1 ;;;; the implementation of the programmer's interface to writing
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;; FIXME: There are an awful lot of package prefixes in this code.
16 ;;; Couldn't we have SB-DI use the SB-C and SB-VM packages?
20 ;;;; The interface to building debugging tools signals conditions that
21 ;;;; prevent it from adhering to its contract. These are
22 ;;;; serious-conditions because the program using the interface must
23 ;;;; handle them before it can correctly continue execution. These
24 ;;;; debugging conditions are not errors since it is no fault of the
25 ;;;; programmers that the conditions occur. The interface does not
26 ;;;; provide for programs to detect these situations other than
27 ;;;; calling a routine that detects them and signals a condition. For
28 ;;;; example, programmers call A which may fail to return successfully
29 ;;;; due to a lack of debug information, and there is no B the they
30 ;;;; could have called to realize A would fail. It is not an error to
31 ;;;; have called A, but it is an error for the program to then ignore
32 ;;;; the signal generated by A since it cannot continue without A's
33 ;;;; correctly returning a value or performing some operation.
35 ;;;; Use DEBUG-SIGNAL to signal these conditions.
37 (define-condition debug-condition (serious-condition)
41 "All DEBUG-CONDITIONs inherit from this type. These are serious conditions
42 that must be handled, but they are not programmer errors."))
44 (define-condition no-debug-fun-returns (debug-condition)
45 ((debug-fun :reader no-debug-fun-returns-debug-fun
49 "The system could not return values from a frame with DEBUG-FUN since
50 it lacked information about returning values.")
51 (:report (lambda (condition stream)
52 (let ((fun (debug-fun-fun
53 (no-debug-fun-returns-debug-fun condition))))
55 "~&Cannot return values from ~:[frame~;~:*~S~] since ~
56 the debug information lacks details about returning ~
60 (define-condition no-debug-blocks (debug-condition)
61 ((debug-fun :reader no-debug-blocks-debug-fun
64 (:documentation "The debug-fun has no debug-block information.")
65 (:report (lambda (condition stream)
66 (format stream "~&~S has no debug-block information."
67 (no-debug-blocks-debug-fun condition)))))
69 (define-condition no-debug-vars (debug-condition)
70 ((debug-fun :reader no-debug-vars-debug-fun
73 (:documentation "The DEBUG-FUN has no DEBUG-VAR information.")
74 (:report (lambda (condition stream)
75 (format stream "~&~S has no debug variable information."
76 (no-debug-vars-debug-fun condition)))))
78 (define-condition lambda-list-unavailable (debug-condition)
79 ((debug-fun :reader lambda-list-unavailable-debug-fun
83 "The DEBUG-FUN has no lambda list since argument DEBUG-VARs are
85 (:report (lambda (condition stream)
86 (format stream "~&~S has no lambda-list information available."
87 (lambda-list-unavailable-debug-fun condition)))))
89 (define-condition invalid-value (debug-condition)
90 ((debug-var :reader invalid-value-debug-var :initarg :debug-var)
91 (frame :reader invalid-value-frame :initarg :frame))
92 (:report (lambda (condition stream)
93 (format stream "~&~S has :invalid or :unknown value in ~S."
94 (invalid-value-debug-var condition)
95 (invalid-value-frame condition)))))
97 (define-condition ambiguous-var-name (debug-condition)
98 ((name :reader ambiguous-var-name-name :initarg :name)
99 (frame :reader ambiguous-var-name-frame :initarg :frame))
100 (:report (lambda (condition stream)
101 (format stream "~&~S names more than one valid variable in ~S."
102 (ambiguous-var-name-name condition)
103 (ambiguous-var-name-frame condition)))))
105 ;;;; errors and DEBUG-SIGNAL
107 ;;; The debug-internals code tries to signal all programmer errors as
108 ;;; subtypes of DEBUG-ERROR. There are calls to ERROR signalling
109 ;;; SIMPLE-ERRORs, but these dummy checks in the code and shouldn't
112 ;;; While under development, this code also signals errors in code
113 ;;; branches that remain unimplemented.
115 (define-condition debug-error (error) ()
118 "All programmer errors from using the interface for building debugging
119 tools inherit from this type."))
121 (define-condition unhandled-debug-condition (debug-error)
122 ((condition :reader unhandled-debug-condition-condition :initarg :condition))
123 (:report (lambda (condition stream)
124 (format stream "~&unhandled DEBUG-CONDITION:~%~A"
125 (unhandled-debug-condition-condition condition)))))
127 (define-condition unknown-code-location (debug-error)
128 ((code-location :reader unknown-code-location-code-location
129 :initarg :code-location))
130 (:report (lambda (condition stream)
131 (format stream "~&invalid use of an unknown code-location: ~S"
132 (unknown-code-location-code-location condition)))))
134 (define-condition unknown-debug-var (debug-error)
135 ((debug-var :reader unknown-debug-var-debug-var :initarg :debug-var)
136 (debug-fun :reader unknown-debug-var-debug-fun
137 :initarg :debug-fun))
138 (:report (lambda (condition stream)
139 (format stream "~&~S is not in ~S."
140 (unknown-debug-var-debug-var condition)
141 (unknown-debug-var-debug-fun condition)))))
143 (define-condition invalid-control-stack-pointer (debug-error)
145 (:report (lambda (condition stream)
146 (declare (ignore condition))
148 (write-string "invalid control stack pointer" stream))))
150 (define-condition frame-fun-mismatch (debug-error)
151 ((code-location :reader frame-fun-mismatch-code-location
152 :initarg :code-location)
153 (frame :reader frame-fun-mismatch-frame :initarg :frame)
154 (form :reader frame-fun-mismatch-form :initarg :form))
155 (:report (lambda (condition stream)
158 "~&Form was preprocessed for ~S,~% but called on ~S:~% ~S"
159 (frame-fun-mismatch-code-location condition)
160 (frame-fun-mismatch-frame condition)
161 (frame-fun-mismatch-form condition)))))
163 ;;; This signals debug-conditions. If they go unhandled, then signal
164 ;;; an UNHANDLED-DEBUG-CONDITION error.
166 ;;; ??? Get SIGNAL in the right package!
167 (defmacro debug-signal (datum &rest arguments)
168 `(let ((condition (make-condition ,datum ,@arguments)))
170 (error 'unhandled-debug-condition :condition condition)))
174 ;;;; Most of these structures model information stored in internal
175 ;;;; data structures created by the compiler. Whenever comments
176 ;;;; preface an object or type with "compiler", they refer to the
177 ;;;; internal compiler thing, not to the object or type with the same
178 ;;;; name in the "SB-DI" package.
182 ;;; These exist for caching data stored in packed binary form in
183 ;;; compiler DEBUG-FUNs.
184 (defstruct (debug-var (:constructor nil)
186 ;; the name of the variable
187 (symbol (missing-arg) :type symbol)
188 ;; a unique integer identification relative to other variables with the same
191 ;; Does the variable always have a valid value?
192 (alive-p nil :type boolean))
193 (def!method print-object ((debug-var debug-var) stream)
194 (print-unreadable-object (debug-var stream :type t :identity t)
197 (debug-var-symbol debug-var)
198 (debug-var-id debug-var))))
201 (setf (fdocumentation 'debug-var-id 'function)
202 "Return the integer that makes DEBUG-VAR's name and package unique
203 with respect to other DEBUG-VARs in the same function.")
205 (defstruct (compiled-debug-var
207 (:constructor make-compiled-debug-var
208 (symbol id alive-p sc-offset save-sc-offset info))
210 ;; storage class and offset (unexported)
211 (sc-offset nil :type sb!c:sc-offset)
212 ;; storage class and offset when saved somewhere
213 (save-sc-offset nil :type (or sb!c:sc-offset null))
218 ;;; These represent call frames on the stack.
219 (defstruct (frame (:constructor nil)
221 ;; the next frame up, or NIL when top frame
222 (up nil :type (or frame null))
223 ;; the previous frame down, or NIL when the bottom frame. Before
224 ;; computing the next frame down, this slot holds the frame pointer
225 ;; to the control stack for the given frame. This lets us get the
226 ;; next frame down and the return-pc for that frame.
227 (%down :unparsed :type (or frame (member nil :unparsed)))
228 ;; the DEBUG-FUN for the function whose call this frame represents
229 (debug-fun nil :type debug-fun)
230 ;; the CODE-LOCATION where the frame's DEBUG-FUN will continue
231 ;; running when program execution returns to this frame. If someone
232 ;; interrupted this frame, the result could be an unknown
234 (code-location nil :type code-location)
235 ;; an a-list of catch-tags to code-locations
236 (%catches :unparsed :type (or list (member :unparsed)))
237 ;; pointer to frame on control stack (unexported)
239 ;; This is the frame's number for prompt printing. Top is zero.
240 (number 0 :type index))
242 (defstruct (compiled-frame
244 (:constructor make-compiled-frame
245 (pointer up debug-fun code-location number
248 ;; This indicates whether someone interrupted the frame.
249 ;; (unexported). If escaped, this is a pointer to the state that was
250 ;; saved when we were interrupted, an os_context_t, i.e. the third
251 ;; argument to an SA_SIGACTION-style signal handler.
253 (def!method print-object ((obj compiled-frame) str)
254 (print-unreadable-object (obj str :type t)
256 "~S~:[~;, interrupted~]"
257 (debug-fun-name (frame-debug-fun obj))
258 (compiled-frame-escaped obj))))
262 ;;; These exist for caching data stored in packed binary form in
263 ;;; compiler DEBUG-FUNs. *COMPILED-DEBUG-FUNS* maps a SB!C::DEBUG-FUN
264 ;;; to a DEBUG-FUN. There should only be one DEBUG-FUN in existence
265 ;;; for any function; that is, all CODE-LOCATIONs and other objects
266 ;;; that reference DEBUG-FUNs point to unique objects. This is
267 ;;; due to the overhead in cached information.
268 (defstruct (debug-fun (:constructor nil)
270 ;; some representation of the function arguments. See
271 ;; DEBUG-FUN-LAMBDA-LIST.
272 ;; NOTE: must parse vars before parsing arg list stuff.
273 (%lambda-list :unparsed)
274 ;; cached DEBUG-VARS information (unexported).
275 ;; These are sorted by their name.
276 (%debug-vars :unparsed :type (or simple-vector null (member :unparsed)))
277 ;; cached debug-block information. This is NIL when we have tried to
278 ;; parse the packed binary info, but none is available.
279 (blocks :unparsed :type (or simple-vector null (member :unparsed)))
280 ;; the actual function if available
281 (%function :unparsed :type (or null function (member :unparsed))))
282 (def!method print-object ((obj debug-fun) stream)
283 (print-unreadable-object (obj stream :type t)
284 (prin1 (debug-fun-name obj) stream)))
286 (defstruct (compiled-debug-fun
288 (:constructor %make-compiled-debug-fun
289 (compiler-debug-fun component))
291 ;; compiler's dumped DEBUG-FUN information (unexported)
292 (compiler-debug-fun nil :type sb!c::compiled-debug-fun)
293 ;; code object (unexported).
295 ;; the :FUN-START breakpoint (if any) used to facilitate
296 ;; function end breakpoints
297 (end-starter nil :type (or null breakpoint)))
299 ;;; This maps SB!C::COMPILED-DEBUG-FUNs to
300 ;;; COMPILED-DEBUG-FUNs, so we can get at cached stuff and not
301 ;;; duplicate COMPILED-DEBUG-FUN structures.
302 (defvar *compiled-debug-funs* (make-hash-table :test 'eq :weakness :key))
304 ;;; Make a COMPILED-DEBUG-FUN for a SB!C::COMPILER-DEBUG-FUN and its
305 ;;; component. This maps the latter to the former in
306 ;;; *COMPILED-DEBUG-FUNS*. If there already is a COMPILED-DEBUG-FUN,
307 ;;; then this returns it from *COMPILED-DEBUG-FUNS*.
309 ;;; FIXME: It seems this table can potentially grow without bounds,
310 ;;; and retains roots to functions that might otherwise be collected.
311 (defun make-compiled-debug-fun (compiler-debug-fun component)
312 (let ((table *compiled-debug-funs*))
313 (with-locked-system-table (table)
314 (or (gethash compiler-debug-fun table)
315 (setf (gethash compiler-debug-fun table)
316 (%make-compiled-debug-fun compiler-debug-fun component))))))
318 (defstruct (bogus-debug-fun
320 (:constructor make-bogus-debug-fun
331 ;;; These exist for caching data stored in packed binary form in compiler
333 (defstruct (debug-block (:constructor nil)
335 ;; Code-locations where execution continues after this block.
336 (successors nil :type list)
337 ;; This indicates whether the block is a special glob of code shared
338 ;; by various functions and tucked away elsewhere in a component.
339 ;; This kind of block has no start code-location. This slot is in
340 ;; all debug-blocks since it is an exported interface.
341 (elsewhere-p nil :type boolean))
342 (def!method print-object ((obj debug-block) str)
343 (print-unreadable-object (obj str :type t)
344 (prin1 (debug-block-fun-name obj) str)))
347 (setf (fdocumentation 'debug-block-successors 'function)
348 "Return the list of possible code-locations where execution may continue
349 when the basic-block represented by debug-block completes its execution.")
352 (setf (fdocumentation 'debug-block-elsewhere-p 'function)
353 "Return whether debug-block represents elsewhere code.")
355 (defstruct (compiled-debug-block (:include debug-block)
357 make-compiled-debug-block
358 (code-locations successors elsewhere-p))
360 ;; code-location information for the block
361 (code-locations nil :type simple-vector))
365 ;;; This is an internal structure that manages information about a
366 ;;; breakpoint locations. See *COMPONENT-BREAKPOINT-OFFSETS*.
367 (defstruct (breakpoint-data (:constructor make-breakpoint-data
370 ;; This is the component in which the breakpoint lies.
372 ;; This is the byte offset into the component.
373 (offset nil :type index)
374 ;; The original instruction replaced by the breakpoint.
375 (instruction nil :type (or null sb!vm::word))
376 ;; A list of user breakpoints at this location.
377 (breakpoints nil :type list))
378 (def!method print-object ((obj breakpoint-data) str)
379 (print-unreadable-object (obj str :type t)
380 (format str "~S at ~S"
382 (debug-fun-from-pc (breakpoint-data-component obj)
383 (breakpoint-data-offset obj)))
384 (breakpoint-data-offset obj))))
386 (defstruct (breakpoint (:constructor %make-breakpoint
387 (hook-fun what kind %info))
389 ;; This is the function invoked when execution encounters the
390 ;; breakpoint. It takes a frame, the breakpoint, and optionally a
391 ;; list of values. Values are supplied for :FUN-END breakpoints as
392 ;; values to return for the function containing the breakpoint.
393 ;; :FUN-END breakpoint hook functions also take a cookie argument.
394 ;; See the COOKIE-FUN slot.
395 (hook-fun (required-arg) :type function)
396 ;; CODE-LOCATION or DEBUG-FUN
397 (what nil :type (or code-location debug-fun))
398 ;; :CODE-LOCATION, :FUN-START, or :FUN-END for that kind
399 ;; of breakpoint. :UNKNOWN-RETURN-PARTNER if this is the partner of
400 ;; a :code-location breakpoint at an :UNKNOWN-RETURN code-location.
401 (kind nil :type (member :code-location :fun-start :fun-end
402 :unknown-return-partner))
403 ;; Status helps the user and the implementation.
404 (status :inactive :type (member :active :inactive :deleted))
405 ;; This is a backpointer to a breakpoint-data.
406 (internal-data nil :type (or null breakpoint-data))
407 ;; With code-locations whose type is :UNKNOWN-RETURN, there are
408 ;; really two breakpoints: one at the multiple-value entry point,
409 ;; and one at the single-value entry point. This slot holds the
410 ;; breakpoint for the other one, or NIL if this isn't at an
411 ;; :UNKNOWN-RETURN code location.
412 (unknown-return-partner nil :type (or null breakpoint))
413 ;; :FUN-END breakpoints use a breakpoint at the :FUN-START
414 ;; to establish the end breakpoint upon function entry. We do this
415 ;; by frobbing the LRA to jump to a special piece of code that
416 ;; breaks and provides the return values for the returnee. This slot
417 ;; points to the start breakpoint, so we can activate, deactivate,
419 (start-helper nil :type (or null breakpoint))
420 ;; This is a hook users supply to get a dynamically unique cookie
421 ;; for identifying :FUN-END breakpoint executions. That is, if
422 ;; there is one :FUN-END breakpoint, but there may be multiple
423 ;; pending calls of its function on the stack. This function takes
424 ;; the cookie, and the hook function takes the cookie too.
