1 ;;;; the implementation of the programmer's interface to writing
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;; FIXME: There are an awful lot of package prefixes in this code.
16 ;;; Couldn't we have SB-DI use the SB-C and SB-VM packages?
20 ;;;; The interface to building debugging tools signals conditions that
21 ;;;; prevent it from adhering to its contract. These are
22 ;;;; serious-conditions because the program using the interface must
23 ;;;; handle them before it can correctly continue execution. These
24 ;;;; debugging conditions are not errors since it is no fault of the
25 ;;;; programmers that the conditions occur. The interface does not
26 ;;;; provide for programs to detect these situations other than
27 ;;;; calling a routine that detects them and signals a condition. For
28 ;;;; example, programmers call A which may fail to return successfully
29 ;;;; due to a lack of debug information, and there is no B the they
30 ;;;; could have called to realize A would fail. It is not an error to
31 ;;;; have called A, but it is an error for the program to then ignore
32 ;;;; the signal generated by A since it cannot continue without A's
33 ;;;; correctly returning a value or performing some operation.
35 ;;;; Use DEBUG-SIGNAL to signal these conditions.
37 (define-condition debug-condition (serious-condition)
41 "All DEBUG-CONDITIONs inherit from this type. These are serious conditions
42 that must be handled, but they are not programmer errors."))
44 (define-condition no-debug-fun-returns (debug-condition)
45 ((debug-fun :reader no-debug-fun-returns-debug-fun
49 "The system could not return values from a frame with DEBUG-FUN since
50 it lacked information about returning values.")
51 (:report (lambda (condition stream)
52 (let ((fun (debug-fun-fun
53 (no-debug-fun-returns-debug-fun condition))))
55 "~&Cannot return values from ~:[frame~;~:*~S~] since ~
56 the debug information lacks details about returning ~
60 (define-condition no-debug-blocks (debug-condition)
61 ((debug-fun :reader no-debug-blocks-debug-fun
64 (:documentation "The debug-fun has no debug-block information.")
65 (:report (lambda (condition stream)
66 (format stream "~&~S has no debug-block information."
67 (no-debug-blocks-debug-fun condition)))))
69 (define-condition no-debug-vars (debug-condition)
70 ((debug-fun :reader no-debug-vars-debug-fun
73 (:documentation "The DEBUG-FUN has no DEBUG-VAR information.")
74 (:report (lambda (condition stream)
75 (format stream "~&~S has no debug variable information."
76 (no-debug-vars-debug-fun condition)))))
78 (define-condition lambda-list-unavailable (debug-condition)
79 ((debug-fun :reader lambda-list-unavailable-debug-fun
83 "The DEBUG-FUN has no lambda list since argument DEBUG-VARs are
85 (:report (lambda (condition stream)
86 (format stream "~&~S has no lambda-list information available."
87 (lambda-list-unavailable-debug-fun condition)))))
89 (define-condition invalid-value (debug-condition)
90 ((debug-var :reader invalid-value-debug-var :initarg :debug-var)
91 (frame :reader invalid-value-frame :initarg :frame))
92 (:report (lambda (condition stream)
93 (format stream "~&~S has :invalid or :unknown value in ~S."
94 (invalid-value-debug-var condition)
95 (invalid-value-frame condition)))))
97 (define-condition ambiguous-var-name (debug-condition)
98 ((name :reader ambiguous-var-name-name :initarg :name)
99 (frame :reader ambiguous-var-name-frame :initarg :frame))
100 (:report (lambda (condition stream)
101 (format stream "~&~S names more than one valid variable in ~S."
102 (ambiguous-var-name-name condition)
103 (ambiguous-var-name-frame condition)))))
105 ;;;; errors and DEBUG-SIGNAL
107 ;;; The debug-internals code tries to signal all programmer errors as
108 ;;; subtypes of DEBUG-ERROR. There are calls to ERROR signalling
109 ;;; SIMPLE-ERRORs, but these dummy checks in the code and shouldn't
112 ;;; While under development, this code also signals errors in code
113 ;;; branches that remain unimplemented.
115 (define-condition debug-error (error) ()
118 "All programmer errors from using the interface for building debugging
119 tools inherit from this type."))
121 (define-condition unhandled-debug-condition (debug-error)
122 ((condition :reader unhandled-debug-condition-condition :initarg :condition))
123 (:report (lambda (condition stream)
124 (format stream "~&unhandled DEBUG-CONDITION:~%~A"
125 (unhandled-debug-condition-condition condition)))))
127 (define-condition unknown-code-location (debug-error)
128 ((code-location :reader unknown-code-location-code-location
129 :initarg :code-location))
130 (:report (lambda (condition stream)
131 (format stream "~&invalid use of an unknown code-location: ~S"
132 (unknown-code-location-code-location condition)))))
134 (define-condition unknown-debug-var (debug-error)
135 ((debug-var :reader unknown-debug-var-debug-var :initarg :debug-var)
136 (debug-fun :reader unknown-debug-var-debug-fun
137 :initarg :debug-fun))
138 (:report (lambda (condition stream)
139 (format stream "~&~S is not in ~S."
140 (unknown-debug-var-debug-var condition)
141 (unknown-debug-var-debug-fun condition)))))
143 (define-condition invalid-control-stack-pointer (debug-error)
145 (:report (lambda (condition stream)
146 (declare (ignore condition))
148 (write-string "invalid control stack pointer" stream))))
150 (define-condition frame-fun-mismatch (debug-error)
151 ((code-location :reader frame-fun-mismatch-code-location
152 :initarg :code-location)
153 (frame :reader frame-fun-mismatch-frame :initarg :frame)
154 (form :reader frame-fun-mismatch-form :initarg :form))
155 (:report (lambda (condition stream)
158 "~&Form was preprocessed for ~S,~% but called on ~S:~% ~S"
159 (frame-fun-mismatch-code-location condition)
160 (frame-fun-mismatch-frame condition)
161 (frame-fun-mismatch-form condition)))))
163 ;;; This signals debug-conditions. If they go unhandled, then signal
164 ;;; an UNHANDLED-DEBUG-CONDITION error.
166 ;;; ??? Get SIGNAL in the right package!
167 (defmacro debug-signal (datum &rest arguments)
168 `(let ((condition (make-condition ,datum ,@arguments)))
170 (error 'unhandled-debug-condition :condition condition)))
174 ;;;; Most of these structures model information stored in internal
175 ;;;; data structures created by the compiler. Whenever comments
176 ;;;; preface an object or type with "compiler", they refer to the
177 ;;;; internal compiler thing, not to the object or type with the same
178 ;;;; name in the "SB-DI" package.
182 ;;; These exist for caching data stored in packed binary form in
183 ;;; compiler DEBUG-FUNs.
184 (defstruct (debug-var (:constructor nil)
186 ;; the name of the variable
187 (symbol (missing-arg) :type symbol)
188 ;; a unique integer identification relative to other variables with the same
191 ;; Does the variable always have a valid value?
192 (alive-p nil :type boolean))
193 (def!method print-object ((debug-var debug-var) stream)
194 (print-unreadable-object (debug-var stream :type t :identity t)
197 (debug-var-symbol debug-var)
198 (debug-var-id debug-var))))
201 (setf (fdocumentation 'debug-var-id 'function)
202 "Return the integer that makes DEBUG-VAR's name and package unique
203 with respect to other DEBUG-VARs in the same function.")
205 (defstruct (compiled-debug-var
207 (:constructor make-compiled-debug-var
208 (symbol id alive-p sc-offset save-sc-offset))
210 ;; storage class and offset (unexported)
211 (sc-offset nil :type sb!c:sc-offset)
212 ;; storage class and offset when saved somewhere
213 (save-sc-offset nil :type (or sb!c:sc-offset null)))
217 ;;; These represent call frames on the stack.
218 (defstruct (frame (:constructor nil)
220 ;; the next frame up, or NIL when top frame
221 (up nil :type (or frame null))
222 ;; the previous frame down, or NIL when the bottom frame. Before
223 ;; computing the next frame down, this slot holds the frame pointer
224 ;; to the control stack for the given frame. This lets us get the
225 ;; next frame down and the return-pc for that frame.
226 (%down :unparsed :type (or frame (member nil :unparsed)))
227 ;; the DEBUG-FUN for the function whose call this frame represents
228 (debug-fun nil :type debug-fun)
229 ;; the CODE-LOCATION where the frame's DEBUG-FUN will continue
230 ;; running when program execution returns to this frame. If someone
231 ;; interrupted this frame, the result could be an unknown
233 (code-location nil :type code-location)
234 ;; an a-list of catch-tags to code-locations
235 (%catches :unparsed :type (or list (member :unparsed)))
236 ;; pointer to frame on control stack (unexported)
238 ;; This is the frame's number for prompt printing. Top is zero.
239 (number 0 :type index))
241 (defstruct (compiled-frame
243 (:constructor make-compiled-frame
244 (pointer up debug-fun code-location number
247 ;; This indicates whether someone interrupted the frame.
248 ;; (unexported). If escaped, this is a pointer to the state that was
249 ;; saved when we were interrupted, an os_context_t, i.e. the third
250 ;; argument to an SA_SIGACTION-style signal handler.
252 (def!method print-object ((obj compiled-frame) str)
253 (print-unreadable-object (obj str :type t)
255 "~S~:[~;, interrupted~]"
256 (debug-fun-name (frame-debug-fun obj))
257 (compiled-frame-escaped obj))))
261 ;;; These exist for caching data stored in packed binary form in
262 ;;; compiler DEBUG-FUNs. *COMPILED-DEBUG-FUNS* maps a SB!C::DEBUG-FUN
263 ;;; to a DEBUG-FUN. There should only be one DEBUG-FUN in existence
264 ;;; for any function; that is, all CODE-LOCATIONs and other objects
265 ;;; that reference DEBUG-FUNs point to unique objects. This is
266 ;;; due to the overhead in cached information.
267 (defstruct (debug-fun (:constructor nil)
269 ;; some representation of the function arguments. See
270 ;; DEBUG-FUN-LAMBDA-LIST.
271 ;; NOTE: must parse vars before parsing arg list stuff.
272 (%lambda-list :unparsed)
273 ;; cached DEBUG-VARS information (unexported).
274 ;; These are sorted by their name.
275 (%debug-vars :unparsed :type (or simple-vector null (member :unparsed)))
276 ;; cached debug-block information. This is NIL when we have tried to
277 ;; parse the packed binary info, but none is available.
278 (blocks :unparsed :type (or simple-vector null (member :unparsed)))
279 ;; the actual function if available
280 (%function :unparsed :type (or null function (member :unparsed))))
281 (def!method print-object ((obj debug-fun) stream)
282 (print-unreadable-object (obj stream :type t)
283 (prin1 (debug-fun-name obj) stream)))
285 (defstruct (compiled-debug-fun
287 (:constructor %make-compiled-debug-fun
288 (compiler-debug-fun component))
290 ;; compiler's dumped DEBUG-FUN information (unexported)
291 (compiler-debug-fun nil :type sb!c::compiled-debug-fun)
292 ;; code object (unexported).
294 ;; the :FUN-START breakpoint (if any) used to facilitate
295 ;; function end breakpoints
296 (end-starter nil :type (or null breakpoint)))
298 ;;; This maps SB!C::COMPILED-DEBUG-FUNs to
299 ;;; COMPILED-DEBUG-FUNs, so we can get at cached stuff and not
300 ;;; duplicate COMPILED-DEBUG-FUN structures.
301 (defvar *compiled-debug-funs* (make-hash-table :test 'eq))
303 ;;; Make a COMPILED-DEBUG-FUN for a SB!C::COMPILER-DEBUG-FUN
304 ;;; and its component. This maps the latter to the former in
305 ;;; *COMPILED-DEBUG-FUNS*. If there already is a
306 ;;; COMPILED-DEBUG-FUN, then this returns it from
307 ;;; *COMPILED-DEBUG-FUNS*.
308 (defun make-compiled-debug-fun (compiler-debug-fun component)
309 (or (gethash compiler-debug-fun *compiled-debug-funs*)
310 (setf (gethash compiler-debug-fun *compiled-debug-funs*)
311 (%make-compiled-debug-fun compiler-debug-fun component))))
313 (defstruct (bogus-debug-fun
315 (:constructor make-bogus-debug-fun
324 (defvar *ir1-lambda-debug-fun* (make-hash-table :test 'eq))
328 ;;; These exist for caching data stored in packed binary form in compiler
330 (defstruct (debug-block (:constructor nil)
332 ;; Code-locations where execution continues after this block.
333 (successors nil :type list)
334 ;; This indicates whether the block is a special glob of code shared
335 ;; by various functions and tucked away elsewhere in a component.
336 ;; This kind of block has no start code-location. This slot is in
337 ;; all debug-blocks since it is an exported interface.
338 (elsewhere-p nil :type boolean))
339 (def!method print-object ((obj debug-block) str)
340 (print-unreadable-object (obj str :type t)
341 (prin1 (debug-block-fun-name obj) str)))
344 (setf (fdocumentation 'debug-block-successors 'function)
345 "Return the list of possible code-locations where execution may continue
346 when the basic-block represented by debug-block completes its execution.")
349 (setf (fdocumentation 'debug-block-elsewhere-p 'function)
350 "Return whether debug-block represents elsewhere code.")
352 (defstruct (compiled-debug-block (:include debug-block)
354 make-compiled-debug-block
355 (code-locations successors elsewhere-p))
357 ;; code-location information for the block
358 (code-locations nil :type simple-vector))
360 (defvar *ir1-block-debug-block* (make-hash-table :test 'eq))
364 ;;; This is an internal structure that manages information about a
365 ;;; breakpoint locations. See *COMPONENT-BREAKPOINT-OFFSETS*.
366 (defstruct (breakpoint-data (:constructor make-breakpoint-data
369 ;; This is the component in which the breakpoint lies.
371 ;; This is the byte offset into the component.
372 (offset nil :type index)
373 ;; The original instruction replaced by the breakpoint.
374 (instruction nil :type (or null sb!vm::word))
375 ;; A list of user breakpoints at this location.
376 (breakpoints nil :type list))
377 (def!method print-object ((obj breakpoint-data) str)
378 (print-unreadable-object (obj str :type t)
379 (format str "~S at ~S"
381 (debug-fun-from-pc (breakpoint-data-component obj)
382 (breakpoint-data-offset obj)))
383 (breakpoint-data-offset obj))))
385 (defstruct (breakpoint (:constructor %make-breakpoint
386 (hook-fun what kind %info))
388 ;; This is the function invoked when execution encounters the
389 ;; breakpoint. It takes a frame, the breakpoint, and optionally a
390 ;; list of values. Values are supplied for :FUN-END breakpoints as
391 ;; values to return for the function containing the breakpoint.
392 ;; :FUN-END breakpoint hook functions also take a cookie argument.
393 ;; See the COOKIE-FUN slot.
394 (hook-fun (required-arg) :type function)
395 ;; CODE-LOCATION or DEBUG-FUN
396 (what nil :type (or code-location debug-fun))
397 ;; :CODE-LOCATION, :FUN-START, or :FUN-END for that kind
398 ;; of breakpoint. :UNKNOWN-RETURN-PARTNER if this is the partner of
399 ;; a :code-location breakpoint at an :UNKNOWN-RETURN code-location.
400 (kind nil :type (member :code-location :fun-start :fun-end
401 :unknown-return-partner))
402 ;; Status helps the user and the implementation.
403 (status :inactive :type (member :active :inactive :deleted))
404 ;; This is a backpointer to a breakpoint-data.
405 (internal-data nil :type (or null breakpoint-data))
406 ;; With code-locations whose type is :UNKNOWN-RETURN, there are
407 ;; really two breakpoints: one at the multiple-value entry point,
408 ;; and one at the single-value entry point. This slot holds the
409 ;; breakpoint for the other one, or NIL if this isn't at an
410 ;; :UNKNOWN-RETURN code location.
411 (unknown-return-partner nil :type (or null breakpoint))
412 ;; :FUN-END breakpoints use a breakpoint at the :FUN-START
413 ;; to establish the end breakpoint upon function entry. We do this
414 ;; by frobbing the LRA to jump to a special piece of code that
415 ;; breaks and provides the return values for the returnee. This slot
416 ;; points to the start breakpoint, so we can activate, deactivate,
418 (start-helper nil :type (or null breakpoint))
419 ;; This is a hook users supply to get a dynamically unique cookie
420 ;; for identifying :FUN-END breakpoint executions. That is, if
421 ;; there is one :FUN-END breakpoint, but there may be multiple
422 ;; pending calls of its function on the stack. This function takes
423 ;; the cookie, and the hook function takes the cookie too.
