1 ;;;; the implementation of the programmer's interface to writing
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;; FIXME: There are an awful lot of package prefixes in this code.
16 ;;; Couldn't we have SB-DI use the SB-C and SB-VM packages?
20 ;;;; The interface to building debugging tools signals conditions that
21 ;;;; prevent it from adhering to its contract. These are
22 ;;;; serious-conditions because the program using the interface must
23 ;;;; handle them before it can correctly continue execution. These
24 ;;;; debugging conditions are not errors since it is no fault of the
25 ;;;; programmers that the conditions occur. The interface does not
26 ;;;; provide for programs to detect these situations other than
27 ;;;; calling a routine that detects them and signals a condition. For
28 ;;;; example, programmers call A which may fail to return successfully
29 ;;;; due to a lack of debug information, and there is no B the they
30 ;;;; could have called to realize A would fail. It is not an error to
31 ;;;; have called A, but it is an error for the program to then ignore
32 ;;;; the signal generated by A since it cannot continue without A's
33 ;;;; correctly returning a value or performing some operation.
35 ;;;; Use DEBUG-SIGNAL to signal these conditions.
37 (define-condition debug-condition (serious-condition)
41 "All DEBUG-CONDITIONs inherit from this type. These are serious conditions
42 that must be handled, but they are not programmer errors."))
44 (define-condition no-debug-fun-returns (debug-condition)
45 ((debug-fun :reader no-debug-fun-returns-debug-fun
49 "The system could not return values from a frame with DEBUG-FUN since
50 it lacked information about returning values.")
51 (:report (lambda (condition stream)
52 (let ((fun (debug-fun-fun
53 (no-debug-fun-returns-debug-fun condition))))
55 "~&Cannot return values from ~:[frame~;~:*~S~] since ~
56 the debug information lacks details about returning ~
60 (define-condition no-debug-blocks (debug-condition)
61 ((debug-fun :reader no-debug-blocks-debug-fun
64 (:documentation "The debug-fun has no debug-block information.")
65 (:report (lambda (condition stream)
66 (format stream "~&~S has no debug-block information."
67 (no-debug-blocks-debug-fun condition)))))
69 (define-condition no-debug-vars (debug-condition)
70 ((debug-fun :reader no-debug-vars-debug-fun
73 (:documentation "The DEBUG-FUN has no DEBUG-VAR information.")
74 (:report (lambda (condition stream)
75 (format stream "~&~S has no debug variable information."
76 (no-debug-vars-debug-fun condition)))))
78 (define-condition lambda-list-unavailable (debug-condition)
79 ((debug-fun :reader lambda-list-unavailable-debug-fun
83 "The DEBUG-FUN has no lambda list since argument DEBUG-VARs are
85 (:report (lambda (condition stream)
86 (format stream "~&~S has no lambda-list information available."
87 (lambda-list-unavailable-debug-fun condition)))))
89 (define-condition invalid-value (debug-condition)
90 ((debug-var :reader invalid-value-debug-var :initarg :debug-var)
91 (frame :reader invalid-value-frame :initarg :frame))
92 (:report (lambda (condition stream)
93 (format stream "~&~S has :invalid or :unknown value in ~S."
94 (invalid-value-debug-var condition)
95 (invalid-value-frame condition)))))
97 (define-condition ambiguous-var-name (debug-condition)
98 ((name :reader ambiguous-var-name-name :initarg :name)
99 (frame :reader ambiguous-var-name-frame :initarg :frame))
100 (:report (lambda (condition stream)
101 (format stream "~&~S names more than one valid variable in ~S."
102 (ambiguous-var-name-name condition)
103 (ambiguous-var-name-frame condition)))))
105 ;;;; errors and DEBUG-SIGNAL
107 ;;; The debug-internals code tries to signal all programmer errors as
108 ;;; subtypes of DEBUG-ERROR. There are calls to ERROR signalling
109 ;;; SIMPLE-ERRORs, but these dummy checks in the code and shouldn't
112 ;;; While under development, this code also signals errors in code
113 ;;; branches that remain unimplemented.
115 (define-condition debug-error (error) ()
118 "All programmer errors from using the interface for building debugging
119 tools inherit from this type."))
121 (define-condition unhandled-debug-condition (debug-error)
122 ((condition :reader unhandled-debug-condition-condition :initarg :condition))
123 (:report (lambda (condition stream)
124 (format stream "~&unhandled DEBUG-CONDITION:~%~A"
125 (unhandled-debug-condition-condition condition)))))
127 (define-condition unknown-code-location (debug-error)
128 ((code-location :reader unknown-code-location-code-location
129 :initarg :code-location))
130 (:report (lambda (condition stream)
131 (format stream "~&invalid use of an unknown code-location: ~S"
132 (unknown-code-location-code-location condition)))))
134 (define-condition unknown-debug-var (debug-error)
135 ((debug-var :reader unknown-debug-var-debug-var :initarg :debug-var)
136 (debug-fun :reader unknown-debug-var-debug-fun
137 :initarg :debug-fun))
138 (:report (lambda (condition stream)
139 (format stream "~&~S is not in ~S."
140 (unknown-debug-var-debug-var condition)
141 (unknown-debug-var-debug-fun condition)))))
143 (define-condition invalid-control-stack-pointer (debug-error)
145 (:report (lambda (condition stream)
146 (declare (ignore condition))
148 (write-string "invalid control stack pointer" stream))))
150 (define-condition frame-fun-mismatch (debug-error)
151 ((code-location :reader frame-fun-mismatch-code-location
152 :initarg :code-location)
153 (frame :reader frame-fun-mismatch-frame :initarg :frame)
154 (form :reader frame-fun-mismatch-form :initarg :form))
155 (:report (lambda (condition stream)
158 "~&Form was preprocessed for ~S,~% but called on ~S:~% ~S"
159 (frame-fun-mismatch-code-location condition)
160 (frame-fun-mismatch-frame condition)
161 (frame-fun-mismatch-form condition)))))
163 ;;; This signals debug-conditions. If they go unhandled, then signal
164 ;;; an UNHANDLED-DEBUG-CONDITION error.
166 ;;; ??? Get SIGNAL in the right package!
167 (defmacro debug-signal (datum &rest arguments)
168 `(let ((condition (make-condition ,datum ,@arguments)))
170 (error 'unhandled-debug-condition :condition condition)))
174 ;;;; Most of these structures model information stored in internal
175 ;;;; data structures created by the compiler. Whenever comments
176 ;;;; preface an object or type with "compiler", they refer to the
177 ;;;; internal compiler thing, not to the object or type with the same
178 ;;;; name in the "SB-DI" package.
182 ;;; These exist for caching data stored in packed binary form in
183 ;;; compiler DEBUG-FUNs.
184 (defstruct (debug-var (:constructor nil)
186 ;; the name of the variable
187 (symbol (missing-arg) :type symbol)
188 ;; a unique integer identification relative to other variables with the same
191 ;; Does the variable always have a valid value?
192 (alive-p nil :type boolean))
193 (def!method print-object ((debug-var debug-var) stream)
194 (print-unreadable-object (debug-var stream :type t :identity t)
197 (debug-var-symbol debug-var)
198 (debug-var-id debug-var))))
201 (setf (fdocumentation 'debug-var-id 'function)
202 "Return the integer that makes DEBUG-VAR's name and package unique
203 with respect to other DEBUG-VARs in the same function.")
205 (defstruct (compiled-debug-var
207 (:constructor make-compiled-debug-var
208 (symbol id alive-p sc-offset save-sc-offset info))
210 ;; storage class and offset (unexported)
211 (sc-offset nil :type sb!c:sc-offset)
212 ;; storage class and offset when saved somewhere
213 (save-sc-offset nil :type (or sb!c:sc-offset null))
218 ;;; These represent call frames on the stack.
219 (defstruct (frame (:constructor nil)
221 ;; the next frame up, or NIL when top frame
222 (up nil :type (or frame null))
223 ;; the previous frame down, or NIL when the bottom frame. Before
224 ;; computing the next frame down, this slot holds the frame pointer
225 ;; to the control stack for the given frame. This lets us get the
226 ;; next frame down and the return-pc for that frame.
227 (%down :unparsed :type (or frame (member nil :unparsed)))
228 ;; the DEBUG-FUN for the function whose call this frame represents
229 (debug-fun nil :type debug-fun)
230 ;; the CODE-LOCATION where the frame's DEBUG-FUN will continue
231 ;; running when program execution returns to this frame. If someone
232 ;; interrupted this frame, the result could be an unknown
234 (code-location nil :type code-location)
235 ;; an a-list of catch-tags to code-locations
236 (%catches :unparsed :type (or list (member :unparsed)))
237 ;; pointer to frame on control stack (unexported)
239 ;; This is the frame's number for prompt printing. Top is zero.
240 (number 0 :type index))
242 (defstruct (compiled-frame
244 (:constructor make-compiled-frame
245 (pointer up debug-fun code-location number
248 ;; This indicates whether someone interrupted the frame.
249 ;; (unexported). If escaped, this is a pointer to the state that was
250 ;; saved when we were interrupted, an os_context_t, i.e. the third
251 ;; argument to an SA_SIGACTION-style signal handler.
253 (def!method print-object ((obj compiled-frame) str)
254 (print-unreadable-object (obj str :type t)
256 "~S~:[~;, interrupted~]"
257 (debug-fun-name (frame-debug-fun obj))
258 (compiled-frame-escaped obj))))
262 ;;; These exist for caching data stored in packed binary form in
263 ;;; compiler DEBUG-FUNs. *COMPILED-DEBUG-FUNS* maps a SB!C::DEBUG-FUN
264 ;;; to a DEBUG-FUN. There should only be one DEBUG-FUN in existence
265 ;;; for any function; that is, all CODE-LOCATIONs and other objects
266 ;;; that reference DEBUG-FUNs point to unique objects. This is
267 ;;; due to the overhead in cached information.
268 (defstruct (debug-fun (:constructor nil)
270 ;; some representation of the function arguments. See
271 ;; DEBUG-FUN-LAMBDA-LIST.
272 ;; NOTE: must parse vars before parsing arg list stuff.
273 (%lambda-list :unparsed)
274 ;; cached DEBUG-VARS information (unexported).
275 ;; These are sorted by their name.
276 (%debug-vars :unparsed :type (or simple-vector null (member :unparsed)))
277 ;; cached debug-block information. This is NIL when we have tried to
278 ;; parse the packed binary info, but none is available.
279 (blocks :unparsed :type (or simple-vector null (member :unparsed)))
280 ;; the actual function if available
281 (%function :unparsed :type (or null function (member :unparsed))))
282 (def!method print-object ((obj debug-fun) stream)
283 (print-unreadable-object (obj stream :type t)
284 (prin1 (debug-fun-name obj) stream)))
286 (defstruct (compiled-debug-fun
288 (:constructor %make-compiled-debug-fun
289 (compiler-debug-fun component))
291 ;; compiler's dumped DEBUG-FUN information (unexported)
292 (compiler-debug-fun nil :type sb!c::compiled-debug-fun)
293 ;; code object (unexported).
295 ;; the :FUN-START breakpoint (if any) used to facilitate
296 ;; function end breakpoints
297 (end-starter nil :type (or null breakpoint)))
299 ;;; This maps SB!C::COMPILED-DEBUG-FUNs to
300 ;;; COMPILED-DEBUG-FUNs, so we can get at cached stuff and not
301 ;;; duplicate COMPILED-DEBUG-FUN structures.
302 (defvar *compiled-debug-funs* (make-hash-table :test 'eq :weakness :key))
304 ;;; Make a COMPILED-DEBUG-FUN for a SB!C::COMPILER-DEBUG-FUN and its
305 ;;; component. This maps the latter to the former in
306 ;;; *COMPILED-DEBUG-FUNS*. If there already is a COMPILED-DEBUG-FUN,
307 ;;; then this returns it from *COMPILED-DEBUG-FUNS*.
309 ;;; FIXME: It seems this table can potentially grow without bounds,
310 ;;; and retains roots to functions that might otherwise be collected.
311 (defun make-compiled-debug-fun (compiler-debug-fun component)
312 (let ((table *compiled-debug-funs*))
313 (with-locked-system-table (table)
314 (or (gethash compiler-debug-fun table)
315 (setf (gethash compiler-debug-fun table)
316 (%make-compiled-debug-fun compiler-debug-fun component))))))
318 (defstruct (bogus-debug-fun
320 (:constructor make-bogus-debug-fun
331 ;;; These exist for caching data stored in packed binary form in compiler
333 (defstruct (debug-block (:constructor nil)
335 ;; Code-locations where execution continues after this block.
336 (successors nil :type list)
337 ;; This indicates whether the block is a special glob of code shared
338 ;; by various functions and tucked away elsewhere in a component.
339 ;; This kind of block has no start code-location. This slot is in
340 ;; all debug-blocks since it is an exported interface.
341 (elsewhere-p nil :type boolean))
342 (def!method print-object ((obj debug-block) str)
343 (print-unreadable-object (obj str :type t)
344 (prin1 (debug-block-fun-name obj) str)))
347 (setf (fdocumentation 'debug-block-successors 'function)
348 "Return the list of possible code-locations where execution may continue
349 when the basic-block represented by debug-block completes its execution.")
352 (setf (fdocumentation 'debug-block-elsewhere-p 'function)
353 "Return whether debug-block represents elsewhere code.")
355 (defstruct (compiled-debug-block (:include debug-block)
357 make-compiled-debug-block
358 (code-locations successors elsewhere-p))
360 ;; code-location information for the block
361 (code-locations nil :type simple-vector))
365 ;;; This is an internal structure that manages information about a
366 ;;; breakpoint locations. See *COMPONENT-BREAKPOINT-OFFSETS*.
367 (defstruct (breakpoint-data (:constructor make-breakpoint-data
370 ;; This is the component in which the breakpoint lies.
372 ;; This is the byte offset into the component.
373 (offset nil :type index)
374 ;; The original instruction replaced by the breakpoint.
375 (instruction nil :type (or null sb!vm::word))
376 ;; A list of user breakpoints at this location.
377 (breakpoints nil :type list))
378 (def!method print-object ((obj breakpoint-data) str)
379 (print-unreadable-object (obj str :type t)
380 (format str "~S at ~S"
382 (debug-fun-from-pc (breakpoint-data-component obj)
383 (breakpoint-data-offset obj)))
384 (breakpoint-data-offset obj))))
386 (defstruct (breakpoint (:constructor %make-breakpoint
387 (hook-fun what kind %info))
389 ;; This is the function invoked when execution encounters the
390 ;; breakpoint. It takes a frame, the breakpoint, and optionally a
391 ;; list of values. Values are supplied for :FUN-END breakpoints as
392 ;; values to return for the function containing the breakpoint.
393 ;; :FUN-END breakpoint hook functions also take a cookie argument.
394 ;; See the COOKIE-FUN slot.
395 (hook-fun (required-arg) :type function)
396 ;; CODE-LOCATION or DEBUG-FUN
397 (what nil :type (or code-location debug-fun))
398 ;; :CODE-LOCATION, :FUN-START, or :FUN-END for that kind
399 ;; of breakpoint. :UNKNOWN-RETURN-PARTNER if this is the partner of
400 ;; a :code-location breakpoint at an :UNKNOWN-RETURN code-location.
401 (kind nil :type (member :code-location :fun-start :fun-end
402 :unknown-return-partner))
403 ;; Status helps the user and the implementation.
404 (status :inactive :type (member :active :inactive :deleted))
405 ;; This is a backpointer to a breakpoint-data.
406 (internal-data nil :type (or null breakpoint-data))
407 ;; With code-locations whose type is :UNKNOWN-RETURN, there are
408 ;; really two breakpoints: one at the multiple-value entry point,
409 ;; and one at the single-value entry point. This slot holds the
410 ;; breakpoint for the other one, or NIL if this isn't at an
411 ;; :UNKNOWN-RETURN code location.
412 (unknown-return-partner nil :type (or null breakpoint))
413 ;; :FUN-END breakpoints use a breakpoint at the :FUN-START
414 ;; to establish the end breakpoint upon function entry. We do this
415 ;; by frobbing the LRA to jump to a special piece of code that
416 ;; breaks and provides the return values for the returnee. This slot
417 ;; points to the start breakpoint, so we can activate, deactivate,
419 (start-helper nil :type (or null breakpoint))
420 ;; This is a hook users supply to get a dynamically unique cookie
421 ;; for identifying :FUN-END breakpoint executions. That is, if
422 ;; there is one :FUN-END breakpoint, but there may be multiple
423 ;; pending calls of its function on the stack. This function takes
424 ;; the cookie, and the hook function takes the cookie too.