425 (cookie-fun nil :type (or null function))
426 ;; This slot users can set with whatever information they find useful.
428 (def!method print-object ((obj breakpoint) str)
429 (let ((what (breakpoint-what obj)))
430 (print-unreadable-object (obj str :type t)
435 (debug-fun (debug-fun-name what)))
438 (debug-fun (breakpoint-kind obj)))))))
442 (defstruct (code-location (:constructor nil)
444 ;; the DEBUG-FUN containing this CODE-LOCATION
445 (debug-fun nil :type debug-fun)
446 ;; This is initially :UNSURE. Upon first trying to access an
447 ;; :UNPARSED slot, if the data is unavailable, then this becomes T,
448 ;; and the code-location is unknown. If the data is available, this
449 ;; becomes NIL, a known location. We can't use a separate type
450 ;; code-location for this since we must return code-locations before
451 ;; we can tell whether they're known or unknown. For example, when
452 ;; parsing the stack, we don't want to unpack all the variables and
453 ;; blocks just to make frames.
454 (%unknown-p :unsure :type (member t nil :unsure))
455 ;; the DEBUG-BLOCK containing CODE-LOCATION. XXX Possibly toss this
456 ;; out and just find it in the blocks cache in DEBUG-FUN.
457 (%debug-block :unparsed :type (or debug-block (member :unparsed)))
458 ;; This is the number of forms processed by the compiler or loader
459 ;; before the top level form containing this code-location.
460 (%tlf-offset :unparsed :type (or index (member :unparsed)))
461 ;; This is the depth-first number of the node that begins
462 ;; code-location within its top level form.
463 (%form-number :unparsed :type (or index (member :unparsed))))
464 (def!method print-object ((obj code-location) str)
465 (print-unreadable-object (obj str :type t)
466 (prin1 (debug-fun-name (code-location-debug-fun obj))
469 (defstruct (compiled-code-location
470 (:include code-location)
471 (:constructor make-known-code-location
472 (pc debug-fun %tlf-offset %form-number
473 %live-set kind step-info &aux (%unknown-p nil)))
474 (:constructor make-compiled-code-location (pc debug-fun))
476 ;; an index into DEBUG-FUN's component slot
478 ;; a bit-vector indexed by a variable's position in
479 ;; DEBUG-FUN-DEBUG-VARS indicating whether the variable has a
480 ;; valid value at this code-location. (unexported).
481 (%live-set :unparsed :type (or simple-bit-vector (member :unparsed)))
482 ;; (unexported) To see SB!C::LOCATION-KIND, do
483 ;; (SB!KERNEL:TYPEXPAND 'SB!C::LOCATION-KIND).
484 (kind :unparsed :type (or (member :unparsed) sb!c::location-kind))
485 (step-info :unparsed :type (or (member :unparsed :foo) simple-string)))
489 ;;; Return the number of top level forms processed by the compiler
490 ;;; before compiling this source. If this source is uncompiled, this
491 ;;; is zero. This may be zero even if the source is compiled since the
492 ;;; first form in the first file compiled in one compilation, for
493 ;;; example, must have a root number of zero -- the compiler saw no
494 ;;; other top level forms before it.
495 (defun debug-source-root-number (debug-source)
496 (sb!c::debug-source-source-root debug-source))
500 ;;; This is used in FIND-ESCAPED-FRAME and with the bogus components
501 ;;; and LRAs used for :FUN-END breakpoints. When a component's
502 ;;; debug-info slot is :BOGUS-LRA, then the REAL-LRA-SLOT contains the
503 ;;; real component to continue executing, as opposed to the bogus
504 ;;; component which appeared in some frame's LRA location.
505 (defconstant real-lra-slot sb!vm:code-constants-offset)
507 ;;; These are magically converted by the compiler.
508 (defun current-sp () (current-sp))
509 (defun current-fp () (current-fp))
510 (defun stack-ref (s n) (stack-ref s n))
511 (defun %set-stack-ref (s n value) (%set-stack-ref s n value))
512 (defun fun-code-header (fun) (fun-code-header fun))
513 (defun lra-code-header (lra) (lra-code-header lra))
514 (defun %make-lisp-obj (value) (%make-lisp-obj value))
515 (defun get-lisp-obj-address (thing) (get-lisp-obj-address thing))
516 (defun fun-word-offset (fun) (fun-word-offset fun))
518 #!-sb-fluid (declaim (inline control-stack-pointer-valid-p))
519 (defun control-stack-pointer-valid-p (x &optional (aligned t))
520 (declare (type system-area-pointer x))
521 (let* (#!-stack-grows-downward-not-upward
523 (descriptor-sap *control-stack-start*))
524 #!+stack-grows-downward-not-upward
526 (descriptor-sap *control-stack-end*)))
527 #!-stack-grows-downward-not-upward
528 (and (sap< x (current-sp))
529 (sap<= control-stack-start x)
530 (or (not aligned) (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask))))
531 #!+stack-grows-downward-not-upward
532 (and (sap>= x (current-sp))
533 (sap> control-stack-end x)
534 (or (not aligned) (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask))))))
536 (declaim (inline component-ptr-from-pc))
537 (sb!alien:define-alien-routine component-ptr-from-pc (system-area-pointer)
538 (pc system-area-pointer))
541 (sb!alien:define-alien-routine valid-lisp-pointer-p sb!alien:int
542 (pointer system-area-pointer))
544 (declaim (inline component-from-component-ptr))
545 (defun component-from-component-ptr (component-ptr)
546 (declare (type system-area-pointer component-ptr))
547 (make-lisp-obj (logior (sap-int component-ptr)
548 sb!vm:other-pointer-lowtag)))
550 ;;;; (OR X86 X86-64) support
552 (defun compute-lra-data-from-pc (pc)
553 (declare (type system-area-pointer pc))
554 (let ((component-ptr (component-ptr-from-pc pc)))
555 (unless (sap= component-ptr (int-sap #x0))
556 (let* ((code (component-from-component-ptr component-ptr))
557 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes))
558 (pc-offset (- (sap-int pc)
559 (- (get-lisp-obj-address code)
560 sb!vm:other-pointer-lowtag)
562 ;;(format t "c-lra-fpc ~A ~A ~A~%" pc code pc-offset)
563 (values pc-offset code)))))
568 (defconstant sb!vm::nargs-offset #.sb!vm::ecx-offset)
570 ;;; Check for a valid return address - it could be any valid C/Lisp
573 ;;; XXX Could be a little smarter.
574 #!-sb-fluid (declaim (inline ra-pointer-valid-p))
575 (defun ra-pointer-valid-p (ra)
576 (declare (type system-area-pointer ra))
578 ;; not the first page (which is unmapped)
580 ;; FIXME: Where is this documented? Is it really true of every CPU
581 ;; architecture? Is it even necessarily true in current SBCL?
582 (>= (sap-int ra) 4096)
583 ;; not a Lisp stack pointer
584 (not (control-stack-pointer-valid-p ra))))
586 ;;; Try to find a valid previous stack. This is complex on the x86 as
587 ;;; it can jump between C and Lisp frames. To help find a valid frame
588 ;;; it searches backwards.
590 ;;; XXX Should probably check whether it has reached the bottom of the
593 ;;; XXX Should handle interrupted frames, both Lisp and C. At present
594 ;;; it manages to find a fp trail, see linux hack below.
595 (declaim (maybe-inline x86-call-context))
596 (defun x86-call-context (fp)
597 (declare (type system-area-pointer fp))
598 (let ((ocfp (sap-ref-sap fp (sb!vm::frame-byte-offset ocfp-save-offset)))
599 (ra (sap-ref-sap fp (sb!vm::frame-byte-offset return-pc-save-offset))))
600 (if (and (control-stack-pointer-valid-p fp)
602 (control-stack-pointer-valid-p ocfp)
603 (ra-pointer-valid-p ra))
605 (values nil (int-sap 0) (int-sap 0)))))
609 ;;; Convert the descriptor into a SAP. The bits all stay the same, we just
610 ;;; change our notion of what we think they are.
611 #!-sb-fluid (declaim (inline descriptor-sap))
612 (defun descriptor-sap (x)
613 (int-sap (get-lisp-obj-address x)))
615 ;;; Return the top frame of the control stack as it was before calling
618 (/noshow0 "entering TOP-FRAME")
619 (compute-calling-frame (descriptor-sap (%caller-frame))
623 ;;; Flush all of the frames above FRAME, and renumber all the frames
625 (defun flush-frames-above (frame)
626 (setf (frame-up frame) nil)
627 (do ((number 0 (1+ number))
628 (frame frame (frame-%down frame)))
629 ((not (frame-p frame)))
630 (setf (frame-number frame) number)))
632 (defun find-saved-frame-down (fp up-frame)
633 (multiple-value-bind (saved-fp saved-pc) (sb!c:find-saved-fp-and-pc fp)
635 (compute-calling-frame (descriptor-sap saved-fp)
636 (descriptor-sap saved-pc)
640 ;;; Return the frame immediately below FRAME on the stack; or when
641 ;;; FRAME is the bottom of the stack, return NIL.
642 (defun frame-down (frame)
643 (/noshow0 "entering FRAME-DOWN")
644 ;; We have to access the old-fp and return-pc out of frame and pass
645 ;; them to COMPUTE-CALLING-FRAME.
646 (let ((down (frame-%down frame)))
647 (if (eq down :unparsed)
648 (let ((debug-fun (frame-debug-fun frame)))
649 (/noshow0 "in DOWN :UNPARSED case")
650 (setf (frame-%down frame)
653 (let ((c-d-f (compiled-debug-fun-compiler-debug-fun
655 (compute-calling-frame
658 frame ocfp-save-offset
659 (sb!c::compiled-debug-fun-old-fp c-d-f)))
661 frame lra-save-offset
662 (sb!c::compiled-debug-fun-return-pc c-d-f))
665 (let ((fp (frame-pointer frame)))
666 (when (control-stack-pointer-valid-p fp)
668 (multiple-value-bind (ok ra ofp) (x86-call-context fp)
670 (compute-calling-frame ofp ra frame)
671 (find-saved-frame-down fp frame)))
673 (compute-calling-frame
675 (sap-ref-sap fp (* ocfp-save-offset
679 (sap-ref-32 fp (* ocfp-save-offset
680 sb!vm:n-word-bytes)))
682 (stack-ref fp lra-save-offset)
687 ;;; Get the old FP or return PC out of FRAME. STACK-SLOT is the
688 ;;; standard save location offset on the stack. LOC is the saved
689 ;;; SC-OFFSET describing the main location.
690 (defun get-context-value (frame stack-slot loc)
691 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
692 (type sb!c:sc-offset loc))
693 (let ((pointer (frame-pointer frame))
694 (escaped (compiled-frame-escaped frame)))
696 (sub-access-debug-var-slot pointer loc escaped)
698 (stack-ref pointer stack-slot)
702 (stack-ref pointer stack-slot))
704 (sap-ref-sap pointer (sb!vm::frame-byte-offset stack-slot)))))))
706 (defun (setf get-context-value) (value frame stack-slot loc)
707 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
708 (type sb!c:sc-offset loc))
709 (let ((pointer (frame-pointer frame))
710 (escaped (compiled-frame-escaped frame)))
712 (sub-set-debug-var-slot pointer loc value escaped)
714 (setf (stack-ref pointer stack-slot) value)
718 (setf (stack-ref pointer stack-slot) value))
720 (setf (sap-ref-sap pointer (sb!vm::frame-byte-offset stack-slot))
723 (defun foreign-function-backtrace-name (sap)
724 (let ((name (sap-foreign-symbol sap)))
726 (format nil "foreign function: ~A" name)
727 (format nil "foreign function: #x~X" (sap-int sap)))))
729 ;;; This returns a frame for the one existing in time immediately
730 ;;; prior to the frame referenced by current-fp. This is current-fp's
731 ;;; caller or the next frame down the control stack. If there is no
732 ;;; down frame, this returns NIL for the bottom of the stack. UP-FRAME
733 ;;; is the up link for the resulting frame object, and it is null when
734 ;;; we call this to get the top of the stack.
736 ;;; The current frame contains the pointer to the temporally previous
737 ;;; frame we want, and the current frame contains the pc at which we
738 ;;; will continue executing upon returning to that previous frame.
740 ;;; Note: Sometimes LRA is actually a fixnum. This happens when lisp
741 ;;; calls into C. In this case, the code object is stored on the stack
742 ;;; after the LRA, and the LRA is the word offset.
744 (defun compute-calling-frame (caller lra up-frame)
745 (declare (type system-area-pointer caller))
746 (/noshow0 "entering COMPUTE-CALLING-FRAME")
747 (when (control-stack-pointer-valid-p caller)
749 (multiple-value-bind (code pc-offset escaped)
751 (multiple-value-bind (word-offset code)
753 (let ((fp (frame-pointer up-frame)))
755 (stack-ref fp (1+ lra-save-offset))))
756 (values (get-header-data lra)
757 (lra-code-header lra)))
760 (* (1+ (- word-offset (get-header-data code)))
763 (values :foreign-function
766 (find-escaped-frame caller))
767 (if (and (code-component-p code)
768 (eq (%code-debug-info code) :bogus-lra))
769 (let ((real-lra (code-header-ref code real-lra-slot)))
770 (compute-calling-frame caller real-lra up-frame))
771 (let ((d-fun (case code
773 (make-bogus-debug-fun
774 "undefined function"))
776 (make-bogus-debug-fun
777 (foreign-function-backtrace-name
778 (int-sap (get-lisp-obj-address lra)))))
780 (make-bogus-debug-fun
781 "bogus stack frame"))
783 (debug-fun-from-pc code pc-offset)))))
784 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
785 (make-compiled-frame caller up-frame d-fun
786 (code-location-from-pc d-fun pc-offset
788 (if up-frame (1+ (frame-number up-frame)) 0)
792 (defun compute-calling-frame (caller ra up-frame &optional savedp)
793 (declare (type system-area-pointer caller ra))
794 (/noshow0 "entering COMPUTE-CALLING-FRAME")
795 (when (control-stack-pointer-valid-p caller)
797 ;; First check for an escaped frame.
798 (multiple-value-bind (code pc-offset escaped off-stack)
799 (find-escaped-frame caller)
802 ;; If it's escaped it may be a function end breakpoint trap.
803 (when (and (code-component-p code)
804 (eq (%code-debug-info code) :bogus-lra))
805 ;; If :bogus-lra grab the real lra.
806 (setq pc-offset (code-header-ref
807 code (1+ real-lra-slot)))
808 (setq code (code-header-ref code real-lra-slot))
811 (multiple-value-setq (pc-offset code)
812 (compute-lra-data-from-pc ra))
814 (setf code :foreign-function
816 (let ((d-fun (case code
818 (make-bogus-debug-fun
819 "undefined function"))
821 (make-bogus-debug-fun
822 (foreign-function-backtrace-name ra)))
824 (make-bogus-debug-fun
825 "bogus stack frame"))
827 (debug-fun-from-pc code pc-offset)))))
828 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
829 (make-compiled-frame caller up-frame d-fun
830 (code-location-from-pc d-fun pc-offset
832 (if up-frame (1+ (frame-number up-frame)) 0)
833 ;; If we have an interrupt-context that's not on
834 ;; our stack at all, and we're computing the
835 ;; from from a saved FP, we're probably looking
836 ;; at an interrupted syscall.
837 (or escaped (and savedp off-stack)))))))
839 (defun nth-interrupt-context (n)
840 (declare (type (unsigned-byte 32) n)
841 (optimize (speed 3) (safety 0)))
842 (sb!alien:sap-alien (sb!vm::current-thread-offset-sap
843 (+ sb!vm::thread-interrupt-contexts-offset
849 (defun find-escaped-frame (frame-pointer)
850 (declare (type system-area-pointer frame-pointer))
851 (/noshow0 "entering FIND-ESCAPED-FRAME")
852 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
853 (let* ((context (nth-interrupt-context index))
854 (cfp (int-sap (sb!vm:context-register context sb!vm::cfp-offset))))
855 (/noshow0 "got CONTEXT")
856 (unless (control-stack-pointer-valid-p cfp)
857 (return (values nil nil nil t)))
858 (when (sap= frame-pointer cfp)
860 (/noshow0 "in WITHOUT-GCING")
861 (let* ((component-ptr (component-ptr-from-pc
862 (sb!vm:context-pc context)))
863 (code (unless (sap= component-ptr (int-sap #x0))
864 (component-from-component-ptr component-ptr))))
865 (/noshow0 "got CODE")
867 (return (values code 0 context)))
868 (let* ((code-header-len (* (get-header-data code)
871 (- (sap-int (sb!vm:context-pc context))
872 (- (get-lisp-obj-address code)
873 sb!vm:other-pointer-lowtag)
875 (/noshow "got PC-OFFSET")
876 (unless (<= 0 pc-offset
877 (* (code-header-ref code sb!vm:code-code-size-slot)
879 ;; We were in an assembly routine. Therefore, use the
882 ;; FIXME: Should this be WARN or ERROR or what?