424 (cookie-fun nil :type (or null function))
425 ;; This slot users can set with whatever information they find useful.
427 (def!method print-object ((obj breakpoint) str)
428 (let ((what (breakpoint-what obj)))
429 (print-unreadable-object (obj str :type t)
434 (debug-fun (debug-fun-name what)))
437 (debug-fun (breakpoint-kind obj)))))))
441 (defstruct (code-location (:constructor nil)
443 ;; the DEBUG-FUN containing this CODE-LOCATION
444 (debug-fun nil :type debug-fun)
445 ;; This is initially :UNSURE. Upon first trying to access an
446 ;; :UNPARSED slot, if the data is unavailable, then this becomes T,
447 ;; and the code-location is unknown. If the data is available, this
448 ;; becomes NIL, a known location. We can't use a separate type
449 ;; code-location for this since we must return code-locations before
450 ;; we can tell whether they're known or unknown. For example, when
451 ;; parsing the stack, we don't want to unpack all the variables and
452 ;; blocks just to make frames.
453 (%unknown-p :unsure :type (member t nil :unsure))
454 ;; the DEBUG-BLOCK containing CODE-LOCATION. XXX Possibly toss this
455 ;; out and just find it in the blocks cache in DEBUG-FUN.
456 (%debug-block :unparsed :type (or debug-block (member :unparsed)))
457 ;; This is the number of forms processed by the compiler or loader
458 ;; before the top level form containing this code-location.
459 (%tlf-offset :unparsed :type (or index (member :unparsed)))
460 ;; This is the depth-first number of the node that begins
461 ;; code-location within its top level form.
462 (%form-number :unparsed :type (or index (member :unparsed))))
463 (def!method print-object ((obj code-location) str)
464 (print-unreadable-object (obj str :type t)
465 (prin1 (debug-fun-name (code-location-debug-fun obj))
468 (defstruct (compiled-code-location
469 (:include code-location)
470 (:constructor make-known-code-location
471 (pc debug-fun %tlf-offset %form-number
472 %live-set kind &aux (%unknown-p nil)))
473 (:constructor make-compiled-code-location (pc debug-fun))
475 ;; an index into DEBUG-FUN's component slot
477 ;; a bit-vector indexed by a variable's position in
478 ;; DEBUG-FUN-DEBUG-VARS indicating whether the variable has a
479 ;; valid value at this code-location. (unexported).
480 (%live-set :unparsed :type (or simple-bit-vector (member :unparsed)))
481 ;; (unexported) To see SB!C::LOCATION-KIND, do
482 ;; (SB!KERNEL:TYPE-EXPAND 'SB!C::LOCATION-KIND).
483 (kind :unparsed :type (or (member :unparsed) sb!c::location-kind)))
487 ;;; Return the number of top level forms processed by the compiler
488 ;;; before compiling this source. If this source is uncompiled, this
489 ;;; is zero. This may be zero even if the source is compiled since the
490 ;;; first form in the first file compiled in one compilation, for
491 ;;; example, must have a root number of zero -- the compiler saw no
492 ;;; other top level forms before it.
493 (defun debug-source-root-number (debug-source)
494 (sb!c::debug-source-source-root debug-source))
498 ;;; This is used in FIND-ESCAPED-FRAME and with the bogus components
499 ;;; and LRAs used for :FUN-END breakpoints. When a component's
500 ;;; debug-info slot is :BOGUS-LRA, then the REAL-LRA-SLOT contains the
501 ;;; real component to continue executing, as opposed to the bogus
502 ;;; component which appeared in some frame's LRA location.
503 (defconstant real-lra-slot sb!vm:code-constants-offset)
505 ;;; These are magically converted by the compiler.
506 (defun current-sp () (current-sp))
507 (defun current-fp () (current-fp))
508 (defun stack-ref (s n) (stack-ref s n))
509 (defun %set-stack-ref (s n value) (%set-stack-ref s n value))
510 (defun fun-code-header (fun) (fun-code-header fun))
511 (defun lra-code-header (lra) (lra-code-header lra))
512 (defun make-lisp-obj (value) (make-lisp-obj value))
513 (defun get-lisp-obj-address (thing) (get-lisp-obj-address thing))
514 (defun fun-word-offset (fun) (fun-word-offset fun))
516 #!-sb-fluid (declaim (inline control-stack-pointer-valid-p))
517 (defun control-stack-pointer-valid-p (x)
518 (declare (type system-area-pointer x))
519 (let* (#!-stack-grows-downward-not-upward
521 (descriptor-sap *control-stack-start*))
522 #!+stack-grows-downward-not-upward
524 (descriptor-sap *control-stack-end*)))
525 #!-stack-grows-downward-not-upward
526 (and (sap< x (current-sp))
527 (sap<= control-stack-start x)
528 (zerop (logand (sap-int x) #b11)))
529 #!+stack-grows-downward-not-upward
530 (and (sap>= x (current-sp))
531 (sap> control-stack-end x)
532 (zerop (logand (sap-int x) #b11)))))
534 (sb!alien:define-alien-routine component-ptr-from-pc (system-area-pointer)
535 (pc system-area-pointer))
537 (defun component-from-component-ptr (component-ptr)
538 (declare (type system-area-pointer component-ptr))
539 (make-lisp-obj (logior (sap-int component-ptr)
540 sb!vm:other-pointer-lowtag)))
542 ;;;; (OR X86 X86-64) support
547 (defun compute-lra-data-from-pc (pc)
548 (declare (type system-area-pointer pc))
549 (let ((component-ptr (component-ptr-from-pc pc)))
550 (unless (sap= component-ptr (int-sap #x0))
551 (let* ((code (component-from-component-ptr component-ptr))
552 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes))
553 (pc-offset (- (sap-int pc)
554 (- (get-lisp-obj-address code)
555 sb!vm:other-pointer-lowtag)
557 ; (format t "c-lra-fpc ~A ~A ~A~%" pc code pc-offset)
558 (values pc-offset code)))))
560 (defconstant sb!vm::nargs-offset #.sb!vm::ecx-offset)
562 ;;; Check for a valid return address - it could be any valid C/Lisp
565 ;;; XXX Could be a little smarter.
566 #!-sb-fluid (declaim (inline ra-pointer-valid-p))
567 (defun ra-pointer-valid-p (ra)
568 (declare (type system-area-pointer ra))
570 ;; not the first page (which is unmapped)
572 ;; FIXME: Where is this documented? Is it really true of every CPU
573 ;; architecture? Is it even necessarily true in current SBCL?
574 (>= (sap-int ra) 4096)
575 ;; not a Lisp stack pointer
576 (not (control-stack-pointer-valid-p ra))))
578 ;;; Try to find a valid previous stack. This is complex on the x86 as
579 ;;; it can jump between C and Lisp frames. To help find a valid frame
580 ;;; it searches backwards.
582 ;;; XXX Should probably check whether it has reached the bottom of the
585 ;;; XXX Should handle interrupted frames, both Lisp and C. At present
586 ;;; it manages to find a fp trail, see linux hack below.
587 (defun x86-call-context (fp &key (depth 0))
588 (declare (type system-area-pointer fp)
590 ;; (format t "*CC ~S ~S~%" fp depth)
592 ((not (control-stack-pointer-valid-p fp))
593 #+nil (format t "debug invalid fp ~S~%" fp)
596 ;; Check the two possible frame pointers.
597 (let ((lisp-ocfp (sap-ref-sap fp (- (* (1+ ocfp-save-offset)
598 sb!vm::n-word-bytes))))
599 (lisp-ra (sap-ref-sap fp (- (* (1+ return-pc-save-offset)
600 sb!vm::n-word-bytes))))
601 (c-ocfp (sap-ref-sap fp (* 0 sb!vm:n-word-bytes)))
602 (c-ra (sap-ref-sap fp (* 1 sb!vm:n-word-bytes))))
603 #+nil (format t " lisp-ocfp=~S~% lisp-ra=~S~% c-ocfp=~S~% c-ra=~S~%"
604 lisp-ocfp lisp-ra c-ocfp c-ra)
605 (cond ((and (sap> lisp-ocfp fp) (control-stack-pointer-valid-p lisp-ocfp)
606 (ra-pointer-valid-p lisp-ra)
607 (sap> c-ocfp fp) (control-stack-pointer-valid-p c-ocfp)
608 (ra-pointer-valid-p c-ra))
610 "*C Both valid ~S ~S ~S ~S~%"
611 lisp-ocfp lisp-ra c-ocfp c-ra)
612 ;; Look forward another step to check their validity.
613 (let ((lisp-path-fp (x86-call-context lisp-ocfp
615 (c-path-fp (x86-call-context c-ocfp :depth (1+ depth))))
616 (cond ((and lisp-path-fp c-path-fp)
617 ;; Both still seem valid - choose the lisp frame.
618 #+nil (when (zerop depth)
620 "debug: both still valid ~S ~S ~S ~S~%"
621 lisp-ocfp lisp-ra c-ocfp c-ra))
623 (if (sap> lisp-ocfp c-ocfp)
624 (values lisp-ra lisp-ocfp)
625 (values c-ra c-ocfp))
627 (values lisp-ra lisp-ocfp))
629 ;; The lisp convention is looking good.
630 #+nil (format t "*C lisp-ocfp ~S ~S~%" lisp-ocfp lisp-ra)
631 (values lisp-ra lisp-ocfp))
633 ;; The C convention is looking good.
634 #+nil (format t "*C c-ocfp ~S ~S~%" c-ocfp c-ra)
635 (values c-ra c-ocfp))
637 ;; Neither seems right?
638 #+nil (format t "debug: no valid2 fp found ~S ~S~%"
641 ((and (sap> lisp-ocfp fp) (control-stack-pointer-valid-p lisp-ocfp)
642 (ra-pointer-valid-p lisp-ra))
643 ;; The lisp convention is looking good.
644 #+nil (format t "*C lisp-ocfp ~S ~S~%" lisp-ocfp lisp-ra)
645 (values lisp-ra lisp-ocfp))
646 ((and (sap> c-ocfp fp) (control-stack-pointer-valid-p c-ocfp)
647 #!-linux (ra-pointer-valid-p c-ra))
648 ;; The C convention is looking good.
649 #+nil (format t "*C c-ocfp ~S ~S~%" c-ocfp c-ra)
650 (values c-ra c-ocfp))
652 #+nil (format t "debug: no valid fp found ~S ~S~%"
658 ;;; Convert the descriptor into a SAP. The bits all stay the same, we just
659 ;;; change our notion of what we think they are.
660 #!-sb-fluid (declaim (inline descriptor-sap))
661 (defun descriptor-sap (x)
662 (int-sap (get-lisp-obj-address x)))
664 ;;; Return the top frame of the control stack as it was before calling
667 (/noshow0 "entering TOP-FRAME")
668 (multiple-value-bind (fp pc) (%caller-frame-and-pc)
669 (compute-calling-frame (descriptor-sap fp) pc nil)))
671 ;;; Flush all of the frames above FRAME, and renumber all the frames
673 (defun flush-frames-above (frame)
674 (setf (frame-up frame) nil)
675 (do ((number 0 (1+ number))
676 (frame frame (frame-%down frame)))
677 ((not (frame-p frame)))
678 (setf (frame-number frame) number)))
680 ;;; Return the frame immediately below FRAME on the stack; or when
681 ;;; FRAME is the bottom of the stack, return NIL.
682 (defun frame-down (frame)
683 (/noshow0 "entering FRAME-DOWN")
684 ;; We have to access the old-fp and return-pc out of frame and pass
685 ;; them to COMPUTE-CALLING-FRAME.
686 (let ((down (frame-%down frame)))
687 (if (eq down :unparsed)
688 (let ((debug-fun (frame-debug-fun frame)))
689 (/noshow0 "in DOWN :UNPARSED case")
690 (setf (frame-%down frame)
693 (let ((c-d-f (compiled-debug-fun-compiler-debug-fun
695 (compute-calling-frame
698 frame ocfp-save-offset
699 (sb!c::compiled-debug-fun-old-fp c-d-f)))
701 frame lra-save-offset
702 (sb!c::compiled-debug-fun-return-pc c-d-f))
705 (let ((fp (frame-pointer frame)))
706 (when (control-stack-pointer-valid-p fp)
708 (multiple-value-bind (ra ofp) (x86-call-context fp)
709 (and ra (compute-calling-frame ofp ra frame)))
711 (compute-calling-frame
713 (sap-ref-sap fp (* ocfp-save-offset
717 (sap-ref-32 fp (* ocfp-save-offset
718 sb!vm:n-word-bytes)))
720 (stack-ref fp lra-save-offset)
725 ;;; Get the old FP or return PC out of FRAME. STACK-SLOT is the
726 ;;; standard save location offset on the stack. LOC is the saved
727 ;;; SC-OFFSET describing the main location.
728 (defun get-context-value (frame stack-slot loc)
729 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
730 (type sb!c:sc-offset loc))
731 (let ((pointer (frame-pointer frame))
732 (escaped (compiled-frame-escaped frame)))
734 (sub-access-debug-var-slot pointer loc escaped)
736 (stack-ref pointer stack-slot)
740 (stack-ref pointer stack-slot))
742 (sap-ref-sap pointer (- (* (1+ stack-slot)
743 sb!vm::n-word-bytes))))))))
745 (defun (setf get-context-value) (value frame stack-slot loc)
746 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
747 (type sb!c:sc-offset loc))
748 (let ((pointer (frame-pointer frame))
749 (escaped (compiled-frame-escaped frame)))
751 (sub-set-debug-var-slot pointer loc value escaped)
753 (setf (stack-ref pointer stack-slot) value)
757 (setf (stack-ref pointer stack-slot) value))
759 (setf (sap-ref-sap pointer (- (* (1+ stack-slot)
760 sb!vm::n-word-bytes))) value))))))
762 (defun foreign-function-backtrace-name (sap)
763 (let ((name (sap-foreign-symbol sap)))
765 (format nil "foreign function: ~A" name)
766 (format nil "foreign function: #x~X" (sap-int sap)))))
768 ;;; This returns a frame for the one existing in time immediately
769 ;;; prior to the frame referenced by current-fp. This is current-fp's
770 ;;; caller or the next frame down the control stack. If there is no
771 ;;; down frame, this returns NIL for the bottom of the stack. UP-FRAME
772 ;;; is the up link for the resulting frame object, and it is null when
773 ;;; we call this to get the top of the stack.
775 ;;; The current frame contains the pointer to the temporally previous
776 ;;; frame we want, and the current frame contains the pc at which we
777 ;;; will continue executing upon returning to that previous frame.
779 ;;; Note: Sometimes LRA is actually a fixnum. This happens when lisp
780 ;;; calls into C. In this case, the code object is stored on the stack
781 ;;; after the LRA, and the LRA is the word offset.
783 (defun compute-calling-frame (caller lra up-frame)
784 (declare (type system-area-pointer caller))
785 (when (control-stack-pointer-valid-p caller)
786 (multiple-value-bind (code pc-offset escaped)
788 (multiple-value-bind (word-offset code)
790 (let ((fp (frame-pointer up-frame)))
792 (stack-ref fp (1+ lra-save-offset))))
793 (values (get-header-data lra)
794 (lra-code-header lra)))
797 (* (1+ (- word-offset (get-header-data code)))
800 (values :foreign-function
803 (find-escaped-frame caller))
804 (if (and (code-component-p code)
805 (eq (%code-debug-info code) :bogus-lra))
806 (let ((real-lra (code-header-ref code real-lra-slot)))
807 (compute-calling-frame caller real-lra up-frame))
808 (let ((d-fun (case code
810 (make-bogus-debug-fun
811 "undefined function"))
813 (make-bogus-debug-fun
814 (foreign-function-backtrace-name
815 (int-sap (get-lisp-obj-address lra)))))
817 (make-bogus-debug-fun
818 "bogus stack frame"))
820 (debug-fun-from-pc code pc-offset)))))
821 (make-compiled-frame caller up-frame d-fun
822 (code-location-from-pc d-fun pc-offset
824 (if up-frame (1+ (frame-number up-frame)) 0)
828 (defun compute-calling-frame (caller ra up-frame)
829 (declare (type system-area-pointer caller ra))
830 (/noshow0 "entering COMPUTE-CALLING-FRAME")
831 (when (control-stack-pointer-valid-p caller)
833 ;; First check for an escaped frame.