425 (cookie-fun nil :type (or null function))
426 ;; This slot users can set with whatever information they find useful.
428 (def!method print-object ((obj breakpoint) str)
429 (let ((what (breakpoint-what obj)))
430 (print-unreadable-object (obj str :type t)
435 (debug-fun (debug-fun-name what)))
438 (debug-fun (breakpoint-kind obj)))))))
442 (defstruct (code-location (:constructor nil)
444 ;; the DEBUG-FUN containing this CODE-LOCATION
445 (debug-fun nil :type debug-fun)
446 ;; This is initially :UNSURE. Upon first trying to access an
447 ;; :UNPARSED slot, if the data is unavailable, then this becomes T,
448 ;; and the code-location is unknown. If the data is available, this
449 ;; becomes NIL, a known location. We can't use a separate type
450 ;; code-location for this since we must return code-locations before
451 ;; we can tell whether they're known or unknown. For example, when
452 ;; parsing the stack, we don't want to unpack all the variables and
453 ;; blocks just to make frames.
454 (%unknown-p :unsure :type (member t nil :unsure))
455 ;; the DEBUG-BLOCK containing CODE-LOCATION. XXX Possibly toss this
456 ;; out and just find it in the blocks cache in DEBUG-FUN.
457 (%debug-block :unparsed :type (or debug-block (member :unparsed)))
458 ;; This is the number of forms processed by the compiler or loader
459 ;; before the top level form containing this code-location.
460 (%tlf-offset :unparsed :type (or index (member :unparsed)))
461 ;; This is the depth-first number of the node that begins
462 ;; code-location within its top level form.
463 (%form-number :unparsed :type (or index (member :unparsed))))
464 (def!method print-object ((obj code-location) str)
465 (print-unreadable-object (obj str :type t)
466 (prin1 (debug-fun-name (code-location-debug-fun obj))
469 (defstruct (compiled-code-location
470 (:include code-location)
471 (:constructor make-known-code-location
472 (pc debug-fun %tlf-offset %form-number
473 %live-set kind step-info &aux (%unknown-p nil)))
474 (:constructor make-compiled-code-location (pc debug-fun))
476 ;; an index into DEBUG-FUN's component slot
478 ;; a bit-vector indexed by a variable's position in
479 ;; DEBUG-FUN-DEBUG-VARS indicating whether the variable has a
480 ;; valid value at this code-location. (unexported).
481 (%live-set :unparsed :type (or simple-bit-vector (member :unparsed)))
482 ;; (unexported) To see SB!C::LOCATION-KIND, do
483 ;; (SB!KERNEL:TYPEXPAND 'SB!C::LOCATION-KIND).
484 (kind :unparsed :type (or (member :unparsed) sb!c::location-kind))
485 (step-info :unparsed :type (or (member :unparsed :foo) simple-string)))
489 ;;; Return the number of top level forms processed by the compiler
490 ;;; before compiling this source. If this source is uncompiled, this
491 ;;; is zero. This may be zero even if the source is compiled since the
492 ;;; first form in the first file compiled in one compilation, for
493 ;;; example, must have a root number of zero -- the compiler saw no
494 ;;; other top level forms before it.
495 (defun debug-source-root-number (debug-source)
496 (sb!c::debug-source-source-root debug-source))
500 ;;; This is used in FIND-ESCAPED-FRAME and with the bogus components
501 ;;; and LRAs used for :FUN-END breakpoints. When a component's
502 ;;; debug-info slot is :BOGUS-LRA, then the REAL-LRA-SLOT contains the
503 ;;; real component to continue executing, as opposed to the bogus
504 ;;; component which appeared in some frame's LRA location.
505 (defconstant real-lra-slot sb!vm:code-constants-offset)
507 ;;; These are magically converted by the compiler.
508 (defun current-sp () (current-sp))
509 (defun current-fp () (current-fp))
510 (defun stack-ref (s n) (stack-ref s n))
511 (defun %set-stack-ref (s n value) (%set-stack-ref s n value))
512 (defun fun-code-header (fun) (fun-code-header fun))
513 (defun lra-code-header (lra) (lra-code-header lra))
514 (defun %make-lisp-obj (value) (%make-lisp-obj value))
515 (defun get-lisp-obj-address (thing) (get-lisp-obj-address thing))
516 (defun fun-word-offset (fun) (fun-word-offset fun))
518 #!-sb-fluid (declaim (inline control-stack-pointer-valid-p))
519 (defun control-stack-pointer-valid-p (x &optional (aligned t))
520 (declare (type system-area-pointer x))
521 (let* (#!-stack-grows-downward-not-upward
523 (descriptor-sap *control-stack-start*))
524 #!+stack-grows-downward-not-upward
526 (descriptor-sap *control-stack-end*)))
527 #!-stack-grows-downward-not-upward
528 (and (sap< x (current-sp))
529 (sap<= control-stack-start x)
530 (or (not aligned) (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask))))
531 #!+stack-grows-downward-not-upward
532 (and (sap>= x (current-sp))
533 (sap> control-stack-end x)
534 (or (not aligned) (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask))))))
536 (declaim (inline component-ptr-from-pc))
537 (sb!alien:define-alien-routine component-ptr-from-pc (system-area-pointer)
538 (pc system-area-pointer))
540 #!+gencgc (declaim (inline valid-lisp-pointer-p))
542 (sb!alien:define-alien-routine valid-lisp-pointer-p sb!alien:int
543 (pointer system-area-pointer))
545 (declaim (inline component-from-component-ptr))
546 (defun component-from-component-ptr (component-ptr)
547 (declare (type system-area-pointer component-ptr))
548 (make-lisp-obj (logior (sap-int component-ptr)
549 sb!vm:other-pointer-lowtag)))
551 ;;;; (OR X86 X86-64) support
553 (defun compute-lra-data-from-pc (pc)
554 (declare (type system-area-pointer pc))
555 (let ((component-ptr (component-ptr-from-pc pc)))
556 (unless (sap= component-ptr (int-sap #x0))
557 (let* ((code (component-from-component-ptr component-ptr))
558 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes))
559 (pc-offset (- (sap-int pc)
560 (- (get-lisp-obj-address code)
561 sb!vm:other-pointer-lowtag)
563 ;;(format t "c-lra-fpc ~A ~A ~A~%" pc code pc-offset)
564 (values pc-offset code)))))
569 (defconstant sb!vm::nargs-offset #.sb!vm::ecx-offset)
571 ;;; Check for a valid return address - it could be any valid C/Lisp
574 ;;; XXX Could be a little smarter.
575 #!-sb-fluid (declaim (inline ra-pointer-valid-p))
576 (defun ra-pointer-valid-p (ra)
577 (declare (type system-area-pointer ra))
579 ;; not the first page (which is unmapped)
581 ;; FIXME: Where is this documented? Is it really true of every CPU
582 ;; architecture? Is it even necessarily true in current SBCL?
583 (>= (sap-int ra) 4096)
584 ;; not a Lisp stack pointer
585 (not (control-stack-pointer-valid-p ra))))
587 ;;; Try to find a valid previous stack. This is complex on the x86 as
588 ;;; it can jump between C and Lisp frames. To help find a valid frame
589 ;;; it searches backwards.
591 ;;; XXX Should probably check whether it has reached the bottom of the
594 ;;; XXX Should handle interrupted frames, both Lisp and C. At present
595 ;;; it manages to find a fp trail, see linux hack below.
596 (declaim (maybe-inline x86-call-context))
597 (defun x86-call-context (fp)
598 (declare (type system-area-pointer fp))
599 (let ((ocfp (sap-ref-sap fp (sb!vm::frame-byte-offset ocfp-save-offset)))
600 (ra (sap-ref-sap fp (sb!vm::frame-byte-offset return-pc-save-offset))))
601 (if (and (control-stack-pointer-valid-p fp)
603 (control-stack-pointer-valid-p ocfp)
604 (ra-pointer-valid-p ra))
606 (values nil (int-sap 0) (int-sap 0)))))
610 ;;; Convert the descriptor into a SAP. The bits all stay the same, we just
611 ;;; change our notion of what we think they are.
612 #!-sb-fluid (declaim (inline descriptor-sap))
613 (defun descriptor-sap (x)
614 (int-sap (get-lisp-obj-address x)))
616 ;;; Return the top frame of the control stack as it was before calling
619 (/noshow0 "entering TOP-FRAME")
620 (compute-calling-frame (descriptor-sap (%caller-frame))
624 ;;; Flush all of the frames above FRAME, and renumber all the frames
626 (defun flush-frames-above (frame)
627 (setf (frame-up frame) nil)
628 (do ((number 0 (1+ number))
629 (frame frame (frame-%down frame)))
630 ((not (frame-p frame)))
631 (setf (frame-number frame) number)))
633 (defun find-saved-frame-down (fp up-frame)
634 (multiple-value-bind (saved-fp saved-pc) (sb!c:find-saved-fp-and-pc fp)
636 (compute-calling-frame (descriptor-sap saved-fp)
637 (descriptor-sap saved-pc)
641 ;;; Return the frame immediately below FRAME on the stack; or when
642 ;;; FRAME is the bottom of the stack, return NIL.
643 (defun frame-down (frame)
644 (/noshow0 "entering FRAME-DOWN")
645 ;; We have to access the old-fp and return-pc out of frame and pass
646 ;; them to COMPUTE-CALLING-FRAME.
647 (let ((down (frame-%down frame)))
648 (if (eq down :unparsed)
649 (let ((debug-fun (frame-debug-fun frame)))
650 (/noshow0 "in DOWN :UNPARSED case")
651 (setf (frame-%down frame)
654 (let ((c-d-f (compiled-debug-fun-compiler-debug-fun
656 (compute-calling-frame
659 frame ocfp-save-offset
660 (sb!c::compiled-debug-fun-old-fp c-d-f)))
662 frame lra-save-offset
663 (sb!c::compiled-debug-fun-return-pc c-d-f))
666 (let ((fp (frame-pointer frame)))
667 (when (control-stack-pointer-valid-p fp)
669 (multiple-value-bind (ok ra ofp) (x86-call-context fp)
671 (compute-calling-frame ofp ra frame)
672 (find-saved-frame-down fp frame)))
674 (compute-calling-frame
676 (sap-ref-sap fp (* ocfp-save-offset
680 (sap-ref-32 fp (* ocfp-save-offset
681 sb!vm:n-word-bytes)))
683 (stack-ref fp lra-save-offset)
688 ;;; Get the old FP or return PC out of FRAME. STACK-SLOT is the
689 ;;; standard save location offset on the stack. LOC is the saved
690 ;;; SC-OFFSET describing the main location.
691 (defun get-context-value (frame stack-slot loc)
692 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
693 (type sb!c:sc-offset loc))
694 (let ((pointer (frame-pointer frame))
695 (escaped (compiled-frame-escaped frame)))
697 (sub-access-debug-var-slot pointer loc escaped)
699 (stack-ref pointer stack-slot)
703 (stack-ref pointer stack-slot))
705 (sap-ref-sap pointer (sb!vm::frame-byte-offset stack-slot)))))))
707 (defun (setf get-context-value) (value frame stack-slot loc)
708 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
709 (type sb!c:sc-offset loc))
710 (let ((pointer (frame-pointer frame))
711 (escaped (compiled-frame-escaped frame)))
713 (sub-set-debug-var-slot pointer loc value escaped)
715 (setf (stack-ref pointer stack-slot) value)
719 (setf (stack-ref pointer stack-slot) value))
721 (setf (sap-ref-sap pointer (sb!vm::frame-byte-offset stack-slot))
724 (defun foreign-function-backtrace-name (sap)
725 (let ((name (sap-foreign-symbol sap)))
727 (format nil "foreign function: ~A" name)
728 (format nil "foreign function: #x~X" (sap-int sap)))))
730 ;;; This returns a frame for the one existing in time immediately
731 ;;; prior to the frame referenced by current-fp. This is current-fp's
732 ;;; caller or the next frame down the control stack. If there is no
733 ;;; down frame, this returns NIL for the bottom of the stack. UP-FRAME
734 ;;; is the up link for the resulting frame object, and it is null when
735 ;;; we call this to get the top of the stack.
737 ;;; The current frame contains the pointer to the temporally previous
738 ;;; frame we want, and the current frame contains the pc at which we
739 ;;; will continue executing upon returning to that previous frame.
741 ;;; Note: Sometimes LRA is actually a fixnum. This happens when lisp
742 ;;; calls into C. In this case, the code object is stored on the stack
743 ;;; after the LRA, and the LRA is the word offset.
745 (defun compute-calling-frame (caller lra up-frame)
746 (declare (type system-area-pointer caller))
747 (/noshow0 "entering COMPUTE-CALLING-FRAME")
748 (when (control-stack-pointer-valid-p caller)
750 (multiple-value-bind (code pc-offset escaped)
752 (multiple-value-bind (word-offset code)
754 (let ((fp (frame-pointer up-frame)))
756 (stack-ref fp (1+ lra-save-offset))))
757 (values (get-header-data lra)
758 (lra-code-header lra)))
761 (* (1+ (- word-offset (get-header-data code)))
764 (values :foreign-function
767 (find-escaped-frame caller))
768 (if (and (code-component-p code)
769 (eq (%code-debug-info code) :bogus-lra))
770 (let ((real-lra (code-header-ref code real-lra-slot)))
771 (compute-calling-frame caller real-lra up-frame))
772 (let ((d-fun (case code
774 (make-bogus-debug-fun
775 "undefined function"))
777 (make-bogus-debug-fun
778 (foreign-function-backtrace-name
779 (int-sap (get-lisp-obj-address lra)))))
781 (make-bogus-debug-fun
782 "bogus stack frame"))
784 (debug-fun-from-pc code pc-offset)))))
785 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
786 (make-compiled-frame caller up-frame d-fun
787 (code-location-from-pc d-fun pc-offset
789 (if up-frame (1+ (frame-number up-frame)) 0)
793 (defun compute-calling-frame (caller ra up-frame &optional savedp)
794 (declare (type system-area-pointer caller ra))
795 (/noshow0 "entering COMPUTE-CALLING-FRAME")
796 (when (control-stack-pointer-valid-p caller)
798 ;; First check for an escaped frame.
799 (multiple-value-bind (code pc-offset escaped off-stack)
800 (find-escaped-frame caller)
803 ;; If it's escaped it may be a function end breakpoint trap.
804 (when (and (code-component-p code)
805 (eq (%code-debug-info code) :bogus-lra))
806 ;; If :bogus-lra grab the real lra.
807 (setq pc-offset (code-header-ref
808 code (1+ real-lra-slot)))
809 (setq code (code-header-ref code real-lra-slot))
812 (multiple-value-setq (pc-offset code)
813 (compute-lra-data-from-pc ra))
815 (setf code :foreign-function
817 (let ((d-fun (case code
819 (make-bogus-debug-fun
820 "undefined function"))
822 (make-bogus-debug-fun
823 (foreign-function-backtrace-name ra)))
825 (make-bogus-debug-fun
826 "bogus stack frame"))
828 (debug-fun-from-pc code pc-offset)))))
829 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
830 (make-compiled-frame caller up-frame d-fun
831 (code-location-from-pc d-fun pc-offset
833 (if up-frame (1+ (frame-number up-frame)) 0)
834 ;; If we have an interrupt-context that's not on
835 ;; our stack at all, and we're computing the
836 ;; from from a saved FP, we're probably looking
837 ;; at an interrupted syscall.