883 (format t "** pc-offset ~S not in code obj ~S?~%"
885 (/noshow0 "returning from FIND-ESCAPED-FRAME")
887 (values code pc-offset context)))))))))
890 (defun find-escaped-frame (frame-pointer)
891 (declare (type system-area-pointer frame-pointer))
892 (/noshow0 "entering FIND-ESCAPED-FRAME")
893 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
894 (let ((scp (nth-interrupt-context index)))
896 (when (= (sap-int frame-pointer)
897 (sb!vm:context-register scp sb!vm::cfp-offset))
899 (/noshow0 "in WITHOUT-GCING")
900 (let ((code (code-object-from-bits
901 (sb!vm:context-register scp sb!vm::code-offset))))
902 (/noshow0 "got CODE")
904 (return (values code 0 scp)))
905 (let* ((code-header-len (* (get-header-data code)
908 (- (sap-int (sb!vm:context-pc scp))
909 (- (get-lisp-obj-address code)
910 sb!vm:other-pointer-lowtag)
912 (let ((code-size (* (code-header-ref code
913 sb!vm:code-code-size-slot)
914 sb!vm:n-word-bytes)))
915 (unless (<= 0 pc-offset code-size)
916 ;; We were in an assembly routine.
917 (multiple-value-bind (new-pc-offset computed-return)
918 (find-pc-from-assembly-fun code scp)
919 (setf pc-offset new-pc-offset)
920 (unless (<= 0 pc-offset code-size)
922 "Set PC-OFFSET to zero and continue backtrace."
925 "~@<PC-OFFSET (~D) not in code object. Frame details:~
926 ~2I~:@_PC: #X~X~:@_CODE: ~S~:@_CODE FUN: ~S~:@_LRA: ~
927 #X~X~:@_COMPUTED RETURN: #X~X.~:>"
930 (sap-int (sb!vm:context-pc scp))
932 (%code-entry-points code)
933 (sb!vm:context-register scp sb!vm::lra-offset)
935 ;; We failed to pinpoint where PC is, but set
936 ;; pc-offset to 0 to keep the backtrace from
938 (setf pc-offset 0)))))
939 (/noshow0 "returning from FIND-ESCAPED-FRAME")
941 (if (eq (%code-debug-info code) :bogus-lra)
942 (let ((real-lra (code-header-ref code
944 (values (lra-code-header real-lra)
945 (get-header-data real-lra)
947 (values code pc-offset scp))))))))))
950 (defun find-pc-from-assembly-fun (code scp)
951 "Finds the PC for the return from an assembly routine properly.
952 For some architectures (such as PPC) this will not be the $LRA
954 (let ((return-machine-address (sb!vm::return-machine-address scp))
955 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes)))
956 (values (- return-machine-address
957 (- (get-lisp-obj-address code)
958 sb!vm:other-pointer-lowtag)
960 return-machine-address)))
962 ;;; Find the code object corresponding to the object represented by
963 ;;; bits and return it. We assume bogus functions correspond to the
964 ;;; undefined-function.
966 (defun code-object-from-bits (bits)
967 (declare (type (unsigned-byte 32) bits))
968 (let ((object (make-lisp-obj bits nil)))
969 (if (functionp object)
970 (or (fun-code-header object)
972 (let ((lowtag (lowtag-of object)))
973 (when (= lowtag sb!vm:other-pointer-lowtag)
974 (let ((widetag (widetag-of object)))
975 (cond ((= widetag sb!vm:code-header-widetag)
977 ((= widetag sb!vm:return-pc-header-widetag)
978 (lra-code-header object))
984 ;;; This returns a COMPILED-DEBUG-FUN for COMPONENT and PC. We fetch the
985 ;;; SB!C::DEBUG-INFO and run down its FUN-MAP to get a
986 ;;; SB!C::COMPILED-DEBUG-FUN from the PC. The result only needs to
987 ;;; reference the COMPONENT, for function constants, and the
988 ;;; SB!C::COMPILED-DEBUG-FUN.
989 (defun debug-fun-from-pc (component pc)
990 (let ((info (%code-debug-info component)))
993 ;; FIXME: It seems that most of these (at least on x86) are
994 ;; actually assembler routines, and could be named by looking
995 ;; at the sb-fasl:*assembler-routines*.
996 (make-bogus-debug-fun "no debug information for frame"))
997 ((eq info :bogus-lra)
998 (make-bogus-debug-fun "function end breakpoint"))
1000 (let* ((fun-map (sb!c::compiled-debug-info-fun-map info))
1001 (len (length fun-map)))
1002 (declare (type simple-vector fun-map))
1004 (make-compiled-debug-fun (svref fun-map 0) component)
1007 (>= pc (sb!c::compiled-debug-fun-elsewhere-pc
1008 (svref fun-map 0)))))
1009 (declare (type sb!int:index i))
1012 (< pc (if elsewhere-p
1013 (sb!c::compiled-debug-fun-elsewhere-pc
1014 (svref fun-map (1+ i)))
1015 (svref fun-map i))))
1016 (return (make-compiled-debug-fun
1017 (svref fun-map (1- i))
1021 ;;; This returns a code-location for the COMPILED-DEBUG-FUN,
1022 ;;; DEBUG-FUN, and the pc into its code vector. If we stopped at a
1023 ;;; breakpoint, find the CODE-LOCATION for that breakpoint. Otherwise,
1024 ;;; make an :UNSURE code location, so it can be filled in when we
1025 ;;; figure out what is going on.
1026 (defun code-location-from-pc (debug-fun pc escaped)
1027 (or (and (compiled-debug-fun-p debug-fun)
1029 (let ((data (breakpoint-data
1030 (compiled-debug-fun-component debug-fun)
1032 (when (and data (breakpoint-data-breakpoints data))
1033 (let ((what (breakpoint-what
1034 (first (breakpoint-data-breakpoints data)))))
1035 (when (compiled-code-location-p what)
1037 (make-compiled-code-location pc debug-fun)))
1039 ;;; Return an alist mapping catch tags to CODE-LOCATIONs. These are
1040 ;;; CODE-LOCATIONs at which execution would continue with frame as the
1041 ;;; top frame if someone threw to the corresponding tag.
1042 (defun frame-catches (frame)
1043 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1044 (reversed-result nil)
1045 (fp (frame-pointer frame)))
1046 (loop until (zerop (sap-int catch))
1047 finally (return (nreverse reversed-result))
1052 (* sb!vm:catch-block-current-cont-slot
1053 sb!vm:n-word-bytes))
1057 (* sb!vm:catch-block-current-cont-slot
1058 sb!vm:n-word-bytes))))
1059 (let* (#!-(or x86 x86-64)
1060 (lra (stack-ref catch sb!vm:catch-block-entry-pc-slot))
1063 catch (* sb!vm:catch-block-entry-pc-slot
1064 sb!vm:n-word-bytes)))
1067 (stack-ref catch sb!vm:catch-block-current-code-slot))
1069 (component (component-from-component-ptr
1070 (component-ptr-from-pc ra)))
1073 (* (- (1+ (get-header-data lra))
1074 (get-header-data component))
1078 (- (get-lisp-obj-address component)
1079 sb!vm:other-pointer-lowtag)
1080 (* (get-header-data component) sb!vm:n-word-bytes))))
1081 (push (cons #!-(or x86 x86-64)
1082 (stack-ref catch sb!vm:catch-block-tag-slot)
1085 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1086 sb!vm:n-word-bytes)))
1087 (make-compiled-code-location
1088 offset (frame-debug-fun frame)))
1093 (* sb!vm:catch-block-previous-catch-slot
1094 sb!vm:n-word-bytes))
1098 (* sb!vm:catch-block-previous-catch-slot
1099 sb!vm:n-word-bytes)))))))
1101 ;;; Modify the value of the OLD-TAG catches in FRAME to NEW-TAG
1102 (defun replace-frame-catch-tag (frame old-tag new-tag)
1103 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1104 (fp (frame-pointer frame)))
1105 (loop until (zerop (sap-int catch))
1109 (* sb!vm:catch-block-current-cont-slot
1110 sb!vm:n-word-bytes))
1114 (* sb!vm:catch-block-current-cont-slot
1115 sb!vm:n-word-bytes))))
1118 (stack-ref catch sb!vm:catch-block-tag-slot)
1121 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1122 sb!vm:n-word-bytes)))))
1123 (when (eq current-tag old-tag)
1125 (setf (stack-ref catch sb!vm:catch-block-tag-slot) new-tag)
1127 (setf (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1128 sb!vm:n-word-bytes))
1129 (get-lisp-obj-address new-tag)))))
1133 (* sb!vm:catch-block-previous-catch-slot
1134 sb!vm:n-word-bytes))
1138 (* sb!vm:catch-block-previous-catch-slot
1139 sb!vm:n-word-bytes)))))))
1143 ;;;; operations on DEBUG-FUNs
1145 ;;; Execute the forms in a context with BLOCK-VAR bound to each
1146 ;;; DEBUG-BLOCK in DEBUG-FUN successively. Result is an optional
1147 ;;; form to execute for return values, and DO-DEBUG-FUN-BLOCKS
1148 ;;; returns nil if there is no result form. This signals a
1149 ;;; NO-DEBUG-BLOCKS condition when the DEBUG-FUN lacks
1150 ;;; DEBUG-BLOCK information.
1151 (defmacro do-debug-fun-blocks ((block-var debug-fun &optional result)
1153 (let ((blocks (gensym))
1155 `(let ((,blocks (debug-fun-debug-blocks ,debug-fun)))
1156 (declare (simple-vector ,blocks))
1157 (dotimes (,i (length ,blocks) ,result)
1158 (let ((,block-var (svref ,blocks ,i)))
1161 ;;; Execute body in a context with VAR bound to each DEBUG-VAR in
1162 ;;; DEBUG-FUN. This returns the value of executing result (defaults to
1163 ;;; nil). This may iterate over only some of DEBUG-FUN's variables or
1164 ;;; none depending on debug policy; for example, possibly the
1165 ;;; compilation only preserved argument information.
1166 (defmacro do-debug-fun-vars ((var debug-fun &optional result) &body body)
1167 (let ((vars (gensym))
1169 `(let ((,vars (debug-fun-debug-vars ,debug-fun)))
1170 (declare (type (or null simple-vector) ,vars))
1172 (dotimes (,i (length ,vars) ,result)
1173 (let ((,var (svref ,vars ,i)))
1177 ;;; Return the object of type FUNCTION associated with the DEBUG-FUN,
1178 ;;; or NIL if the function is unavailable or is non-existent as a user
1179 ;;; callable function object.
1180 (defun debug-fun-fun (debug-fun)
1181 (let ((cached-value (debug-fun-%function debug-fun)))
1182 (if (eq cached-value :unparsed)
1183 (setf (debug-fun-%function debug-fun)
1184 (etypecase debug-fun
1187 (compiled-debug-fun-component debug-fun))
1189 (sb!c::compiled-debug-fun-start-pc
1190 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1191 (do ((entry (%code-entry-points component)
1192 (%simple-fun-next entry)))
1195 (sb!c::compiled-debug-fun-start-pc
1196 (compiled-debug-fun-compiler-debug-fun
1197 (fun-debug-fun entry))))
1199 (bogus-debug-fun nil)))
1202 ;;; Return the name of the function represented by DEBUG-FUN. This may
1203 ;;; be a string or a cons; do not assume it is a symbol.
1204 (defun debug-fun-name (debug-fun)
1205 (declare (type debug-fun debug-fun))
1206 (etypecase debug-fun
1208 (sb!c::compiled-debug-fun-name
1209 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1211 (bogus-debug-fun-%name debug-fun))))
1213 ;;; Return a DEBUG-FUN that represents debug information for FUN.
1214 (defun fun-debug-fun (fun)
1215 (declare (type function fun))
1216 (let ((simple-fun (%fun-fun fun)))
1217 (let* ((name (%simple-fun-name simple-fun))
1218 (component (fun-code-header simple-fun))
1221 (and (sb!c::compiled-debug-fun-p x)
1222 (eq (sb!c::compiled-debug-fun-name x) name)
1223 (eq (sb!c::compiled-debug-fun-kind x) nil)))
1224 (sb!c::compiled-debug-info-fun-map
1225 (%code-debug-info component)))))
1227 (make-compiled-debug-fun res component)
1228 ;; KLUDGE: comment from CMU CL:
1229 ;; This used to be the non-interpreted branch, but
1230 ;; William wrote it to return the debug-fun of fun's XEP
1231 ;; instead of fun's debug-fun. The above code does this
1232 ;; more correctly, but it doesn't get or eliminate all
1233 ;; appropriate cases. It mostly works, and probably
1234 ;; works for all named functions anyway.
1236 (debug-fun-from-pc component
1237 (* (- (fun-word-offset simple-fun)
1238 (get-header-data component))
1239 sb!vm:n-word-bytes))))))
1241 ;;; Return the kind of the function, which is one of :OPTIONAL,
1242 ;;; :EXTERNAL, :TOPLEVEL, :CLEANUP, or NIL.
1243 (defun debug-fun-kind (debug-fun)
1244 ;; FIXME: This "is one of" information should become part of the function
1245 ;; declamation, not just a doc string
1246 (etypecase debug-fun
1248 (sb!c::compiled-debug-fun-kind
1249 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1253 ;;; Is there any variable information for DEBUG-FUN?
1254 (defun debug-var-info-available (debug-fun)
1255 (not (not (debug-fun-debug-vars debug-fun))))
1257 ;;; Return a list of DEBUG-VARs in DEBUG-FUN having the same name
1258 ;;; and package as SYMBOL. If SYMBOL is uninterned, then this returns
1259 ;;; a list of DEBUG-VARs without package names and with the same name
1260 ;;; as symbol. The result of this function is limited to the
1261 ;;; availability of variable information in DEBUG-FUN; for
1262 ;;; example, possibly DEBUG-FUN only knows about its arguments.
1263 (defun debug-fun-symbol-vars (debug-fun symbol)
1264 (let ((vars (ambiguous-debug-vars debug-fun (symbol-name symbol)))
1265 (package (and (symbol-package symbol)
1266 (package-name (symbol-package symbol)))))
1267 (delete-if (if (stringp package)
1269 (let ((p (debug-var-package-name var)))
1270 (or (not (stringp p))
1271 (string/= p package))))
1273 (stringp (debug-var-package-name var))))
1276 ;;; Return a list of DEBUG-VARs in DEBUG-FUN whose names contain
1277 ;;; NAME-PREFIX-STRING as an initial substring. The result of this
1278 ;;; function is limited to the availability of variable information in
1279 ;;; debug-fun; for example, possibly debug-fun only knows
1280 ;;; about its arguments.
1281 (defun ambiguous-debug-vars (debug-fun name-prefix-string)
1282 (declare (simple-string name-prefix-string))
1283 (let ((variables (debug-fun-debug-vars debug-fun)))
1284 (declare (type (or null simple-vector) variables))
1286 (let* ((len (length variables))
1287 (prefix-len (length name-prefix-string))
1288 (pos (find-var name-prefix-string variables len))
1291 ;; Find names from pos to variable's len that contain prefix.
1292 (do ((i pos (1+ i)))
1294 (let* ((var (svref variables i))
1295 (name (debug-var-symbol-name var))
1296 (name-len (length name)))
1297 (declare (simple-string name))
1298 (when (/= (or (string/= name-prefix-string name
1299 :end1 prefix-len :end2 name-len)
1304 (setq res (nreverse res)))
1307 ;;; This returns a position in VARIABLES for one containing NAME as an
1308 ;;; initial substring. END is the length of VARIABLES if supplied.