834 (multiple-value-bind (code pc-offset escaped) (find-escaped-frame caller)
837 ;; If it's escaped it may be a function end breakpoint trap.
838 (when (and (code-component-p code)
839 (eq (%code-debug-info code) :bogus-lra))
840 ;; If :bogus-lra grab the real lra.
841 (setq pc-offset (code-header-ref
842 code (1+ real-lra-slot)))
843 (setq code (code-header-ref code real-lra-slot))
846 (multiple-value-setq (pc-offset code)
847 (compute-lra-data-from-pc ra))
849 (setf code :foreign-function
851 (let ((d-fun (case code
853 (make-bogus-debug-fun
854 "undefined function"))
856 (make-bogus-debug-fun
857 (foreign-function-backtrace-name ra)))
859 (make-bogus-debug-fun
860 "bogus stack frame"))
862 (debug-fun-from-pc code pc-offset)))))
863 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
864 (make-compiled-frame caller up-frame d-fun
865 (code-location-from-pc d-fun pc-offset
867 (if up-frame (1+ (frame-number up-frame)) 0)
870 (defun nth-interrupt-context (n)
871 (declare (type (unsigned-byte 32) n)
872 (optimize (speed 3) (safety 0)))
873 (sb!alien:sap-alien (sb!vm::current-thread-offset-sap
874 (+ sb!vm::thread-interrupt-contexts-offset n))
878 (defun find-escaped-frame (frame-pointer)
879 (declare (type system-area-pointer frame-pointer))
880 (/noshow0 "entering FIND-ESCAPED-FRAME")
881 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
882 (/noshow0 "at head of WITH-ALIEN")
883 (let ((context (nth-interrupt-context index)))
884 (/noshow0 "got CONTEXT")
885 (when (= (sap-int frame-pointer)
886 (sb!vm:context-register context sb!vm::cfp-offset))
888 (/noshow0 "in WITHOUT-GCING")
889 (let* ((component-ptr (component-ptr-from-pc
890 (sb!vm:context-pc context)))
891 (code (unless (sap= component-ptr (int-sap #x0))
892 (component-from-component-ptr component-ptr))))
893 (/noshow0 "got CODE")
895 (return (values code 0 context)))
896 (let* ((code-header-len (* (get-header-data code)
899 (- (sap-int (sb!vm:context-pc context))
900 (- (get-lisp-obj-address code)
901 sb!vm:other-pointer-lowtag)
903 (/noshow "got PC-OFFSET")
904 (unless (<= 0 pc-offset
905 (* (code-header-ref code sb!vm:code-code-size-slot)
907 ;; We were in an assembly routine. Therefore, use the
910 ;; FIXME: Should this be WARN or ERROR or what?
911 (format t "** pc-offset ~S not in code obj ~S?~%"
913 (/noshow0 "returning from FIND-ESCAPED-FRAME")
915 (values code pc-offset context)))))))))
918 (defun find-escaped-frame (frame-pointer)
919 (declare (type system-area-pointer frame-pointer))
920 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
921 (let ((scp (nth-interrupt-context index)))
922 (when (= (sap-int frame-pointer)
923 (sb!vm:context-register scp sb!vm::cfp-offset))
925 (let ((code (code-object-from-bits
926 (sb!vm:context-register scp sb!vm::code-offset))))
928 (return (values code 0 scp)))
929 (let* ((code-header-len (* (get-header-data code)
932 (- (sap-int (sb!vm:context-pc scp))
933 (- (get-lisp-obj-address code)
934 sb!vm:other-pointer-lowtag)
936 (let ((code-size (* (code-header-ref code
937 sb!vm:code-code-size-slot)
938 sb!vm:n-word-bytes)))
939 (unless (<= 0 pc-offset code-size)
940 ;; We were in an assembly routine.
941 (multiple-value-bind (new-pc-offset computed-return)
942 (find-pc-from-assembly-fun code scp)
943 (setf pc-offset new-pc-offset)
944 (unless (<= 0 pc-offset code-size)
946 "Set PC-OFFSET to zero and continue backtrace."
949 "~@<PC-OFFSET (~D) not in code object. Frame details:~
950 ~2I~:@_PC: #X~X~:@_CODE: ~S~:@_CODE FUN: ~S~:@_LRA: ~
951 #X~X~:@_COMPUTED RETURN: #X~X.~:>"
954 (sap-int (sb!vm:context-pc scp))
956 (%code-entry-points code)
957 (sb!vm:context-register scp sb!vm::lra-offset)
959 ;; We failed to pinpoint where PC is, but set
960 ;; pc-offset to 0 to keep the backtrace from
962 (setf pc-offset 0)))))
964 (if (eq (%code-debug-info code) :bogus-lra)
965 (let ((real-lra (code-header-ref code
967 (values (lra-code-header real-lra)
968 (get-header-data real-lra)
970 (values code pc-offset scp))))))))))
973 (defun find-pc-from-assembly-fun (code scp)
974 "Finds the PC for the return from an assembly routine properly.
975 For some architectures (such as PPC) this will not be the $LRA
977 (let ((return-machine-address (sb!vm::return-machine-address scp))
978 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes)))
979 (values (- return-machine-address
980 (- (get-lisp-obj-address code)
981 sb!vm:other-pointer-lowtag)
983 return-machine-address)))
985 ;;; Find the code object corresponding to the object represented by
986 ;;; bits and return it. We assume bogus functions correspond to the
987 ;;; undefined-function.
989 (defun code-object-from-bits (bits)
990 (declare (type (unsigned-byte 32) bits))
991 (let ((object (make-lisp-obj bits)))
992 (if (functionp object)
993 (or (fun-code-header object)
995 (let ((lowtag (lowtag-of object)))
996 (when (= lowtag sb!vm:other-pointer-lowtag)
997 (let ((widetag (widetag-of object)))
998 (cond ((= widetag sb!vm:code-header-widetag)
1000 ((= widetag sb!vm:return-pc-header-widetag)
1001 (lra-code-header object))
1005 ;;;; frame utilities
1007 ;;; This returns a COMPILED-DEBUG-FUN for COMPONENT and PC. We fetch the
1008 ;;; SB!C::DEBUG-INFO and run down its FUN-MAP to get a
1009 ;;; SB!C::COMPILED-DEBUG-FUN from the PC. The result only needs to
1010 ;;; reference the COMPONENT, for function constants, and the
1011 ;;; SB!C::COMPILED-DEBUG-FUN.
1012 (defun debug-fun-from-pc (component pc)
1013 (let ((info (%code-debug-info component)))
1016 ;; FIXME: It seems that most of these (at least on x86) are
1017 ;; actually assembler routines, and could be named by looking
1018 ;; at the sb-fasl:*assembler-routines*.
1019 (make-bogus-debug-fun "no debug information for frame"))
1020 ((eq info :bogus-lra)
1021 (make-bogus-debug-fun "function end breakpoint"))
1023 (let* ((fun-map (sb!c::compiled-debug-info-fun-map info))
1024 (len (length fun-map)))
1025 (declare (type simple-vector fun-map))
1027 (make-compiled-debug-fun (svref fun-map 0) component)
1030 (>= pc (sb!c::compiled-debug-fun-elsewhere-pc
1031 (svref fun-map 0)))))
1032 (declare (type sb!int:index i))
1035 (< pc (if elsewhere-p
1036 (sb!c::compiled-debug-fun-elsewhere-pc
1037 (svref fun-map (1+ i)))
1038 (svref fun-map i))))
1039 (return (make-compiled-debug-fun
1040 (svref fun-map (1- i))
1044 ;;; This returns a code-location for the COMPILED-DEBUG-FUN,
1045 ;;; DEBUG-FUN, and the pc into its code vector. If we stopped at a
1046 ;;; breakpoint, find the CODE-LOCATION for that breakpoint. Otherwise,
1047 ;;; make an :UNSURE code location, so it can be filled in when we
1048 ;;; figure out what is going on.
1049 (defun code-location-from-pc (debug-fun pc escaped)
1050 (or (and (compiled-debug-fun-p debug-fun)
1052 (let ((data (breakpoint-data
1053 (compiled-debug-fun-component debug-fun)
1055 (when (and data (breakpoint-data-breakpoints data))
1056 (let ((what (breakpoint-what
1057 (first (breakpoint-data-breakpoints data)))))
1058 (when (compiled-code-location-p what)
1060 (make-compiled-code-location pc debug-fun)))
1062 ;;; Return an alist mapping catch tags to CODE-LOCATIONs. These are
1063 ;;; CODE-LOCATIONs at which execution would continue with frame as the
1064 ;;; top frame if someone threw to the corresponding tag.
1065 (defun frame-catches (frame)
1066 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1067 (reversed-result nil)
1068 (fp (frame-pointer frame)))
1069 (loop until (zerop (sap-int catch))
1070 finally (return (nreverse reversed-result))
1075 (* sb!vm:catch-block-current-cont-slot
1076 sb!vm:n-word-bytes))
1080 (* sb!vm:catch-block-current-cont-slot
1081 sb!vm:n-word-bytes))))
1082 (let* (#!-(or x86 x86-64)
1083 (lra (stack-ref catch sb!vm:catch-block-entry-pc-slot))
1086 catch (* sb!vm:catch-block-entry-pc-slot
1087 sb!vm:n-word-bytes)))
1090 (stack-ref catch sb!vm:catch-block-current-code-slot))
1092 (component (component-from-component-ptr
1093 (component-ptr-from-pc ra)))
1096 (* (- (1+ (get-header-data lra))
1097 (get-header-data component))
1101 (- (get-lisp-obj-address component)
1102 sb!vm:other-pointer-lowtag)
1103 (* (get-header-data component) sb!vm:n-word-bytes))))
1104 (push (cons #!-(or x86 x86-64)
1105 (stack-ref catch sb!vm:catch-block-tag-slot)
1108 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1109 sb!vm:n-word-bytes)))
1110 (make-compiled-code-location
1111 offset (frame-debug-fun frame)))
1116 (* sb!vm:catch-block-previous-catch-slot
1117 sb!vm:n-word-bytes))
1121 (* sb!vm:catch-block-previous-catch-slot
1122 sb!vm:n-word-bytes)))))))
1124 ;;;; operations on DEBUG-FUNs
1126 ;;; Execute the forms in a context with BLOCK-VAR bound to each
1127 ;;; DEBUG-BLOCK in DEBUG-FUN successively. Result is an optional
1128 ;;; form to execute for return values, and DO-DEBUG-FUN-BLOCKS
1129 ;;; returns nil if there is no result form. This signals a
1130 ;;; NO-DEBUG-BLOCKS condition when the DEBUG-FUN lacks
1131 ;;; DEBUG-BLOCK information.
1132 (defmacro do-debug-fun-blocks ((block-var debug-fun &optional result)
1134 (let ((blocks (gensym))
1136 `(let ((,blocks (debug-fun-debug-blocks ,debug-fun)))
1137 (declare (simple-vector ,blocks))
1138 (dotimes (,i (length ,blocks) ,result)
1139 (let ((,block-var (svref ,blocks ,i)))
1142 ;;; Execute body in a context with VAR bound to each DEBUG-VAR in
1143 ;;; DEBUG-FUN. This returns the value of executing result (defaults to
1144 ;;; nil). This may iterate over only some of DEBUG-FUN's variables or
1145 ;;; none depending on debug policy; for example, possibly the
1146 ;;; compilation only preserved argument information.
1147 (defmacro do-debug-fun-vars ((var debug-fun &optional result) &body body)
1148 (let ((vars (gensym))
1150 `(let ((,vars (debug-fun-debug-vars ,debug-fun)))
1151 (declare (type (or null simple-vector) ,vars))
1153 (dotimes (,i (length ,vars) ,result)
1154 (let ((,var (svref ,vars ,i)))
1158 ;;; Return the object of type FUNCTION associated with the DEBUG-FUN,
1159 ;;; or NIL if the function is unavailable or is non-existent as a user
1160 ;;; callable function object.
1161 (defun debug-fun-fun (debug-fun)
1162 (let ((cached-value (debug-fun-%function debug-fun)))
1163 (if (eq cached-value :unparsed)
1164 (setf (debug-fun-%function debug-fun)
1165 (etypecase debug-fun
1168 (compiled-debug-fun-component debug-fun))
1170 (sb!c::compiled-debug-fun-start-pc
1171 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1172 (do ((entry (%code-entry-points component)
1173 (%simple-fun-next entry)))
1176 (sb!c::compiled-debug-fun-start-pc
1177 (compiled-debug-fun-compiler-debug-fun
1178 (fun-debug-fun entry))))
1180 (bogus-debug-fun nil)))
1183 ;;; Return the name of the function represented by DEBUG-FUN. This may
1184 ;;; be a string or a cons; do not assume it is a symbol.
1185 (defun debug-fun-name (debug-fun)
1186 (declare (type debug-fun debug-fun))
1187 (etypecase debug-fun
1189 (sb!c::compiled-debug-fun-name
1190 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1192 (bogus-debug-fun-%name debug-fun))))
1194 ;;; Return a DEBUG-FUN that represents debug information for FUN.
1195 (defun fun-debug-fun (fun)
1196 (declare (type function fun))
1197 (ecase (widetag-of fun)
1198 (#.sb!vm:closure-header-widetag
1199 (fun-debug-fun (%closure-fun fun)))
1200 (#.sb!vm:funcallable-instance-header-widetag
1201 (fun-debug-fun (funcallable-instance-fun fun)))
1202 (#.sb!vm:simple-fun-header-widetag
1203 (let* ((name (%simple-fun-name fun))
1204 (component (fun-code-header fun))
1207 (and (sb!c::compiled-debug-fun-p x)
1208 (eq (sb!c::compiled-debug-fun-name x) name)
1209 (eq (sb!c::compiled-debug-fun-kind x) nil)))
1210 (sb!c::compiled-debug-info-fun-map
1211 (%code-debug-info component)))))
1213 (make-compiled-debug-fun res component)
1214 ;; KLUDGE: comment from CMU CL:
1215 ;; This used to be the non-interpreted branch, but
1216 ;; William wrote it to return the debug-fun of fun's XEP
1217 ;; instead of fun's debug-fun. The above code does this
1218 ;; more correctly, but it doesn't get or eliminate all
1219 ;; appropriate cases. It mostly works, and probably
1220 ;; works for all named functions anyway.
1222 (debug-fun-from-pc component
1223 (* (- (fun-word-offset fun)
1224 (get-header-data component))
1225 sb!vm:n-word-bytes)))))))
1227 ;;; Return the kind of the function, which is one of :OPTIONAL,
1228 ;;; :EXTERNAL, :TOPLEVEL, :CLEANUP, or NIL.
1229 (defun debug-fun-kind (debug-fun)
1230 ;; FIXME: This "is one of" information should become part of the function
1231 ;; declamation, not just a doc string
1232 (etypecase debug-fun
1234 (sb!c::compiled-debug-fun-kind
1235 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1239 ;;; Is there any variable information for DEBUG-FUN?
1240 (defun debug-var-info-available (debug-fun)
1241 (not (not (debug-fun-debug-vars debug-fun))))
1243 ;;; Return a list of DEBUG-VARs in DEBUG-FUN having the same name
1244 ;;; and package as SYMBOL. If SYMBOL is uninterned, then this returns
1245 ;;; a list of DEBUG-VARs without package names and with the same name
1246 ;;; as symbol. The result of this function is limited to the
1247 ;;; availability of variable information in DEBUG-FUN; for
1248 ;;; example, possibly DEBUG-FUN only knows about its arguments.
1249 (defun debug-fun-symbol-vars (debug-fun symbol)
1250 (let ((vars (ambiguous-debug-vars debug-fun (symbol-name symbol)))
1251 (package (and (symbol-package symbol)
1252 (package-name (symbol-package symbol)))))
1253 (delete-if (if (stringp package)
1255 (let ((p (debug-var-package-name var)))
1256 (or (not (stringp p))
1257 (string/= p package))))
1259 (stringp (debug-var-package-name var))))
1262 ;;; Return a list of DEBUG-VARs in DEBUG-FUN whose names contain
1263 ;;; NAME-PREFIX-STRING as an initial substring. The result of this
1264 ;;; function is limited to the availability of variable information in
1265 ;;; debug-fun; for example, possibly debug-fun only knows
1266 ;;; about its arguments.