838 (or escaped (and savedp off-stack)))))))
840 (defun nth-interrupt-context (n)
841 (declare (type (unsigned-byte 32) n)
842 (optimize (speed 3) (safety 0)))
843 (sb!alien:sap-alien (sb!vm::current-thread-offset-sap
844 (+ sb!vm::thread-interrupt-contexts-offset
850 (defun find-escaped-frame (frame-pointer)
851 (declare (type system-area-pointer frame-pointer))
852 (/noshow0 "entering FIND-ESCAPED-FRAME")
853 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
854 (let* ((context (nth-interrupt-context index))
855 (cfp (int-sap (sb!vm:context-register context sb!vm::cfp-offset))))
856 (/noshow0 "got CONTEXT")
857 (unless (control-stack-pointer-valid-p cfp)
858 (return (values nil nil nil t)))
859 (when (sap= frame-pointer cfp)
861 (/noshow0 "in WITHOUT-GCING")
862 (let* ((component-ptr (component-ptr-from-pc
863 (sb!vm:context-pc context)))
864 (code (unless (sap= component-ptr (int-sap #x0))
865 (component-from-component-ptr component-ptr))))
866 (/noshow0 "got CODE")
868 (return (values code 0 context)))
869 (let* ((code-header-len (* (get-header-data code)
872 (- (sap-int (sb!vm:context-pc context))
873 (- (get-lisp-obj-address code)
874 sb!vm:other-pointer-lowtag)
876 (/noshow "got PC-OFFSET")
877 (unless (<= 0 pc-offset
878 (* (code-header-ref code sb!vm:code-code-size-slot)
880 ;; We were in an assembly routine. Therefore, use the
883 ;; FIXME: Should this be WARN or ERROR or what?
884 (format t "** pc-offset ~S not in code obj ~S?~%"
886 (/noshow0 "returning from FIND-ESCAPED-FRAME")
888 (values code pc-offset context)))))))))
891 (defun find-escaped-frame (frame-pointer)
892 (declare (type system-area-pointer frame-pointer))
893 (/noshow0 "entering FIND-ESCAPED-FRAME")
894 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
895 (let ((scp (nth-interrupt-context index)))
897 (when (= (sap-int frame-pointer)
898 (sb!vm:context-register scp sb!vm::cfp-offset))
900 (/noshow0 "in WITHOUT-GCING")
901 (let ((code (code-object-from-bits
902 (sb!vm:context-register scp sb!vm::code-offset))))
903 (/noshow0 "got CODE")
905 (return (values code 0 scp)))
906 (let* ((code-header-len (* (get-header-data code)
909 (- (sap-int (sb!vm:context-pc scp))
910 (- (get-lisp-obj-address code)
911 sb!vm:other-pointer-lowtag)
913 (let ((code-size (* (code-header-ref code
914 sb!vm:code-code-size-slot)
915 sb!vm:n-word-bytes)))
916 (unless (<= 0 pc-offset code-size)
917 ;; We were in an assembly routine.
918 (multiple-value-bind (new-pc-offset computed-return)
919 (find-pc-from-assembly-fun code scp)
920 (setf pc-offset new-pc-offset)
921 (unless (<= 0 pc-offset code-size)
923 "Set PC-OFFSET to zero and continue backtrace."
926 "~@<PC-OFFSET (~D) not in code object. Frame details:~
927 ~2I~:@_PC: #X~X~:@_CODE: ~S~:@_CODE FUN: ~S~:@_LRA: ~
928 #X~X~:@_COMPUTED RETURN: #X~X.~:>"
931 (sap-int (sb!vm:context-pc scp))
933 (%code-entry-points code)
934 (sb!vm:context-register scp sb!vm::lra-offset)
936 ;; We failed to pinpoint where PC is, but set
937 ;; pc-offset to 0 to keep the backtrace from
939 (setf pc-offset 0)))))
940 (/noshow0 "returning from FIND-ESCAPED-FRAME")
942 (if (eq (%code-debug-info code) :bogus-lra)
943 (let ((real-lra (code-header-ref code
945 (values (lra-code-header real-lra)
946 (get-header-data real-lra)
948 (values code pc-offset scp))))))))))
951 (defun find-pc-from-assembly-fun (code scp)
952 "Finds the PC for the return from an assembly routine properly.
953 For some architectures (such as PPC) this will not be the $LRA
955 (let ((return-machine-address (sb!vm::return-machine-address scp))
956 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes)))
957 (values (- return-machine-address
958 (- (get-lisp-obj-address code)
959 sb!vm:other-pointer-lowtag)
961 return-machine-address)))
963 ;;; Find the code object corresponding to the object represented by
964 ;;; bits and return it. We assume bogus functions correspond to the
965 ;;; undefined-function.
967 (defun code-object-from-bits (bits)
968 (declare (type (unsigned-byte 32) bits))
969 (let ((object (make-lisp-obj bits nil)))
970 (if (functionp object)
971 (or (fun-code-header object)
973 (let ((lowtag (lowtag-of object)))
974 (when (= lowtag sb!vm:other-pointer-lowtag)
975 (let ((widetag (widetag-of object)))
976 (cond ((= widetag sb!vm:code-header-widetag)
978 ((= widetag sb!vm:return-pc-header-widetag)
979 (lra-code-header object))
985 ;;; This returns a COMPILED-DEBUG-FUN for COMPONENT and PC. We fetch the
986 ;;; SB!C::DEBUG-INFO and run down its FUN-MAP to get a
987 ;;; SB!C::COMPILED-DEBUG-FUN from the PC. The result only needs to
988 ;;; reference the COMPONENT, for function constants, and the
989 ;;; SB!C::COMPILED-DEBUG-FUN.
990 (defun debug-fun-from-pc (component pc)
991 (let ((info (%code-debug-info component)))
994 ;; FIXME: It seems that most of these (at least on x86) are
995 ;; actually assembler routines, and could be named by looking
996 ;; at the sb-fasl:*assembler-routines*.
997 (make-bogus-debug-fun "no debug information for frame"))
998 ((eq info :bogus-lra)
999 (make-bogus-debug-fun "function end breakpoint"))
1001 (let* ((fun-map (sb!c::compiled-debug-info-fun-map info))
1002 (len (length fun-map)))
1003 (declare (type simple-vector fun-map))
1005 (make-compiled-debug-fun (svref fun-map 0) component)
1008 (>= pc (sb!c::compiled-debug-fun-elsewhere-pc
1009 (svref fun-map 0)))))
1010 (declare (type sb!int:index i))
1013 (< pc (if elsewhere-p
1014 (sb!c::compiled-debug-fun-elsewhere-pc
1015 (svref fun-map (1+ i)))
1016 (svref fun-map i))))
1017 (return (make-compiled-debug-fun
1018 (svref fun-map (1- i))
1022 ;;; This returns a code-location for the COMPILED-DEBUG-FUN,
1023 ;;; DEBUG-FUN, and the pc into its code vector. If we stopped at a
1024 ;;; breakpoint, find the CODE-LOCATION for that breakpoint. Otherwise,
1025 ;;; make an :UNSURE code location, so it can be filled in when we
1026 ;;; figure out what is going on.
1027 (defun code-location-from-pc (debug-fun pc escaped)
1028 (or (and (compiled-debug-fun-p debug-fun)
1030 (let ((data (breakpoint-data
1031 (compiled-debug-fun-component debug-fun)
1033 (when (and data (breakpoint-data-breakpoints data))
1034 (let ((what (breakpoint-what
1035 (first (breakpoint-data-breakpoints data)))))
1036 (when (compiled-code-location-p what)
1038 (make-compiled-code-location pc debug-fun)))
1040 ;;; Return an alist mapping catch tags to CODE-LOCATIONs. These are
1041 ;;; CODE-LOCATIONs at which execution would continue with frame as the
1042 ;;; top frame if someone threw to the corresponding tag.
1043 (defun frame-catches (frame)
1044 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1045 (reversed-result nil)
1046 (fp (frame-pointer frame)))
1047 (loop until (zerop (sap-int catch))
1048 finally (return (nreverse reversed-result))
1053 (* sb!vm:catch-block-current-cont-slot
1054 sb!vm:n-word-bytes))
1058 (* sb!vm:catch-block-current-cont-slot
1059 sb!vm:n-word-bytes))))
1060 (let* (#!-(or x86 x86-64)
1061 (lra (stack-ref catch sb!vm:catch-block-entry-pc-slot))
1064 catch (* sb!vm:catch-block-entry-pc-slot
1065 sb!vm:n-word-bytes)))
1068 (stack-ref catch sb!vm:catch-block-current-code-slot))
1070 (component (component-from-component-ptr
1071 (component-ptr-from-pc ra)))
1074 (* (- (1+ (get-header-data lra))
1075 (get-header-data component))
1079 (- (get-lisp-obj-address component)
1080 sb!vm:other-pointer-lowtag)
1081 (* (get-header-data component) sb!vm:n-word-bytes))))
1082 (push (cons #!-(or x86 x86-64)
1083 (stack-ref catch sb!vm:catch-block-tag-slot)
1086 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1087 sb!vm:n-word-bytes)))
1088 (make-compiled-code-location
1089 offset (frame-debug-fun frame)))
1094 (* sb!vm:catch-block-previous-catch-slot
1095 sb!vm:n-word-bytes))
1099 (* sb!vm:catch-block-previous-catch-slot
1100 sb!vm:n-word-bytes)))))))
1102 ;;; Modify the value of the OLD-TAG catches in FRAME to NEW-TAG
1103 (defun replace-frame-catch-tag (frame old-tag new-tag)
1104 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1105 (fp (frame-pointer frame)))
1106 (loop until (zerop (sap-int catch))
1110 (* sb!vm:catch-block-current-cont-slot
1111 sb!vm:n-word-bytes))
1115 (* sb!vm:catch-block-current-cont-slot
1116 sb!vm:n-word-bytes))))
1119 (stack-ref catch sb!vm:catch-block-tag-slot)
1122 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1123 sb!vm:n-word-bytes)))))
1124 (when (eq current-tag old-tag)
1126 (setf (stack-ref catch sb!vm:catch-block-tag-slot) new-tag)
1128 (setf (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1129 sb!vm:n-word-bytes))
1130 (get-lisp-obj-address new-tag)))))
1134 (* sb!vm:catch-block-previous-catch-slot
1135 sb!vm:n-word-bytes))
1139 (* sb!vm:catch-block-previous-catch-slot
1140 sb!vm:n-word-bytes)))))))
1144 ;;;; operations on DEBUG-FUNs
1146 ;;; Execute the forms in a context with BLOCK-VAR bound to each
1147 ;;; DEBUG-BLOCK in DEBUG-FUN successively. Result is an optional
1148 ;;; form to execute for return values, and DO-DEBUG-FUN-BLOCKS
1149 ;;; returns nil if there is no result form. This signals a
1150 ;;; NO-DEBUG-BLOCKS condition when the DEBUG-FUN lacks
1151 ;;; DEBUG-BLOCK information.
1152 (defmacro do-debug-fun-blocks ((block-var debug-fun &optional result)
1154 (let ((blocks (gensym))
1156 `(let ((,blocks (debug-fun-debug-blocks ,debug-fun)))
1157 (declare (simple-vector ,blocks))
1158 (dotimes (,i (length ,blocks) ,result)
1159 (let ((,block-var (svref ,blocks ,i)))
1162 ;;; Execute body in a context with VAR bound to each DEBUG-VAR in
1163 ;;; DEBUG-FUN. This returns the value of executing result (defaults to
1164 ;;; nil). This may iterate over only some of DEBUG-FUN's variables or
1165 ;;; none depending on debug policy; for example, possibly the
1166 ;;; compilation only preserved argument information.
1167 (defmacro do-debug-fun-vars ((var debug-fun &optional result) &body body)
1168 (let ((vars (gensym))
1170 `(let ((,vars (debug-fun-debug-vars ,debug-fun)))
1171 (declare (type (or null simple-vector) ,vars))
1173 (dotimes (,i (length ,vars) ,result)
1174 (let ((,var (svref ,vars ,i)))
1178 ;;; Return the object of type FUNCTION associated with the DEBUG-FUN,
1179 ;;; or NIL if the function is unavailable or is non-existent as a user
1180 ;;; callable function object.
1181 (defun debug-fun-fun (debug-fun)
1182 (let ((cached-value (debug-fun-%function debug-fun)))
1183 (if (eq cached-value :unparsed)
1184 (setf (debug-fun-%function debug-fun)
1185 (etypecase debug-fun
1188 (compiled-debug-fun-component debug-fun))
1190 (sb!c::compiled-debug-fun-start-pc
1191 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1192 (do ((entry (%code-entry-points component)
1193 (%simple-fun-next entry)))
1196 (sb!c::compiled-debug-fun-start-pc
1197 (compiled-debug-fun-compiler-debug-fun
1198 (fun-debug-fun entry))))
1200 (bogus-debug-fun nil)))
1203 ;;; Return the name of the function represented by DEBUG-FUN. This may
1204 ;;; be a string or a cons; do not assume it is a symbol.
1205 (defun debug-fun-name (debug-fun)
1206 (declare (type debug-fun debug-fun))
1207 (etypecase debug-fun
1209 (sb!c::compiled-debug-fun-name
1210 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1212 (bogus-debug-fun-%name debug-fun))))
1214 ;;; Return a DEBUG-FUN that represents debug information for FUN.
1215 (defun fun-debug-fun (fun)
1216 (declare (type function fun))
1217 (let ((simple-fun (%fun-fun fun)))
1218 (let* ((name (%simple-fun-name simple-fun))
1219 (component (fun-code-header simple-fun))
1222 (and (sb!c::compiled-debug-fun-p x)
1223 (eq (sb!c::compiled-debug-fun-name x) name)
1224 (eq (sb!c::compiled-debug-fun-kind x) nil)))
1225 (sb!c::compiled-debug-info-fun-map
1226 (%code-debug-info component)))))
1228 (make-compiled-debug-fun res component)
1229 ;; KLUDGE: comment from CMU CL:
1230 ;; This used to be the non-interpreted branch, but
1231 ;; William wrote it to return the debug-fun of fun's XEP
1232 ;; instead of fun's debug-fun. The above code does this
1233 ;; more correctly, but it doesn't get or eliminate all
1234 ;; appropriate cases. It mostly works, and probably
1235 ;; works for all named functions anyway.
1237 (debug-fun-from-pc component
1238 (* (- (fun-word-offset simple-fun)
1239 (get-header-data component))
1240 sb!vm:n-word-bytes))))))
1242 ;;; Return the kind of the function, which is one of :OPTIONAL,
1243 ;;; :EXTERNAL, :TOPLEVEL, :CLEANUP, or NIL.
1244 (defun debug-fun-kind (debug-fun)
1245 ;; FIXME: This "is one of" information should become part of the function
1246 ;; declamation, not just a doc string
1247 (etypecase debug-fun
1249 (sb!c::compiled-debug-fun-kind
1250 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1254 ;;; Is there any variable information for DEBUG-FUN?
1255 (defun debug-var-info-available (debug-fun)
1256 (not (not (debug-fun-debug-vars debug-fun))))
1258 ;;; Return a list of DEBUG-VARs in DEBUG-FUN having the same name
1259 ;;; and package as SYMBOL. If SYMBOL is uninterned, then this returns
1260 ;;; a list of DEBUG-VARs without package names and with the same name
1261 ;;; as symbol. The result of this function is limited to the
1262 ;;; availability of variable information in DEBUG-FUN; for
1263 ;;; example, possibly DEBUG-FUN only knows about its arguments.
1264 (defun debug-fun-symbol-vars (debug-fun symbol)
1265 (let ((vars (ambiguous-debug-vars debug-fun (symbol-name symbol)))
1266 (package (and (symbol-package symbol)
1267 (package-name (symbol-package symbol)))))
1268 (delete-if (if (stringp package)
1270 (let ((p (debug-var-package-name var)))
1271 (or (not (stringp p))
1272 (string/= p package))))
1274 (stringp (debug-var-package-name var))))
1277 ;;; Return a list of DEBUG-VARs in DEBUG-FUN whose names contain
1278 ;;; NAME-PREFIX-STRING as an initial substring. The result of this
1279 ;;; function is limited to the availability of variable information in
1280 ;;; debug-fun; for example, possibly debug-fun only knows
1281 ;;; about its arguments.
1282 (defun ambiguous-debug-vars (debug-fun name-prefix-string)
1283 (declare (simple-string name-prefix-string))
1284 (let ((variables (debug-fun-debug-vars debug-fun)))
1285 (declare (type (or null simple-vector) variables))
1287 (let* ((len (length variables))
1288 (prefix-len (length name-prefix-string))
1289 (pos (find-var name-prefix-string variables len))
1292 ;; Find names from pos to variable's len that contain prefix.