1309 (defun find-var (name variables &optional end)
1310 (declare (simple-vector variables)
1311 (simple-string name))
1312 (let ((name-len (length name)))
1313 (position name variables
1315 (let* ((y (debug-var-symbol-name y))
1317 (declare (simple-string y))
1318 (and (>= y-len name-len)
1319 (string= x y :end1 name-len :end2 name-len))))
1320 :end (or end (length variables)))))
1322 ;;; Return a list representing the lambda-list for DEBUG-FUN. The
1323 ;;; list has the following structure:
1324 ;;; (required-var1 required-var2
1326 ;;; (:optional var3 suppliedp-var4)
1327 ;;; (:optional var5)
1329 ;;; (:rest var6) (:rest var7)
1331 ;;; (:keyword keyword-symbol var8 suppliedp-var9)
1332 ;;; (:keyword keyword-symbol var10)
1335 ;;; Each VARi is a DEBUG-VAR; however it may be the symbol :DELETED if
1336 ;;; it is unreferenced in DEBUG-FUN. This signals a
1337 ;;; LAMBDA-LIST-UNAVAILABLE condition when there is no argument list
1339 (defun debug-fun-lambda-list (debug-fun)
1340 (etypecase debug-fun
1341 (compiled-debug-fun (compiled-debug-fun-lambda-list debug-fun))
1342 (bogus-debug-fun nil)))
1344 ;;; Note: If this has to compute the lambda list, it caches it in DEBUG-FUN.
1345 (defun compiled-debug-fun-lambda-list (debug-fun)
1346 (let ((lambda-list (debug-fun-%lambda-list debug-fun)))
1347 (cond ((eq lambda-list :unparsed)
1348 (multiple-value-bind (args argsp)
1349 (parse-compiled-debug-fun-lambda-list debug-fun)
1350 (setf (debug-fun-%lambda-list debug-fun) args)
1353 (debug-signal 'lambda-list-unavailable
1354 :debug-fun debug-fun))))
1356 ((bogus-debug-fun-p debug-fun)
1358 ((sb!c::compiled-debug-fun-arguments
1359 (compiled-debug-fun-compiler-debug-fun debug-fun))
1360 ;; If the packed information is there (whether empty or not) as
1361 ;; opposed to being nil, then returned our cached value (nil).
1364 ;; Our cached value is nil, and the packed lambda-list information
1365 ;; is nil, so we don't have anything available.
1366 (debug-signal 'lambda-list-unavailable
1367 :debug-fun debug-fun)))))
1369 ;;; COMPILED-DEBUG-FUN-LAMBDA-LIST calls this when a
1370 ;;; COMPILED-DEBUG-FUN has no lambda list information cached. It
1371 ;;; returns the lambda list as the first value and whether there was
1372 ;;; any argument information as the second value. Therefore,
1373 ;;; (VALUES NIL T) means there were no arguments, but (VALUES NIL NIL)
1374 ;;; means there was no argument information.
1375 (defun parse-compiled-debug-fun-lambda-list (debug-fun)
1376 (let ((args (sb!c::compiled-debug-fun-arguments
1377 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1382 (values (coerce (debug-fun-debug-vars debug-fun) 'list)
1385 (let ((vars (debug-fun-debug-vars debug-fun))
1390 (declare (type (or null simple-vector) vars))
1392 (when (>= i len) (return))
1393 (let ((ele (aref args i)))
1398 ;; Deleted required arg at beginning of args array.
1399 (push :deleted res))
1400 (sb!c::optional-args
1403 ;; SUPPLIED-P var immediately following keyword or
1404 ;; optional. Stick the extra var in the result
1405 ;; element representing the keyword or optional,
1406 ;; which is the previous one.
1408 ;; FIXME: NCONC used for side-effect: the effect is defined,
1409 ;; but this is bad style no matter what.
1411 (list (compiled-debug-fun-lambda-list-var
1412 args (incf i) vars))))
1415 (compiled-debug-fun-lambda-list-var
1416 args (incf i) vars))
1419 ;; The next two args are the &MORE arg context and count.
1421 (compiled-debug-fun-lambda-list-var
1423 (compiled-debug-fun-lambda-list-var
1424 args (incf i) vars))
1428 (push (list :keyword
1430 (compiled-debug-fun-lambda-list-var
1431 args (incf i) vars))
1434 ;; We saw an optional marker, so the following
1435 ;; non-symbols are indexes indicating optional
1437 (push (list :optional (svref vars ele)) res))
1439 ;; Required arg at beginning of args array.
1440 (push (svref vars ele) res))))
1442 (values (nreverse res) t))))))
1444 ;;; This is used in COMPILED-DEBUG-FUN-LAMBDA-LIST.
1445 (defun compiled-debug-fun-lambda-list-var (args i vars)
1446 (declare (type (simple-array * (*)) args)
1447 (simple-vector vars))
1448 (let ((ele (aref args i)))
1449 (cond ((not (symbolp ele)) (svref vars ele))
1450 ((eq ele 'sb!c::deleted) :deleted)
1451 (t (error "malformed arguments description")))))
1453 (defun compiled-debug-fun-debug-info (debug-fun)
1454 (%code-debug-info (compiled-debug-fun-component debug-fun)))
1456 ;;;; unpacking variable and basic block data
1458 (defvar *parsing-buffer*
1459 (make-array 20 :adjustable t :fill-pointer t))
1460 (defvar *other-parsing-buffer*
1461 (make-array 20 :adjustable t :fill-pointer t))
1462 ;;; PARSE-DEBUG-BLOCKS and PARSE-DEBUG-VARS
1463 ;;; use this to unpack binary encoded information. It returns the
1464 ;;; values returned by the last form in body.
1466 ;;; This binds buffer-var to *parsing-buffer*, makes sure it starts at
1467 ;;; element zero, and makes sure if we unwind, we nil out any set
1468 ;;; elements for GC purposes.
1470 ;;; This also binds other-var to *other-parsing-buffer* when it is
1471 ;;; supplied, making sure it starts at element zero and that we nil
1472 ;;; out any elements if we unwind.
1474 ;;; This defines the local macro RESULT that takes a buffer, copies
1475 ;;; its elements to a resulting simple-vector, nil's out elements, and
1476 ;;; restarts the buffer at element zero. RESULT returns the
1478 (eval-when (:compile-toplevel :execute)
1479 (sb!xc:defmacro with-parsing-buffer ((buffer-var &optional other-var)
1481 (let ((len (gensym))
1484 (let ((,buffer-var *parsing-buffer*)
1485 ,@(if other-var `((,other-var *other-parsing-buffer*))))
1486 (setf (fill-pointer ,buffer-var) 0)
1487 ,@(if other-var `((setf (fill-pointer ,other-var) 0)))
1488 (macrolet ((result (buf)
1489 `(let* ((,',len (length ,buf))
1490 (,',res (make-array ,',len)))
1491 (replace ,',res ,buf :end1 ,',len :end2 ,',len)
1492 (fill ,buf nil :end ,',len)
1493 (setf (fill-pointer ,buf) 0)
1496 (fill *parsing-buffer* nil)
1497 ,@(if other-var `((fill *other-parsing-buffer* nil))))))
1500 ;;; The argument is a debug internals structure. This returns the
1501 ;;; DEBUG-BLOCKs for DEBUG-FUN, regardless of whether we have unpacked
1502 ;;; them yet. It signals a NO-DEBUG-BLOCKS condition if it can't
1503 ;;; return the blocks.
1504 (defun debug-fun-debug-blocks (debug-fun)
1505 (let ((blocks (debug-fun-blocks debug-fun)))
1506 (cond ((eq blocks :unparsed)
1507 (setf (debug-fun-blocks debug-fun)
1508 (parse-debug-blocks debug-fun))
1509 (unless (debug-fun-blocks debug-fun)
1510 (debug-signal 'no-debug-blocks
1511 :debug-fun debug-fun))
1512 (debug-fun-blocks debug-fun))
1515 (debug-signal 'no-debug-blocks
1516 :debug-fun debug-fun)))))
1518 ;;; Return a SIMPLE-VECTOR of DEBUG-BLOCKs or NIL. NIL indicates there
1519 ;;; was no basic block information.
1520 (defun parse-debug-blocks (debug-fun)
1521 (etypecase debug-fun
1523 (parse-compiled-debug-blocks debug-fun))
1525 (debug-signal 'no-debug-blocks :debug-fun debug-fun))))
1527 ;;; This does some of the work of PARSE-DEBUG-BLOCKS.
1528 (defun parse-compiled-debug-blocks (debug-fun)
1529 (let* ((var-count (length (debug-fun-debug-vars debug-fun)))
1530 (compiler-debug-fun (compiled-debug-fun-compiler-debug-fun
1532 (blocks (sb!c::compiled-debug-fun-blocks compiler-debug-fun))
1533 ;; KLUDGE: 8 is a hard-wired constant in the compiler for the
1534 ;; element size of the packed binary representation of the
1536 (live-set-len (ceiling var-count 8))
1537 (tlf-number (sb!c::compiled-debug-fun-tlf-number compiler-debug-fun)))
1539 (return-from parse-compiled-debug-blocks nil))
1540 (macrolet ((aref+ (a i) `(prog1 (aref ,a ,i) (incf ,i))))
1541 (with-parsing-buffer (blocks-buffer locations-buffer)
1543 (len (length blocks))
1546 (when (>= i len) (return))
1547 (let ((succ-and-flags (aref+ blocks i))
1549 (declare (type (unsigned-byte 8) succ-and-flags)
1551 (dotimes (k (ldb sb!c::compiled-debug-block-nsucc-byte
1553 (push (sb!c:read-var-integer blocks i) successors))
1555 (dotimes (k (sb!c:read-var-integer blocks i)
1556 (result locations-buffer))
1557 (let ((kind (svref sb!c::*compiled-code-location-kinds*
1560 (sb!c:read-var-integer blocks i)))
1561 (tlf-offset (or tlf-number
1562 (sb!c:read-var-integer blocks i)))
1563 (form-number (sb!c:read-var-integer blocks i))
1564 (live-set (sb!c:read-packed-bit-vector
1565 live-set-len blocks i))
1566 (step-info (sb!c:read-var-string blocks i)))
1567 (vector-push-extend (make-known-code-location
1568 pc debug-fun tlf-offset
1569 form-number live-set kind
1572 (setf last-pc pc))))
1573 (block (make-compiled-debug-block
1574 locations successors
1576 sb!c::compiled-debug-block-elsewhere-p
1577 succ-and-flags))))))
1578 (vector-push-extend block blocks-buffer)
1579 (dotimes (k (length locations))
1580 (setf (code-location-%debug-block (svref locations k))
1582 (let ((res (result blocks-buffer)))
1583 (declare (simple-vector res))
1584 (dotimes (i (length res))
1585 (let* ((block (svref res i))
1587 (dolist (ele (debug-block-successors block))
1588 (push (svref res ele) succs))
1589 (setf (debug-block-successors block) succs)))
1592 ;;; The argument is a debug internals structure. This returns NIL if
1593 ;;; there is no variable information. It returns an empty
1594 ;;; simple-vector if there were no locals in the function. Otherwise
1595 ;;; it returns a SIMPLE-VECTOR of DEBUG-VARs.
1596 (defun debug-fun-debug-vars (debug-fun)
1597 (let ((vars (debug-fun-%debug-vars debug-fun)))
1598 (if (eq vars :unparsed)
1599 (setf (debug-fun-%debug-vars debug-fun)
1600 (etypecase debug-fun
1602 (parse-compiled-debug-vars debug-fun))
1603 (bogus-debug-fun nil)))
1606 ;;; VARS is the parsed variables for a minimal debug function. We need
1607 ;;; to assign names of the form ARG-NNN. We must pad with leading
1608 ;;; zeros, since the arguments must be in alphabetical order.
1609 (defun assign-minimal-var-names (vars)
1610 (declare (simple-vector vars))
1611 (let* ((len (length vars))
1612 (width (length (format nil "~W" (1- len)))))
1614 (without-package-locks
1615 (setf (compiled-debug-var-symbol (svref vars i))
1616 (intern (format nil "ARG-~V,'0D" width i)
1617 ;; The cross-compiler won't dump literal package
1618 ;; references because the target package objects
1619 ;; aren't created until partway through
1620 ;; cold-init. In lieu of adding smarts to the
1621 ;; build framework to handle this, we use an
1622 ;; explicit load-time-value form.
1623 (load-time-value (find-package "SB!DEBUG"))))))))
1625 ;;; Parse the packed representation of DEBUG-VARs from
1626 ;;; DEBUG-FUN's SB!C::COMPILED-DEBUG-FUN, returning a vector
1627 ;;; of DEBUG-VARs, or NIL if there was no information to parse.
1628 (defun parse-compiled-debug-vars (debug-fun)
1629 (let* ((cdebug-fun (compiled-debug-fun-compiler-debug-fun
1631 (packed-vars (sb!c::compiled-debug-fun-vars cdebug-fun))
1632 (args-minimal (eq (sb!c::compiled-debug-fun-arguments cdebug-fun)
1636 (buffer (make-array 0 :fill-pointer 0 :adjustable t)))
1637 ((>= i (length packed-vars))
1638 (let ((result (coerce buffer 'simple-vector)))
1640 (assign-minimal-var-names result))
1642 (flet ((geti () (prog1 (aref packed-vars i) (incf i))))
1643 (let* ((flags (geti))
1644 (minimal (logtest sb!c::compiled-debug-var-minimal-p flags))
1645 (deleted (logtest sb!c::compiled-debug-var-deleted-p flags))
1646 (more-context-p (logtest sb!c::compiled-debug-var-more-context-p flags))
1647 (more-count-p (logtest sb!c::compiled-debug-var-more-count-p flags))
1648 (live (logtest sb!c::compiled-debug-var-environment-live
1650 (save (logtest sb!c::compiled-debug-var-save-loc-p flags))
1651 (symbol (if minimal nil (geti)))
1652 (id (if (logtest sb!c::compiled-debug-var-id-p flags)
1655 (sc-offset (if deleted 0 (geti)))
1656 (save-sc-offset (if save (geti) nil)))
1657 (aver (not (and args-minimal (not minimal))))
1658 (vector-push-extend (make-compiled-debug-var symbol
1663 (cond (more-context-p :more-context)
1664 (more-count-p :more-count)))
1669 ;;; If we're sure of whether code-location is known, return T or NIL.
1670 ;;; If we're :UNSURE, then try to fill in the code-location's slots.
1671 ;;; This determines whether there is any debug-block information, and
1672 ;;; if code-location is known.
1674 ;;; ??? IF this conses closures every time it's called, then break off the
1675 ;;; :UNSURE part to get the HANDLER-CASE into another function.
1676 (defun code-location-unknown-p (basic-code-location)
1677 (ecase (code-location-%unknown-p basic-code-location)
1681 (setf (code-location-%unknown-p basic-code-location)
1682 (handler-case (not (fill-in-code-location basic-code-location))
1683 (no-debug-blocks () t))))))
1685 ;;; Return the DEBUG-BLOCK containing code-location if it is available.
1686 ;;; Some debug policies inhibit debug-block information, and if none
1687 ;;; is available, then this signals a NO-DEBUG-BLOCKS condition.
1688 (defun code-location-debug-block (basic-code-location)
1689 (let ((block (code-location-%debug-block basic-code-location)))
1690 (if (eq block :unparsed)
1691 (etypecase basic-code-location
1692 (compiled-code-location
1693 (compute-compiled-code-location-debug-block basic-code-location))
1694 ;; (There used to be more cases back before sbcl-0.7.0, when
1695 ;; we did special tricks to debug the IR1 interpreter.)
1699 ;;; Store and return BASIC-CODE-LOCATION's debug-block. We determines
1700 ;;; the correct one using the code-location's pc. We use
1701 ;;; DEBUG-FUN-DEBUG-BLOCKS to return the cached block information
1702 ;;; or signal a NO-DEBUG-BLOCKS condition. The blocks are sorted by
1703 ;;; their first code-location's pc, in ascending order. Therefore, as
1704 ;;; soon as we find a block that starts with a pc greater than
1705 ;;; basic-code-location's pc, we know the previous block contains the
1706 ;;; pc. If we get to the last block, then the code-location is either
1707 ;;; in the second to last block or the last block, and we have to be
1708 ;;; careful in determining this since the last block could be code at
1709 ;;; the end of the function. We have to check for the last block being
1710 ;;; code first in order to see how to compare the code-location's pc.