1267 (defun ambiguous-debug-vars (debug-fun name-prefix-string)
1268 (declare (simple-string name-prefix-string))
1269 (let ((variables (debug-fun-debug-vars debug-fun)))
1270 (declare (type (or null simple-vector) variables))
1272 (let* ((len (length variables))
1273 (prefix-len (length name-prefix-string))
1274 (pos (find-var name-prefix-string variables len))
1277 ;; Find names from pos to variable's len that contain prefix.
1278 (do ((i pos (1+ i)))
1280 (let* ((var (svref variables i))
1281 (name (debug-var-symbol-name var))
1282 (name-len (length name)))
1283 (declare (simple-string name))
1284 (when (/= (or (string/= name-prefix-string name
1285 :end1 prefix-len :end2 name-len)
1290 (setq res (nreverse res)))
1293 ;;; This returns a position in VARIABLES for one containing NAME as an
1294 ;;; initial substring. END is the length of VARIABLES if supplied.
1295 (defun find-var (name variables &optional end)
1296 (declare (simple-vector variables)
1297 (simple-string name))
1298 (let ((name-len (length name)))
1299 (position name variables
1301 (let* ((y (debug-var-symbol-name y))
1303 (declare (simple-string y))
1304 (and (>= y-len name-len)
1305 (string= x y :end1 name-len :end2 name-len))))
1306 :end (or end (length variables)))))
1308 ;;; Return a list representing the lambda-list for DEBUG-FUN. The
1309 ;;; list has the following structure:
1310 ;;; (required-var1 required-var2
1312 ;;; (:optional var3 suppliedp-var4)
1313 ;;; (:optional var5)
1315 ;;; (:rest var6) (:rest var7)
1317 ;;; (:keyword keyword-symbol var8 suppliedp-var9)
1318 ;;; (:keyword keyword-symbol var10)
1321 ;;; Each VARi is a DEBUG-VAR; however it may be the symbol :DELETED if
1322 ;;; it is unreferenced in DEBUG-FUN. This signals a
1323 ;;; LAMBDA-LIST-UNAVAILABLE condition when there is no argument list
1325 (defun debug-fun-lambda-list (debug-fun)
1326 (etypecase debug-fun
1327 (compiled-debug-fun (compiled-debug-fun-lambda-list debug-fun))
1328 (bogus-debug-fun nil)))
1330 ;;; Note: If this has to compute the lambda list, it caches it in DEBUG-FUN.
1331 (defun compiled-debug-fun-lambda-list (debug-fun)
1332 (let ((lambda-list (debug-fun-%lambda-list debug-fun)))
1333 (cond ((eq lambda-list :unparsed)
1334 (multiple-value-bind (args argsp)
1335 (parse-compiled-debug-fun-lambda-list debug-fun)
1336 (setf (debug-fun-%lambda-list debug-fun) args)
1339 (debug-signal 'lambda-list-unavailable
1340 :debug-fun debug-fun))))
1342 ((bogus-debug-fun-p debug-fun)
1344 ((sb!c::compiled-debug-fun-arguments
1345 (compiled-debug-fun-compiler-debug-fun debug-fun))
1346 ;; If the packed information is there (whether empty or not) as
1347 ;; opposed to being nil, then returned our cached value (nil).
1350 ;; Our cached value is nil, and the packed lambda-list information
1351 ;; is nil, so we don't have anything available.
1352 (debug-signal 'lambda-list-unavailable
1353 :debug-fun debug-fun)))))
1355 ;;; COMPILED-DEBUG-FUN-LAMBDA-LIST calls this when a
1356 ;;; COMPILED-DEBUG-FUN has no lambda list information cached. It
1357 ;;; returns the lambda list as the first value and whether there was
1358 ;;; any argument information as the second value. Therefore,
1359 ;;; (VALUES NIL T) means there were no arguments, but (VALUES NIL NIL)
1360 ;;; means there was no argument information.
1361 (defun parse-compiled-debug-fun-lambda-list (debug-fun)
1362 (let ((args (sb!c::compiled-debug-fun-arguments
1363 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1368 (values (coerce (debug-fun-debug-vars debug-fun) 'list)
1371 (let ((vars (debug-fun-debug-vars debug-fun))
1376 (declare (type (or null simple-vector) vars))
1378 (when (>= i len) (return))
1379 (let ((ele (aref args i)))
1384 ;; Deleted required arg at beginning of args array.
1385 (push :deleted res))
1386 (sb!c::optional-args
1389 ;; SUPPLIED-P var immediately following keyword or
1390 ;; optional. Stick the extra var in the result
1391 ;; element representing the keyword or optional,
1392 ;; which is the previous one.
1394 ;; FIXME: NCONC used for side-effect: the effect is defined,
1395 ;; but this is bad style no matter what.
1397 (list (compiled-debug-fun-lambda-list-var
1398 args (incf i) vars))))
1401 (compiled-debug-fun-lambda-list-var
1402 args (incf i) vars))
1405 ;; Just ignore the fact that the next two args are
1406 ;; the &MORE arg context and count, and act like they
1407 ;; are regular arguments.
1411 (push (list :keyword
1413 (compiled-debug-fun-lambda-list-var
1414 args (incf i) vars))
1417 ;; We saw an optional marker, so the following
1418 ;; non-symbols are indexes indicating optional
1420 (push (list :optional (svref vars ele)) res))
1422 ;; Required arg at beginning of args array.
1423 (push (svref vars ele) res))))
1425 (values (nreverse res) t))))))
1427 ;;; This is used in COMPILED-DEBUG-FUN-LAMBDA-LIST.
1428 (defun compiled-debug-fun-lambda-list-var (args i vars)
1429 (declare (type (simple-array * (*)) args)
1430 (simple-vector vars))
1431 (let ((ele (aref args i)))
1432 (cond ((not (symbolp ele)) (svref vars ele))
1433 ((eq ele 'sb!c::deleted) :deleted)
1434 (t (error "malformed arguments description")))))
1436 (defun compiled-debug-fun-debug-info (debug-fun)
1437 (%code-debug-info (compiled-debug-fun-component debug-fun)))
1439 ;;;; unpacking variable and basic block data
1441 (defvar *parsing-buffer*
1442 (make-array 20 :adjustable t :fill-pointer t))
1443 (defvar *other-parsing-buffer*
1444 (make-array 20 :adjustable t :fill-pointer t))
1445 ;;; PARSE-DEBUG-BLOCKS and PARSE-DEBUG-VARS
1446 ;;; use this to unpack binary encoded information. It returns the
1447 ;;; values returned by the last form in body.
1449 ;;; This binds buffer-var to *parsing-buffer*, makes sure it starts at
1450 ;;; element zero, and makes sure if we unwind, we nil out any set
1451 ;;; elements for GC purposes.
1453 ;;; This also binds other-var to *other-parsing-buffer* when it is
1454 ;;; supplied, making sure it starts at element zero and that we nil
1455 ;;; out any elements if we unwind.
1457 ;;; This defines the local macro RESULT that takes a buffer, copies
1458 ;;; its elements to a resulting simple-vector, nil's out elements, and
1459 ;;; restarts the buffer at element zero. RESULT returns the
1461 (eval-when (:compile-toplevel :execute)
1462 (sb!xc:defmacro with-parsing-buffer ((buffer-var &optional other-var)
1464 (let ((len (gensym))
1467 (let ((,buffer-var *parsing-buffer*)
1468 ,@(if other-var `((,other-var *other-parsing-buffer*))))
1469 (setf (fill-pointer ,buffer-var) 0)
1470 ,@(if other-var `((setf (fill-pointer ,other-var) 0)))
1471 (macrolet ((result (buf)
1472 `(let* ((,',len (length ,buf))
1473 (,',res (make-array ,',len)))
1474 (replace ,',res ,buf :end1 ,',len :end2 ,',len)
1475 (fill ,buf nil :end ,',len)
1476 (setf (fill-pointer ,buf) 0)
1479 (fill *parsing-buffer* nil)
1480 ,@(if other-var `((fill *other-parsing-buffer* nil))))))
1483 ;;; The argument is a debug internals structure. This returns the
1484 ;;; DEBUG-BLOCKs for DEBUG-FUN, regardless of whether we have unpacked
1485 ;;; them yet. It signals a NO-DEBUG-BLOCKS condition if it can't
1486 ;;; return the blocks.
1487 (defun debug-fun-debug-blocks (debug-fun)
1488 (let ((blocks (debug-fun-blocks debug-fun)))
1489 (cond ((eq blocks :unparsed)
1490 (setf (debug-fun-blocks debug-fun)
1491 (parse-debug-blocks debug-fun))
1492 (unless (debug-fun-blocks debug-fun)
1493 (debug-signal 'no-debug-blocks
1494 :debug-fun debug-fun))
1495 (debug-fun-blocks debug-fun))
1498 (debug-signal 'no-debug-blocks
1499 :debug-fun debug-fun)))))
1501 ;;; Return a SIMPLE-VECTOR of DEBUG-BLOCKs or NIL. NIL indicates there
1502 ;;; was no basic block information.
1503 (defun parse-debug-blocks (debug-fun)
1504 (etypecase debug-fun
1506 (parse-compiled-debug-blocks debug-fun))
1508 (debug-signal 'no-debug-blocks :debug-fun debug-fun))))
1510 ;;; This does some of the work of PARSE-DEBUG-BLOCKS.
1511 (defun parse-compiled-debug-blocks (debug-fun)
1512 (let* ((var-count (length (debug-fun-debug-vars debug-fun)))
1513 (compiler-debug-fun (compiled-debug-fun-compiler-debug-fun
1515 (blocks (sb!c::compiled-debug-fun-blocks compiler-debug-fun))
1516 ;; KLUDGE: 8 is a hard-wired constant in the compiler for the
1517 ;; element size of the packed binary representation of the
1519 (live-set-len (ceiling var-count 8))
1520 (tlf-number (sb!c::compiled-debug-fun-tlf-number compiler-debug-fun)))
1522 (return-from parse-compiled-debug-blocks nil))
1523 (macrolet ((aref+ (a i) `(prog1 (aref ,a ,i) (incf ,i))))
1524 (with-parsing-buffer (blocks-buffer locations-buffer)
1526 (len (length blocks))
1529 (when (>= i len) (return))
1530 (let ((succ-and-flags (aref+ blocks i))
1532 (declare (type (unsigned-byte 8) succ-and-flags)
1534 (dotimes (k (ldb sb!c::compiled-debug-block-nsucc-byte
1536 (push (sb!c:read-var-integer blocks i) successors))
1538 (dotimes (k (sb!c:read-var-integer blocks i)
1539 (result locations-buffer))
1540 (let ((kind (svref sb!c::*compiled-code-location-kinds*
1543 (sb!c:read-var-integer blocks i)))
1544 (tlf-offset (or tlf-number
1545 (sb!c:read-var-integer blocks i)))
1546 (form-number (sb!c:read-var-integer blocks i))
1547 (live-set (sb!c:read-packed-bit-vector
1548 live-set-len blocks i)))
1549 (vector-push-extend (make-known-code-location
1550 pc debug-fun tlf-offset
1551 form-number live-set kind)
1553 (setf last-pc pc))))
1554 (block (make-compiled-debug-block
1555 locations successors
1557 sb!c::compiled-debug-block-elsewhere-p
1558 succ-and-flags))))))
1559 (vector-push-extend block blocks-buffer)
1560 (dotimes (k (length locations))
1561 (setf (code-location-%debug-block (svref locations k))
1563 (let ((res (result blocks-buffer)))
1564 (declare (simple-vector res))
1565 (dotimes (i (length res))
1566 (let* ((block (svref res i))
1568 (dolist (ele (debug-block-successors block))
1569 (push (svref res ele) succs))
1570 (setf (debug-block-successors block) succs)))
1573 ;;; The argument is a debug internals structure. This returns NIL if
1574 ;;; there is no variable information. It returns an empty
1575 ;;; simple-vector if there were no locals in the function. Otherwise
1576 ;;; it returns a SIMPLE-VECTOR of DEBUG-VARs.
1577 (defun debug-fun-debug-vars (debug-fun)
1578 (let ((vars (debug-fun-%debug-vars debug-fun)))
1579 (if (eq vars :unparsed)
1580 (setf (debug-fun-%debug-vars debug-fun)
1581 (etypecase debug-fun
1583 (parse-compiled-debug-vars debug-fun))
1584 (bogus-debug-fun nil)))
1587 ;;; VARS is the parsed variables for a minimal debug function. We need
1588 ;;; to assign names of the form ARG-NNN. We must pad with leading
1589 ;;; zeros, since the arguments must be in alphabetical order.
1590 (defun assign-minimal-var-names (vars)
1591 (declare (simple-vector vars))
1592 (let* ((len (length vars))
1593 (width (length (format nil "~W" (1- len)))))
1595 (without-package-locks
1596 (setf (compiled-debug-var-symbol (svref vars i))
1597 (intern (format nil "ARG-~V,'0D" width i)
1598 ;; KLUDGE: It's somewhat nasty to have a bare
1599 ;; package name string here. It would be
1600 ;; nicer to have #.(FIND-PACKAGE "SB!DEBUG")
1601 ;; instead, since then at least it would transform
1602 ;; correctly under package renaming and stuff.
1603 ;; However, genesis can't handle dumped packages..
1606 ;; FIXME: Maybe this could be fixed by moving the
1607 ;; whole debug-int.lisp file to warm init? (after
1608 ;; which dumping a #.(FIND-PACKAGE ..) expression
1609 ;; would work fine) If this is possible, it would
1610 ;; probably be a good thing, since minimizing the
1611 ;; amount of stuff in cold init is basically good.
1612 (or (find-package "SB-DEBUG")
1613 (find-package "SB!DEBUG"))))))))
1615 ;;; Parse the packed representation of DEBUG-VARs from
1616 ;;; DEBUG-FUN's SB!C::COMPILED-DEBUG-FUN, returning a vector
1617 ;;; of DEBUG-VARs, or NIL if there was no information to parse.
1618 (defun parse-compiled-debug-vars (debug-fun)
1619 (let* ((cdebug-fun (compiled-debug-fun-compiler-debug-fun
1621 (packed-vars (sb!c::compiled-debug-fun-vars cdebug-fun))
1622 (args-minimal (eq (sb!c::compiled-debug-fun-arguments cdebug-fun)
1626 (buffer (make-array 0 :fill-pointer 0 :adjustable t)))
1627 ((>= i (length packed-vars))
1628 (let ((result (coerce buffer 'simple-vector)))
1630 (assign-minimal-var-names result))
1632 (flet ((geti () (prog1 (aref packed-vars i) (incf i))))
1633 (let* ((flags (geti))
1634 (minimal (logtest sb!c::compiled-debug-var-minimal-p flags))
1635 (deleted (logtest sb!c::compiled-debug-var-deleted-p flags))
1636 (live (logtest sb!c::compiled-debug-var-environment-live
1638 (save (logtest sb!c::compiled-debug-var-save-loc-p flags))
1639 (symbol (if minimal nil (geti)))
1640 (id (if (logtest sb!c::compiled-debug-var-id-p flags)
1643 (sc-offset (if deleted 0 (geti)))
1644 (save-sc-offset (if save (geti) nil)))
1645 (aver (not (and args-minimal (not minimal))))
1646 (vector-push-extend (make-compiled-debug-var symbol
1655 ;;; If we're sure of whether code-location is known, return T or NIL.
1656 ;;; If we're :UNSURE, then try to fill in the code-location's slots.
1657 ;;; This determines whether there is any debug-block information, and
1658 ;;; if code-location is known.
1660 ;;; ??? IF this conses closures every time it's called, then break off the
1661 ;;; :UNSURE part to get the HANDLER-CASE into another function.
1662 (defun code-location-unknown-p (basic-code-location)
1663 (ecase (code-location-%unknown-p basic-code-location)
1667 (setf (code-location-%unknown-p basic-code-location)
1668 (handler-case (not (fill-in-code-location basic-code-location))
1669 (no-debug-blocks () t))))))
1671 ;;; Return the DEBUG-BLOCK containing code-location if it is available.
1672 ;;; Some debug policies inhibit debug-block information, and if none
1673 ;;; is available, then this signals a NO-DEBUG-BLOCKS condition.