1293 (do ((i pos (1+ i)))
1295 (let* ((var (svref variables i))
1296 (name (debug-var-symbol-name var))
1297 (name-len (length name)))
1298 (declare (simple-string name))
1299 (when (/= (or (string/= name-prefix-string name
1300 :end1 prefix-len :end2 name-len)
1305 (setq res (nreverse res)))
1308 ;;; This returns a position in VARIABLES for one containing NAME as an
1309 ;;; initial substring. END is the length of VARIABLES if supplied.
1310 (defun find-var (name variables &optional end)
1311 (declare (simple-vector variables)
1312 (simple-string name))
1313 (let ((name-len (length name)))
1314 (position name variables
1316 (let* ((y (debug-var-symbol-name y))
1318 (declare (simple-string y))
1319 (and (>= y-len name-len)
1320 (string= x y :end1 name-len :end2 name-len))))
1321 :end (or end (length variables)))))
1323 ;;; Return a list representing the lambda-list for DEBUG-FUN. The
1324 ;;; list has the following structure:
1325 ;;; (required-var1 required-var2
1327 ;;; (:optional var3 suppliedp-var4)
1328 ;;; (:optional var5)
1330 ;;; (:rest var6) (:rest var7)
1332 ;;; (:keyword keyword-symbol var8 suppliedp-var9)
1333 ;;; (:keyword keyword-symbol var10)
1336 ;;; Each VARi is a DEBUG-VAR; however it may be the symbol :DELETED if
1337 ;;; it is unreferenced in DEBUG-FUN. This signals a
1338 ;;; LAMBDA-LIST-UNAVAILABLE condition when there is no argument list
1340 (defun debug-fun-lambda-list (debug-fun)
1341 (etypecase debug-fun
1342 (compiled-debug-fun (compiled-debug-fun-lambda-list debug-fun))
1343 (bogus-debug-fun nil)))
1345 ;;; Note: If this has to compute the lambda list, it caches it in DEBUG-FUN.
1346 (defun compiled-debug-fun-lambda-list (debug-fun)
1347 (let ((lambda-list (debug-fun-%lambda-list debug-fun)))
1348 (cond ((eq lambda-list :unparsed)
1349 (multiple-value-bind (args argsp)
1350 (parse-compiled-debug-fun-lambda-list debug-fun)
1351 (setf (debug-fun-%lambda-list debug-fun) args)
1354 (debug-signal 'lambda-list-unavailable
1355 :debug-fun debug-fun))))
1357 ((bogus-debug-fun-p debug-fun)
1359 ((sb!c::compiled-debug-fun-arguments
1360 (compiled-debug-fun-compiler-debug-fun debug-fun))
1361 ;; If the packed information is there (whether empty or not) as
1362 ;; opposed to being nil, then returned our cached value (nil).
1365 ;; Our cached value is nil, and the packed lambda-list information
1366 ;; is nil, so we don't have anything available.
1367 (debug-signal 'lambda-list-unavailable
1368 :debug-fun debug-fun)))))
1370 ;;; COMPILED-DEBUG-FUN-LAMBDA-LIST calls this when a
1371 ;;; COMPILED-DEBUG-FUN has no lambda list information cached. It
1372 ;;; returns the lambda list as the first value and whether there was
1373 ;;; any argument information as the second value. Therefore,
1374 ;;; (VALUES NIL T) means there were no arguments, but (VALUES NIL NIL)
1375 ;;; means there was no argument information.
1376 (defun parse-compiled-debug-fun-lambda-list (debug-fun)
1377 (let ((args (sb!c::compiled-debug-fun-arguments
1378 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1383 (values (coerce (debug-fun-debug-vars debug-fun) 'list)
1386 (let ((vars (debug-fun-debug-vars debug-fun))
1391 (declare (type (or null simple-vector) vars))
1393 (when (>= i len) (return))
1394 (let ((ele (aref args i)))
1399 ;; Deleted required arg at beginning of args array.
1400 (push :deleted res))
1401 (sb!c::optional-args
1404 ;; SUPPLIED-P var immediately following keyword or
1405 ;; optional. Stick the extra var in the result
1406 ;; element representing the keyword or optional,
1407 ;; which is the previous one.
1409 ;; FIXME: NCONC used for side-effect: the effect is defined,
1410 ;; but this is bad style no matter what.
1412 (list (compiled-debug-fun-lambda-list-var
1413 args (incf i) vars))))
1416 (compiled-debug-fun-lambda-list-var
1417 args (incf i) vars))
1420 ;; The next two args are the &MORE arg context and count.
1422 (compiled-debug-fun-lambda-list-var
1424 (compiled-debug-fun-lambda-list-var
1425 args (incf i) vars))
1429 (push (list :keyword
1431 (compiled-debug-fun-lambda-list-var
1432 args (incf i) vars))
1435 ;; We saw an optional marker, so the following
1436 ;; non-symbols are indexes indicating optional
1438 (push (list :optional (svref vars ele)) res))
1440 ;; Required arg at beginning of args array.
1441 (push (svref vars ele) res))))
1443 (values (nreverse res) t))))))
1445 ;;; This is used in COMPILED-DEBUG-FUN-LAMBDA-LIST.
1446 (defun compiled-debug-fun-lambda-list-var (args i vars)
1447 (declare (type (simple-array * (*)) args)
1448 (simple-vector vars))
1449 (let ((ele (aref args i)))
1450 (cond ((not (symbolp ele)) (svref vars ele))
1451 ((eq ele 'sb!c::deleted) :deleted)
1452 (t (error "malformed arguments description")))))
1454 (defun compiled-debug-fun-debug-info (debug-fun)
1455 (%code-debug-info (compiled-debug-fun-component debug-fun)))
1457 ;;;; unpacking variable and basic block data
1459 (defvar *parsing-buffer*
1460 (make-array 20 :adjustable t :fill-pointer t))
1461 (defvar *other-parsing-buffer*
1462 (make-array 20 :adjustable t :fill-pointer t))
1463 ;;; PARSE-DEBUG-BLOCKS and PARSE-DEBUG-VARS
1464 ;;; use this to unpack binary encoded information. It returns the
1465 ;;; values returned by the last form in body.
1467 ;;; This binds buffer-var to *parsing-buffer*, makes sure it starts at
1468 ;;; element zero, and makes sure if we unwind, we nil out any set
1469 ;;; elements for GC purposes.
1471 ;;; This also binds other-var to *other-parsing-buffer* when it is
1472 ;;; supplied, making sure it starts at element zero and that we nil
1473 ;;; out any elements if we unwind.
1475 ;;; This defines the local macro RESULT that takes a buffer, copies
1476 ;;; its elements to a resulting simple-vector, nil's out elements, and
1477 ;;; restarts the buffer at element zero. RESULT returns the
1479 (eval-when (:compile-toplevel :execute)
1480 (sb!xc:defmacro with-parsing-buffer ((buffer-var &optional other-var)
1482 (let ((len (gensym))
1485 (let ((,buffer-var *parsing-buffer*)
1486 ,@(if other-var `((,other-var *other-parsing-buffer*))))
1487 (setf (fill-pointer ,buffer-var) 0)
1488 ,@(if other-var `((setf (fill-pointer ,other-var) 0)))
1489 (macrolet ((result (buf)
1490 `(let* ((,',len (length ,buf))
1491 (,',res (make-array ,',len)))
1492 (replace ,',res ,buf :end1 ,',len :end2 ,',len)
1493 (fill ,buf nil :end ,',len)
1494 (setf (fill-pointer ,buf) 0)
1497 (fill *parsing-buffer* nil)
1498 ,@(if other-var `((fill *other-parsing-buffer* nil))))))
1501 ;;; The argument is a debug internals structure. This returns the
1502 ;;; DEBUG-BLOCKs for DEBUG-FUN, regardless of whether we have unpacked
1503 ;;; them yet. It signals a NO-DEBUG-BLOCKS condition if it can't
1504 ;;; return the blocks.
1505 (defun debug-fun-debug-blocks (debug-fun)
1506 (let ((blocks (debug-fun-blocks debug-fun)))
1507 (cond ((eq blocks :unparsed)
1508 (setf (debug-fun-blocks debug-fun)
1509 (parse-debug-blocks debug-fun))
1510 (unless (debug-fun-blocks debug-fun)
1511 (debug-signal 'no-debug-blocks
1512 :debug-fun debug-fun))
1513 (debug-fun-blocks debug-fun))
1516 (debug-signal 'no-debug-blocks
1517 :debug-fun debug-fun)))))
1519 ;;; Return a SIMPLE-VECTOR of DEBUG-BLOCKs or NIL. NIL indicates there
1520 ;;; was no basic block information.
1521 (defun parse-debug-blocks (debug-fun)
1522 (etypecase debug-fun
1524 (parse-compiled-debug-blocks debug-fun))
1526 (debug-signal 'no-debug-blocks :debug-fun debug-fun))))
1528 ;;; This does some of the work of PARSE-DEBUG-BLOCKS.
1529 (defun parse-compiled-debug-blocks (debug-fun)
1530 (let* ((var-count (length (debug-fun-debug-vars debug-fun)))
1531 (compiler-debug-fun (compiled-debug-fun-compiler-debug-fun
1533 (blocks (sb!c::compiled-debug-fun-blocks compiler-debug-fun))
1534 ;; KLUDGE: 8 is a hard-wired constant in the compiler for the
1535 ;; element size of the packed binary representation of the
1537 (live-set-len (ceiling var-count 8))
1538 (tlf-number (sb!c::compiled-debug-fun-tlf-number compiler-debug-fun)))
1540 (return-from parse-compiled-debug-blocks nil))
1541 (macrolet ((aref+ (a i) `(prog1 (aref ,a ,i) (incf ,i))))
1542 (with-parsing-buffer (blocks-buffer locations-buffer)
1544 (len (length blocks))
1547 (when (>= i len) (return))
1548 (let ((succ-and-flags (aref+ blocks i))
1550 (declare (type (unsigned-byte 8) succ-and-flags)
1552 (dotimes (k (ldb sb!c::compiled-debug-block-nsucc-byte
1554 (push (sb!c:read-var-integer blocks i) successors))
1556 (dotimes (k (sb!c:read-var-integer blocks i)
1557 (result locations-buffer))
1558 (let ((kind (svref sb!c::*compiled-code-location-kinds*
1561 (sb!c:read-var-integer blocks i)))
1562 (tlf-offset (or tlf-number
1563 (sb!c:read-var-integer blocks i)))
1564 (form-number (sb!c:read-var-integer blocks i))
1565 (live-set (sb!c:read-packed-bit-vector
1566 live-set-len blocks i))
1567 (step-info (sb!c:read-var-string blocks i)))
1568 (vector-push-extend (make-known-code-location
1569 pc debug-fun tlf-offset
1570 form-number live-set kind
1573 (setf last-pc pc))))
1574 (block (make-compiled-debug-block
1575 locations successors
1577 sb!c::compiled-debug-block-elsewhere-p
1578 succ-and-flags))))))
1579 (vector-push-extend block blocks-buffer)
1580 (dotimes (k (length locations))
1581 (setf (code-location-%debug-block (svref locations k))
1583 (let ((res (result blocks-buffer)))
1584 (declare (simple-vector res))
1585 (dotimes (i (length res))
1586 (let* ((block (svref res i))
1588 (dolist (ele (debug-block-successors block))
1589 (push (svref res ele) succs))
1590 (setf (debug-block-successors block) succs)))
1593 ;;; The argument is a debug internals structure. This returns NIL if
1594 ;;; there is no variable information. It returns an empty
1595 ;;; simple-vector if there were no locals in the function. Otherwise
1596 ;;; it returns a SIMPLE-VECTOR of DEBUG-VARs.
1597 (defun debug-fun-debug-vars (debug-fun)
1598 (let ((vars (debug-fun-%debug-vars debug-fun)))
1599 (if (eq vars :unparsed)
1600 (setf (debug-fun-%debug-vars debug-fun)
1601 (etypecase debug-fun
1603 (parse-compiled-debug-vars debug-fun))
1604 (bogus-debug-fun nil)))
1607 ;;; VARS is the parsed variables for a minimal debug function. We need
1608 ;;; to assign names of the form ARG-NNN. We must pad with leading
1609 ;;; zeros, since the arguments must be in alphabetical order.
1610 (defun assign-minimal-var-names (vars)
1611 (declare (simple-vector vars))
1612 (let* ((len (length vars))
1613 (width (length (format nil "~W" (1- len)))))
1615 (without-package-locks
1616 (setf (compiled-debug-var-symbol (svref vars i))
1617 (intern (format nil "ARG-~V,'0D" width i)
1618 ;; The cross-compiler won't dump literal package
1619 ;; references because the target package objects
1620 ;; aren't created until partway through
1621 ;; cold-init. In lieu of adding smarts to the
1622 ;; build framework to handle this, we use an
1623 ;; explicit load-time-value form.
1624 (load-time-value (find-package "SB!DEBUG"))))))))
1626 ;;; Parse the packed representation of DEBUG-VARs from
1627 ;;; DEBUG-FUN's SB!C::COMPILED-DEBUG-FUN, returning a vector
1628 ;;; of DEBUG-VARs, or NIL if there was no information to parse.
1629 (defun parse-compiled-debug-vars (debug-fun)
1630 (let* ((cdebug-fun (compiled-debug-fun-compiler-debug-fun
1632 (packed-vars (sb!c::compiled-debug-fun-vars cdebug-fun))
1633 (args-minimal (eq (sb!c::compiled-debug-fun-arguments cdebug-fun)
1637 (buffer (make-array 0 :fill-pointer 0 :adjustable t)))
1638 ((>= i (length packed-vars))
1639 (let ((result (coerce buffer 'simple-vector)))
1641 (assign-minimal-var-names result))
1643 (flet ((geti () (prog1 (aref packed-vars i) (incf i))))
1644 (let* ((flags (geti))
1645 (minimal (logtest sb!c::compiled-debug-var-minimal-p flags))
1646 (deleted (logtest sb!c::compiled-debug-var-deleted-p flags))
1647 (more-context-p (logtest sb!c::compiled-debug-var-more-context-p flags))
1648 (more-count-p (logtest sb!c::compiled-debug-var-more-count-p flags))
1649 (live (logtest sb!c::compiled-debug-var-environment-live
1651 (save (logtest sb!c::compiled-debug-var-save-loc-p flags))
1652 (symbol (if minimal nil (geti)))
1653 (id (if (logtest sb!c::compiled-debug-var-id-p flags)
1656 (sc-offset (if deleted 0 (geti)))
1657 (save-sc-offset (if save (geti) nil)))
1658 (aver (not (and args-minimal (not minimal))))
1659 (vector-push-extend (make-compiled-debug-var symbol
1664 (cond (more-context-p :more-context)
1665 (more-count-p :more-count)))
1670 ;;; If we're sure of whether code-location is known, return T or NIL.
1671 ;;; If we're :UNSURE, then try to fill in the code-location's slots.
1672 ;;; This determines whether there is any debug-block information, and
1673 ;;; if code-location is known.
1675 ;;; ??? IF this conses closures every time it's called, then break off the
1676 ;;; :UNSURE part to get the HANDLER-CASE into another function.
1677 (defun code-location-unknown-p (basic-code-location)
1678 (ecase (code-location-%unknown-p basic-code-location)
1682 (setf (code-location-%unknown-p basic-code-location)
1683 (handler-case (not (fill-in-code-location basic-code-location))
1684 (no-debug-blocks () t))))))
1686 ;;; Return the DEBUG-BLOCK containing code-location if it is available.
1687 ;;; Some debug policies inhibit debug-block information, and if none
1688 ;;; is available, then this signals a NO-DEBUG-BLOCKS condition.
1689 (defun code-location-debug-block (basic-code-location)
1690 (let ((block (code-location-%debug-block basic-code-location)))
1691 (if (eq block :unparsed)
1692 (etypecase basic-code-location
1693 (compiled-code-location
1694 (compute-compiled-code-location-debug-block basic-code-location))
1695 ;; (There used to be more cases back before sbcl-0.7.0, when
1696 ;; we did special tricks to debug the IR1 interpreter.)