1711 (defun compute-compiled-code-location-debug-block (basic-code-location)
1712 (let* ((pc (compiled-code-location-pc basic-code-location))
1713 (debug-fun (code-location-debug-fun
1714 basic-code-location))
1715 (blocks (debug-fun-debug-blocks debug-fun))
1716 (len (length blocks)))
1717 (declare (simple-vector blocks))
1718 (setf (code-location-%debug-block basic-code-location)
1724 (let ((last (svref blocks end)))
1726 ((debug-block-elsewhere-p last)
1728 (sb!c::compiled-debug-fun-elsewhere-pc
1729 (compiled-debug-fun-compiler-debug-fun
1731 (svref blocks (1- end))
1734 (compiled-code-location-pc
1735 (svref (compiled-debug-block-code-locations last)
1737 (svref blocks (1- end)))
1739 (declare (type index i end))
1741 (compiled-code-location-pc
1742 (svref (compiled-debug-block-code-locations
1745 (return (svref blocks (1- i)))))))))
1747 ;;; Return the CODE-LOCATION's DEBUG-SOURCE.
1748 (defun code-location-debug-source (code-location)
1749 (let ((info (compiled-debug-fun-debug-info
1750 (code-location-debug-fun code-location))))
1751 (or (sb!c::debug-info-source info)
1752 (debug-signal 'no-debug-blocks :debug-fun
1753 (code-location-debug-fun code-location)))))
1755 ;;; Returns the number of top level forms before the one containing
1756 ;;; CODE-LOCATION as seen by the compiler in some compilation unit. (A
1757 ;;; compilation unit is not necessarily a single file, see the section
1758 ;;; on debug-sources.)
1759 (defun code-location-toplevel-form-offset (code-location)
1760 (when (code-location-unknown-p code-location)
1761 (error 'unknown-code-location :code-location code-location))
1762 (let ((tlf-offset (code-location-%tlf-offset code-location)))
1763 (cond ((eq tlf-offset :unparsed)
1764 (etypecase code-location
1765 (compiled-code-location
1766 (unless (fill-in-code-location code-location)
1767 ;; This check should be unnecessary. We're missing
1768 ;; debug info the compiler should have dumped.
1769 (bug "unknown code location"))
1770 (code-location-%tlf-offset code-location))
1771 ;; (There used to be more cases back before sbcl-0.7.0,,
1772 ;; when we did special tricks to debug the IR1
1777 ;;; Return the number of the form corresponding to CODE-LOCATION. The
1778 ;;; form number is derived by a walking the subforms of a top level
1779 ;;; form in depth-first order.
1780 (defun code-location-form-number (code-location)
1781 (when (code-location-unknown-p code-location)
1782 (error 'unknown-code-location :code-location code-location))
1783 (let ((form-num (code-location-%form-number code-location)))
1784 (cond ((eq form-num :unparsed)
1785 (etypecase code-location
1786 (compiled-code-location
1787 (unless (fill-in-code-location code-location)
1788 ;; This check should be unnecessary. We're missing
1789 ;; debug info the compiler should have dumped.
1790 (bug "unknown code location"))
1791 (code-location-%form-number code-location))
1792 ;; (There used to be more cases back before sbcl-0.7.0,,
1793 ;; when we did special tricks to debug the IR1
1798 ;;; Return the kind of CODE-LOCATION, one of:
1799 ;;; :INTERPRETED, :UNKNOWN-RETURN, :KNOWN-RETURN, :INTERNAL-ERROR,
1800 ;;; :NON-LOCAL-EXIT, :BLOCK-START, :CALL-SITE, :SINGLE-VALUE-RETURN,
1801 ;;; :NON-LOCAL-ENTRY
1802 (defun code-location-kind (code-location)
1803 (when (code-location-unknown-p code-location)
1804 (error 'unknown-code-location :code-location code-location))
1805 (etypecase code-location
1806 (compiled-code-location
1807 (let ((kind (compiled-code-location-kind code-location)))
1808 (cond ((not (eq kind :unparsed)) kind)
1809 ((not (fill-in-code-location code-location))
1810 ;; This check should be unnecessary. We're missing
1811 ;; debug info the compiler should have dumped.
1812 (bug "unknown code location"))
1814 (compiled-code-location-kind code-location)))))
1815 ;; (There used to be more cases back before sbcl-0.7.0,,
1816 ;; when we did special tricks to debug the IR1
1820 ;;; This returns CODE-LOCATION's live-set if it is available. If
1821 ;;; there is no debug-block information, this returns NIL.
1822 (defun compiled-code-location-live-set (code-location)
1823 (if (code-location-unknown-p code-location)
1825 (let ((live-set (compiled-code-location-%live-set code-location)))
1826 (cond ((eq live-set :unparsed)
1827 (unless (fill-in-code-location code-location)
1828 ;; This check should be unnecessary. We're missing
1829 ;; debug info the compiler should have dumped.
1831 ;; FIXME: This error and comment happen over and over again.
1832 ;; Make them a shared function.
1833 (bug "unknown code location"))
1834 (compiled-code-location-%live-set code-location))
1837 ;;; true if OBJ1 and OBJ2 are the same place in the code
1838 (defun code-location= (obj1 obj2)
1840 (compiled-code-location
1842 (compiled-code-location
1843 (and (eq (code-location-debug-fun obj1)
1844 (code-location-debug-fun obj2))
1845 (sub-compiled-code-location= obj1 obj2)))
1846 ;; (There used to be more cases back before sbcl-0.7.0,,
1847 ;; when we did special tricks to debug the IR1
1850 ;; (There used to be more cases back before sbcl-0.7.0,,
1851 ;; when we did special tricks to debug IR1-interpreted code.)
1853 (defun sub-compiled-code-location= (obj1 obj2)
1854 (= (compiled-code-location-pc obj1)
1855 (compiled-code-location-pc obj2)))
1857 ;;; Fill in CODE-LOCATION's :UNPARSED slots, returning T or NIL
1858 ;;; depending on whether the code-location was known in its
1859 ;;; DEBUG-FUN's debug-block information. This may signal a
1860 ;;; NO-DEBUG-BLOCKS condition due to DEBUG-FUN-DEBUG-BLOCKS, and
1861 ;;; it assumes the %UNKNOWN-P slot is already set or going to be set.
1862 (defun fill-in-code-location (code-location)
1863 (declare (type compiled-code-location code-location))
1864 (let* ((debug-fun (code-location-debug-fun code-location))
1865 (blocks (debug-fun-debug-blocks debug-fun)))
1866 (declare (simple-vector blocks))
1867 (dotimes (i (length blocks) nil)
1868 (let* ((block (svref blocks i))
1869 (locations (compiled-debug-block-code-locations block)))
1870 (declare (simple-vector locations))
1871 (dotimes (j (length locations))
1872 (let ((loc (svref locations j)))
1873 (when (sub-compiled-code-location= code-location loc)
1874 (setf (code-location-%debug-block code-location) block)
1875 (setf (code-location-%tlf-offset code-location)
1876 (code-location-%tlf-offset loc))
1877 (setf (code-location-%form-number code-location)
1878 (code-location-%form-number loc))
1879 (setf (compiled-code-location-%live-set code-location)
1880 (compiled-code-location-%live-set loc))
1881 (setf (compiled-code-location-kind code-location)
1882 (compiled-code-location-kind loc))
1883 (setf (compiled-code-location-step-info code-location)
1884 (compiled-code-location-step-info loc))
1885 (return-from fill-in-code-location t))))))))
1887 ;;;; operations on DEBUG-BLOCKs
1889 ;;; Execute FORMS in a context with CODE-VAR bound to each
1890 ;;; CODE-LOCATION in DEBUG-BLOCK, and return the value of RESULT.
1891 (defmacro do-debug-block-locations ((code-var debug-block &optional result)
1893 (let ((code-locations (gensym))
1895 `(let ((,code-locations (debug-block-code-locations ,debug-block)))
1896 (declare (simple-vector ,code-locations))
1897 (dotimes (,i (length ,code-locations) ,result)
1898 (let ((,code-var (svref ,code-locations ,i)))
1901 ;;; Return the name of the function represented by DEBUG-FUN.
1902 ;;; This may be a string or a cons; do not assume it is a symbol.
1903 (defun debug-block-fun-name (debug-block)
1904 (etypecase debug-block
1905 (compiled-debug-block
1906 (let ((code-locs (compiled-debug-block-code-locations debug-block)))
1907 (declare (simple-vector code-locs))
1908 (if (zerop (length code-locs))
1909 "??? Can't get name of debug-block's function."
1911 (code-location-debug-fun (svref code-locs 0))))))
1912 ;; (There used to be more cases back before sbcl-0.7.0, when we
1913 ;; did special tricks to debug the IR1 interpreter.)
1916 (defun debug-block-code-locations (debug-block)
1917 (etypecase debug-block
1918 (compiled-debug-block
1919 (compiled-debug-block-code-locations debug-block))
1920 ;; (There used to be more cases back before sbcl-0.7.0, when we
1921 ;; did special tricks to debug the IR1 interpreter.)
1924 ;;;; operations on debug variables
1926 (defun debug-var-symbol-name (debug-var)
1927 (symbol-name (debug-var-symbol debug-var)))
1929 ;;; FIXME: Make sure that this isn't called anywhere that it wouldn't
1930 ;;; be acceptable to have NIL returned, or that it's only called on
1931 ;;; DEBUG-VARs whose symbols have non-NIL packages.
1932 (defun debug-var-package-name (debug-var)
1933 (package-name (symbol-package (debug-var-symbol debug-var))))
1935 ;;; Return the value stored for DEBUG-VAR in frame, or if the value is
1936 ;;; not :VALID, then signal an INVALID-VALUE error.
1937 (defun debug-var-valid-value (debug-var frame)
1938 (unless (eq (debug-var-validity debug-var (frame-code-location frame))
1940 (error 'invalid-value :debug-var debug-var :frame frame))
1941 (debug-var-value debug-var frame))
1943 ;;; Returns the value stored for DEBUG-VAR in frame. The value may be
1944 ;;; invalid. This is SETFable.
1945 (defun debug-var-value (debug-var frame)
1946 (aver (typep frame 'compiled-frame))
1947 (let ((res (access-compiled-debug-var-slot debug-var frame)))
1948 (if (indirect-value-cell-p res)
1949 (value-cell-ref res)
1952 ;;; This returns what is stored for the variable represented by
1953 ;;; DEBUG-VAR relative to the FRAME. This may be an indirect value
1954 ;;; cell if the variable is both closed over and set.
1955 (defun access-compiled-debug-var-slot (debug-var frame)
1956 (declare (optimize (speed 1)))
1957 (let ((escaped (compiled-frame-escaped frame)))
1959 (sub-access-debug-var-slot
1960 (frame-pointer frame)
1961 (compiled-debug-var-sc-offset debug-var)
1963 (sub-access-debug-var-slot
1964 (frame-pointer frame)
1965 (or (compiled-debug-var-save-sc-offset debug-var)
1966 (compiled-debug-var-sc-offset debug-var))))))
1968 ;;; a helper function for working with possibly-invalid values:
1969 ;;; Do (%MAKE-LISP-OBJ VAL) only if the value looks valid.
1971 ;;; (Such values can arise in registers on machines with conservative
1972 ;;; GC, and might also arise in debug variable locations when
1973 ;;; those variables are invalid.)
1974 (defun make-lisp-obj (val &optional (errorp t))
1977 (zerop (logand val sb!vm:fixnum-tag-mask))
1978 ;; immediate single float, 64-bit only
1979 #!+#.(cl:if (cl:= sb!vm::n-machine-word-bits 64) '(and) '(or))
1980 (= (logand val #xff) sb!vm:single-float-widetag)
1982 (and (zerop (logandc2 val #x1fffffff)) ; Top bits zero
1983 (= (logand val #xff) sb!vm:character-widetag)) ; char tag
1985 (= val sb!vm:unbound-marker-widetag)
1988 (not (zerop (valid-lisp-pointer-p (int-sap val))))
1989 ;; FIXME: There is no fundamental reason not to use the above
1990 ;; function on other platforms as well, but I didn't have
1991 ;; others available while doing this. --NS 2007-06-21
1993 (and (logbitp 0 val)
1994 (or (< sb!vm:read-only-space-start val
1995 (* sb!vm:*read-only-space-free-pointer*
1996 sb!vm:n-word-bytes))
1997 (< sb!vm:static-space-start val
1998 (* sb!vm:*static-space-free-pointer*
1999 sb!vm:n-word-bytes))
2000 (< (current-dynamic-space-start) val
2001 (sap-int (dynamic-space-free-pointer))))))
2002 (values (%make-lisp-obj val) t)
2004 (error "~S is not a valid argument to ~S"
2006 (values (make-unprintable-object (format nil "invalid object #x~X" val))
2009 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2010 ;; NOTE: The long-float support in here is obviously decayed. When
2011 ;; the x86oid and non-x86oid versions of this function were unified,
2012 ;; the behavior of long-floats was preserved, which only served to
2013 ;; highlight its brokenness.
2014 (macrolet ((with-escaped-value ((var) &body forms)
2016 (let ((,var (sb!vm:context-register
2018 (sb!c:sc-offset-offset sc-offset))))
2020 :invalid-value-for-unescaped-register-storage))
2021 (escaped-float-value (format)
2023 (sb!vm:context-float-register
2025 (sb!c:sc-offset-offset sc-offset)
2027 :invalid-value-for-unescaped-register-storage))
2028 (escaped-complex-float-value (format offset)
2031 (sb!vm:context-float-register
2032 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2033 (sb!vm:context-float-register
2034 escaped (+ (sb!c:sc-offset-offset sc-offset) ,offset) ',format))
2035 :invalid-value-for-unescaped-register-storage))
2036 (with-nfp ((var) &body body)
2037 ;; x86oids have no separate number stack, so dummy it
2043 `(let ((,var (if escaped
2045 (sb!vm:context-register escaped
2048 (sb!sys:sap-ref-sap fp (* nfp-save-offset
2049 sb!vm:n-word-bytes))
2051 (sb!vm::make-number-stack-pointer
2052 (sb!sys:sap-ref-32 fp (* nfp-save-offset
2053 sb!vm:n-word-bytes))))))
2055 (stack-frame-offset (data-width offset)
2057 `(sb!vm::frame-byte-offset (+ (sb!c:sc-offset-offset sc-offset)
2061 (declare (ignore data-width))
2063 `(* (+ (sb!c:sc-offset-offset sc-offset) ,offset)
2064 sb!vm:n-word-bytes)))
2065 (ecase (sb!c:sc-offset-scn sc-offset)
2066 ((#.sb!vm:any-reg-sc-number
2067 #.sb!vm:descriptor-reg-sc-number
2068 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2070 (with-escaped-value (val)
2071 (make-lisp-obj val nil))))
2072 (#.sb!vm:character-reg-sc-number
2073 (with-escaped-value (val)
2075 (#.sb!vm:sap-reg-sc-number
2076 (with-escaped-value (val)
2077 (sb!sys:int-sap val)))
2078 (#.sb!vm:signed-reg-sc-number
2079 (with-escaped-value (val)
2080 (if (logbitp (1- sb!vm:n-word-bits) val)
2081 (logior val (ash -1 sb!vm:n-word-bits))
2083 (#.sb!vm:unsigned-reg-sc-number
2084 (with-escaped-value (val)
2087 (#.sb!vm:non-descriptor-reg-sc-number
2088 (error "Local non-descriptor register access?"))
2090 (#.sb!vm:interior-reg-sc-number
2091 (error "Local interior register access?"))