1674 (defun code-location-debug-block (basic-code-location)
1675 (let ((block (code-location-%debug-block basic-code-location)))
1676 (if (eq block :unparsed)
1677 (etypecase basic-code-location
1678 (compiled-code-location
1679 (compute-compiled-code-location-debug-block basic-code-location))
1680 ;; (There used to be more cases back before sbcl-0.7.0, when
1681 ;; we did special tricks to debug the IR1 interpreter.)
1685 ;;; Store and return BASIC-CODE-LOCATION's debug-block. We determines
1686 ;;; the correct one using the code-location's pc. We use
1687 ;;; DEBUG-FUN-DEBUG-BLOCKS to return the cached block information
1688 ;;; or signal a NO-DEBUG-BLOCKS condition. The blocks are sorted by
1689 ;;; their first code-location's pc, in ascending order. Therefore, as
1690 ;;; soon as we find a block that starts with a pc greater than
1691 ;;; basic-code-location's pc, we know the previous block contains the
1692 ;;; pc. If we get to the last block, then the code-location is either
1693 ;;; in the second to last block or the last block, and we have to be
1694 ;;; careful in determining this since the last block could be code at
1695 ;;; the end of the function. We have to check for the last block being
1696 ;;; code first in order to see how to compare the code-location's pc.
1697 (defun compute-compiled-code-location-debug-block (basic-code-location)
1698 (let* ((pc (compiled-code-location-pc basic-code-location))
1699 (debug-fun (code-location-debug-fun
1700 basic-code-location))
1701 (blocks (debug-fun-debug-blocks debug-fun))
1702 (len (length blocks)))
1703 (declare (simple-vector blocks))
1704 (setf (code-location-%debug-block basic-code-location)
1710 (let ((last (svref blocks end)))
1712 ((debug-block-elsewhere-p last)
1714 (sb!c::compiled-debug-fun-elsewhere-pc
1715 (compiled-debug-fun-compiler-debug-fun
1717 (svref blocks (1- end))
1720 (compiled-code-location-pc
1721 (svref (compiled-debug-block-code-locations last)
1723 (svref blocks (1- end)))
1725 (declare (type index i end))
1727 (compiled-code-location-pc
1728 (svref (compiled-debug-block-code-locations
1731 (return (svref blocks (1- i)))))))))
1733 ;;; Return the CODE-LOCATION's DEBUG-SOURCE.
1734 (defun code-location-debug-source (code-location)
1735 (let ((info (compiled-debug-fun-debug-info
1736 (code-location-debug-fun code-location))))
1737 (or (sb!c::debug-info-source info)
1738 (debug-signal 'no-debug-blocks :debug-fun
1739 (code-location-debug-fun code-location)))))
1741 ;;; Returns the number of top level forms before the one containing
1742 ;;; CODE-LOCATION as seen by the compiler in some compilation unit. (A
1743 ;;; compilation unit is not necessarily a single file, see the section
1744 ;;; on debug-sources.)
1745 (defun code-location-toplevel-form-offset (code-location)
1746 (when (code-location-unknown-p code-location)
1747 (error 'unknown-code-location :code-location code-location))
1748 (let ((tlf-offset (code-location-%tlf-offset code-location)))
1749 (cond ((eq tlf-offset :unparsed)
1750 (etypecase code-location
1751 (compiled-code-location
1752 (unless (fill-in-code-location code-location)
1753 ;; This check should be unnecessary. We're missing
1754 ;; debug info the compiler should have dumped.
1755 (bug "unknown code location"))
1756 (code-location-%tlf-offset code-location))
1757 ;; (There used to be more cases back before sbcl-0.7.0,,
1758 ;; when we did special tricks to debug the IR1
1763 ;;; Return the number of the form corresponding to CODE-LOCATION. The
1764 ;;; form number is derived by a walking the subforms of a top level
1765 ;;; form in depth-first order.
1766 (defun code-location-form-number (code-location)
1767 (when (code-location-unknown-p code-location)
1768 (error 'unknown-code-location :code-location code-location))
1769 (let ((form-num (code-location-%form-number code-location)))
1770 (cond ((eq form-num :unparsed)
1771 (etypecase code-location
1772 (compiled-code-location
1773 (unless (fill-in-code-location code-location)
1774 ;; This check should be unnecessary. We're missing
1775 ;; debug info the compiler should have dumped.
1776 (bug "unknown code location"))
1777 (code-location-%form-number code-location))
1778 ;; (There used to be more cases back before sbcl-0.7.0,,
1779 ;; when we did special tricks to debug the IR1
1784 ;;; Return the kind of CODE-LOCATION, one of:
1785 ;;; :INTERPRETED, :UNKNOWN-RETURN, :KNOWN-RETURN, :INTERNAL-ERROR,
1786 ;;; :NON-LOCAL-EXIT, :BLOCK-START, :CALL-SITE, :SINGLE-VALUE-RETURN,
1787 ;;; :NON-LOCAL-ENTRY
1788 (defun code-location-kind (code-location)
1789 (when (code-location-unknown-p code-location)
1790 (error 'unknown-code-location :code-location code-location))
1791 (etypecase code-location
1792 (compiled-code-location
1793 (let ((kind (compiled-code-location-kind code-location)))
1794 (cond ((not (eq kind :unparsed)) kind)
1795 ((not (fill-in-code-location code-location))
1796 ;; This check should be unnecessary. We're missing
1797 ;; debug info the compiler should have dumped.
1798 (bug "unknown code location"))
1800 (compiled-code-location-kind code-location)))))
1801 ;; (There used to be more cases back before sbcl-0.7.0,,
1802 ;; when we did special tricks to debug the IR1
1806 ;;; This returns CODE-LOCATION's live-set if it is available. If
1807 ;;; there is no debug-block information, this returns NIL.
1808 (defun compiled-code-location-live-set (code-location)
1809 (if (code-location-unknown-p code-location)
1811 (let ((live-set (compiled-code-location-%live-set code-location)))
1812 (cond ((eq live-set :unparsed)
1813 (unless (fill-in-code-location code-location)
1814 ;; This check should be unnecessary. We're missing
1815 ;; debug info the compiler should have dumped.
1817 ;; FIXME: This error and comment happen over and over again.
1818 ;; Make them a shared function.
1819 (bug "unknown code location"))
1820 (compiled-code-location-%live-set code-location))
1823 ;;; true if OBJ1 and OBJ2 are the same place in the code
1824 (defun code-location= (obj1 obj2)
1826 (compiled-code-location
1828 (compiled-code-location
1829 (and (eq (code-location-debug-fun obj1)
1830 (code-location-debug-fun obj2))
1831 (sub-compiled-code-location= obj1 obj2)))
1832 ;; (There used to be more cases back before sbcl-0.7.0,,
1833 ;; when we did special tricks to debug the IR1
1836 ;; (There used to be more cases back before sbcl-0.7.0,,
1837 ;; when we did special tricks to debug IR1-interpreted code.)
1839 (defun sub-compiled-code-location= (obj1 obj2)
1840 (= (compiled-code-location-pc obj1)
1841 (compiled-code-location-pc obj2)))
1843 ;;; Fill in CODE-LOCATION's :UNPARSED slots, returning T or NIL
1844 ;;; depending on whether the code-location was known in its
1845 ;;; DEBUG-FUN's debug-block information. This may signal a
1846 ;;; NO-DEBUG-BLOCKS condition due to DEBUG-FUN-DEBUG-BLOCKS, and
1847 ;;; it assumes the %UNKNOWN-P slot is already set or going to be set.
1848 (defun fill-in-code-location (code-location)
1849 (declare (type compiled-code-location code-location))
1850 (let* ((debug-fun (code-location-debug-fun code-location))
1851 (blocks (debug-fun-debug-blocks debug-fun)))
1852 (declare (simple-vector blocks))
1853 (dotimes (i (length blocks) nil)
1854 (let* ((block (svref blocks i))
1855 (locations (compiled-debug-block-code-locations block)))
1856 (declare (simple-vector locations))
1857 (dotimes (j (length locations))
1858 (let ((loc (svref locations j)))
1859 (when (sub-compiled-code-location= code-location loc)
1860 (setf (code-location-%debug-block code-location) block)
1861 (setf (code-location-%tlf-offset code-location)
1862 (code-location-%tlf-offset loc))
1863 (setf (code-location-%form-number code-location)
1864 (code-location-%form-number loc))
1865 (setf (compiled-code-location-%live-set code-location)
1866 (compiled-code-location-%live-set loc))
1867 (setf (compiled-code-location-kind code-location)
1868 (compiled-code-location-kind loc))
1869 (return-from fill-in-code-location t))))))))
1871 ;;;; operations on DEBUG-BLOCKs
1873 ;;; Execute FORMS in a context with CODE-VAR bound to each
1874 ;;; CODE-LOCATION in DEBUG-BLOCK, and return the value of RESULT.
1875 (defmacro do-debug-block-locations ((code-var debug-block &optional result)
1877 (let ((code-locations (gensym))
1879 `(let ((,code-locations (debug-block-code-locations ,debug-block)))
1880 (declare (simple-vector ,code-locations))
1881 (dotimes (,i (length ,code-locations) ,result)
1882 (let ((,code-var (svref ,code-locations ,i)))
1885 ;;; Return the name of the function represented by DEBUG-FUN.
1886 ;;; This may be a string or a cons; do not assume it is a symbol.
1887 (defun debug-block-fun-name (debug-block)
1888 (etypecase debug-block
1889 (compiled-debug-block
1890 (let ((code-locs (compiled-debug-block-code-locations debug-block)))
1891 (declare (simple-vector code-locs))
1892 (if (zerop (length code-locs))
1893 "??? Can't get name of debug-block's function."
1895 (code-location-debug-fun (svref code-locs 0))))))
1896 ;; (There used to be more cases back before sbcl-0.7.0, when we
1897 ;; did special tricks to debug the IR1 interpreter.)
1900 (defun debug-block-code-locations (debug-block)
1901 (etypecase debug-block
1902 (compiled-debug-block
1903 (compiled-debug-block-code-locations debug-block))
1904 ;; (There used to be more cases back before sbcl-0.7.0, when we
1905 ;; did special tricks to debug the IR1 interpreter.)
1908 ;;;; operations on debug variables
1910 (defun debug-var-symbol-name (debug-var)
1911 (symbol-name (debug-var-symbol debug-var)))
1913 ;;; FIXME: Make sure that this isn't called anywhere that it wouldn't
1914 ;;; be acceptable to have NIL returned, or that it's only called on
1915 ;;; DEBUG-VARs whose symbols have non-NIL packages.
1916 (defun debug-var-package-name (debug-var)
1917 (package-name (symbol-package (debug-var-symbol debug-var))))
1919 ;;; Return the value stored for DEBUG-VAR in frame, or if the value is
1920 ;;; not :VALID, then signal an INVALID-VALUE error.
1921 (defun debug-var-valid-value (debug-var frame)
1922 (unless (eq (debug-var-validity debug-var (frame-code-location frame))
1924 (error 'invalid-value :debug-var debug-var :frame frame))
1925 (debug-var-value debug-var frame))
1927 ;;; Returns the value stored for DEBUG-VAR in frame. The value may be
1928 ;;; invalid. This is SETFable.
1929 (defun debug-var-value (debug-var frame)
1930 (aver (typep frame 'compiled-frame))
1931 (let ((res (access-compiled-debug-var-slot debug-var frame)))
1932 (if (indirect-value-cell-p res)
1933 (value-cell-ref res)
1936 ;;; This returns what is stored for the variable represented by
1937 ;;; DEBUG-VAR relative to the FRAME. This may be an indirect value
1938 ;;; cell if the variable is both closed over and set.
1939 (defun access-compiled-debug-var-slot (debug-var frame)
1940 (declare (optimize (speed 1)))
1941 (let ((escaped (compiled-frame-escaped frame)))
1943 (sub-access-debug-var-slot
1944 (frame-pointer frame)
1945 (compiled-debug-var-sc-offset debug-var)
1947 (sub-access-debug-var-slot
1948 (frame-pointer frame)
1949 (or (compiled-debug-var-save-sc-offset debug-var)
1950 (compiled-debug-var-sc-offset debug-var))))))
1952 ;;; a helper function for working with possibly-invalid values:
1953 ;;; Do (MAKE-LISP-OBJ VAL) only if the value looks valid.
1955 ;;; (Such values can arise in registers on machines with conservative
1956 ;;; GC, and might also arise in debug variable locations when
1957 ;;; those variables are invalid.)
1958 (defun make-valid-lisp-obj (val)
1961 (zerop (logand val sb!vm:fixnum-tag-mask))
1962 ;; immediate single float, 64-bit only
1963 #!+#.(cl:if (cl:= sb!vm::n-machine-word-bits 64) '(and) '(or))
1964 (= (logand val #xff) sb!vm:single-float-widetag)
1966 (and (zerop (logandc2 val #x1fffffff)) ; Top bits zero
1967 (= (logand val #xff) sb!vm:character-widetag)) ; char tag
1969 (= val sb!vm:unbound-marker-widetag)
1971 (and (logbitp 0 val)
1972 ;; Check that the pointer is valid. XXX Could do a better
1973 ;; job. FIXME: e.g. by calling out to an is_valid_pointer
1974 ;; routine in the C runtime support code
1975 (or (< sb!vm:read-only-space-start val
1976 (* sb!vm:*read-only-space-free-pointer*
1977 sb!vm:n-word-bytes))
1978 (< sb!vm:static-space-start val
1979 (* sb!vm:*static-space-free-pointer*
1980 sb!vm:n-word-bytes))
1981 (< (current-dynamic-space-start) val
1982 (sap-int (dynamic-space-free-pointer))))))
1987 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
1988 (macrolet ((with-escaped-value ((var) &body forms)
1990 (let ((,var (sb!vm:context-register
1992 (sb!c:sc-offset-offset sc-offset))))
1994 :invalid-value-for-unescaped-register-storage))
1995 (escaped-float-value (format)
1997 (sb!vm:context-float-register
1999 (sb!c:sc-offset-offset sc-offset)
2001 :invalid-value-for-unescaped-register-storage))
2002 (with-nfp ((var) &body body)
2003 `(let ((,var (if escaped
2005 (sb!vm:context-register escaped
2008 (sb!sys:sap-ref-sap fp (* nfp-save-offset
2009 sb!vm:n-word-bytes))
2011 (sb!vm::make-number-stack-pointer
2012 (sb!sys:sap-ref-32 fp (* nfp-save-offset
2013 sb!vm:n-word-bytes))))))
2015 (ecase (sb!c:sc-offset-scn sc-offset)
2016 ((#.sb!vm:any-reg-sc-number
2017 #.sb!vm:descriptor-reg-sc-number
2018 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2019 (sb!sys:without-gcing
2020 (with-escaped-value (val) (sb!kernel:make-lisp-obj val))))
2022 (#.sb!vm:character-reg-sc-number
2023 (with-escaped-value (val)
2025 (#.sb!vm:sap-reg-sc-number
2026 (with-escaped-value (val)
2027 (sb!sys:int-sap val)))
2028 (#.sb!vm:signed-reg-sc-number
2029 (with-escaped-value (val)
2030 (if (logbitp (1- sb!vm:n-word-bits) val)
2031 (logior val (ash -1 sb!vm:n-word-bits))
2033 (#.sb!vm:unsigned-reg-sc-number
2034 (with-escaped-value (val)
2036 (#.sb!vm:non-descriptor-reg-sc-number
2037 (error "Local non-descriptor register access?"))
2038 (#.sb!vm:interior-reg-sc-number
2039 (error "Local interior register access?"))