1700 ;;; Store and return BASIC-CODE-LOCATION's debug-block. We determines
1701 ;;; the correct one using the code-location's pc. We use
1702 ;;; DEBUG-FUN-DEBUG-BLOCKS to return the cached block information
1703 ;;; or signal a NO-DEBUG-BLOCKS condition. The blocks are sorted by
1704 ;;; their first code-location's pc, in ascending order. Therefore, as
1705 ;;; soon as we find a block that starts with a pc greater than
1706 ;;; basic-code-location's pc, we know the previous block contains the
1707 ;;; pc. If we get to the last block, then the code-location is either
1708 ;;; in the second to last block or the last block, and we have to be
1709 ;;; careful in determining this since the last block could be code at
1710 ;;; the end of the function. We have to check for the last block being
1711 ;;; code first in order to see how to compare the code-location's pc.
1712 (defun compute-compiled-code-location-debug-block (basic-code-location)
1713 (let* ((pc (compiled-code-location-pc basic-code-location))
1714 (debug-fun (code-location-debug-fun
1715 basic-code-location))
1716 (blocks (debug-fun-debug-blocks debug-fun))
1717 (len (length blocks)))
1718 (declare (simple-vector blocks))
1719 (setf (code-location-%debug-block basic-code-location)
1725 (let ((last (svref blocks end)))
1727 ((debug-block-elsewhere-p last)
1729 (sb!c::compiled-debug-fun-elsewhere-pc
1730 (compiled-debug-fun-compiler-debug-fun
1732 (svref blocks (1- end))
1735 (compiled-code-location-pc
1736 (svref (compiled-debug-block-code-locations last)
1738 (svref blocks (1- end)))
1740 (declare (type index i end))
1742 (compiled-code-location-pc
1743 (svref (compiled-debug-block-code-locations
1746 (return (svref blocks (1- i)))))))))
1748 ;;; Return the CODE-LOCATION's DEBUG-SOURCE.
1749 (defun code-location-debug-source (code-location)
1750 (let ((info (compiled-debug-fun-debug-info
1751 (code-location-debug-fun code-location))))
1752 (or (sb!c::debug-info-source info)
1753 (debug-signal 'no-debug-blocks :debug-fun
1754 (code-location-debug-fun code-location)))))
1756 ;;; Returns the number of top level forms before the one containing
1757 ;;; CODE-LOCATION as seen by the compiler in some compilation unit. (A
1758 ;;; compilation unit is not necessarily a single file, see the section
1759 ;;; on debug-sources.)
1760 (defun code-location-toplevel-form-offset (code-location)
1761 (when (code-location-unknown-p code-location)
1762 (error 'unknown-code-location :code-location code-location))
1763 (let ((tlf-offset (code-location-%tlf-offset code-location)))
1764 (cond ((eq tlf-offset :unparsed)
1765 (etypecase code-location
1766 (compiled-code-location
1767 (unless (fill-in-code-location code-location)
1768 ;; This check should be unnecessary. We're missing
1769 ;; debug info the compiler should have dumped.
1770 (bug "unknown code location"))
1771 (code-location-%tlf-offset code-location))
1772 ;; (There used to be more cases back before sbcl-0.7.0,,
1773 ;; when we did special tricks to debug the IR1
1778 ;;; Return the number of the form corresponding to CODE-LOCATION. The
1779 ;;; form number is derived by a walking the subforms of a top level
1780 ;;; form in depth-first order.
1781 (defun code-location-form-number (code-location)
1782 (when (code-location-unknown-p code-location)
1783 (error 'unknown-code-location :code-location code-location))
1784 (let ((form-num (code-location-%form-number code-location)))
1785 (cond ((eq form-num :unparsed)
1786 (etypecase code-location
1787 (compiled-code-location
1788 (unless (fill-in-code-location code-location)
1789 ;; This check should be unnecessary. We're missing
1790 ;; debug info the compiler should have dumped.
1791 (bug "unknown code location"))
1792 (code-location-%form-number code-location))
1793 ;; (There used to be more cases back before sbcl-0.7.0,,
1794 ;; when we did special tricks to debug the IR1
1799 ;;; Return the kind of CODE-LOCATION, one of:
1800 ;;; :INTERPRETED, :UNKNOWN-RETURN, :KNOWN-RETURN, :INTERNAL-ERROR,
1801 ;;; :NON-LOCAL-EXIT, :BLOCK-START, :CALL-SITE, :SINGLE-VALUE-RETURN,
1802 ;;; :NON-LOCAL-ENTRY
1803 (defun code-location-kind (code-location)
1804 (when (code-location-unknown-p code-location)
1805 (error 'unknown-code-location :code-location code-location))
1806 (etypecase code-location
1807 (compiled-code-location
1808 (let ((kind (compiled-code-location-kind code-location)))
1809 (cond ((not (eq kind :unparsed)) kind)
1810 ((not (fill-in-code-location code-location))
1811 ;; This check should be unnecessary. We're missing
1812 ;; debug info the compiler should have dumped.
1813 (bug "unknown code location"))
1815 (compiled-code-location-kind code-location)))))
1816 ;; (There used to be more cases back before sbcl-0.7.0,,
1817 ;; when we did special tricks to debug the IR1
1821 ;;; This returns CODE-LOCATION's live-set if it is available. If
1822 ;;; there is no debug-block information, this returns NIL.
1823 (defun compiled-code-location-live-set (code-location)
1824 (if (code-location-unknown-p code-location)
1826 (let ((live-set (compiled-code-location-%live-set code-location)))
1827 (cond ((eq live-set :unparsed)
1828 (unless (fill-in-code-location code-location)
1829 ;; This check should be unnecessary. We're missing
1830 ;; debug info the compiler should have dumped.
1832 ;; FIXME: This error and comment happen over and over again.
1833 ;; Make them a shared function.
1834 (bug "unknown code location"))
1835 (compiled-code-location-%live-set code-location))
1838 ;;; true if OBJ1 and OBJ2 are the same place in the code
1839 (defun code-location= (obj1 obj2)
1841 (compiled-code-location
1843 (compiled-code-location
1844 (and (eq (code-location-debug-fun obj1)
1845 (code-location-debug-fun obj2))
1846 (sub-compiled-code-location= obj1 obj2)))
1847 ;; (There used to be more cases back before sbcl-0.7.0,,
1848 ;; when we did special tricks to debug the IR1
1851 ;; (There used to be more cases back before sbcl-0.7.0,,
1852 ;; when we did special tricks to debug IR1-interpreted code.)
1854 (defun sub-compiled-code-location= (obj1 obj2)
1855 (= (compiled-code-location-pc obj1)
1856 (compiled-code-location-pc obj2)))
1858 ;;; Fill in CODE-LOCATION's :UNPARSED slots, returning T or NIL
1859 ;;; depending on whether the code-location was known in its
1860 ;;; DEBUG-FUN's debug-block information. This may signal a
1861 ;;; NO-DEBUG-BLOCKS condition due to DEBUG-FUN-DEBUG-BLOCKS, and
1862 ;;; it assumes the %UNKNOWN-P slot is already set or going to be set.
1863 (defun fill-in-code-location (code-location)
1864 (declare (type compiled-code-location code-location))
1865 (let* ((debug-fun (code-location-debug-fun code-location))
1866 (blocks (debug-fun-debug-blocks debug-fun)))
1867 (declare (simple-vector blocks))
1868 (dotimes (i (length blocks) nil)
1869 (let* ((block (svref blocks i))
1870 (locations (compiled-debug-block-code-locations block)))
1871 (declare (simple-vector locations))
1872 (dotimes (j (length locations))
1873 (let ((loc (svref locations j)))
1874 (when (sub-compiled-code-location= code-location loc)
1875 (setf (code-location-%debug-block code-location) block)
1876 (setf (code-location-%tlf-offset code-location)
1877 (code-location-%tlf-offset loc))
1878 (setf (code-location-%form-number code-location)
1879 (code-location-%form-number loc))
1880 (setf (compiled-code-location-%live-set code-location)
1881 (compiled-code-location-%live-set loc))
1882 (setf (compiled-code-location-kind code-location)
1883 (compiled-code-location-kind loc))
1884 (setf (compiled-code-location-step-info code-location)
1885 (compiled-code-location-step-info loc))
1886 (return-from fill-in-code-location t))))))))
1888 ;;;; operations on DEBUG-BLOCKs
1890 ;;; Execute FORMS in a context with CODE-VAR bound to each
1891 ;;; CODE-LOCATION in DEBUG-BLOCK, and return the value of RESULT.
1892 (defmacro do-debug-block-locations ((code-var debug-block &optional result)
1894 (let ((code-locations (gensym))
1896 `(let ((,code-locations (debug-block-code-locations ,debug-block)))
1897 (declare (simple-vector ,code-locations))
1898 (dotimes (,i (length ,code-locations) ,result)
1899 (let ((,code-var (svref ,code-locations ,i)))
1902 ;;; Return the name of the function represented by DEBUG-FUN.
1903 ;;; This may be a string or a cons; do not assume it is a symbol.
1904 (defun debug-block-fun-name (debug-block)
1905 (etypecase debug-block
1906 (compiled-debug-block
1907 (let ((code-locs (compiled-debug-block-code-locations debug-block)))
1908 (declare (simple-vector code-locs))
1909 (if (zerop (length code-locs))
1910 "??? Can't get name of debug-block's function."
1912 (code-location-debug-fun (svref code-locs 0))))))
1913 ;; (There used to be more cases back before sbcl-0.7.0, when we
1914 ;; did special tricks to debug the IR1 interpreter.)
1917 (defun debug-block-code-locations (debug-block)
1918 (etypecase debug-block
1919 (compiled-debug-block
1920 (compiled-debug-block-code-locations debug-block))
1921 ;; (There used to be more cases back before sbcl-0.7.0, when we
1922 ;; did special tricks to debug the IR1 interpreter.)
1925 ;;;; operations on debug variables
1927 (defun debug-var-symbol-name (debug-var)
1928 (symbol-name (debug-var-symbol debug-var)))
1930 ;;; FIXME: Make sure that this isn't called anywhere that it wouldn't
1931 ;;; be acceptable to have NIL returned, or that it's only called on
1932 ;;; DEBUG-VARs whose symbols have non-NIL packages.
1933 (defun debug-var-package-name (debug-var)
1934 (package-name (symbol-package (debug-var-symbol debug-var))))
1936 ;;; Return the value stored for DEBUG-VAR in frame, or if the value is
1937 ;;; not :VALID, then signal an INVALID-VALUE error.
1938 (defun debug-var-valid-value (debug-var frame)
1939 (unless (eq (debug-var-validity debug-var (frame-code-location frame))
1941 (error 'invalid-value :debug-var debug-var :frame frame))
1942 (debug-var-value debug-var frame))
1944 ;;; Returns the value stored for DEBUG-VAR in frame. The value may be
1945 ;;; invalid. This is SETFable.
1946 (defun debug-var-value (debug-var frame)
1947 (aver (typep frame 'compiled-frame))
1948 (let ((res (access-compiled-debug-var-slot debug-var frame)))
1949 (if (indirect-value-cell-p res)
1950 (value-cell-ref res)
1953 ;;; This returns what is stored for the variable represented by
1954 ;;; DEBUG-VAR relative to the FRAME. This may be an indirect value
1955 ;;; cell if the variable is both closed over and set.
1956 (defun access-compiled-debug-var-slot (debug-var frame)
1957 (declare (optimize (speed 1)))
1958 (let ((escaped (compiled-frame-escaped frame)))
1960 (sub-access-debug-var-slot
1961 (frame-pointer frame)
1962 (compiled-debug-var-sc-offset debug-var)
1964 (sub-access-debug-var-slot
1965 (frame-pointer frame)
1966 (or (compiled-debug-var-save-sc-offset debug-var)
1967 (compiled-debug-var-sc-offset debug-var))))))
1969 ;;; a helper function for working with possibly-invalid values:
1970 ;;; Do (%MAKE-LISP-OBJ VAL) only if the value looks valid.
1972 ;;; (Such values can arise in registers on machines with conservative
1973 ;;; GC, and might also arise in debug variable locations when
1974 ;;; those variables are invalid.)
1975 (defun make-lisp-obj (val &optional (errorp t))
1978 (zerop (logand val sb!vm:fixnum-tag-mask))
1979 ;; immediate single float, 64-bit only
1980 #!+#.(cl:if (cl:= sb!vm::n-machine-word-bits 64) '(and) '(or))
1981 (= (logand val #xff) sb!vm:single-float-widetag)
1983 (and (zerop (logandc2 val #x1fffffff)) ; Top bits zero
1984 (= (logand val #xff) sb!vm:character-widetag)) ; char tag
1986 (= val sb!vm:unbound-marker-widetag)
1989 (not (zerop (valid-lisp-pointer-p (int-sap val))))
1990 ;; FIXME: There is no fundamental reason not to use the above
1991 ;; function on other platforms as well, but I didn't have
1992 ;; others available while doing this. --NS 2007-06-21
1994 (and (logbitp 0 val)
1995 (or (< sb!vm:read-only-space-start val
1996 (* sb!vm:*read-only-space-free-pointer*
1997 sb!vm:n-word-bytes))
1998 (< sb!vm:static-space-start val
1999 (* sb!vm:*static-space-free-pointer*
2000 sb!vm:n-word-bytes))
2001 (< (current-dynamic-space-start) val
2002 (sap-int (dynamic-space-free-pointer))))))
2003 (values (%make-lisp-obj val) t)
2005 (error "~S is not a valid argument to ~S"
2007 (values (make-unprintable-object (format nil "invalid object #x~X" val))
2010 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2011 ;; NOTE: The long-float support in here is obviously decayed. When
2012 ;; the x86oid and non-x86oid versions of this function were unified,
2013 ;; the behavior of long-floats was preserved, which only served to
2014 ;; highlight its brokenness.
2015 (macrolet ((with-escaped-value ((var) &body forms)
2017 (let ((,var (sb!vm:context-register
2019 (sb!c:sc-offset-offset sc-offset))))
2021 :invalid-value-for-unescaped-register-storage))
2022 (escaped-float-value (format)
2024 (sb!vm:context-float-register
2026 (sb!c:sc-offset-offset sc-offset)
2028 :invalid-value-for-unescaped-register-storage))
2029 (escaped-complex-float-value (format offset)
2032 (sb!vm:context-float-register
2033 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2034 (sb!vm:context-float-register
2035 escaped (+ (sb!c:sc-offset-offset sc-offset) ,offset) ',format))
2036 :invalid-value-for-unescaped-register-storage))
2037 (with-nfp ((var) &body body)
2038 ;; x86oids have no separate number stack, so dummy it
2044 `(let ((,var (if escaped
2046 (sb!vm:context-register escaped
2049 (sb!sys:sap-ref-sap fp (* nfp-save-offset
2050 sb!vm:n-word-bytes))
2052 (sb!vm::make-number-stack-pointer
2053 (sb!sys:sap-ref-32 fp (* nfp-save-offset
2054 sb!vm:n-word-bytes))))))
2056 (stack-frame-offset (data-width offset)
2058 `(sb!vm::frame-byte-offset (+ (sb!c:sc-offset-offset sc-offset)
2062 (declare (ignore data-width))
2064 `(* (+ (sb!c:sc-offset-offset sc-offset) ,offset)
2065 sb!vm:n-word-bytes)))
2066 (ecase (sb!c:sc-offset-scn sc-offset)
2067 ((#.sb!vm:any-reg-sc-number
2068 #.sb!vm:descriptor-reg-sc-number
2069 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2071 (with-escaped-value (val)
2072 (make-lisp-obj val nil))))
2073 (#.sb!vm:character-reg-sc-number
2074 (with-escaped-value (val)
2076 (#.sb!vm:sap-reg-sc-number
2077 (with-escaped-value (val)
2078 (sb!sys:int-sap val)))
2079 (#.sb!vm:signed-reg-sc-number
2080 (with-escaped-value (val)
2081 (if (logbitp (1- sb!vm:n-word-bits) val)
2082 (logior val (ash -1 sb!vm:n-word-bits))
2084 (#.sb!vm:unsigned-reg-sc-number
2085 (with-escaped-value (val)
2088 (#.sb!vm:non-descriptor-reg-sc-number
2089 (error "Local non-descriptor register access?"))
2091 (#.sb!vm:interior-reg-sc-number
2092 (error "Local interior register access?"))