2092 (#.sb!vm:single-reg-sc-number
2093 (escaped-float-value single-float))
2094 (#.sb!vm:double-reg-sc-number
2095 (escaped-float-value double-float))
2097 (#.sb!vm:long-reg-sc-number
2098 (escaped-float-value long-float))
2099 (#.sb!vm:complex-single-reg-sc-number
2100 (escaped-complex-float-value single-float 1))
2101 (#.sb!vm:complex-double-reg-sc-number
2102 (escaped-complex-float-value double-float #!+sparc 2 #!-sparc 1))
2104 (#.sb!vm:complex-long-reg-sc-number
2105 (escaped-complex-float-value long-float
2106 #!+sparc 4 #!+(or x86 x86-64) 1
2107 #!-(or sparc x86 x86-64) 0))
2108 (#.sb!vm:single-stack-sc-number
2110 (sb!sys:sap-ref-single nfp (stack-frame-offset 1 0))))
2111 (#.sb!vm:double-stack-sc-number
2113 (sb!sys:sap-ref-double nfp (stack-frame-offset 2 0))))
2115 (#.sb!vm:long-stack-sc-number
2117 (sb!sys:sap-ref-long nfp (stack-frame-offset 3 0))))
2118 (#.sb!vm:complex-single-stack-sc-number
2121 (sb!sys:sap-ref-single nfp (stack-frame-offset 1 0))
2122 (sb!sys:sap-ref-single nfp (stack-frame-offset 1 1)))))
2123 (#.sb!vm:complex-double-stack-sc-number
2126 (sb!sys:sap-ref-double nfp (stack-frame-offset 2 0))
2127 (sb!sys:sap-ref-double nfp (stack-frame-offset 2 2)))))
2129 (#.sb!vm:complex-long-stack-sc-number
2132 (sb!sys:sap-ref-long nfp (stack-frame-offset 3 0))
2133 (sb!sys:sap-ref-long nfp
2134 (stack-frame-offset 3 #!+sparc 4
2135 #!+(or x86 x86-64) 3
2136 #!-(or sparc x86 x86-64) 0)))))
2137 (#.sb!vm:control-stack-sc-number
2138 (stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2139 (#.sb!vm:character-stack-sc-number
2141 (code-char (sb!sys:sap-ref-word nfp (stack-frame-offset 1 0)))))
2142 (#.sb!vm:unsigned-stack-sc-number
2144 (sb!sys:sap-ref-word nfp (stack-frame-offset 1 0))))
2145 (#.sb!vm:signed-stack-sc-number
2147 (sb!sys:signed-sap-ref-word nfp (stack-frame-offset 1 0))))
2148 (#.sb!vm:sap-stack-sc-number
2150 (sb!sys:sap-ref-sap nfp (stack-frame-offset 1 0)))))))
2152 ;;; This stores value as the value of DEBUG-VAR in FRAME. In the
2153 ;;; COMPILED-DEBUG-VAR case, access the current value to determine if
2154 ;;; it is an indirect value cell. This occurs when the variable is
2155 ;;; both closed over and set.
2156 (defun %set-debug-var-value (debug-var frame new-value)
2157 (aver (typep frame 'compiled-frame))
2158 (let ((old-value (access-compiled-debug-var-slot debug-var frame)))
2159 (if (indirect-value-cell-p old-value)
2160 (value-cell-set old-value new-value)
2161 (set-compiled-debug-var-slot debug-var frame new-value)))
2164 ;;; This stores VALUE for the variable represented by debug-var
2165 ;;; relative to the frame. This assumes the location directly contains
2166 ;;; the variable's value; that is, there is no indirect value cell
2167 ;;; currently there in case the variable is both closed over and set.
2168 (defun set-compiled-debug-var-slot (debug-var frame value)
2169 (let ((escaped (compiled-frame-escaped frame)))
2171 (sub-set-debug-var-slot (frame-pointer frame)
2172 (compiled-debug-var-sc-offset debug-var)
2174 (sub-set-debug-var-slot
2175 (frame-pointer frame)
2176 (or (compiled-debug-var-save-sc-offset debug-var)
2177 (compiled-debug-var-sc-offset debug-var))
2180 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2181 ;; Like sub-access-debug-var-slot, this is the unification of two
2182 ;; divergent copy-pasted functions. The astute reviewer will notice
2183 ;; that long-floats are messed up here as well, that x86oids
2184 ;; apparently don't support accessing float values that are in
2185 ;; registers, and that non-x86oids store the real part of a float
2186 ;; for both the real and imaginary parts of a complex on the stack
2187 ;; (but not in registers, oddly enough). Some research has
2188 ;; indicated that the different forms of THE used for validating the
2189 ;; type of complex float components between x86oid and non-x86oid
2190 ;; systems are only significant in the case of using a non-complex
2191 ;; number as input (as the non-x86oid case effectively converts
2192 ;; non-complex numbers to complex ones and the x86oid case will
2193 ;; error out). That said, the error message from entering a value
2194 ;; of the wrong type will be slightly easier to understand on x86oid
2196 (macrolet ((set-escaped-value (val)
2198 (setf (sb!vm:context-register
2200 (sb!c:sc-offset-offset sc-offset))
2203 (set-escaped-float-value (format val)
2205 (setf (sb!vm:context-float-register
2207 (sb!c:sc-offset-offset sc-offset)
2211 (set-escaped-complex-float-value (format offset val)
2214 (setf (sb!vm:context-float-register
2215 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2217 (setf (sb!vm:context-float-register
2218 escaped (+ (sb!c:sc-offset-offset sc-offset) ,offset)
2222 (with-nfp ((var) &body body)
2223 ;; x86oids have no separate number stack, so dummy it
2229 `(let ((,var (if escaped
2231 (sb!vm:context-register escaped
2236 sb!vm:n-word-bytes))
2238 (sb!vm::make-number-stack-pointer
2241 sb!vm:n-word-bytes))))))
2243 (stack-frame-offset (data-width offset)
2245 `(sb!vm::frame-byte-offset (+ (sb!c:sc-offset-offset sc-offset)
2249 (declare (ignore data-width))
2251 `(* (+ (sb!c:sc-offset-offset sc-offset) ,offset)
2252 sb!vm:n-word-bytes)))
2253 (ecase (sb!c:sc-offset-scn sc-offset)
2254 ((#.sb!vm:any-reg-sc-number
2255 #.sb!vm:descriptor-reg-sc-number
2256 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2259 (get-lisp-obj-address value))))
2260 (#.sb!vm:character-reg-sc-number
2261 (set-escaped-value (char-code value)))
2262 (#.sb!vm:sap-reg-sc-number
2263 (set-escaped-value (sap-int value)))
2264 (#.sb!vm:signed-reg-sc-number
2265 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2266 (#.sb!vm:unsigned-reg-sc-number
2267 (set-escaped-value value))
2269 (#.sb!vm:non-descriptor-reg-sc-number
2270 (error "Local non-descriptor register access?"))
2272 (#.sb!vm:interior-reg-sc-number
2273 (error "Local interior register access?"))
2274 (#.sb!vm:single-reg-sc-number
2275 #!-(or x86 x86-64) ;; don't have escaped floats.
2276 (set-escaped-float-value single-float value))
2277 (#.sb!vm:double-reg-sc-number
2278 #!-(or x86 x86-64) ;; don't have escaped floats -- still in npx?
2279 (set-escaped-float-value double-float value))
2281 (#.sb!vm:long-reg-sc-number
2282 #!-(or x86 x86-64) ;; don't have escaped floats -- still in npx?
2283 (set-escaped-float-value long-float value))
2285 (#.sb!vm:complex-single-reg-sc-number
2286 (set-escaped-complex-float-value single-float 1 value))
2288 (#.sb!vm:complex-double-reg-sc-number
2289 (set-escaped-complex-float-value double-float #!+sparc 2 #!-sparc 1 value))
2290 #!+(and long-float (not (or x86 x86-64)))
2291 (#.sb!vm:complex-long-reg-sc-number
2292 (set-escaped-complex-float-value long-float #!+sparc 4 #!-sparc 0 value))
2293 (#.sb!vm:single-stack-sc-number
2295 (setf (sap-ref-single nfp (stack-frame-offset 1 0))
2296 (the single-float value))))
2297 (#.sb!vm:double-stack-sc-number
2299 (setf (sap-ref-double nfp (stack-frame-offset 2 0))
2300 (the double-float value))))
2302 (#.sb!vm:long-stack-sc-number
2304 (setf (sap-ref-long nfp (stack-frame-offset 3 0))
2305 (the long-float value))))
2306 (#.sb!vm:complex-single-stack-sc-number
2308 (setf (sap-ref-single
2309 nfp (stack-frame-offset 1 0))
2311 (realpart (the (complex single-float) value))
2313 (the single-float (realpart value)))
2314 (setf (sap-ref-single
2315 nfp (stack-frame-offset 1 1))
2317 (imagpart (the (complex single-float) value))
2319 (the single-float (realpart value)))))
2320 (#.sb!vm:complex-double-stack-sc-number
2322 (setf (sap-ref-double
2323 nfp (stack-frame-offset 2 0))
2325 (realpart (the (complex double-float) value))
2327 (the double-float (realpart value)))
2328 (setf (sap-ref-double
2329 nfp (stack-frame-offset 2 2))
2331 (imagpart (the (complex double-float) value))
2333 (the double-float (realpart value)))))
2335 (#.sb!vm:complex-long-stack-sc-number
2338 nfp (stack-frame-offset 3 0))
2340 (realpart (the (complex long-float) value))
2342 (the long-float (realpart value)))
2344 nfp (stack-frame-offset 3 #!+sparc 4
2345 #!+(or x86 x86-64) 3
2346 #!-(or sparc x86 x86-64) 0))
2348 (imagpart (the (complex long-float) value))
2350 (the long-float (realpart value)))))
2351 (#.sb!vm:control-stack-sc-number
2352 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2353 (#.sb!vm:character-stack-sc-number
2355 (setf (sap-ref-word nfp (stack-frame-offset 1 0))
2356 (char-code (the character value)))))
2357 (#.sb!vm:unsigned-stack-sc-number
2359 (setf (sap-ref-word nfp (stack-frame-offset 1 0))
2360 (the (unsigned-byte 32) value))))
2361 (#.sb!vm:signed-stack-sc-number
2363 (setf (signed-sap-ref-word nfp (stack-frame-offset 1 0))
2364 (the (signed-byte 32) value))))
2365 (#.sb!vm:sap-stack-sc-number
2367 (setf (sap-ref-sap nfp (stack-frame-offset 1 0))
2368 (the system-area-pointer value)))))))
2370 ;;; The method for setting and accessing COMPILED-DEBUG-VAR values use
2371 ;;; this to determine if the value stored is the actual value or an
2372 ;;; indirection cell.
2373 (defun indirect-value-cell-p (x)
2374 (and (= (lowtag-of x) sb!vm:other-pointer-lowtag)
2375 (= (widetag-of x) sb!vm:value-cell-header-widetag)))
2377 ;;; Return three values reflecting the validity of DEBUG-VAR's value
2378 ;;; at BASIC-CODE-LOCATION:
2379 ;;; :VALID The value is known to be available.
2380 ;;; :INVALID The value is known to be unavailable.
2381 ;;; :UNKNOWN The value's availability is unknown.
2383 ;;; If the variable is always alive, then it is valid. If the
2384 ;;; code-location is unknown, then the variable's validity is
2385 ;;; :unknown. Once we've called CODE-LOCATION-UNKNOWN-P, we know the
2386 ;;; live-set information has been cached in the code-location.
2387 (defun debug-var-validity (debug-var basic-code-location)
2388 (compiled-debug-var-validity debug-var basic-code-location))
2390 (defun debug-var-info (debug-var)
2391 (compiled-debug-var-info debug-var))
2393 ;;; This is the method for DEBUG-VAR-VALIDITY for COMPILED-DEBUG-VARs.
2394 ;;; For safety, make sure basic-code-location is what we think.
2395 (defun compiled-debug-var-validity (debug-var basic-code-location)
2396 (declare (type compiled-code-location basic-code-location))
2397 (cond ((debug-var-alive-p debug-var)
2398 (let ((debug-fun (code-location-debug-fun basic-code-location)))
2399 (if (>= (compiled-code-location-pc basic-code-location)
2400 (sb!c::compiled-debug-fun-start-pc
2401 (compiled-debug-fun-compiler-debug-fun debug-fun)))
2404 ((code-location-unknown-p basic-code-location) :unknown)
2406 (let ((pos (position debug-var
2407 (debug-fun-debug-vars
2408 (code-location-debug-fun
2409 basic-code-location)))))
2411 (error 'unknown-debug-var
2412 :debug-var debug-var
2414 (code-location-debug-fun basic-code-location)))
2415 ;; There must be live-set info since basic-code-location is known.
2416 (if (zerop (sbit (compiled-code-location-live-set
2417 basic-code-location)
2424 ;;; This code produces and uses what we call source-paths. A
2425 ;;; source-path is a list whose first element is a form number as
2426 ;;; returned by CODE-LOCATION-FORM-NUMBER and whose last element is a
2427 ;;; top level form number as returned by
2428 ;;; CODE-LOCATION-TOPLEVEL-FORM-NUMBER. The elements from the last to
2429 ;;; the first, exclusively, are the numbered subforms into which to
2430 ;;; descend. For example:
2432 ;;; (let ((a (aref x 3)))
2434 ;;; The call to AREF in this example is form number 5. Assuming this
2435 ;;; DEFUN is the 11'th top level form, the source-path for the AREF
2436 ;;; call is as follows:
2438 ;;; Given the DEFUN, 3 gets you the LET, 1 gets you the bindings, 0
2439 ;;; gets the first binding, and 1 gets the AREF form.
2441 ;;; This returns a table mapping form numbers to source-paths. A
2442 ;;; source-path indicates a descent into the TOPLEVEL-FORM form,
2443 ;;; going directly to the subform corressponding to the form number.
2445 ;;; The vector elements are in the same format as the compiler's
2446 ;;; NODE-SOURCE-PATH; that is, the first element is the form number and
2447 ;;; the last is the TOPLEVEL-FORM number.
2448 (defun form-number-translations (form tlf-number)
2450 (translations (make-array 12 :fill-pointer 0 :adjustable t)))
2451 (labels ((translate1 (form path)
2452 (unless (member form seen)
2454 (vector-push-extend (cons (fill-pointer translations) path)
2459 (declare (fixnum pos))
2462 (when (atom subform) (return))
2463 (let ((fm (car subform)))
2465 (translate1 fm (cons pos path)))
2467 (setq subform (cdr subform))
2468 (when (eq subform trail) (return)))))
2472 (setq trail (cdr trail))))))))
2473 (translate1 form (list tlf-number)))
2474 (coerce translations 'simple-vector)))
2476 ;;; FORM is a top level form, and path is a source-path into it. This
2477 ;;; returns the form indicated by the source-path. Context is the
2478 ;;; number of enclosing forms to return instead of directly returning
2479 ;;; the source-path form. When context is non-zero, the form returned
2480 ;;; contains a marker, #:****HERE****, immediately before the form
2481 ;;; indicated by path.
2482 (defun source-path-context (form path context)
2483 (declare (type unsigned-byte context))
2484 ;; Get to the form indicated by path or the enclosing form indicated
2485 ;; by context and path.
2486 (let ((path (reverse (butlast (cdr path)))))
2487 (dotimes (i (- (length path) context))
2488 (let ((index (first path)))
2489 (unless (and (listp form) (< index (length form)))
2490 (error "Source path no longer exists."))
2491 (setq form (elt form index))
2492 (setq path (rest path))))
2493 ;; Recursively rebuild the source form resulting from the above
2494 ;; descent, copying the beginning of each subform up to the next
2495 ;; subform we descend into according to path. At the bottom of the
2496 ;; recursion, we return the form indicated by path preceded by our
2497 ;; marker, and this gets spliced into the resulting list structure
2498 ;; on the way back up.
2499 (labels ((frob (form path level)
2500 (if (or (zerop level) (null path))
2503 `(#:***here*** ,form))
2504 (let ((n (first path)))
2505 (unless (and (listp form) (< n (length form)))
2506 (error "Source path no longer exists."))
2507 (let ((res (frob (elt form n) (rest path) (1- level))))
2508 (nconc (subseq form 0 n)
2509 (cons res (nthcdr (1+ n) form))))))))
2510 (frob form path context))))
2512 ;;;; PREPROCESS-FOR-EVAL
2514 ;;; Return a function of one argument that evaluates form in the
2515 ;;; lexical context of the BASIC-CODE-LOCATION LOC, or signal a
2516 ;;; NO-DEBUG-VARS condition when the LOC's DEBUG-FUN has no
2517 ;;; DEBUG-VAR information available.
2519 ;;; The returned function takes the frame to get values from as its
2520 ;;; argument, and it returns the values of FORM. The returned function
2521 ;;; can signal the following conditions: INVALID-VALUE,
2522 ;;; AMBIGUOUS-VAR-NAME, and FRAME-FUN-MISMATCH.