2040 (#.sb!vm:single-reg-sc-number
2041 (escaped-float-value single-float))
2042 (#.sb!vm:double-reg-sc-number
2043 (escaped-float-value double-float))
2045 (#.sb!vm:long-reg-sc-number
2046 (escaped-float-value long-float))
2047 (#.sb!vm:complex-single-reg-sc-number
2050 (sb!vm:context-float-register
2051 escaped (sb!c:sc-offset-offset sc-offset) 'single-float)
2052 (sb!vm:context-float-register
2053 escaped (1+ (sb!c:sc-offset-offset sc-offset)) 'single-float))
2054 :invalid-value-for-unescaped-register-storage))
2055 (#.sb!vm:complex-double-reg-sc-number
2058 (sb!vm:context-float-register
2059 escaped (sb!c:sc-offset-offset sc-offset) 'double-float)
2060 (sb!vm:context-float-register
2061 escaped (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 2 #!-sparc 1)
2063 :invalid-value-for-unescaped-register-storage))
2065 (#.sb!vm:complex-long-reg-sc-number
2068 (sb!vm:context-float-register
2069 escaped (sb!c:sc-offset-offset sc-offset) 'long-float)
2070 (sb!vm:context-float-register
2071 escaped (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2073 :invalid-value-for-unescaped-register-storage))
2074 (#.sb!vm:single-stack-sc-number
2076 (sb!sys:sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2077 sb!vm:n-word-bytes))))
2078 (#.sb!vm:double-stack-sc-number
2080 (sb!sys:sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2081 sb!vm:n-word-bytes))))
2083 (#.sb!vm:long-stack-sc-number
2085 (sb!sys:sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2086 sb!vm:n-word-bytes))))
2087 (#.sb!vm:complex-single-stack-sc-number
2090 (sb!sys:sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2091 sb!vm:n-word-bytes))
2092 (sb!sys:sap-ref-single nfp (* (1+ (sb!c:sc-offset-offset sc-offset))
2093 sb!vm:n-word-bytes)))))
2094 (#.sb!vm:complex-double-stack-sc-number
2097 (sb!sys:sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2098 sb!vm:n-word-bytes))
2099 (sb!sys:sap-ref-double nfp (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2100 sb!vm:n-word-bytes)))))
2102 (#.sb!vm:complex-long-stack-sc-number
2105 (sb!sys:sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2106 sb!vm:n-word-bytes))
2107 (sb!sys:sap-ref-long nfp (* (+ (sb!c:sc-offset-offset sc-offset)
2109 sb!vm:n-word-bytes)))))
2110 (#.sb!vm:control-stack-sc-number
2111 (sb!kernel:stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2112 (#.sb!vm:character-stack-sc-number
2114 (code-char (sb!sys:sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2115 sb!vm:n-word-bytes)))))
2116 (#.sb!vm:unsigned-stack-sc-number
2118 (sb!sys:sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2119 sb!vm:n-word-bytes))))
2120 (#.sb!vm:signed-stack-sc-number
2122 (sb!sys:signed-sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2123 sb!vm:n-word-bytes))))
2124 (#.sb!vm:sap-stack-sc-number
2126 (sb!sys:sap-ref-sap nfp (* (sb!c:sc-offset-offset sc-offset)
2127 sb!vm:n-word-bytes)))))))
2130 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2131 (declare (type system-area-pointer fp))
2132 (macrolet ((with-escaped-value ((var) &body forms)
2134 (let ((,var (sb!vm:context-register
2136 (sb!c:sc-offset-offset sc-offset))))
2138 :invalid-value-for-unescaped-register-storage))
2139 (escaped-float-value (format)
2141 (sb!vm:context-float-register
2142 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2143 :invalid-value-for-unescaped-register-storage))
2144 (escaped-complex-float-value (format)
2147 (sb!vm:context-float-register
2148 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2149 (sb!vm:context-float-register
2150 escaped (1+ (sb!c:sc-offset-offset sc-offset)) ',format))
2151 :invalid-value-for-unescaped-register-storage)))
2152 (ecase (sb!c:sc-offset-scn sc-offset)
2153 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2155 (with-escaped-value (val)
2156 (make-valid-lisp-obj val))))
2157 (#.sb!vm:character-reg-sc-number
2158 (with-escaped-value (val)
2160 (#.sb!vm:sap-reg-sc-number
2161 (with-escaped-value (val)
2163 (#.sb!vm:signed-reg-sc-number
2164 (with-escaped-value (val)
2165 (if (logbitp (1- sb!vm:n-word-bits) val)
2166 (logior val (ash -1 sb!vm:n-word-bits))
2168 (#.sb!vm:unsigned-reg-sc-number
2169 (with-escaped-value (val)
2171 (#.sb!vm:single-reg-sc-number
2172 (escaped-float-value single-float))
2173 (#.sb!vm:double-reg-sc-number
2174 (escaped-float-value double-float))
2176 (#.sb!vm:long-reg-sc-number
2177 (escaped-float-value long-float))
2178 (#.sb!vm:complex-single-reg-sc-number
2179 (escaped-complex-float-value single-float))
2180 (#.sb!vm:complex-double-reg-sc-number
2181 (escaped-complex-float-value double-float))
2183 (#.sb!vm:complex-long-reg-sc-number
2184 (escaped-complex-float-value long-float))
2185 (#.sb!vm:single-stack-sc-number
2186 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2187 sb!vm:n-word-bytes))))
2188 (#.sb!vm:double-stack-sc-number
2189 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2190 sb!vm:n-word-bytes))))
2192 (#.sb!vm:long-stack-sc-number
2193 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2194 sb!vm:n-word-bytes))))
2195 (#.sb!vm:complex-single-stack-sc-number
2197 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2198 sb!vm:n-word-bytes)))
2199 (sap-ref-single fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2200 sb!vm:n-word-bytes)))))
2201 (#.sb!vm:complex-double-stack-sc-number
2203 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2204 sb!vm:n-word-bytes)))
2205 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2206 sb!vm:n-word-bytes)))))
2208 (#.sb!vm:complex-long-stack-sc-number
2210 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2211 sb!vm:n-word-bytes)))
2212 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2213 sb!vm:n-word-bytes)))))
2214 (#.sb!vm:control-stack-sc-number
2215 (stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2216 (#.sb!vm:character-stack-sc-number
2218 (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2219 sb!vm:n-word-bytes)))))
2220 (#.sb!vm:unsigned-stack-sc-number
2221 (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2222 sb!vm:n-word-bytes))))
2223 (#.sb!vm:signed-stack-sc-number
2224 (signed-sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2225 sb!vm:n-word-bytes))))
2226 (#.sb!vm:sap-stack-sc-number
2227 (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2228 sb!vm:n-word-bytes)))))))
2230 ;;; This stores value as the value of DEBUG-VAR in FRAME. In the
2231 ;;; COMPILED-DEBUG-VAR case, access the current value to determine if
2232 ;;; it is an indirect value cell. This occurs when the variable is
2233 ;;; both closed over and set.
2234 (defun %set-debug-var-value (debug-var frame new-value)
2235 (aver (typep frame 'compiled-frame))
2236 (let ((old-value (access-compiled-debug-var-slot debug-var frame)))
2237 (if (indirect-value-cell-p old-value)
2238 (value-cell-set old-value new-value)
2239 (set-compiled-debug-var-slot debug-var frame new-value)))
2242 ;;; This stores VALUE for the variable represented by debug-var
2243 ;;; relative to the frame. This assumes the location directly contains
2244 ;;; the variable's value; that is, there is no indirect value cell
2245 ;;; currently there in case the variable is both closed over and set.
2246 (defun set-compiled-debug-var-slot (debug-var frame value)
2247 (let ((escaped (compiled-frame-escaped frame)))
2249 (sub-set-debug-var-slot (frame-pointer frame)
2250 (compiled-debug-var-sc-offset debug-var)
2252 (sub-set-debug-var-slot
2253 (frame-pointer frame)
2254 (or (compiled-debug-var-save-sc-offset debug-var)
2255 (compiled-debug-var-sc-offset debug-var))
2259 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2260 (macrolet ((set-escaped-value (val)
2262 (setf (sb!vm:context-register
2264 (sb!c:sc-offset-offset sc-offset))
2267 (set-escaped-float-value (format val)
2269 (setf (sb!vm:context-float-register
2271 (sb!c:sc-offset-offset sc-offset)
2275 (with-nfp ((var) &body body)
2276 `(let ((,var (if escaped
2278 (sb!vm:context-register escaped
2283 sb!vm:n-word-bytes))
2285 (sb!vm::make-number-stack-pointer
2288 sb!vm:n-word-bytes))))))
2290 (ecase (sb!c:sc-offset-scn sc-offset)
2291 ((#.sb!vm:any-reg-sc-number
2292 #.sb!vm:descriptor-reg-sc-number
2293 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2296 (get-lisp-obj-address value))))
2297 (#.sb!vm:character-reg-sc-number
2298 (set-escaped-value (char-code value)))
2299 (#.sb!vm:sap-reg-sc-number
2300 (set-escaped-value (sap-int value)))
2301 (#.sb!vm:signed-reg-sc-number
2302 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2303 (#.sb!vm:unsigned-reg-sc-number
2304 (set-escaped-value value))
2305 (#.sb!vm:non-descriptor-reg-sc-number
2306 (error "Local non-descriptor register access?"))
2307 (#.sb!vm:interior-reg-sc-number
2308 (error "Local interior register access?"))
2309 (#.sb!vm:single-reg-sc-number
2310 (set-escaped-float-value single-float value))
2311 (#.sb!vm:double-reg-sc-number
2312 (set-escaped-float-value double-float value))
2314 (#.sb!vm:long-reg-sc-number
2315 (set-escaped-float-value long-float value))
2316 (#.sb!vm:complex-single-reg-sc-number
2318 (setf (sb!vm:context-float-register escaped
2319 (sb!c:sc-offset-offset sc-offset)
2322 (setf (sb!vm:context-float-register
2323 escaped (1+ (sb!c:sc-offset-offset sc-offset))
2327 (#.sb!vm:complex-double-reg-sc-number
2329 (setf (sb!vm:context-float-register
2330 escaped (sb!c:sc-offset-offset sc-offset) 'double-float)
2332 (setf (sb!vm:context-float-register
2334 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 2 #!-sparc 1)
2339 (#.sb!vm:complex-long-reg-sc-number
2341 (setf (sb!vm:context-float-register
2342 escaped (sb!c:sc-offset-offset sc-offset) 'long-float)
2344 (setf (sb!vm:context-float-register
2346 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2350 (#.sb!vm:single-stack-sc-number
2352 (setf (sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2353 sb!vm:n-word-bytes))
2354 (the single-float value))))
2355 (#.sb!vm:double-stack-sc-number
2357 (setf (sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2358 sb!vm:n-word-bytes))
2359 (the double-float value))))
2361 (#.sb!vm:long-stack-sc-number
2363 (setf (sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2364 sb!vm:n-word-bytes))
2365 (the long-float value))))
2366 (#.sb!vm:complex-single-stack-sc-number
2368 (setf (sap-ref-single
2369 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2370 (the single-float (realpart value)))
2371 (setf (sap-ref-single
2372 nfp (* (1+ (sb!c:sc-offset-offset sc-offset))
2373 sb!vm:n-word-bytes))
2374 (the single-float (realpart value)))))
2375 (#.sb!vm:complex-double-stack-sc-number
2377 (setf (sap-ref-double
2378 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2379 (the double-float (realpart value)))
2380 (setf (sap-ref-double
2381 nfp (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2382 sb!vm:n-word-bytes))
2383 (the double-float (realpart value)))))
2385 (#.sb!vm:complex-long-stack-sc-number
2388 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2389 (the long-float (realpart value)))
2391 nfp (* (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2392 sb!vm:n-word-bytes))
2393 (the long-float (realpart value)))))
2394 (#.sb!vm:control-stack-sc-number
2395 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2396 (#.sb!vm:character-stack-sc-number
2398 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2399 sb!vm:n-word-bytes))
2400 (char-code (the character value)))))
2401 (#.sb!vm:unsigned-stack-sc-number
2403 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2404 sb!vm:n-word-bytes))
2405 (the (unsigned-byte 32) value))))
2406 (#.sb!vm:signed-stack-sc-number
2408 (setf (signed-sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2409 sb!vm:n-word-bytes))
2410 (the (signed-byte 32) value))))
2411 (#.sb!vm:sap-stack-sc-number
2413 (setf (sap-ref-sap nfp (* (sb!c:sc-offset-offset sc-offset)
2414 sb!vm:n-word-bytes))
2415 (the system-area-pointer value)))))))
2418 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2419 (macrolet ((set-escaped-value (val)
2421 (setf (sb!vm:context-register
2423 (sb!c:sc-offset-offset sc-offset))
2426 (ecase (sb!c:sc-offset-scn sc-offset)
2427 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2430 (get-lisp-obj-address value))))
2431 (#.sb!vm:character-reg-sc-number
2432 (set-escaped-value (char-code value)))
2433 (#.sb!vm:sap-reg-sc-number
2434 (set-escaped-value (sap-int value)))
2435 (#.sb!vm:signed-reg-sc-number
2436 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2437 (#.sb!vm:unsigned-reg-sc-number
2438 (set-escaped-value value))
2439 (#.sb!vm:single-reg-sc-number
2440 #+nil ;; don't have escaped floats.
2441 (set-escaped-float-value single-float value))
2442 (#.sb!vm:double-reg-sc-number
2443 #+nil ;; don't have escaped floats -- still in npx?
2444 (set-escaped-float-value double-float value))
2446 (#.sb!vm:long-reg-sc-number
2447 #+nil ;; don't have escaped floats -- still in npx?
2448 (set-escaped-float-value long-float value))
2449 (#.sb!vm:single-stack-sc-number
2450 (setf (sap-ref-single
2451 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2452 sb!vm:n-word-bytes)))
2453 (the single-float value)))
2454 (#.sb!vm:double-stack-sc-number
2455 (setf (sap-ref-double
2456 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2457 sb!vm:n-word-bytes)))
2458 (the double-float value)))
2460 (#.sb!vm:long-stack-sc-number
2462 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2463 sb!vm:n-word-bytes)))
2464 (the long-float value)))
2465 (#.sb!vm:complex-single-stack-sc-number
2466 (setf (sap-ref-single
2467 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2468 sb!vm:n-word-bytes)))
2469 (realpart (the (complex single-float) value)))
2470 (setf (sap-ref-single
2471 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2472 sb!vm:n-word-bytes)))
2473 (imagpart (the (complex single-float) value))))
2474 (#.sb!vm:complex-double-stack-sc-number
2475 (setf (sap-ref-double
2476 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2477 sb!vm:n-word-bytes)))
2478 (realpart (the (complex double-float) value)))
2479 (setf (sap-ref-double
2480 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2481 sb!vm:n-word-bytes)))
2482 (imagpart (the (complex double-float) value))))
2484 (#.sb!vm:complex-long-stack-sc-number
2486 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2487 sb!vm:n-word-bytes)))
2488 (realpart (the (complex long-float) value)))
2490 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2491 sb!vm:n-word-bytes)))
2492 (imagpart (the (complex long-float) value))))
2493 (#.sb!vm:control-stack-sc-number
2494 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2495 (#.sb!vm:character-stack-sc-number
2496 (setf (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2497 sb!vm:n-word-bytes)))
2498 (char-code (the character value))))
2499 (#.sb!vm:unsigned-stack-sc-number
2500 (setf (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2501 sb!vm:n-word-bytes)))
2502 (the sb!vm:word value)))
2503 (#.sb!vm:signed-stack-sc-number
2504 (setf (signed-sap-ref-word
2505 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2506 sb!vm:n-word-bytes)))
2507 (the (signed-byte #.sb!vm:n-word-bits) value)))
2508 (#.sb!vm:sap-stack-sc-number
2509 (setf (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2510 sb!vm:n-word-bytes)))
2511 (the system-area-pointer value))))))
2513 ;;; The method for setting and accessing COMPILED-DEBUG-VAR values use
2514 ;;; this to determine if the value stored is the actual value or an
2515 ;;; indirection cell.
2516 (defun indirect-value-cell-p (x)
2517 (and (= (lowtag-of x) sb!vm:other-pointer-lowtag)
2518 (= (widetag-of x) sb!vm:value-cell-header-widetag)))
2520 ;;; Return three values reflecting the validity of DEBUG-VAR's value
2521 ;;; at BASIC-CODE-LOCATION:
2522 ;;; :VALID The value is known to be available.
2523 ;;; :INVALID The value is known to be unavailable.
2524 ;;; :UNKNOWN The value's availability is unknown.
2526 ;;; If the variable is always alive, then it is valid. If the
2527 ;;; code-location is unknown, then the variable's validity is
2528 ;;; :unknown. Once we've called CODE-LOCATION-UNKNOWN-P, we know the
2529 ;;; live-set information has been cached in the code-location.
2530 (defun debug-var-validity (debug-var basic-code-location)
2531 (etypecase debug-var
2533 (compiled-debug-var-validity debug-var basic-code-location))
2534 ;; (There used to be more cases back before sbcl-0.7.0, when
2535 ;; we did special tricks to debug the IR1 interpreter.)
2538 ;;; This is the method for DEBUG-VAR-VALIDITY for COMPILED-DEBUG-VARs.
2539 ;;; For safety, make sure basic-code-location is what we think.
