3468 (defun find-stepped-frame ()