2093 (#.sb!vm:single-reg-sc-number
2094 (escaped-float-value single-float))
2095 (#.sb!vm:double-reg-sc-number
2096 (escaped-float-value double-float))
2098 (#.sb!vm:long-reg-sc-number
2099 (escaped-float-value long-float))
2100 (#.sb!vm:complex-single-reg-sc-number
2101 (escaped-complex-float-value single-float 1))
2102 (#.sb!vm:complex-double-reg-sc-number
2103 (escaped-complex-float-value double-float #!+sparc 2 #!-sparc 1))
2105 (#.sb!vm:complex-long-reg-sc-number
2106 (escaped-complex-float-value long-float
2107 #!+sparc 4 #!+(or x86 x86-64) 1
2108 #!-(or sparc x86 x86-64) 0))
2109 (#.sb!vm:single-stack-sc-number
2111 (sb!sys:sap-ref-single nfp (stack-frame-offset 1 0))))
2112 (#.sb!vm:double-stack-sc-number
2114 (sb!sys:sap-ref-double nfp (stack-frame-offset 2 0))))
2116 (#.sb!vm:long-stack-sc-number
2118 (sb!sys:sap-ref-long nfp (stack-frame-offset 3 0))))
2119 (#.sb!vm:complex-single-stack-sc-number
2122 (sb!sys:sap-ref-single nfp (stack-frame-offset 1 0))
2123 (sb!sys:sap-ref-single nfp (stack-frame-offset 1 1)))))
2124 (#.sb!vm:complex-double-stack-sc-number
2127 (sb!sys:sap-ref-double nfp (stack-frame-offset 2 0))
2128 (sb!sys:sap-ref-double nfp (stack-frame-offset 2 2)))))
2130 (#.sb!vm:complex-long-stack-sc-number
2133 (sb!sys:sap-ref-long nfp (stack-frame-offset 3 0))
2134 (sb!sys:sap-ref-long nfp
2135 (stack-frame-offset 3 #!+sparc 4
2136 #!+(or x86 x86-64) 3
2137 #!-(or sparc x86 x86-64) 0)))))
2138 (#.sb!vm:control-stack-sc-number
2139 (stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2140 (#.sb!vm:character-stack-sc-number
2142 (code-char (sb!sys:sap-ref-word nfp (stack-frame-offset 1 0)))))
2143 (#.sb!vm:unsigned-stack-sc-number
2145 (sb!sys:sap-ref-word nfp (stack-frame-offset 1 0))))
2146 (#.sb!vm:signed-stack-sc-number
2148 (sb!sys:signed-sap-ref-word nfp (stack-frame-offset 1 0))))
2149 (#.sb!vm:sap-stack-sc-number
2151 (sb!sys:sap-ref-sap nfp (stack-frame-offset 1 0)))))))
2153 ;;; This stores value as the value of DEBUG-VAR in FRAME. In the
2154 ;;; COMPILED-DEBUG-VAR case, access the current value to determine if
2155 ;;; it is an indirect value cell. This occurs when the variable is
2156 ;;; both closed over and set.
2157 (defun %set-debug-var-value (debug-var frame new-value)
2158 (aver (typep frame 'compiled-frame))
2159 (let ((old-value (access-compiled-debug-var-slot debug-var frame)))
2160 (if (indirect-value-cell-p old-value)
2161 (value-cell-set old-value new-value)
2162 (set-compiled-debug-var-slot debug-var frame new-value)))
2165 ;;; This stores VALUE for the variable represented by debug-var
2166 ;;; relative to the frame. This assumes the location directly contains
2167 ;;; the variable's value; that is, there is no indirect value cell
2168 ;;; currently there in case the variable is both closed over and set.
2169 (defun set-compiled-debug-var-slot (debug-var frame value)
2170 (let ((escaped (compiled-frame-escaped frame)))
2172 (sub-set-debug-var-slot (frame-pointer frame)
2173 (compiled-debug-var-sc-offset debug-var)
2175 (sub-set-debug-var-slot
2176 (frame-pointer frame)
2177 (or (compiled-debug-var-save-sc-offset debug-var)
2178 (compiled-debug-var-sc-offset debug-var))
2181 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2182 ;; Like sub-access-debug-var-slot, this is the unification of two
2183 ;; divergent copy-pasted functions. The astute reviewer will notice
2184 ;; that long-floats are messed up here as well, that x86oids
2185 ;; apparently don't support accessing float values that are in
2186 ;; registers, and that non-x86oids store the real part of a float
2187 ;; for both the real and imaginary parts of a complex on the stack
2188 ;; (but not in registers, oddly enough). Some research has
2189 ;; indicated that the different forms of THE used for validating the
2190 ;; type of complex float components between x86oid and non-x86oid
2191 ;; systems are only significant in the case of using a non-complex
2192 ;; number as input (as the non-x86oid case effectively converts
2193 ;; non-complex numbers to complex ones and the x86oid case will
2194 ;; error out). That said, the error message from entering a value
2195 ;; of the wrong type will be slightly easier to understand on x86oid
2197 (macrolet ((set-escaped-value (val)
2199 (setf (sb!vm:context-register
2201 (sb!c:sc-offset-offset sc-offset))
2204 (set-escaped-float-value (format val)
2206 (setf (sb!vm:context-float-register
2208 (sb!c:sc-offset-offset sc-offset)
2212 (set-escaped-complex-float-value (format offset val)
2215 (setf (sb!vm:context-float-register
2216 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2218 (setf (sb!vm:context-float-register
2219 escaped (+ (sb!c:sc-offset-offset sc-offset) ,offset)
2223 (with-nfp ((var) &body body)
2224 ;; x86oids have no separate number stack, so dummy it
2230 `(let ((,var (if escaped
2232 (sb!vm:context-register escaped
2237 sb!vm:n-word-bytes))
2239 (sb!vm::make-number-stack-pointer
2242 sb!vm:n-word-bytes))))))
2244 (stack-frame-offset (data-width offset)
2246 `(sb!vm::frame-byte-offset (+ (sb!c:sc-offset-offset sc-offset)
2250 (declare (ignore data-width))
2252 `(* (+ (sb!c:sc-offset-offset sc-offset) ,offset)
2253 sb!vm:n-word-bytes)))
2254 (ecase (sb!c:sc-offset-scn sc-offset)
2255 ((#.sb!vm:any-reg-sc-number
2256 #.sb!vm:descriptor-reg-sc-number
2257 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2260 (get-lisp-obj-address value))))
2261 (#.sb!vm:character-reg-sc-number
2262 (set-escaped-value (char-code value)))
2263 (#.sb!vm:sap-reg-sc-number
2264 (set-escaped-value (sap-int value)))
2265 (#.sb!vm:signed-reg-sc-number
2266 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2267 (#.sb!vm:unsigned-reg-sc-number
2268 (set-escaped-value value))
2270 (#.sb!vm:non-descriptor-reg-sc-number
2271 (error "Local non-descriptor register access?"))
2273 (#.sb!vm:interior-reg-sc-number
2274 (error "Local interior register access?"))
2275 (#.sb!vm:single-reg-sc-number
2276 #!-(or x86 x86-64) ;; don't have escaped floats.
2277 (set-escaped-float-value single-float value))
2278 (#.sb!vm:double-reg-sc-number
2279 #!-(or x86 x86-64) ;; don't have escaped floats -- still in npx?
2280 (set-escaped-float-value double-float value))
2282 (#.sb!vm:long-reg-sc-number
2283 #!-(or x86 x86-64) ;; don't have escaped floats -- still in npx?
2284 (set-escaped-float-value long-float value))
2286 (#.sb!vm:complex-single-reg-sc-number
2287 (set-escaped-complex-float-value single-float 1 value))
2289 (#.sb!vm:complex-double-reg-sc-number
2290 (set-escaped-complex-float-value double-float #!+sparc 2 #!-sparc 1 value))
2291 #!+(and long-float (not (or x86 x86-64)))
2292 (#.sb!vm:complex-long-reg-sc-number
2293 (set-escaped-complex-float-value long-float #!+sparc 4 #!-sparc 0 value))
2294 (#.sb!vm:single-stack-sc-number
2296 (setf (sap-ref-single nfp (stack-frame-offset 1 0))
2297 (the single-float value))))
2298 (#.sb!vm:double-stack-sc-number
2300 (setf (sap-ref-double nfp (stack-frame-offset 2 0))
2301 (the double-float value))))
2303 (#.sb!vm:long-stack-sc-number
2305 (setf (sap-ref-long nfp (stack-frame-offset 3 0))
2306 (the long-float value))))
2307 (#.sb!vm:complex-single-stack-sc-number
2309 (setf (sap-ref-single
2310 nfp (stack-frame-offset 1 0))
2312 (realpart (the (complex single-float) value))
2314 (the single-float (realpart value)))
2315 (setf (sap-ref-single
2316 nfp (stack-frame-offset 1 1))
2318 (imagpart (the (complex single-float) value))
2320 (the single-float (realpart value)))))
2321 (#.sb!vm:complex-double-stack-sc-number
2323 (setf (sap-ref-double
2324 nfp (stack-frame-offset 2 0))
2326 (realpart (the (complex double-float) value))
2328 (the double-float (realpart value)))
2329 (setf (sap-ref-double
2330 nfp (stack-frame-offset 2 2))
2332 (imagpart (the (complex double-float) value))
2334 (the double-float (realpart value)))))
2336 (#.sb!vm:complex-long-stack-sc-number
2339 nfp (stack-frame-offset 3 0))
2341 (realpart (the (complex long-float) value))
2343 (the long-float (realpart value)))
2345 nfp (stack-frame-offset 3 #!+sparc 4
2346 #!+(or x86 x86-64) 3
2347 #!-(or sparc x86 x86-64) 0))
2349 (imagpart (the (complex long-float) value))
2351 (the long-float (realpart value)))))
2352 (#.sb!vm:control-stack-sc-number
2353 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2354 (#.sb!vm:character-stack-sc-number
2356 (setf (sap-ref-word nfp (stack-frame-offset 1 0))
2357 (char-code (the character value)))))
2358 (#.sb!vm:unsigned-stack-sc-number
2360 (setf (sap-ref-word nfp (stack-frame-offset 1 0))
2361 (the (unsigned-byte 32) value))))
2362 (#.sb!vm:signed-stack-sc-number
2364 (setf (signed-sap-ref-word nfp (stack-frame-offset 1 0))
2365 (the (signed-byte 32) value))))
2366 (#.sb!vm:sap-stack-sc-number
2368 (setf (sap-ref-sap nfp (stack-frame-offset 1 0))
2369 (the system-area-pointer value)))))))
2371 ;;; The method for setting and accessing COMPILED-DEBUG-VAR values use
2372 ;;; this to determine if the value stored is the actual value or an
2373 ;;; indirection cell.
2374 (defun indirect-value-cell-p (x)
2375 (and (= (lowtag-of x) sb!vm:other-pointer-lowtag)
2376 (= (widetag-of x) sb!vm:value-cell-header-widetag)))
2378 ;;; Return three values reflecting the validity of DEBUG-VAR's value
2379 ;;; at BASIC-CODE-LOCATION:
2380 ;;; :VALID The value is known to be available.
2381 ;;; :INVALID The value is known to be unavailable.
2382 ;;; :UNKNOWN The value's availability is unknown.
2384 ;;; If the variable is always alive, then it is valid. If the
2385 ;;; code-location is unknown, then the variable's validity is
2386 ;;; :unknown. Once we've called CODE-LOCATION-UNKNOWN-P, we know the
2387 ;;; live-set information has been cached in the code-location.
2388 (defun debug-var-validity (debug-var basic-code-location)
2389 (compiled-debug-var-validity debug-var basic-code-location))
2391 (defun debug-var-info (debug-var)
2392 (compiled-debug-var-info debug-var))
2394 ;;; This is the method for DEBUG-VAR-VALIDITY for COMPILED-DEBUG-VARs.
2395 ;;; For safety, make sure basic-code-location is what we think.
2396 (defun compiled-debug-var-validity (debug-var basic-code-location)
2397 (declare (type compiled-code-location basic-code-location))
2398 (cond ((debug-var-alive-p debug-var)
2399 (let ((debug-fun (code-location-debug-fun basic-code-location)))
2400 (if (>= (compiled-code-location-pc basic-code-location)
2401 (sb!c::compiled-debug-fun-start-pc
2402 (compiled-debug-fun-compiler-debug-fun debug-fun)))
2405 ((code-location-unknown-p basic-code-location) :unknown)
2407 (let ((pos (position debug-var
2408 (debug-fun-debug-vars
2409 (code-location-debug-fun
2410 basic-code-location)))))
2412 (error 'unknown-debug-var
2413 :debug-var debug-var
2415 (code-location-debug-fun basic-code-location)))
2416 ;; There must be live-set info since basic-code-location is known.
2417 (if (zerop (sbit (compiled-code-location-live-set
2418 basic-code-location)
2425 ;;; This code produces and uses what we call source-paths. A
2426 ;;; source-path is a list whose first element is a form number as
2427 ;;; returned by CODE-LOCATION-FORM-NUMBER and whose last element is a
2428 ;;; top level form number as returned by
2429 ;;; CODE-LOCATION-TOPLEVEL-FORM-NUMBER. The elements from the last to
2430 ;;; the first, exclusively, are the numbered subforms into which to
2431 ;;; descend. For example:
2433 ;;; (let ((a (aref x 3)))
2435 ;;; The call to AREF in this example is form number 5. Assuming this
2436 ;;; DEFUN is the 11'th top level form, the source-path for the AREF
2437 ;;; call is as follows:
2439 ;;; Given the DEFUN, 3 gets you the LET, 1 gets you the bindings, 0
2440 ;;; gets the first binding, and 1 gets the AREF form.
2442 ;;; This returns a table mapping form numbers to source-paths. A
2443 ;;; source-path indicates a descent into the TOPLEVEL-FORM form,
2444 ;;; going directly to the subform corressponding to the form number.
2446 ;;; The vector elements are in the same format as the compiler's
2447 ;;; NODE-SOURCE-PATH; that is, the first element is the form number and
2448 ;;; the last is the TOPLEVEL-FORM number.
2449 (defun form-number-translations (form tlf-number)
2451 (translations (make-array 12 :fill-pointer 0 :adjustable t)))
2452 (labels ((translate1 (form path)
2453 (unless (member form seen)
2455 (vector-push-extend (cons (fill-pointer translations) path)
2460 (declare (fixnum pos))
2463 (when (atom subform) (return))
2464 (let ((fm (car subform)))
2466 (translate1 fm (cons pos path)))
2468 (setq subform (cdr subform))
2469 (when (eq subform trail) (return)))))
2473 (setq trail (cdr trail))))))))
2474 (translate1 form (list tlf-number)))
2475 (coerce translations 'simple-vector)))
2477 ;;; FORM is a top level form, and path is a source-path into it. This
2478 ;;; returns the form indicated by the source-path. Context is the
2479 ;;; number of enclosing forms to return instead of directly returning
2480 ;;; the source-path form. When context is non-zero, the form returned
2481 ;;; contains a marker, #:****HERE****, immediately before the form
2482 ;;; indicated by path.
2483 (defun source-path-context (form path context)
2484 (declare (type unsigned-byte context))
2485 ;; Get to the form indicated by path or the enclosing form indicated
2486 ;; by context and path.
2487 (let ((path (reverse (butlast (cdr path)))))
2488 (dotimes (i (- (length path) context))
2489 (let ((index (first path)))
2490 (unless (and (listp form) (< index (length form)))
2491 (error "Source path no longer exists."))
2492 (setq form (elt form index))
2493 (setq path (rest path))))
2494 ;; Recursively rebuild the source form resulting from the above
2495 ;; descent, copying the beginning of each subform up to the next
2496 ;; subform we descend into according to path. At the bottom of the
2497 ;; recursion, we return the form indicated by path preceded by our
2498 ;; marker, and this gets spliced into the resulting list structure
2499 ;; on the way back up.
2500 (labels ((frob (form path level)
2501 (if (or (zerop level) (null path))
2504 `(#:***here*** ,form))
2505 (let ((n (first path)))
2506 (unless (and (listp form) (< n (length form)))
2507 (error "Source path no longer exists."))