2540 (defun compiled-debug-var-validity (debug-var basic-code-location)
2541 (declare (type compiled-code-location basic-code-location))
2542 (cond ((debug-var-alive-p debug-var)
2543 (let ((debug-fun (code-location-debug-fun basic-code-location)))
2544 (if (>= (compiled-code-location-pc basic-code-location)
2545 (sb!c::compiled-debug-fun-start-pc
2546 (compiled-debug-fun-compiler-debug-fun debug-fun)))
2549 ((code-location-unknown-p basic-code-location) :unknown)
2551 (let ((pos (position debug-var
2552 (debug-fun-debug-vars
2553 (code-location-debug-fun
2554 basic-code-location)))))
2556 (error 'unknown-debug-var
2557 :debug-var debug-var
2559 (code-location-debug-fun basic-code-location)))
2560 ;; There must be live-set info since basic-code-location is known.
2561 (if (zerop (sbit (compiled-code-location-live-set
2562 basic-code-location)
2569 ;;; This code produces and uses what we call source-paths. A
2570 ;;; source-path is a list whose first element is a form number as
2571 ;;; returned by CODE-LOCATION-FORM-NUMBER and whose last element is a
2572 ;;; top level form number as returned by
2573 ;;; CODE-LOCATION-TOPLEVEL-FORM-NUMBER. The elements from the last to
2574 ;;; the first, exclusively, are the numbered subforms into which to
2575 ;;; descend. For example:
2577 ;;; (let ((a (aref x 3)))
2579 ;;; The call to AREF in this example is form number 5. Assuming this
2580 ;;; DEFUN is the 11'th top level form, the source-path for the AREF
2581 ;;; call is as follows:
2583 ;;; Given the DEFUN, 3 gets you the LET, 1 gets you the bindings, 0
2584 ;;; gets the first binding, and 1 gets the AREF form.
2586 ;;; temporary buffer used to build form-number => source-path translation in
2587 ;;; FORM-NUMBER-TRANSLATIONS
2588 (defvar *form-number-temp* (make-array 10 :fill-pointer 0 :adjustable t))
2590 ;;; table used to detect CAR circularities in FORM-NUMBER-TRANSLATIONS
2591 (defvar *form-number-circularity-table* (make-hash-table :test 'eq))
2593 ;;; This returns a table mapping form numbers to source-paths. A
2594 ;;; source-path indicates a descent into the TOPLEVEL-FORM form,
2595 ;;; going directly to the subform corressponding to the form number.
2597 ;;; The vector elements are in the same format as the compiler's
2598 ;;; NODE-SOURCE-PATH; that is, the first element is the form number and
2599 ;;; the last is the TOPLEVEL-FORM number.
2600 (defun form-number-translations (form tlf-number)
2601 (clrhash *form-number-circularity-table*)
2602 (setf (fill-pointer *form-number-temp*) 0)
2603 (sub-translate-form-numbers form (list tlf-number))
2604 (coerce *form-number-temp* 'simple-vector))
2605 (defun sub-translate-form-numbers (form path)
2606 (unless (gethash form *form-number-circularity-table*)
2607 (setf (gethash form *form-number-circularity-table*) t)
2608 (vector-push-extend (cons (fill-pointer *form-number-temp*) path)
2613 (declare (fixnum pos))
2616 (when (atom subform) (return))
2617 (let ((fm (car subform)))
2619 (sub-translate-form-numbers fm (cons pos path)))
2621 (setq subform (cdr subform))
2622 (when (eq subform trail) (return)))))
2626 (setq trail (cdr trail)))))))
2628 ;;; FORM is a top level form, and path is a source-path into it. This
2629 ;;; returns the form indicated by the source-path. Context is the
2630 ;;; number of enclosing forms to return instead of directly returning
2631 ;;; the source-path form. When context is non-zero, the form returned
2632 ;;; contains a marker, #:****HERE****, immediately before the form
2633 ;;; indicated by path.
2634 (defun source-path-context (form path context)
2635 (declare (type unsigned-byte context))
2636 ;; Get to the form indicated by path or the enclosing form indicated
2637 ;; by context and path.
2638 (let ((path (reverse (butlast (cdr path)))))
2639 (dotimes (i (- (length path) context))
2640 (let ((index (first path)))
2641 (unless (and (listp form) (< index (length form)))
2642 (error "Source path no longer exists."))
2643 (setq form (elt form index))
2644 (setq path (rest path))))
2645 ;; Recursively rebuild the source form resulting from the above
2646 ;; descent, copying the beginning of each subform up to the next
2647 ;; subform we descend into according to path. At the bottom of the
2648 ;; recursion, we return the form indicated by path preceded by our
2649 ;; marker, and this gets spliced into the resulting list structure
2650 ;; on the way back up.
2651 (labels ((frob (form path level)
2652 (if (or (zerop level) (null path))
2655 `(#:***here*** ,form))
2656 (let ((n (first path)))
2657 (unless (and (listp form) (< n (length form)))
2658 (error "Source path no longer exists."))
2659 (let ((res (frob (elt form n) (rest path) (1- level))))
2660 (nconc (subseq form 0 n)
2661 (cons res (nthcdr (1+ n) form))))))))
2662 (frob form path context))))
2664 ;;;; PREPROCESS-FOR-EVAL
2666 ;;; Return a function of one argument that evaluates form in the
2667 ;;; lexical context of the BASIC-CODE-LOCATION LOC, or signal a
2668 ;;; NO-DEBUG-VARS condition when the LOC's DEBUG-FUN has no
2669 ;;; DEBUG-VAR information available.
2671 ;;; The returned function takes the frame to get values from as its
2672 ;;; argument, and it returns the values of FORM. The returned function
2673 ;;; can signal the following conditions: INVALID-VALUE,
2674 ;;; AMBIGUOUS-VAR-NAME, and FRAME-FUN-MISMATCH.
2675 (defun preprocess-for-eval (form loc)
2676 (declare (type code-location loc))
2677 (let ((n-frame (gensym))
2678 (fun (code-location-debug-fun loc)))
2679 (unless (debug-var-info-available fun)
2680 (debug-signal 'no-debug-vars :debug-fun fun))
2681 (sb!int:collect ((binds)
2683 (do-debug-fun-vars (var fun)
2684 (let ((validity (debug-var-validity var loc)))
2685 (unless (eq validity :invalid)
2686 (let* ((sym (debug-var-symbol var))
2687 (found (assoc sym (binds))))
2689 (setf (second found) :ambiguous)
2690 (binds (list sym validity var)))))))
2691 (dolist (bind (binds))
2692 (let ((name (first bind))
2694 (ecase (second bind)
2696 (specs `(,name (debug-var-value ',var ,n-frame))))
2698 (specs `(,name (debug-signal 'invalid-value
2702 (specs `(,name (debug-signal 'ambiguous-var-name
2704 :frame ,n-frame)))))))
2705 (let ((res (coerce `(lambda (,n-frame)
2706 (declare (ignorable ,n-frame))
2707 (symbol-macrolet ,(specs) ,form))
2710 ;; This prevents these functions from being used in any
2711 ;; location other than a function return location, so maybe
2712 ;; this should only check whether FRAME's DEBUG-FUN is the
2714 (unless (code-location= (frame-code-location frame) loc)
2715 (debug-signal 'frame-fun-mismatch
2716 :code-location loc :form form :frame frame))
2717 (funcall res frame))))))
2721 ;;;; user-visible interface
2723 ;;; Create and return a breakpoint. When program execution encounters
2724 ;;; the breakpoint, the system calls HOOK-FUN. HOOK-FUN takes the
2725 ;;; current frame for the function in which the program is running and
2726 ;;; the breakpoint object.
2728 ;;; WHAT and KIND determine where in a function the system invokes
2729 ;;; HOOK-FUN. WHAT is either a code-location or a DEBUG-FUN. KIND is
2730 ;;; one of :CODE-LOCATION, :FUN-START, or :FUN-END. Since the starts
2731 ;;; and ends of functions may not have code-locations representing
2732 ;;; them, designate these places by supplying WHAT as a DEBUG-FUN and
2733 ;;; KIND indicating the :FUN-START or :FUN-END. When WHAT is a
2734 ;;; DEBUG-FUN and kind is :FUN-END, then HOOK-FUN must take two
2735 ;;; additional arguments, a list of values returned by the function
2736 ;;; and a FUN-END-COOKIE.
2738 ;;; INFO is information supplied by and used by the user.
2740 ;;; FUN-END-COOKIE is a function. To implement :FUN-END
2741 ;;; breakpoints, the system uses starter breakpoints to establish the
2742 ;;; :FUN-END breakpoint for each invocation of the function. Upon
2743 ;;; each entry, the system creates a unique cookie to identify the
2744 ;;; invocation, and when the user supplies a function for this
2745 ;;; argument, the system invokes it on the frame and the cookie. The
2746 ;;; system later invokes the :FUN-END breakpoint hook on the same
2747 ;;; cookie. The user may save the cookie for comparison in the hook
2750 ;;; Signal an error if WHAT is an unknown code-location.
2751 (defun make-breakpoint (hook-fun what
2752 &key (kind :code-location) info fun-end-cookie)
2755 (when (code-location-unknown-p what)
2756 (error "cannot make a breakpoint at an unknown code location: ~S"
2758 (aver (eq kind :code-location))
2759 (let ((bpt (%make-breakpoint hook-fun what kind info)))
2761 (compiled-code-location
2762 ;; This slot is filled in due to calling CODE-LOCATION-UNKNOWN-P.
2763 (when (eq (compiled-code-location-kind what) :unknown-return)
2764 (let ((other-bpt (%make-breakpoint hook-fun what
2765 :unknown-return-partner
2767 (setf (breakpoint-unknown-return-partner bpt) other-bpt)
2768 (setf (breakpoint-unknown-return-partner other-bpt) bpt))))
2769 ;; (There used to be more cases back before sbcl-0.7.0,,
2770 ;; when we did special tricks to debug the IR1
2777 (%make-breakpoint hook-fun what kind info))
2779 (unless (eq (sb!c::compiled-debug-fun-returns
2780 (compiled-debug-fun-compiler-debug-fun what))
2782 (error ":FUN-END breakpoints are currently unsupported ~
2783 for the known return convention."))
2785 (let* ((bpt (%make-breakpoint hook-fun what kind info))
2786 (starter (compiled-debug-fun-end-starter what)))
2788 (setf starter (%make-breakpoint #'list what :fun-start nil))
2789 (setf (breakpoint-hook-fun starter)
2790 (fun-end-starter-hook starter what))
2791 (setf (compiled-debug-fun-end-starter what) starter))
2792 (setf (breakpoint-start-helper bpt) starter)
2793 (push bpt (breakpoint-%info starter))
2794 (setf (breakpoint-cookie-fun bpt) fun-end-cookie)
2797 ;;; These are unique objects created upon entry into a function by a
2798 ;;; :FUN-END breakpoint's starter hook. These are only created
2799 ;;; when users supply :FUN-END-COOKIE to MAKE-BREAKPOINT. Also,
2800 ;;; the :FUN-END breakpoint's hook is called on the same cookie
2801 ;;; when it is created.
2802 (defstruct (fun-end-cookie
2803 (:print-object (lambda (obj str)
2804 (print-unreadable-object (obj str :type t))))
2805 (:constructor make-fun-end-cookie (bogus-lra debug-fun))
2807 ;; a pointer to the bogus-lra created for :FUN-END breakpoints
2809 ;; the DEBUG-FUN associated with this cookie
2812 ;;; This maps bogus-lra-components to cookies, so that
2813 ;;; HANDLE-FUN-END-BREAKPOINT can find the appropriate cookie for the
2814 ;;; breakpoint hook.
2815 (defvar *fun-end-cookies* (make-hash-table :test 'eq))
2817 ;;; This returns a hook function for the start helper breakpoint
2818 ;;; associated with a :FUN-END breakpoint. The returned function
2819 ;;; makes a fake LRA that all returns go through, and this piece of
2820 ;;; fake code actually breaks. Upon return from the break, the code
2821 ;;; provides the returnee with any values. Since the returned function
2822 ;;; effectively activates FUN-END-BPT on each entry to DEBUG-FUN's
2823 ;;; function, we must establish breakpoint-data about FUN-END-BPT.
2824 (defun fun-end-starter-hook (starter-bpt debug-fun)
2825 (declare (type breakpoint starter-bpt)
2826 (type compiled-debug-fun debug-fun))
2827 (lambda (frame breakpoint)
2828 (declare (ignore breakpoint)
2830 (let ((lra-sc-offset
2831 (sb!c::compiled-debug-fun-return-pc
2832 (compiled-debug-fun-compiler-debug-fun debug-fun))))
2833 (multiple-value-bind (lra component offset)
2835 (get-context-value frame
2838 (setf (get-context-value frame
2842 (let ((end-bpts (breakpoint-%info starter-bpt)))
2843 (let ((data (breakpoint-data component offset)))
2844 (setf (breakpoint-data-breakpoints data) end-bpts)
2845 (dolist (bpt end-bpts)
2846 (setf (breakpoint-internal-data bpt) data)))
2847 (let ((cookie (make-fun-end-cookie lra debug-fun)))
2848 (setf (gethash component *fun-end-cookies*) cookie)
2849 (dolist (bpt end-bpts)
2850 (let ((fun (breakpoint-cookie-fun bpt)))
2851 (when fun (funcall fun frame cookie))))))))))
2853 ;;; This takes a FUN-END-COOKIE and a frame, and it returns
2854 ;;; whether the cookie is still valid. A cookie becomes invalid when
2855 ;;; the frame that established the cookie has exited. Sometimes cookie
2856 ;;; holders are unaware of cookie invalidation because their
2857 ;;; :FUN-END breakpoint hooks didn't run due to THROW'ing.
2859 ;;; This takes a frame as an efficiency hack since the user probably
2860 ;;; has a frame object in hand when using this routine, and it saves
2861 ;;; repeated parsing of the stack and consing when asking whether a
2862 ;;; series of cookies is valid.
2863 (defun fun-end-cookie-valid-p (frame cookie)
2864 (let ((lra (fun-end-cookie-bogus-lra cookie))
2865 (lra-sc-offset (sb!c::compiled-debug-fun-return-pc
2866 (compiled-debug-fun-compiler-debug-fun
2867 (fun-end-cookie-debug-fun cookie)))))
2868 (do ((frame frame (frame-down frame)))
2870 (when (and (compiled-frame-p frame)
2871 (#!-(or x86 x86-64) eq #!+(or x86 x86-64) sap=
2873 (get-context-value frame lra-save-offset lra-sc-offset)))
2876 ;;;; ACTIVATE-BREAKPOINT
2878 ;;; Cause the system to invoke the breakpoint's hook function until
2879 ;;; the next call to DEACTIVATE-BREAKPOINT or DELETE-BREAKPOINT. The
2880 ;;; system invokes breakpoint hook functions in the opposite order
2881 ;;; that you activate them.
2882 (defun activate-breakpoint (breakpoint)
2883 (when (eq (breakpoint-status breakpoint) :deleted)
2884 (error "cannot activate a deleted breakpoint: ~S" breakpoint))
2885 (unless (eq (breakpoint-status breakpoint) :active)
2886 (ecase (breakpoint-kind breakpoint)
2888 (let ((loc (breakpoint-what breakpoint)))
2890 (compiled-code-location
2891 (activate-compiled-code-location-breakpoint breakpoint)
2892 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2894 (activate-compiled-code-location-breakpoint other))))
2895 ;; (There used to be more cases back before sbcl-0.7.0, when
2896 ;; we did special tricks to debug the IR1 interpreter.)
2899 (etypecase (breakpoint-what breakpoint)
2901 (activate-compiled-fun-start-breakpoint breakpoint))
2902 ;; (There used to be more cases back before sbcl-0.7.0, when
2903 ;; we did special tricks to debug the IR1 interpreter.)
2906 (etypecase (breakpoint-what breakpoint)
2908 (let ((starter (breakpoint-start-helper breakpoint)))
2909 (unless (eq (breakpoint-status starter) :active)
2910 ;; may already be active by some other :FUN-END breakpoint
2911 (activate-compiled-fun-start-breakpoint starter)))
2912 (setf (breakpoint-status breakpoint) :active))
2913 ;; (There used to be more cases back before sbcl-0.7.0, when
2914 ;; we did special tricks to debug the IR1 interpreter.)