2523 (defun preprocess-for-eval (form loc)
2524 (declare (type code-location loc))
2525 (let ((n-frame (gensym))
2526 (fun (code-location-debug-fun loc))
2529 (unless (debug-var-info-available fun)
2530 (debug-signal 'no-debug-vars :debug-fun fun))
2531 (sb!int:collect ((binds)
2533 (do-debug-fun-vars (var fun)
2534 (let ((validity (debug-var-validity var loc)))
2535 (unless (eq validity :invalid)
2536 (case (debug-var-info var)
2538 (setf more-context var))
2540 (setf more-count var)))
2541 (let* ((sym (debug-var-symbol var))
2542 (found (assoc sym (binds))))
2544 (setf (second found) :ambiguous)
2545 (binds (list sym validity var)))))))
2546 (when (and more-context more-count)
2547 (let ((more (assoc 'sb!debug::more (binds))))
2549 (setf (second more) :ambiguous)
2550 (binds (list 'sb!debug::more :more more-context more-count)))))
2551 (dolist (bind (binds))
2552 (let ((name (first bind))
2554 (ecase (second bind)
2556 (specs `(,name (debug-var-value ',var ,n-frame))))
2558 (let ((count-var (fourth bind)))
2559 (specs `(,name (multiple-value-list
2560 (sb!c:%more-arg-values (debug-var-value ',var ,n-frame)
2562 (debug-var-value ',count-var ,n-frame)))))))
2564 (specs `(,name (debug-signal 'invalid-value
2568 (specs `(,name (debug-signal 'ambiguous-var-name
2570 :frame ,n-frame)))))))
2571 (let ((res (coerce `(lambda (,n-frame)
2572 (declare (ignorable ,n-frame))
2573 (symbol-macrolet ,(specs) ,form))
2576 ;; This prevents these functions from being used in any
2577 ;; location other than a function return location, so maybe
2578 ;; this should only check whether FRAME's DEBUG-FUN is the
2580 (unless (code-location= (frame-code-location frame) loc)
2581 (debug-signal 'frame-fun-mismatch
2582 :code-location loc :form form :frame frame))
2583 (funcall res frame))))))
2587 (defun eval-in-frame (frame form)
2588 (declare (type frame frame))
2590 "Evaluate FORM in the lexical context of FRAME's current code location,
2591 returning the results of the evaluation."
2592 (funcall (preprocess-for-eval form (frame-code-location frame)) frame))
2596 ;;;; user-visible interface
2598 ;;; Create and return a breakpoint. When program execution encounters
2599 ;;; the breakpoint, the system calls HOOK-FUN. HOOK-FUN takes the
2600 ;;; current frame for the function in which the program is running and
2601 ;;; the breakpoint object.
2603 ;;; WHAT and KIND determine where in a function the system invokes
2604 ;;; HOOK-FUN. WHAT is either a code-location or a DEBUG-FUN. KIND is
2605 ;;; one of :CODE-LOCATION, :FUN-START, or :FUN-END. Since the starts
2606 ;;; and ends of functions may not have code-locations representing
2607 ;;; them, designate these places by supplying WHAT as a DEBUG-FUN and
2608 ;;; KIND indicating the :FUN-START or :FUN-END. When WHAT is a
2609 ;;; DEBUG-FUN and kind is :FUN-END, then HOOK-FUN must take two
2610 ;;; additional arguments, a list of values returned by the function
2611 ;;; and a FUN-END-COOKIE.
2613 ;;; INFO is information supplied by and used by the user.
2615 ;;; FUN-END-COOKIE is a function. To implement :FUN-END
2616 ;;; breakpoints, the system uses starter breakpoints to establish the
2617 ;;; :FUN-END breakpoint for each invocation of the function. Upon
2618 ;;; each entry, the system creates a unique cookie to identify the
2619 ;;; invocation, and when the user supplies a function for this
2620 ;;; argument, the system invokes it on the frame and the cookie. The
2621 ;;; system later invokes the :FUN-END breakpoint hook on the same
2622 ;;; cookie. The user may save the cookie for comparison in the hook
2625 ;;; Signal an error if WHAT is an unknown code-location.
2626 (defun make-breakpoint (hook-fun what
2627 &key (kind :code-location) info fun-end-cookie)
2630 (when (code-location-unknown-p what)
2631 (error "cannot make a breakpoint at an unknown code location: ~S"
2633 (aver (eq kind :code-location))
2634 (let ((bpt (%make-breakpoint hook-fun what kind info)))
2636 (compiled-code-location
2637 ;; This slot is filled in due to calling CODE-LOCATION-UNKNOWN-P.
2638 (when (eq (compiled-code-location-kind what) :unknown-return)
2639 (let ((other-bpt (%make-breakpoint hook-fun what
2640 :unknown-return-partner
2642 (setf (breakpoint-unknown-return-partner bpt) other-bpt)
2643 (setf (breakpoint-unknown-return-partner other-bpt) bpt))))
2644 ;; (There used to be more cases back before sbcl-0.7.0,,
2645 ;; when we did special tricks to debug the IR1
2652 (%make-breakpoint hook-fun what kind info))
2654 (unless (eq (sb!c::compiled-debug-fun-returns
2655 (compiled-debug-fun-compiler-debug-fun what))
2657 (error ":FUN-END breakpoints are currently unsupported ~
2658 for the known return convention."))
2660 (let* ((bpt (%make-breakpoint hook-fun what kind info))
2661 (starter (compiled-debug-fun-end-starter what)))
2663 (setf starter (%make-breakpoint #'list what :fun-start nil))
2664 (setf (breakpoint-hook-fun starter)
2665 (fun-end-starter-hook starter what))
2666 (setf (compiled-debug-fun-end-starter what) starter))
2667 (setf (breakpoint-start-helper bpt) starter)
2668 (push bpt (breakpoint-%info starter))
2669 (setf (breakpoint-cookie-fun bpt) fun-end-cookie)
2672 ;;; These are unique objects created upon entry into a function by a
2673 ;;; :FUN-END breakpoint's starter hook. These are only created
2674 ;;; when users supply :FUN-END-COOKIE to MAKE-BREAKPOINT. Also,
2675 ;;; the :FUN-END breakpoint's hook is called on the same cookie
2676 ;;; when it is created.
2677 (defstruct (fun-end-cookie
2678 (:print-object (lambda (obj str)
2679 (print-unreadable-object (obj str :type t))))
2680 (:constructor make-fun-end-cookie (bogus-lra debug-fun))
2682 ;; a pointer to the bogus-lra created for :FUN-END breakpoints
2684 ;; the DEBUG-FUN associated with this cookie
2687 ;;; This maps bogus-lra-components to cookies, so that
2688 ;;; HANDLE-FUN-END-BREAKPOINT can find the appropriate cookie for the
2689 ;;; breakpoint hook.
2690 (defvar *fun-end-cookies* (make-hash-table :test 'eq :synchronized t))
2692 ;;; This returns a hook function for the start helper breakpoint
2693 ;;; associated with a :FUN-END breakpoint. The returned function
2694 ;;; makes a fake LRA that all returns go through, and this piece of
2695 ;;; fake code actually breaks. Upon return from the break, the code
2696 ;;; provides the returnee with any values. Since the returned function
2697 ;;; effectively activates FUN-END-BPT on each entry to DEBUG-FUN's
2698 ;;; function, we must establish breakpoint-data about FUN-END-BPT.
2699 (defun fun-end-starter-hook (starter-bpt debug-fun)
2700 (declare (type breakpoint starter-bpt)
2701 (type compiled-debug-fun debug-fun))
2702 (lambda (frame breakpoint)
2703 (declare (ignore breakpoint)
2705 (let ((lra-sc-offset
2706 (sb!c::compiled-debug-fun-return-pc
2707 (compiled-debug-fun-compiler-debug-fun debug-fun))))
2708 (multiple-value-bind (lra component offset)
2710 (get-context-value frame
2713 (setf (get-context-value frame
2717 (let ((end-bpts (breakpoint-%info starter-bpt)))
2718 (let ((data (breakpoint-data component offset)))
2719 (setf (breakpoint-data-breakpoints data) end-bpts)
2720 (dolist (bpt end-bpts)
2721 (setf (breakpoint-internal-data bpt) data)))
2722 (let ((cookie (make-fun-end-cookie lra debug-fun)))
2723 (setf (gethash component *fun-end-cookies*) cookie)
2724 (dolist (bpt end-bpts)
2725 (let ((fun (breakpoint-cookie-fun bpt)))
2726 (when fun (funcall fun frame cookie))))))))))
2728 ;;; This takes a FUN-END-COOKIE and a frame, and it returns
2729 ;;; whether the cookie is still valid. A cookie becomes invalid when
2730 ;;; the frame that established the cookie has exited. Sometimes cookie
2731 ;;; holders are unaware of cookie invalidation because their
2732 ;;; :FUN-END breakpoint hooks didn't run due to THROW'ing.
2734 ;;; This takes a frame as an efficiency hack since the user probably
2735 ;;; has a frame object in hand when using this routine, and it saves
2736 ;;; repeated parsing of the stack and consing when asking whether a
2737 ;;; series of cookies is valid.
2738 (defun fun-end-cookie-valid-p (frame cookie)
2739 (let ((lra (fun-end-cookie-bogus-lra cookie))
2740 (lra-sc-offset (sb!c::compiled-debug-fun-return-pc
2741 (compiled-debug-fun-compiler-debug-fun
2742 (fun-end-cookie-debug-fun cookie)))))
2743 (do ((frame frame (frame-down frame)))
2745 (when (and (compiled-frame-p frame)
2746 (#!-(or x86 x86-64) eq #!+(or x86 x86-64) sap=
2748 (get-context-value frame lra-save-offset lra-sc-offset)))
2751 ;;;; ACTIVATE-BREAKPOINT
2753 ;;; Cause the system to invoke the breakpoint's hook function until
2754 ;;; the next call to DEACTIVATE-BREAKPOINT or DELETE-BREAKPOINT. The
2755 ;;; system invokes breakpoint hook functions in the opposite order
2756 ;;; that you activate them.
2757 (defun activate-breakpoint (breakpoint)
2758 (when (eq (breakpoint-status breakpoint) :deleted)
2759 (error "cannot activate a deleted breakpoint: ~S" breakpoint))
2760 (unless (eq (breakpoint-status breakpoint) :active)
2761 (ecase (breakpoint-kind breakpoint)
2763 (let ((loc (breakpoint-what breakpoint)))
2765 (compiled-code-location
2766 (activate-compiled-code-location-breakpoint breakpoint)
2767 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2769 (activate-compiled-code-location-breakpoint other))))
2770 ;; (There used to be more cases back before sbcl-0.7.0, when
2771 ;; we did special tricks to debug the IR1 interpreter.)
2774 (etypecase (breakpoint-what breakpoint)
2776 (activate-compiled-fun-start-breakpoint breakpoint))
2777 ;; (There used to be more cases back before sbcl-0.7.0, when
2778 ;; we did special tricks to debug the IR1 interpreter.)
2781 (etypecase (breakpoint-what breakpoint)
2783 (let ((starter (breakpoint-start-helper breakpoint)))
2784 (unless (eq (breakpoint-status starter) :active)
2785 ;; may already be active by some other :FUN-END breakpoint
2786 (activate-compiled-fun-start-breakpoint starter)))
2787 (setf (breakpoint-status breakpoint) :active))
2788 ;; (There used to be more cases back before sbcl-0.7.0, when
2789 ;; we did special tricks to debug the IR1 interpreter.)
2793 (defun activate-compiled-code-location-breakpoint (breakpoint)
2794 (declare (type breakpoint breakpoint))
2795 (let ((loc (breakpoint-what breakpoint)))
2796 (declare (type compiled-code-location loc))
2797 (sub-activate-breakpoint
2799 (breakpoint-data (compiled-debug-fun-component
2800 (code-location-debug-fun loc))
2801 (+ (compiled-code-location-pc loc)
2802 (if (or (eq (breakpoint-kind breakpoint)
2803 :unknown-return-partner)
2804 (eq (compiled-code-location-kind loc)
2805 :single-value-return))
2806 sb!vm:single-value-return-byte-offset
2809 (defun activate-compiled-fun-start-breakpoint (breakpoint)
2810 (declare (type breakpoint breakpoint))
2811 (let ((debug-fun (breakpoint-what breakpoint)))
2812 (sub-activate-breakpoint
2814 (breakpoint-data (compiled-debug-fun-component debug-fun)
2815 (sb!c::compiled-debug-fun-start-pc
2816 (compiled-debug-fun-compiler-debug-fun
2819 (defun sub-activate-breakpoint (breakpoint data)
2820 (declare (type breakpoint breakpoint)
2821 (type breakpoint-data data))
2822 (setf (breakpoint-status breakpoint) :active)
2824 (unless (breakpoint-data-breakpoints data)
2825 (setf (breakpoint-data-instruction data)
2827 (breakpoint-install (get-lisp-obj-address
2828 (breakpoint-data-component data))
2829 (breakpoint-data-offset data)))))
2830 (setf (breakpoint-data-breakpoints data)
2831 (append (breakpoint-data-breakpoints data) (list breakpoint)))
2832 (setf (breakpoint-internal-data breakpoint) data)))
2834 ;;;; DEACTIVATE-BREAKPOINT
2836 ;;; Stop the system from invoking the breakpoint's hook function.
2837 (defun deactivate-breakpoint (breakpoint)
2838 (when (eq (breakpoint-status breakpoint) :active)
2840 (let ((loc (breakpoint-what breakpoint)))
2842 ((or compiled-code-location compiled-debug-fun)
2843 (deactivate-compiled-breakpoint breakpoint)
2844 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2846 (deactivate-compiled-breakpoint other))))
2847 ;; (There used to be more cases back before sbcl-0.7.0, when
2848 ;; we did special tricks to debug the IR1 interpreter.)
2852 (defun deactivate-compiled-breakpoint (breakpoint)
2853 (if (eq (breakpoint-kind breakpoint) :fun-end)
2854 (let ((starter (breakpoint-start-helper breakpoint)))
2855 (unless (find-if (lambda (bpt)
2856 (and (not (eq bpt breakpoint))
2857 (eq (breakpoint-status bpt) :active)))
2858 (breakpoint-%info starter))
2859 (deactivate-compiled-breakpoint starter)))
2860 (let* ((data (breakpoint-internal-data breakpoint))
2861 (bpts (delete breakpoint (breakpoint-data-breakpoints data))))
2862 (setf (breakpoint-internal-data breakpoint) nil)
2863 (setf (breakpoint-data-breakpoints data) bpts)
2866 (breakpoint-remove (get-lisp-obj-address
2867 (breakpoint-data-component data))
2868 (breakpoint-data-offset data)
2869 (breakpoint-data-instruction data)))
2870 (delete-breakpoint-data data))))
2871 (setf (breakpoint-status breakpoint) :inactive)
2874 ;;;; BREAKPOINT-INFO
2876 ;;; Return the user-maintained info associated with breakpoint. This
2878 (defun breakpoint-info (breakpoint)
2879 (breakpoint-%info breakpoint))
2880 (defun %set-breakpoint-info (breakpoint value)
2881 (setf (breakpoint-%info breakpoint) value)
2882 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2884 (setf (breakpoint-%info other) value))))
2886 ;;;; BREAKPOINT-ACTIVE-P and DELETE-BREAKPOINT
2888 (defun breakpoint-active-p (breakpoint)
2889 (ecase (breakpoint-status breakpoint)
2891 ((:inactive :deleted) nil)))
2893 ;;; Free system storage and remove computational overhead associated
2894 ;;; with breakpoint. After calling this, breakpoint is completely
2895 ;;; impotent and can never become active again.
2896 (defun delete-breakpoint (breakpoint)
2897 (let ((status (breakpoint-status breakpoint)))
2898 (unless (eq status :deleted)
2899 (when (eq status :active)
2900 (deactivate-breakpoint breakpoint))
2901 (setf (breakpoint-status breakpoint) :deleted)
2902 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2904 (setf (breakpoint-status other) :deleted)))
2905 (when (eq (breakpoint-kind breakpoint) :fun-end)
2906 (let* ((starter (breakpoint-start-helper breakpoint))
2907 (breakpoints (delete breakpoint
2908 (the list (breakpoint-info starter)))))
2909 (setf (breakpoint-info starter) breakpoints)
2911 (delete-breakpoint starter)
2912 (setf (compiled-debug-fun-end-starter
2913 (breakpoint-what breakpoint))
2917 ;;;; C call out stubs
2919 ;;; This actually installs the break instruction in the component. It
2920 ;;; returns the overwritten bits. You must call this in a context in
2921 ;;; which GC is disabled, so that Lisp doesn't move objects around
2922 ;;; that C is pointing to.
2923 (sb!alien:define-alien-routine "breakpoint_install" sb!alien:unsigned-int
2924 (code-obj sb!alien:unsigned-long)
2925 (pc-offset sb!alien:int))
2927 ;;; This removes the break instruction and replaces the original
2928 ;;; instruction. You must call this in a context in which GC is disabled
2929 ;;; so Lisp doesn't move objects around that C is pointing to.