2508 (let ((res (frob (elt form n) (rest path) (1- level))))
2509 (nconc (subseq form 0 n)
2510 (cons res (nthcdr (1+ n) form))))))))
2511 (frob form path context))))
2513 ;;;; PREPROCESS-FOR-EVAL
2515 ;;; Return a function of one argument that evaluates form in the
2516 ;;; lexical context of the BASIC-CODE-LOCATION LOC, or signal a
2517 ;;; NO-DEBUG-VARS condition when the LOC's DEBUG-FUN has no
2518 ;;; DEBUG-VAR information available.
2520 ;;; The returned function takes the frame to get values from as its
2521 ;;; argument, and it returns the values of FORM. The returned function
2522 ;;; can signal the following conditions: INVALID-VALUE,
2523 ;;; AMBIGUOUS-VAR-NAME, and FRAME-FUN-MISMATCH.
2524 (defun preprocess-for-eval (form loc)
2525 (declare (type code-location loc))
2526 (let ((n-frame (gensym))
2527 (fun (code-location-debug-fun loc))
2530 (unless (debug-var-info-available fun)
2531 (debug-signal 'no-debug-vars :debug-fun fun))
2532 (sb!int:collect ((binds)
2534 (do-debug-fun-vars (var fun)
2535 (let ((validity (debug-var-validity var loc)))
2536 (unless (eq validity :invalid)
2537 (case (debug-var-info var)
2539 (setf more-context var))
2541 (setf more-count var)))
2542 (let* ((sym (debug-var-symbol var))
2543 (found (assoc sym (binds))))
2545 (setf (second found) :ambiguous)
2546 (binds (list sym validity var)))))))
2547 (when (and more-context more-count)
2548 (let ((more (assoc 'sb!debug::more (binds))))
2550 (setf (second more) :ambiguous)
2551 (binds (list 'sb!debug::more :more more-context more-count)))))
2552 (dolist (bind (binds))
2553 (let ((name (first bind))
2555 (ecase (second bind)
2557 (specs `(,name (debug-var-value ',var ,n-frame))))
2559 (let ((count-var (fourth bind)))
2560 (specs `(,name (multiple-value-list
2561 (sb!c:%more-arg-values (debug-var-value ',var ,n-frame)
2563 (debug-var-value ',count-var ,n-frame)))))))
2565 (specs `(,name (debug-signal 'invalid-value
2569 (specs `(,name (debug-signal 'ambiguous-var-name
2571 :frame ,n-frame)))))))
2572 (let ((res (coerce `(lambda (,n-frame)
2573 (declare (ignorable ,n-frame))
2574 (symbol-macrolet ,(specs) ,form))
2577 ;; This prevents these functions from being used in any
2578 ;; location other than a function return location, so maybe
2579 ;; this should only check whether FRAME's DEBUG-FUN is the
2581 (unless (code-location= (frame-code-location frame) loc)
2582 (debug-signal 'frame-fun-mismatch
2583 :code-location loc :form form :frame frame))
2584 (funcall res frame))))))
2588 (defun eval-in-frame (frame form)
2589 (declare (type frame frame))
2591 "Evaluate FORM in the lexical context of FRAME's current code location,
2592 returning the results of the evaluation."
2593 (funcall (preprocess-for-eval form (frame-code-location frame)) frame))
2597 ;;;; user-visible interface
2599 ;;; Create and return a breakpoint. When program execution encounters
2600 ;;; the breakpoint, the system calls HOOK-FUN. HOOK-FUN takes the
2601 ;;; current frame for the function in which the program is running and
2602 ;;; the breakpoint object.
2604 ;;; WHAT and KIND determine where in a function the system invokes
2605 ;;; HOOK-FUN. WHAT is either a code-location or a DEBUG-FUN. KIND is
2606 ;;; one of :CODE-LOCATION, :FUN-START, or :FUN-END. Since the starts
2607 ;;; and ends of functions may not have code-locations representing
2608 ;;; them, designate these places by supplying WHAT as a DEBUG-FUN and
2609 ;;; KIND indicating the :FUN-START or :FUN-END. When WHAT is a
2610 ;;; DEBUG-FUN and kind is :FUN-END, then HOOK-FUN must take two
2611 ;;; additional arguments, a list of values returned by the function
2612 ;;; and a FUN-END-COOKIE.
2614 ;;; INFO is information supplied by and used by the user.
2616 ;;; FUN-END-COOKIE is a function. To implement :FUN-END
2617 ;;; breakpoints, the system uses starter breakpoints to establish the
2618 ;;; :FUN-END breakpoint for each invocation of the function. Upon
2619 ;;; each entry, the system creates a unique cookie to identify the
2620 ;;; invocation, and when the user supplies a function for this
2621 ;;; argument, the system invokes it on the frame and the cookie. The
2622 ;;; system later invokes the :FUN-END breakpoint hook on the same
2623 ;;; cookie. The user may save the cookie for comparison in the hook
2626 ;;; Signal an error if WHAT is an unknown code-location.
2627 (defun make-breakpoint (hook-fun what
2628 &key (kind :code-location) info fun-end-cookie)
2631 (when (code-location-unknown-p what)
2632 (error "cannot make a breakpoint at an unknown code location: ~S"
2634 (aver (eq kind :code-location))
2635 (let ((bpt (%make-breakpoint hook-fun what kind info)))
2637 (compiled-code-location
2638 ;; This slot is filled in due to calling CODE-LOCATION-UNKNOWN-P.
2639 (when (eq (compiled-code-location-kind what) :unknown-return)
2640 (let ((other-bpt (%make-breakpoint hook-fun what
2641 :unknown-return-partner
2643 (setf (breakpoint-unknown-return-partner bpt) other-bpt)
2644 (setf (breakpoint-unknown-return-partner other-bpt) bpt))))
2645 ;; (There used to be more cases back before sbcl-0.7.0,,
2646 ;; when we did special tricks to debug the IR1
2653 (%make-breakpoint hook-fun what kind info))
2655 (unless (eq (sb!c::compiled-debug-fun-returns
2656 (compiled-debug-fun-compiler-debug-fun what))
2658 (error ":FUN-END breakpoints are currently unsupported ~
2659 for the known return convention."))
2661 (let* ((bpt (%make-breakpoint hook-fun what kind info))
2662 (starter (compiled-debug-fun-end-starter what)))
2664 (setf starter (%make-breakpoint #'list what :fun-start nil))
2665 (setf (breakpoint-hook-fun starter)
2666 (fun-end-starter-hook starter what))
2667 (setf (compiled-debug-fun-end-starter what) starter))
2668 (setf (breakpoint-start-helper bpt) starter)
2669 (push bpt (breakpoint-%info starter))
2670 (setf (breakpoint-cookie-fun bpt) fun-end-cookie)
2673 ;;; These are unique objects created upon entry into a function by a
2674 ;;; :FUN-END breakpoint's starter hook. These are only created
2675 ;;; when users supply :FUN-END-COOKIE to MAKE-BREAKPOINT. Also,
2676 ;;; the :FUN-END breakpoint's hook is called on the same cookie
2677 ;;; when it is created.
2678 (defstruct (fun-end-cookie
2679 (:print-object (lambda (obj str)
2680 (print-unreadable-object (obj str :type t))))
2681 (:constructor make-fun-end-cookie (bogus-lra debug-fun))
2683 ;; a pointer to the bogus-lra created for :FUN-END breakpoints
2685 ;; the DEBUG-FUN associated with this cookie
2688 ;;; This maps bogus-lra-components to cookies, so that
2689 ;;; HANDLE-FUN-END-BREAKPOINT can find the appropriate cookie for the
2690 ;;; breakpoint hook.
2691 (defvar *fun-end-cookies* (make-hash-table :test 'eq :synchronized t))
2693 ;;; This returns a hook function for the start helper breakpoint
2694 ;;; associated with a :FUN-END breakpoint. The returned function
2695 ;;; makes a fake LRA that all returns go through, and this piece of
2696 ;;; fake code actually breaks. Upon return from the break, the code
2697 ;;; provides the returnee with any values. Since the returned function
2698 ;;; effectively activates FUN-END-BPT on each entry to DEBUG-FUN's
2699 ;;; function, we must establish breakpoint-data about FUN-END-BPT.
2700 (defun fun-end-starter-hook (starter-bpt debug-fun)
2701 (declare (type breakpoint starter-bpt)
2702 (type compiled-debug-fun debug-fun))
2703 (lambda (frame breakpoint)
2704 (declare (ignore breakpoint)
2706 (let ((lra-sc-offset
2707 (sb!c::compiled-debug-fun-return-pc
2708 (compiled-debug-fun-compiler-debug-fun debug-fun))))
2709 (multiple-value-bind (lra component offset)
2711 (get-context-value frame
2714 (setf (get-context-value frame
2718 (let ((end-bpts (breakpoint-%info starter-bpt)))
2719 (let ((data (breakpoint-data component offset)))
2720 (setf (breakpoint-data-breakpoints data) end-bpts)
2721 (dolist (bpt end-bpts)
2722 (setf (breakpoint-internal-data bpt) data)))
2723 (let ((cookie (make-fun-end-cookie lra debug-fun)))
2724 (setf (gethash component *fun-end-cookies*) cookie)
2725 (dolist (bpt end-bpts)
2726 (let ((fun (breakpoint-cookie-fun bpt)))
2727 (when fun (funcall fun frame cookie))))))))))
2729 ;;; This takes a FUN-END-COOKIE and a frame, and it returns
2730 ;;; whether the cookie is still valid. A cookie becomes invalid when
2731 ;;; the frame that established the cookie has exited. Sometimes cookie
2732 ;;; holders are unaware of cookie invalidation because their
2733 ;;; :FUN-END breakpoint hooks didn't run due to THROW'ing.
2735 ;;; This takes a frame as an efficiency hack since the user probably
2736 ;;; has a frame object in hand when using this routine, and it saves
2737 ;;; repeated parsing of the stack and consing when asking whether a
2738 ;;; series of cookies is valid.
2739 (defun fun-end-cookie-valid-p (frame cookie)
2740 (let ((lra (fun-end-cookie-bogus-lra cookie))
2741 (lra-sc-offset (sb!c::compiled-debug-fun-return-pc
2742 (compiled-debug-fun-compiler-debug-fun
2743 (fun-end-cookie-debug-fun cookie)))))
2744 (do ((frame frame (frame-down frame)))
2746 (when (and (compiled-frame-p frame)
2747 (#!-(or x86 x86-64) eq #!+(or x86 x86-64) sap=
2749 (get-context-value frame lra-save-offset lra-sc-offset)))
2752 ;;;; ACTIVATE-BREAKPOINT
2754 ;;; Cause the system to invoke the breakpoint's hook function until
2755 ;;; the next call to DEACTIVATE-BREAKPOINT or DELETE-BREAKPOINT. The
2756 ;;; system invokes breakpoint hook functions in the opposite order
2757 ;;; that you activate them.
2758 (defun activate-breakpoint (breakpoint)
2759 (when (eq (breakpoint-status breakpoint) :deleted)
2760 (error "cannot activate a deleted breakpoint: ~S" breakpoint))
2761 (unless (eq (breakpoint-status breakpoint) :active)
2762 (ecase (breakpoint-kind breakpoint)
2764 (let ((loc (breakpoint-what breakpoint)))
2766 (compiled-code-location
2767 (activate-compiled-code-location-breakpoint breakpoint)
2768 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2770 (activate-compiled-code-location-breakpoint other))))
2771 ;; (There used to be more cases back before sbcl-0.7.0, when
2772 ;; we did special tricks to debug the IR1 interpreter.)
2775 (etypecase (breakpoint-what breakpoint)
2777 (activate-compiled-fun-start-breakpoint breakpoint))
2778 ;; (There used to be more cases back before sbcl-0.7.0, when
2779 ;; we did special tricks to debug the IR1 interpreter.)
2782 (etypecase (breakpoint-what breakpoint)
2784 (let ((starter (breakpoint-start-helper breakpoint)))
2785 (unless (eq (breakpoint-status starter) :active)
2786 ;; may already be active by some other :FUN-END breakpoint
2787 (activate-compiled-fun-start-breakpoint starter)))
2788 (setf (breakpoint-status breakpoint) :active))
2789 ;; (There used to be more cases back before sbcl-0.7.0, when
2790 ;; we did special tricks to debug the IR1 interpreter.)
2794 (defun activate-compiled-code-location-breakpoint (breakpoint)
2795 (declare (type breakpoint breakpoint))
2796 (let ((loc (breakpoint-what breakpoint)))
2797 (declare (type compiled-code-location loc))
2798 (sub-activate-breakpoint
2800 (breakpoint-data (compiled-debug-fun-component
2801 (code-location-debug-fun loc))
2802 (+ (compiled-code-location-pc loc)
2803 (if (or (eq (breakpoint-kind breakpoint)
2804 :unknown-return-partner)
2805 (eq (compiled-code-location-kind loc)
2806 :single-value-return))
2807 sb!vm:single-value-return-byte-offset
2810 (defun activate-compiled-fun-start-breakpoint (breakpoint)
2811 (declare (type breakpoint breakpoint))
2812 (let ((debug-fun (breakpoint-what breakpoint)))
2813 (sub-activate-breakpoint
2815 (breakpoint-data (compiled-debug-fun-component debug-fun)
2816 (sb!c::compiled-debug-fun-start-pc
2817 (compiled-debug-fun-compiler-debug-fun
2820 (defun sub-activate-breakpoint (breakpoint data)
2821 (declare (type breakpoint breakpoint)
2822 (type breakpoint-data data))
2823 (setf (breakpoint-status breakpoint) :active)
2825 (unless (breakpoint-data-breakpoints data)
2826 (setf (breakpoint-data-instruction data)
2828 (breakpoint-install (get-lisp-obj-address
2829 (breakpoint-data-component data))
2830 (breakpoint-data-offset data)))))
2831 (setf (breakpoint-data-breakpoints data)
2832 (append (breakpoint-data-breakpoints data) (list breakpoint)))
2833 (setf (breakpoint-internal-data breakpoint) data)))
2835 ;;;; DEACTIVATE-BREAKPOINT
2837 ;;; Stop the system from invoking the breakpoint's hook function.
2838 (defun deactivate-breakpoint (breakpoint)
2839 (when (eq (breakpoint-status breakpoint) :active)
2841 (let ((loc (breakpoint-what breakpoint)))
2843 ((or compiled-code-location compiled-debug-fun)
2844 (deactivate-compiled-breakpoint breakpoint)
2845 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2847 (deactivate-compiled-breakpoint other))))
2848 ;; (There used to be more cases back before sbcl-0.7.0, when
2849 ;; we did special tricks to debug the IR1 interpreter.)
2853 (defun deactivate-compiled-breakpoint (breakpoint)
2854 (if (eq (breakpoint-kind breakpoint) :fun-end)
2855 (let ((starter (breakpoint-start-helper breakpoint)))
2856 (unless (find-if (lambda (bpt)
2857 (and (not (eq bpt breakpoint))
2858 (eq (breakpoint-status bpt) :active)))
2859 (breakpoint-%info starter))
2860 (deactivate-compiled-breakpoint starter)))
2861 (let* ((data (breakpoint-internal-data breakpoint))
2862 (bpts (delete breakpoint (breakpoint-data-breakpoints data))))
2863 (setf (breakpoint-internal-data breakpoint) nil)
2864 (setf (breakpoint-data-breakpoints data) bpts)
2867 (breakpoint-remove (get-lisp-obj-address
2868 (breakpoint-data-component data))
2869 (breakpoint-data-offset data)
2870 (breakpoint-data-instruction data)))
2871 (delete-breakpoint-data data))))
2872 (setf (breakpoint-status breakpoint) :inactive)
2875 ;;;; BREAKPOINT-INFO
2877 ;;; Return the user-maintained info associated with breakpoint. This
2879 (defun breakpoint-info (breakpoint)
2880 (breakpoint-%info breakpoint))
2881 (defun %set-breakpoint-info (breakpoint value)
2882 (setf (breakpoint-%info breakpoint) value)
2883 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2885 (setf (breakpoint-%info other) value))))
2887 ;;;; BREAKPOINT-ACTIVE-P and DELETE-BREAKPOINT
2889 (defun breakpoint-active-p (breakpoint)
2890 (ecase (breakpoint-status breakpoint)
2892 ((:inactive :deleted) nil)))
2894 ;;; Free system storage and remove computational overhead associated
2895 ;;; with breakpoint. After calling this, breakpoint is completely
2896 ;;; impotent and can never become active again.