2918 (defun activate-compiled-code-location-breakpoint (breakpoint)
2919 (declare (type breakpoint breakpoint))
2920 (let ((loc (breakpoint-what breakpoint)))
2921 (declare (type compiled-code-location loc))
2922 (sub-activate-breakpoint
2924 (breakpoint-data (compiled-debug-fun-component
2925 (code-location-debug-fun loc))
2926 (+ (compiled-code-location-pc loc)
2927 (if (or (eq (breakpoint-kind breakpoint)
2928 :unknown-return-partner)
2929 (eq (compiled-code-location-kind loc)
2930 :single-value-return))
2931 sb!vm:single-value-return-byte-offset
2934 (defun activate-compiled-fun-start-breakpoint (breakpoint)
2935 (declare (type breakpoint breakpoint))
2936 (let ((debug-fun (breakpoint-what breakpoint)))
2937 (sub-activate-breakpoint
2939 (breakpoint-data (compiled-debug-fun-component debug-fun)
2940 (sb!c::compiled-debug-fun-start-pc
2941 (compiled-debug-fun-compiler-debug-fun
2944 (defun sub-activate-breakpoint (breakpoint data)
2945 (declare (type breakpoint breakpoint)
2946 (type breakpoint-data data))
2947 (setf (breakpoint-status breakpoint) :active)
2949 (unless (breakpoint-data-breakpoints data)
2950 (setf (breakpoint-data-instruction data)
2952 (breakpoint-install (get-lisp-obj-address
2953 (breakpoint-data-component data))
2954 (breakpoint-data-offset data)))))
2955 (setf (breakpoint-data-breakpoints data)
2956 (append (breakpoint-data-breakpoints data) (list breakpoint)))
2957 (setf (breakpoint-internal-data breakpoint) data)))
2959 ;;;; DEACTIVATE-BREAKPOINT
2961 ;;; Stop the system from invoking the breakpoint's hook function.
2962 (defun deactivate-breakpoint (breakpoint)
2963 (when (eq (breakpoint-status breakpoint) :active)
2965 (let ((loc (breakpoint-what breakpoint)))
2967 ((or compiled-code-location compiled-debug-fun)
2968 (deactivate-compiled-breakpoint breakpoint)
2969 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2971 (deactivate-compiled-breakpoint other))))
2972 ;; (There used to be more cases back before sbcl-0.7.0, when
2973 ;; we did special tricks to debug the IR1 interpreter.)
2977 (defun deactivate-compiled-breakpoint (breakpoint)
2978 (if (eq (breakpoint-kind breakpoint) :fun-end)
2979 (let ((starter (breakpoint-start-helper breakpoint)))
2980 (unless (find-if (lambda (bpt)
2981 (and (not (eq bpt breakpoint))
2982 (eq (breakpoint-status bpt) :active)))
2983 (breakpoint-%info starter))
2984 (deactivate-compiled-breakpoint starter)))
2985 (let* ((data (breakpoint-internal-data breakpoint))
2986 (bpts (delete breakpoint (breakpoint-data-breakpoints data))))
2987 (setf (breakpoint-internal-data breakpoint) nil)
2988 (setf (breakpoint-data-breakpoints data) bpts)
2991 (breakpoint-remove (get-lisp-obj-address
2992 (breakpoint-data-component data))
2993 (breakpoint-data-offset data)
2994 (breakpoint-data-instruction data)))
2995 (delete-breakpoint-data data))))
2996 (setf (breakpoint-status breakpoint) :inactive)
2999 ;;;; BREAKPOINT-INFO
3001 ;;; Return the user-maintained info associated with breakpoint. This
3003 (defun breakpoint-info (breakpoint)
3004 (breakpoint-%info breakpoint))
3005 (defun %set-breakpoint-info (breakpoint value)
3006 (setf (breakpoint-%info breakpoint) value)
3007 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3009 (setf (breakpoint-%info other) value))))
3011 ;;;; BREAKPOINT-ACTIVE-P and DELETE-BREAKPOINT
3013 (defun breakpoint-active-p (breakpoint)
3014 (ecase (breakpoint-status breakpoint)
3016 ((:inactive :deleted) nil)))
3018 ;;; Free system storage and remove computational overhead associated
3019 ;;; with breakpoint. After calling this, breakpoint is completely
3020 ;;; impotent and can never become active again.
3021 (defun delete-breakpoint (breakpoint)
3022 (let ((status (breakpoint-status breakpoint)))
3023 (unless (eq status :deleted)
3024 (when (eq status :active)
3025 (deactivate-breakpoint breakpoint))
3026 (setf (breakpoint-status breakpoint) :deleted)
3027 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3029 (setf (breakpoint-status other) :deleted)))
3030 (when (eq (breakpoint-kind breakpoint) :fun-end)
3031 (let* ((starter (breakpoint-start-helper breakpoint))
3032 (breakpoints (delete breakpoint
3033 (the list (breakpoint-info starter)))))
3034 (setf (breakpoint-info starter) breakpoints)
3036 (delete-breakpoint starter)
3037 (setf (compiled-debug-fun-end-starter
3038 (breakpoint-what breakpoint))
3042 ;;;; C call out stubs
3044 ;;; This actually installs the break instruction in the component. It
3045 ;;; returns the overwritten bits. You must call this in a context in
3046 ;;; which GC is disabled, so that Lisp doesn't move objects around
3047 ;;; that C is pointing to.
3048 (sb!alien:define-alien-routine "breakpoint_install" sb!alien:unsigned-int
3049 (code-obj sb!alien:unsigned-long)
3050 (pc-offset sb!alien:int))
3052 ;;; This removes the break instruction and replaces the original
3053 ;;; instruction. You must call this in a context in which GC is disabled
3054 ;;; so Lisp doesn't move objects around that C is pointing to.
3055 (sb!alien:define-alien-routine "breakpoint_remove" sb!alien:void
3056 (code-obj sb!alien:unsigned-long)
3057 (pc-offset sb!alien:int)
3058 (old-inst sb!alien:unsigned-int))
3060 (sb!alien:define-alien-routine "breakpoint_do_displaced_inst" sb!alien:void
3061 (scp (* os-context-t))
3062 (orig-inst sb!alien:unsigned-int))
3064 ;;;; breakpoint handlers (layer between C and exported interface)
3066 ;;; This maps components to a mapping of offsets to BREAKPOINT-DATAs.
3067 (defvar *component-breakpoint-offsets* (make-hash-table :test 'eq))
3069 ;;; This returns the BREAKPOINT-DATA object associated with component cross
3070 ;;; offset. If none exists, this makes one, installs it, and returns it.
3071 (defun breakpoint-data (component offset &optional (create t))
3072 (flet ((install-breakpoint-data ()
3074 (let ((data (make-breakpoint-data component offset)))
3075 (push (cons offset data)
3076 (gethash component *component-breakpoint-offsets*))
3078 (let ((offsets (gethash component *component-breakpoint-offsets*)))
3080 (let ((data (assoc offset offsets)))
3083 (install-breakpoint-data)))
3084 (install-breakpoint-data)))))
3086 ;;; We use this when there are no longer any active breakpoints
3087 ;;; corresponding to DATA.
3088 (defun delete-breakpoint-data (data)
3089 (let* ((component (breakpoint-data-component data))
3090 (offsets (delete (breakpoint-data-offset data)
3091 (gethash component *component-breakpoint-offsets*)
3094 (setf (gethash component *component-breakpoint-offsets*) offsets)
3095 (remhash component *component-breakpoint-offsets*)))
3098 ;;; The C handler for interrupts calls this when it has a
3099 ;;; debugging-tool break instruction. This does *not* handle all
3100 ;;; breaks; for example, it does not handle breaks for internal
3102 (defun handle-breakpoint (offset component signal-context)
3103 (let ((data (breakpoint-data component offset nil)))
3105 (error "unknown breakpoint in ~S at offset ~S"
3106 (debug-fun-name (debug-fun-from-pc component offset))
3108 (let ((breakpoints (breakpoint-data-breakpoints data)))
3109 (if (or (null breakpoints)
3110 (eq (breakpoint-kind (car breakpoints)) :fun-end))
3111 (handle-fun-end-breakpoint-aux breakpoints data signal-context)
3112 (handle-breakpoint-aux breakpoints data
3113 offset component signal-context)))))
3115 ;;; This holds breakpoint-datas while invoking the breakpoint hooks
3116 ;;; associated with that particular component and location. While they
3117 ;;; are executing, if we hit the location again, we ignore the
3118 ;;; breakpoint to avoid infinite recursion. fun-end breakpoints
3119 ;;; must work differently since the breakpoint-data is unique for each
3121 (defvar *executing-breakpoint-hooks* nil)
3123 ;;; This handles code-location and DEBUG-FUN :FUN-START
3125 (defun handle-breakpoint-aux (breakpoints data offset component signal-context)
3127 (bug "breakpoint that nobody wants"))
3128 (unless (member data *executing-breakpoint-hooks*)
3129 (let ((*executing-breakpoint-hooks* (cons data
3130 *executing-breakpoint-hooks*)))
3131 (invoke-breakpoint-hooks breakpoints component offset)))
3132 ;; At this point breakpoints may not hold the same list as
3133 ;; BREAKPOINT-DATA-BREAKPOINTS since invoking hooks may have allowed
3134 ;; a breakpoint deactivation. In fact, if all breakpoints were
3135 ;; deactivated then data is invalid since it was deleted and so the
3136 ;; correct one must be looked up if it is to be used. If there are
3137 ;; no more breakpoints active at this location, then the normal
3138 ;; instruction has been put back, and we do not need to
3139 ;; DO-DISPLACED-INST.
3140 (setf data (breakpoint-data component offset nil))
3141 (when (and data (breakpoint-data-breakpoints data))
3142 ;; The breakpoint is still active, so we need to execute the
3143 ;; displaced instruction and leave the breakpoint instruction
3144 ;; behind. The best way to do this is different on each machine,
3145 ;; so we just leave it up to the C code.
3146 (breakpoint-do-displaced-inst signal-context
3147 (breakpoint-data-instruction data))
3148 ;; Some platforms have no usable sigreturn() call. If your
3149 ;; implementation of arch_do_displaced_inst() _does_ sigreturn(),
3150 ;; it's polite to warn here
3151 #!+(and sparc solaris)
3152 (error "BREAKPOINT-DO-DISPLACED-INST returned?")))
3154 (defun invoke-breakpoint-hooks (breakpoints component offset)
3155 (let* ((debug-fun (debug-fun-from-pc component offset))
3156 (frame (do ((f (top-frame) (frame-down f)))
3157 ((eq debug-fun (frame-debug-fun f)) f))))
3158 (dolist (bpt breakpoints)
3159 (funcall (breakpoint-hook-fun bpt)
3161 ;; If this is an :UNKNOWN-RETURN-PARTNER, then pass the
3162 ;; hook function the original breakpoint, so that users
3163 ;; aren't forced to confront the fact that some
3164 ;; breakpoints really are two.
3165 (if (eq (breakpoint-kind bpt) :unknown-return-partner)
3166 (breakpoint-unknown-return-partner bpt)
3169 (defun handle-fun-end-breakpoint (offset component context)
3170 (let ((data (breakpoint-data component offset nil)))
3172 (error "unknown breakpoint in ~S at offset ~S"
3173 (debug-fun-name (debug-fun-from-pc component offset))
3175 (let ((breakpoints (breakpoint-data-breakpoints data)))
3177 (aver (eq (breakpoint-kind (car breakpoints)) :fun-end))
3178 (handle-fun-end-breakpoint-aux breakpoints data context)))))
3180 ;;; Either HANDLE-BREAKPOINT calls this for :FUN-END breakpoints
3181 ;;; [old C code] or HANDLE-FUN-END-BREAKPOINT calls this directly
3183 (defun handle-fun-end-breakpoint-aux (breakpoints data signal-context)
3184 (delete-breakpoint-data data)
3187 (declare (optimize (inhibit-warnings 3)))
3188 (sb!alien:sap-alien signal-context (* os-context-t))))
3189 (frame (do ((cfp (sb!vm:context-register scp sb!vm::cfp-offset))
3190 (f (top-frame) (frame-down f)))
3191 ((= cfp (sap-int (frame-pointer f))) f)
3192 (declare (type (unsigned-byte #.sb!vm:n-word-bits) cfp))))
3193 (component (breakpoint-data-component data))
3194 (cookie (gethash component *fun-end-cookies*)))
3195 (remhash component *fun-end-cookies*)
3196 (dolist (bpt breakpoints)
3197 (funcall (breakpoint-hook-fun bpt)
3199 (get-fun-end-breakpoint-values scp)
3202 (defun get-fun-end-breakpoint-values (scp)
3203 (let ((ocfp (int-sap (sb!vm:context-register
3205 #!-(or x86 x86-64) sb!vm::ocfp-offset
3206 #!+(or x86 x86-64) sb!vm::ebx-offset)))
3207 (nargs (make-lisp-obj
3208 (sb!vm:context-register scp sb!vm::nargs-offset)))
3209 (reg-arg-offsets '#.sb!vm::*register-arg-offsets*)
3212 (dotimes (arg-num nargs)
3213 (push (if reg-arg-offsets
3215 (sb!vm:context-register scp (pop reg-arg-offsets)))
3216 (stack-ref ocfp arg-num))
3218 (nreverse results)))
3220 ;;;; MAKE-BOGUS-LRA (used for :FUN-END breakpoints)
3222 (defconstant bogus-lra-constants
3223 #!-(or x86 x86-64) 2 #!+(or x86 x86-64) 3)
3224 (defconstant known-return-p-slot
3225 (+ sb!vm:code-constants-offset #!-(or x86 x86-64) 1 #!+(or x86 x86-64) 2))
3227 ;;; Make a bogus LRA object that signals a breakpoint trap when
3228 ;;; returned to. If the breakpoint trap handler returns, REAL-LRA is
3229 ;;; returned to. Three values are returned: the bogus LRA object, the
3230 ;;; code component it is part of, and the PC offset for the trap
3232 (defun make-bogus-lra (real-lra &optional known-return-p)
3234 ;; These are really code labels, not variables: but this way we get
3236 (let* ((src-start (foreign-symbol-sap "fun_end_breakpoint_guts"))
3237 (src-end (foreign-symbol-sap "fun_end_breakpoint_end"))
3238 (trap-loc (foreign-symbol-sap "fun_end_breakpoint_trap"))
3239 (length (sap- src-end src-start))
3241 (%primitive sb!c:allocate-code-object (1+ bogus-lra-constants)
3243 (dst-start (code-instructions code-object)))
3244 (declare (type system-area-pointer
3245 src-start src-end dst-start trap-loc)
3246 (type index length))
3247 (setf (%code-debug-info code-object) :bogus-lra)
3248 (setf (code-header-ref code-object sb!vm:code-trace-table-offset-slot)
3251 (setf (code-header-ref code-object real-lra-slot) real-lra)
3253 (multiple-value-bind (offset code) (compute-lra-data-from-pc real-lra)
3254 (setf (code-header-ref code-object real-lra-slot) code)
3255 (setf (code-header-ref code-object (1+ real-lra-slot)) offset))
3256 (setf (code-header-ref code-object known-return-p-slot)
3258 (system-area-ub8-copy src-start 0 dst-start 0 length)
3259 (sb!vm:sanctify-for-execution code-object)
3261 (values dst-start code-object (sap- trap-loc src-start))
3263 (let ((new-lra (make-lisp-obj (+ (sap-int dst-start)
3264 sb!vm:other-pointer-lowtag))))
3267 (logandc2 (+ sb!vm:code-constants-offset bogus-lra-constants 1)
3269 (sb!vm:sanctify-for-execution code-object)
3270 (values new-lra code-object (sap- trap-loc src-start))))))
3274 ;;; This appears here because it cannot go with the DEBUG-FUN
3275 ;;; interface since DO-DEBUG-BLOCK-LOCATIONS isn't defined until after
3276 ;;; the DEBUG-FUN routines.
3278 ;;; Return a code-location before the body of a function and after all
3279 ;;; the arguments are in place; or if that location can't be
3280 ;;; determined due to a lack of debug information, return NIL.
3281 (defun debug-fun-start-location (debug-fun)
3282 (etypecase debug-fun
3284 (code-location-from-pc debug-fun
3285 (sb!c::compiled-debug-fun-start-pc
3286 (compiled-debug-fun-compiler-debug-fun
3289 ;; (There used to be more cases back before sbcl-0.7.0, when
3290 ;; we did special tricks to debug the IR1 interpreter.)