2930 (sb!alien:define-alien-routine "breakpoint_remove" sb!alien:void
2931 (code-obj sb!alien:unsigned-long)
2932 (pc-offset sb!alien:int)
2933 (old-inst sb!alien:unsigned-int))
2935 (sb!alien:define-alien-routine "breakpoint_do_displaced_inst" sb!alien:void
2936 (scp (* os-context-t))
2937 (orig-inst sb!alien:unsigned-int))
2939 ;;;; breakpoint handlers (layer between C and exported interface)
2941 ;;; This maps components to a mapping of offsets to BREAKPOINT-DATAs.
2942 (defvar *component-breakpoint-offsets* (make-hash-table :test 'eq :synchronized t))
2944 ;;; This returns the BREAKPOINT-DATA object associated with component cross
2945 ;;; offset. If none exists, this makes one, installs it, and returns it.
2946 (defun breakpoint-data (component offset &optional (create t))
2947 (flet ((install-breakpoint-data ()
2949 (let ((data (make-breakpoint-data component offset)))
2950 (push (cons offset data)
2951 (gethash component *component-breakpoint-offsets*))
2953 (let ((offsets (gethash component *component-breakpoint-offsets*)))
2955 (let ((data (assoc offset offsets)))
2958 (install-breakpoint-data)))
2959 (install-breakpoint-data)))))
2961 ;;; We use this when there are no longer any active breakpoints
2962 ;;; corresponding to DATA.
2963 (defun delete-breakpoint-data (data)
2964 ;; Again, this looks brittle. Is there no danger of being interrupted
2966 (let* ((component (breakpoint-data-component data))
2967 (offsets (delete (breakpoint-data-offset data)
2968 (gethash component *component-breakpoint-offsets*)
2971 (setf (gethash component *component-breakpoint-offsets*) offsets)
2972 (remhash component *component-breakpoint-offsets*)))
2975 ;;; The C handler for interrupts calls this when it has a
2976 ;;; debugging-tool break instruction. This does *not* handle all
2977 ;;; breaks; for example, it does not handle breaks for internal
2979 (defun handle-breakpoint (offset component signal-context)
2980 (let ((data (breakpoint-data component offset nil)))
2982 (error "unknown breakpoint in ~S at offset ~S"
2983 (debug-fun-name (debug-fun-from-pc component offset))
2985 (let ((breakpoints (breakpoint-data-breakpoints data)))
2986 (if (or (null breakpoints)
2987 (eq (breakpoint-kind (car breakpoints)) :fun-end))
2988 (handle-fun-end-breakpoint-aux breakpoints data signal-context)
2989 (handle-breakpoint-aux breakpoints data
2990 offset component signal-context)))))
2992 ;;; This holds breakpoint-datas while invoking the breakpoint hooks
2993 ;;; associated with that particular component and location. While they
2994 ;;; are executing, if we hit the location again, we ignore the
2995 ;;; breakpoint to avoid infinite recursion. fun-end breakpoints
2996 ;;; must work differently since the breakpoint-data is unique for each
2998 (defvar *executing-breakpoint-hooks* nil)
3000 ;;; This handles code-location and DEBUG-FUN :FUN-START
3002 (defun handle-breakpoint-aux (breakpoints data offset component signal-context)
3004 (bug "breakpoint that nobody wants"))
3005 (unless (member data *executing-breakpoint-hooks*)
3006 (let ((*executing-breakpoint-hooks* (cons data
3007 *executing-breakpoint-hooks*)))
3008 (invoke-breakpoint-hooks breakpoints signal-context)))
3009 ;; At this point breakpoints may not hold the same list as
3010 ;; BREAKPOINT-DATA-BREAKPOINTS since invoking hooks may have allowed
3011 ;; a breakpoint deactivation. In fact, if all breakpoints were
3012 ;; deactivated then data is invalid since it was deleted and so the
3013 ;; correct one must be looked up if it is to be used. If there are
3014 ;; no more breakpoints active at this location, then the normal
3015 ;; instruction has been put back, and we do not need to
3016 ;; DO-DISPLACED-INST.
3017 (setf data (breakpoint-data component offset nil))
3018 (when (and data (breakpoint-data-breakpoints data))
3019 ;; The breakpoint is still active, so we need to execute the
3020 ;; displaced instruction and leave the breakpoint instruction
3021 ;; behind. The best way to do this is different on each machine,
3022 ;; so we just leave it up to the C code.
3023 (breakpoint-do-displaced-inst signal-context
3024 (breakpoint-data-instruction data))
3025 ;; Some platforms have no usable sigreturn() call. If your
3026 ;; implementation of arch_do_displaced_inst() _does_ sigreturn(),
3027 ;; it's polite to warn here
3028 #!+(and sparc solaris)
3029 (error "BREAKPOINT-DO-DISPLACED-INST returned?")))
3031 (defun invoke-breakpoint-hooks (breakpoints signal-context)
3032 (let* ((frame (signal-context-frame signal-context)))
3033 (dolist (bpt breakpoints)
3034 (funcall (breakpoint-hook-fun bpt)
3036 ;; If this is an :UNKNOWN-RETURN-PARTNER, then pass the
3037 ;; hook function the original breakpoint, so that users
3038 ;; aren't forced to confront the fact that some
3039 ;; breakpoints really are two.
3040 (if (eq (breakpoint-kind bpt) :unknown-return-partner)
3041 (breakpoint-unknown-return-partner bpt)
3044 (defun signal-context-frame (signal-context)
3047 (declare (optimize (inhibit-warnings 3)))
3048 (sb!alien:sap-alien signal-context (* os-context-t))))
3049 (cfp (int-sap (sb!vm:context-register scp sb!vm::cfp-offset))))
3050 (compute-calling-frame cfp
3051 ;; KLUDGE: This argument is ignored on
3052 ;; x86oids in this scenario, but is
3053 ;; declared to be a SAP.
3054 #!+(or x86 x86-64) (sb!vm:context-pc scp)
3055 #!-(or x86 x86-64) nil
3058 (defun handle-fun-end-breakpoint (offset component context)
3059 (let ((data (breakpoint-data component offset nil)))
3061 (error "unknown breakpoint in ~S at offset ~S"
3062 (debug-fun-name (debug-fun-from-pc component offset))
3064 (let ((breakpoints (breakpoint-data-breakpoints data)))
3066 (aver (eq (breakpoint-kind (car breakpoints)) :fun-end))
3067 (handle-fun-end-breakpoint-aux breakpoints data context)))))
3069 ;;; Either HANDLE-BREAKPOINT calls this for :FUN-END breakpoints
3070 ;;; [old C code] or HANDLE-FUN-END-BREAKPOINT calls this directly
3072 (defun handle-fun-end-breakpoint-aux (breakpoints data signal-context)
3073 ;; FIXME: This looks brittle: what if we are interrupted somewhere
3074 ;; here? ...or do we have interrupts disabled here?
3075 (delete-breakpoint-data data)
3078 (declare (optimize (inhibit-warnings 3)))
3079 (sb!alien:sap-alien signal-context (* os-context-t))))
3080 (frame (signal-context-frame signal-context))
3081 (component (breakpoint-data-component data))
3082 (cookie (gethash component *fun-end-cookies*)))
3083 (remhash component *fun-end-cookies*)
3084 (dolist (bpt breakpoints)
3085 (funcall (breakpoint-hook-fun bpt)
3087 (get-fun-end-breakpoint-values scp)
3090 (defun get-fun-end-breakpoint-values (scp)
3091 (let ((ocfp (int-sap (sb!vm:context-register
3093 #!-(or x86 x86-64) sb!vm::ocfp-offset
3094 #!+(or x86 x86-64) sb!vm::ebx-offset)))
3095 (nargs (make-lisp-obj
3096 (sb!vm:context-register scp sb!vm::nargs-offset)))
3097 (reg-arg-offsets '#.sb!vm::*register-arg-offsets*)
3100 (dotimes (arg-num nargs)
3101 (push (if reg-arg-offsets
3103 (sb!vm:context-register scp (pop reg-arg-offsets)))
3104 (stack-ref ocfp arg-num))
3106 (nreverse results)))
3108 ;;;; MAKE-BOGUS-LRA (used for :FUN-END breakpoints)
3110 (defconstant bogus-lra-constants
3111 #!-(or x86 x86-64) 2 #!+(or x86 x86-64) 3)
3112 (defconstant known-return-p-slot
3113 (+ sb!vm:code-constants-offset #!-(or x86 x86-64) 1 #!+(or x86 x86-64) 2))
3115 ;;; Make a bogus LRA object that signals a breakpoint trap when
3116 ;;; returned to. If the breakpoint trap handler returns, REAL-LRA is
3117 ;;; returned to. Three values are returned: the bogus LRA object, the
3118 ;;; code component it is part of, and the PC offset for the trap
3120 (defun make-bogus-lra (real-lra &optional known-return-p)
3122 ;; These are really code labels, not variables: but this way we get
3124 (let* ((src-start (foreign-symbol-sap "fun_end_breakpoint_guts"))
3125 (src-end (foreign-symbol-sap "fun_end_breakpoint_end"))
3126 (trap-loc (foreign-symbol-sap "fun_end_breakpoint_trap"))
3127 (length (sap- src-end src-start))
3129 (sb!c:allocate-code-object (1+ bogus-lra-constants) length))
3130 (dst-start (code-instructions code-object)))
3131 (declare (type system-area-pointer
3132 src-start src-end dst-start trap-loc)
3133 (type index length))
3134 (setf (%code-debug-info code-object) :bogus-lra)
3135 (setf (code-header-ref code-object sb!vm:code-trace-table-offset-slot)
3138 (setf (code-header-ref code-object real-lra-slot) real-lra)
3140 (multiple-value-bind (offset code) (compute-lra-data-from-pc real-lra)
3141 (setf (code-header-ref code-object real-lra-slot) code)
3142 (setf (code-header-ref code-object (1+ real-lra-slot)) offset))
3143 (setf (code-header-ref code-object known-return-p-slot)
3145 (system-area-ub8-copy src-start 0 dst-start 0 length)
3146 (sb!vm:sanctify-for-execution code-object)
3148 (values dst-start code-object (sap- trap-loc src-start))
3150 (let ((new-lra (make-lisp-obj (+ (sap-int dst-start)
3151 sb!vm:other-pointer-lowtag))))
3154 ;; Set the offset from the LRA to the enclosing component.
3155 ;; This does not need to be done on GENCGC targets, as the
3156 ;; pointer validation done in MAKE-LISP-OBJ requires that it
3157 ;; already have been set before we get here. It does not
3158 ;; need to be done on CHENEYGC PPC as it's easier to use the
3159 ;; same fun_end_breakpoint_guts on both, including the LRA
3163 (logandc2 (+ sb!vm:code-constants-offset bogus-lra-constants 1)
3165 (sb!vm:sanctify-for-execution code-object))
3166 (values new-lra code-object (sap- trap-loc src-start))))))
3170 ;;; This appears here because it cannot go with the DEBUG-FUN
3171 ;;; interface since DO-DEBUG-BLOCK-LOCATIONS isn't defined until after
3172 ;;; the DEBUG-FUN routines.
3174 ;;; Return a code-location before the body of a function and after all
3175 ;;; the arguments are in place; or if that location can't be
3176 ;;; determined due to a lack of debug information, return NIL.
3177 (defun debug-fun-start-location (debug-fun)
3178 (etypecase debug-fun
3180 (code-location-from-pc debug-fun
3181 (sb!c::compiled-debug-fun-start-pc
3182 (compiled-debug-fun-compiler-debug-fun
3185 ;; (There used to be more cases back before sbcl-0.7.0, when
3186 ;; we did special tricks to debug the IR1 interpreter.)
3190 ;;;; Single-stepping
3192 ;;; The single-stepper works by inserting conditional trap instructions
3193 ;;; into the generated code (see src/compiler/*/call.lisp), currently:
3195 ;;; 1) Before the code generated for a function call that was
3196 ;;; translated to a VOP
3197 ;;; 2) Just before the call instruction for a full call
3199 ;;; In both cases, the trap will only be executed if stepping has been
3200 ;;; enabled, in which case it'll ultimately be handled by
3201 ;;; HANDLE-SINGLE-STEP-TRAP, which will either signal a stepping condition,
3202 ;;; or replace the function that's about to be called with a wrapper
3203 ;;; which will signal the condition.
3205 (defun handle-single-step-trap (kind callee-register-offset)
3206 (let ((context (nth-interrupt-context (1- *free-interrupt-context-index*))))
3207 ;; The following calls must get tail-call eliminated for
3208 ;; *STEP-FRAME* to get set correctly on non-x86.
3209 (if (= kind single-step-before-trap)
3210 (handle-single-step-before-trap context)
3211 (handle-single-step-around-trap context callee-register-offset))))
3213 (defvar *step-frame* nil)
3215 (defun handle-single-step-before-trap (context)
3216 (let ((step-info (single-step-info-from-context context)))
3217 ;; If there was not enough debug information available, there's no
3218 ;; sense in signaling the condition.
3222 (signal-context-frame (sb!alien::alien-sap context))
3224 ;; KLUDGE: Use the first non-foreign frame as the
3225 ;; *STACK-TOP-HINT*. Getting the frame from the signal
3226 ;; context as on x86 would be cleaner, but
3227 ;; SIGNAL-CONTEXT-FRAME doesn't seem seem to work at all
3229 (loop with frame = (frame-down (top-frame))
3231 for dfun = (frame-debug-fun frame)
3232 do (when (typep dfun 'compiled-debug-fun)
3234 do (setf frame (frame-down frame)))))
3235 (sb!impl::step-form step-info
3236 ;; We could theoretically store information in
3237 ;; the debug-info about to determine the
3238 ;; arguments here, but for now let's just pass
3242 ;;; This function will replace the fdefn / function that was in the
3243 ;;; register at CALLEE-REGISTER-OFFSET with a wrapper function. To
3244 ;;; ensure that the full call will use the wrapper instead of the
3245 ;;; original, conditional trap must be emitted before the fdefn /
3246 ;;; function is converted into a raw address.
3247 (defun handle-single-step-around-trap (context callee-register-offset)
3248 ;; Fetch the function / fdefn we're about to call from the
3249 ;; appropriate register.
3250 (let* ((callee (make-lisp-obj
3251 (context-register context callee-register-offset)))
3252 (step-info (single-step-info-from-context context)))
3253 ;; If there was not enough debug information available, there's no
3254 ;; sense in signaling the condition.
3256 (return-from handle-single-step-around-trap))
3257 (let* ((fun (lambda (&rest args)
3259 (apply (typecase callee
3260 (fdefn (fdefn-fun callee))
3263 ;; Signal a step condition
3265 (let ((*step-frame* (frame-down (top-frame))))
3266 (sb!impl::step-form step-info args))))
3267 ;; And proceed based on its return value.
3269 ;; STEP-INTO was selected. Use *STEP-OUT* to
3270 ;; let the stepper know that selecting the
3271 ;; STEP-OUT restart is valid inside this
3272 (let ((sb!impl::*step-out* :maybe))
3273 ;; Pass the return values of the call to
3274 ;; STEP-VALUES, which will signal a
3275 ;; condition with them in the VALUES slot.
3277 (multiple-value-call #'sb!impl::step-values
3280 ;; If the user selected the STEP-OUT
3281 ;; restart during the call, resume
3283 (when (eq sb!impl::*step-out* t)
3284 (sb!impl::enable-stepping))))
3285 ;; STEP-NEXT / CONTINUE / OUT selected:
3286 ;; Disable the stepper for the duration of
3288 (sb!impl::with-stepping-disabled
3290 (new-callee (etypecase callee
3292 (let ((fdefn (make-fdefn (gensym))))
3293 (setf (fdefn-fun fdefn) fun)
3296 ;; And then store the wrapper in the same place.
3297 (setf (context-register context callee-register-offset)
3298 (get-lisp-obj-address new-callee)))))
3300 ;;; Given a signal context, fetch the step-info that's been stored in
3301 ;;; the debug info at the trap point.
3302 (defun single-step-info-from-context (context)
3303 (multiple-value-bind (pc-offset code)
3304 (compute-lra-data-from-pc (context-pc context))
3305 (let* ((debug-fun (debug-fun-from-pc code pc-offset))
3306 (location (code-location-from-pc debug-fun
3311 (fill-in-code-location location)
3312 (code-location-debug-source location)
3313 (compiled-code-location-step-info location))
3317 ;;; Return the frame that triggered a single-step condition. Used to
3318 ;;; provide a *STACK-TOP-HINT*.
3319 (defun find-stepped-frame ()