2897 (defun delete-breakpoint (breakpoint)
2898 (let ((status (breakpoint-status breakpoint)))
2899 (unless (eq status :deleted)
2900 (when (eq status :active)
2901 (deactivate-breakpoint breakpoint))
2902 (setf (breakpoint-status breakpoint) :deleted)
2903 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2905 (setf (breakpoint-status other) :deleted)))
2906 (when (eq (breakpoint-kind breakpoint) :fun-end)
2907 (let* ((starter (breakpoint-start-helper breakpoint))
2908 (breakpoints (delete breakpoint
2909 (the list (breakpoint-info starter)))))
2910 (setf (breakpoint-info starter) breakpoints)
2912 (delete-breakpoint starter)
2913 (setf (compiled-debug-fun-end-starter
2914 (breakpoint-what breakpoint))
2918 ;;;; C call out stubs
2920 ;;; This actually installs the break instruction in the component. It
2921 ;;; returns the overwritten bits. You must call this in a context in
2922 ;;; which GC is disabled, so that Lisp doesn't move objects around
2923 ;;; that C is pointing to.
2924 (sb!alien:define-alien-routine "breakpoint_install" sb!alien:unsigned-int
2925 (code-obj sb!alien:unsigned-long)
2926 (pc-offset sb!alien:int))
2928 ;;; This removes the break instruction and replaces the original
2929 ;;; instruction. You must call this in a context in which GC is disabled
2930 ;;; so Lisp doesn't move objects around that C is pointing to.
2931 (sb!alien:define-alien-routine "breakpoint_remove" sb!alien:void
2932 (code-obj sb!alien:unsigned-long)
2933 (pc-offset sb!alien:int)
2934 (old-inst sb!alien:unsigned-int))
2936 (sb!alien:define-alien-routine "breakpoint_do_displaced_inst" sb!alien:void
2937 (scp (* os-context-t))
2938 (orig-inst sb!alien:unsigned-int))
2940 ;;;; breakpoint handlers (layer between C and exported interface)
2942 ;;; This maps components to a mapping of offsets to BREAKPOINT-DATAs.
2943 (defvar *component-breakpoint-offsets* (make-hash-table :test 'eq :synchronized t))
2945 ;;; This returns the BREAKPOINT-DATA object associated with component cross
2946 ;;; offset. If none exists, this makes one, installs it, and returns it.
2947 (defun breakpoint-data (component offset &optional (create t))
2948 (flet ((install-breakpoint-data ()
2950 (let ((data (make-breakpoint-data component offset)))
2951 (push (cons offset data)
2952 (gethash component *component-breakpoint-offsets*))
2954 (let ((offsets (gethash component *component-breakpoint-offsets*)))
2956 (let ((data (assoc offset offsets)))
2959 (install-breakpoint-data)))
2960 (install-breakpoint-data)))))
2962 ;;; We use this when there are no longer any active breakpoints
2963 ;;; corresponding to DATA.
2964 (defun delete-breakpoint-data (data)
2965 ;; Again, this looks brittle. Is there no danger of being interrupted
2967 (let* ((component (breakpoint-data-component data))
2968 (offsets (delete (breakpoint-data-offset data)
2969 (gethash component *component-breakpoint-offsets*)
2972 (setf (gethash component *component-breakpoint-offsets*) offsets)
2973 (remhash component *component-breakpoint-offsets*)))
2976 ;;; The C handler for interrupts calls this when it has a
2977 ;;; debugging-tool break instruction. This does *not* handle all
2978 ;;; breaks; for example, it does not handle breaks for internal
2980 (defun handle-breakpoint (offset component signal-context)
2981 (let ((data (breakpoint-data component offset nil)))
2983 (error "unknown breakpoint in ~S at offset ~S"
2984 (debug-fun-name (debug-fun-from-pc component offset))
2986 (let ((breakpoints (breakpoint-data-breakpoints data)))
2987 (if (or (null breakpoints)
2988 (eq (breakpoint-kind (car breakpoints)) :fun-end))
2989 (handle-fun-end-breakpoint-aux breakpoints data signal-context)
2990 (handle-breakpoint-aux breakpoints data
2991 offset component signal-context)))))
2993 ;;; This holds breakpoint-datas while invoking the breakpoint hooks
2994 ;;; associated with that particular component and location. While they
2995 ;;; are executing, if we hit the location again, we ignore the
2996 ;;; breakpoint to avoid infinite recursion. fun-end breakpoints
2997 ;;; must work differently since the breakpoint-data is unique for each
2999 (defvar *executing-breakpoint-hooks* nil)
3001 ;;; This handles code-location and DEBUG-FUN :FUN-START
3003 (defun handle-breakpoint-aux (breakpoints data offset component signal-context)
3005 (bug "breakpoint that nobody wants"))
3006 (unless (member data *executing-breakpoint-hooks*)
3007 (let ((*executing-breakpoint-hooks* (cons data
3008 *executing-breakpoint-hooks*)))
3009 (invoke-breakpoint-hooks breakpoints signal-context)))
3010 ;; At this point breakpoints may not hold the same list as
3011 ;; BREAKPOINT-DATA-BREAKPOINTS since invoking hooks may have allowed
3012 ;; a breakpoint deactivation. In fact, if all breakpoints were
3013 ;; deactivated then data is invalid since it was deleted and so the
3014 ;; correct one must be looked up if it is to be used. If there are
3015 ;; no more breakpoints active at this location, then the normal
3016 ;; instruction has been put back, and we do not need to
3017 ;; DO-DISPLACED-INST.
3018 (setf data (breakpoint-data component offset nil))
3019 (when (and data (breakpoint-data-breakpoints data))
3020 ;; The breakpoint is still active, so we need to execute the
3021 ;; displaced instruction and leave the breakpoint instruction
3022 ;; behind. The best way to do this is different on each machine,
3023 ;; so we just leave it up to the C code.
3024 (breakpoint-do-displaced-inst signal-context
3025 (breakpoint-data-instruction data))
3026 ;; Some platforms have no usable sigreturn() call. If your
3027 ;; implementation of arch_do_displaced_inst() _does_ sigreturn(),
3028 ;; it's polite to warn here
3029 #!+(and sparc solaris)
3030 (error "BREAKPOINT-DO-DISPLACED-INST returned?")))
3032 (defun invoke-breakpoint-hooks (breakpoints signal-context)
3033 (let* ((frame (signal-context-frame signal-context)))
3034 (dolist (bpt breakpoints)
3035 (funcall (breakpoint-hook-fun bpt)
3037 ;; If this is an :UNKNOWN-RETURN-PARTNER, then pass the
3038 ;; hook function the original breakpoint, so that users
3039 ;; aren't forced to confront the fact that some
3040 ;; breakpoints really are two.
3041 (if (eq (breakpoint-kind bpt) :unknown-return-partner)
3042 (breakpoint-unknown-return-partner bpt)
3045 (defun signal-context-frame (signal-context)
3048 (declare (optimize (inhibit-warnings 3)))
3049 (sb!alien:sap-alien signal-context (* os-context-t))))
3050 (cfp (int-sap (sb!vm:context-register scp sb!vm::cfp-offset))))
3051 (compute-calling-frame cfp
3052 ;; KLUDGE: This argument is ignored on
3053 ;; x86oids in this scenario, but is
3054 ;; declared to be a SAP.
3055 #!+(or x86 x86-64) (sb!vm:context-pc scp)
3056 #!-(or x86 x86-64) nil
3059 (defun handle-fun-end-breakpoint (offset component context)
3060 (let ((data (breakpoint-data component offset nil)))
3062 (error "unknown breakpoint in ~S at offset ~S"
3063 (debug-fun-name (debug-fun-from-pc component offset))
3065 (let ((breakpoints (breakpoint-data-breakpoints data)))
3067 (aver (eq (breakpoint-kind (car breakpoints)) :fun-end))
3068 (handle-fun-end-breakpoint-aux breakpoints data context)))))
3070 ;;; Either HANDLE-BREAKPOINT calls this for :FUN-END breakpoints
3071 ;;; [old C code] or HANDLE-FUN-END-BREAKPOINT calls this directly
3073 (defun handle-fun-end-breakpoint-aux (breakpoints data signal-context)
3074 ;; FIXME: This looks brittle: what if we are interrupted somewhere
3075 ;; here? ...or do we have interrupts disabled here?
3076 (delete-breakpoint-data data)
3079 (declare (optimize (inhibit-warnings 3)))
3080 (sb!alien:sap-alien signal-context (* os-context-t))))
3081 (frame (signal-context-frame signal-context))
3082 (component (breakpoint-data-component data))
3083 (cookie (gethash component *fun-end-cookies*)))
3084 (remhash component *fun-end-cookies*)
3085 (dolist (bpt breakpoints)
3086 (funcall (breakpoint-hook-fun bpt)
3088 (get-fun-end-breakpoint-values scp)
3091 (defun get-fun-end-breakpoint-values (scp)
3092 (let ((ocfp (int-sap (sb!vm:context-register
3094 #!-(or x86 x86-64) sb!vm::ocfp-offset
3095 #!+(or x86 x86-64) sb!vm::ebx-offset)))
3096 (nargs (make-lisp-obj
3097 (sb!vm:context-register scp sb!vm::nargs-offset)))
3098 (reg-arg-offsets '#.sb!vm::*register-arg-offsets*)
3101 (dotimes (arg-num nargs)
3102 (push (if reg-arg-offsets
3104 (sb!vm:context-register scp (pop reg-arg-offsets)))
3105 (stack-ref ocfp arg-num))
3107 (nreverse results)))
3109 ;;;; MAKE-BOGUS-LRA (used for :FUN-END breakpoints)
3111 (defconstant bogus-lra-constants
3112 #!-(or x86 x86-64) 2 #!+(or x86 x86-64) 3)
3113 (defconstant known-return-p-slot
3114 (+ sb!vm:code-constants-offset #!-(or x86 x86-64) 1 #!+(or x86 x86-64) 2))
3116 ;;; Make a bogus LRA object that signals a breakpoint trap when
3117 ;;; returned to. If the breakpoint trap handler returns, REAL-LRA is
3118 ;;; returned to. Three values are returned: the bogus LRA object, the
3119 ;;; code component it is part of, and the PC offset for the trap
3121 (defun make-bogus-lra (real-lra &optional known-return-p)
3123 ;; These are really code labels, not variables: but this way we get
3125 (let* ((src-start (foreign-symbol-sap "fun_end_breakpoint_guts"))
3126 (src-end (foreign-symbol-sap "fun_end_breakpoint_end"))
3127 (trap-loc (foreign-symbol-sap "fun_end_breakpoint_trap"))
3128 (length (sap- src-end src-start))
3130 (sb!c:allocate-code-object (1+ bogus-lra-constants) length))
3131 (dst-start (code-instructions code-object)))
3132 (declare (type system-area-pointer
3133 src-start src-end dst-start trap-loc)
3134 (type index length))
3135 (setf (%code-debug-info code-object) :bogus-lra)
3136 (setf (code-header-ref code-object sb!vm:code-trace-table-offset-slot)
3139 (setf (code-header-ref code-object real-lra-slot) real-lra)
3141 (multiple-value-bind (offset code) (compute-lra-data-from-pc real-lra)
3142 (setf (code-header-ref code-object real-lra-slot) code)
3143 (setf (code-header-ref code-object (1+ real-lra-slot)) offset))
3144 (setf (code-header-ref code-object known-return-p-slot)
3146 (system-area-ub8-copy src-start 0 dst-start 0 length)
3147 (sb!vm:sanctify-for-execution code-object)
3149 (values dst-start code-object (sap- trap-loc src-start))
3151 (let ((new-lra (make-lisp-obj (+ (sap-int dst-start)
3152 sb!vm:other-pointer-lowtag))))
3155 ;; Set the offset from the LRA to the enclosing component.
3156 ;; This does not need to be done on GENCGC targets, as the
3157 ;; pointer validation done in MAKE-LISP-OBJ requires that it
3158 ;; already have been set before we get here. It does not
3159 ;; need to be done on CHENEYGC PPC as it's easier to use the
3160 ;; same fun_end_breakpoint_guts on both, including the LRA
3164 (logandc2 (+ sb!vm:code-constants-offset bogus-lra-constants 1)
3166 (sb!vm:sanctify-for-execution code-object))
3167 (values new-lra code-object (sap- trap-loc src-start))))))
3171 ;;; This appears here because it cannot go with the DEBUG-FUN
3172 ;;; interface since DO-DEBUG-BLOCK-LOCATIONS isn't defined until after
3173 ;;; the DEBUG-FUN routines.
3175 ;;; Return a code-location before the body of a function and after all
3176 ;;; the arguments are in place; or if that location can't be
3177 ;;; determined due to a lack of debug information, return NIL.
3178 (defun debug-fun-start-location (debug-fun)
3179 (etypecase debug-fun
3181 (code-location-from-pc debug-fun
3182 (sb!c::compiled-debug-fun-start-pc
3183 (compiled-debug-fun-compiler-debug-fun
3186 ;; (There used to be more cases back before sbcl-0.7.0, when
3187 ;; we did special tricks to debug the IR1 interpreter.)
3191 ;;;; Single-stepping
3193 ;;; The single-stepper works by inserting conditional trap instructions
3194 ;;; into the generated code (see src/compiler/*/call.lisp), currently:
3196 ;;; 1) Before the code generated for a function call that was
3197 ;;; translated to a VOP
3198 ;;; 2) Just before the call instruction for a full call
3200 ;;; In both cases, the trap will only be executed if stepping has been
3201 ;;; enabled, in which case it'll ultimately be handled by
3202 ;;; HANDLE-SINGLE-STEP-TRAP, which will either signal a stepping condition,
3203 ;;; or replace the function that's about to be called with a wrapper
3204 ;;; which will signal the condition.
3206 (defun handle-single-step-trap (kind callee-register-offset)
3207 (let ((context (nth-interrupt-context (1- *free-interrupt-context-index*))))
3208 ;; The following calls must get tail-call eliminated for
3209 ;; *STEP-FRAME* to get set correctly on non-x86.
3210 (if (= kind single-step-before-trap)
3211 (handle-single-step-before-trap context)
3212 (handle-single-step-around-trap context callee-register-offset))))
3214 (defvar *step-frame* nil)
3216 (defun handle-single-step-before-trap (context)
3217 (let ((step-info (single-step-info-from-context context)))
3218 ;; If there was not enough debug information available, there's no
3219 ;; sense in signaling the condition.
3223 (signal-context-frame (sb!alien::alien-sap context))
3225 ;; KLUDGE: Use the first non-foreign frame as the
3226 ;; *STACK-TOP-HINT*. Getting the frame from the signal
3227 ;; context as on x86 would be cleaner, but
3228 ;; SIGNAL-CONTEXT-FRAME doesn't seem seem to work at all
3230 (loop with frame = (frame-down (top-frame))
3232 for dfun = (frame-debug-fun frame)
3233 do (when (typep dfun 'compiled-debug-fun)
3235 do (setf frame (frame-down frame)))))
3236 (sb!impl::step-form step-info
3237 ;; We could theoretically store information in
3238 ;; the debug-info about to determine the
3239 ;; arguments here, but for now let's just pass
3243 ;;; This function will replace the fdefn / function that was in the
3244 ;;; register at CALLEE-REGISTER-OFFSET with a wrapper function. To
3245 ;;; ensure that the full call will use the wrapper instead of the
3246 ;;; original, conditional trap must be emitted before the fdefn /
3247 ;;; function is converted into a raw address.
3248 (defun handle-single-step-around-trap (context callee-register-offset)
3249 ;; Fetch the function / fdefn we're about to call from the
3250 ;; appropriate register.
3251 (let* ((callee (make-lisp-obj
3252 (context-register context callee-register-offset)))
3253 (step-info (single-step-info-from-context context)))
3254 ;; If there was not enough debug information available, there's no
3255 ;; sense in signaling the condition.
3257 (return-from handle-single-step-around-trap))
3258 (let* ((fun (lambda (&rest args)
3260 (apply (typecase callee
3261 (fdefn (fdefn-fun callee))
3264 ;; Signal a step condition
3266 (let ((*step-frame* (frame-down (top-frame))))
3267 (sb!impl::step-form step-info args))))
3268 ;; And proceed based on its return value.
3270 ;; STEP-INTO was selected. Use *STEP-OUT* to
3271 ;; let the stepper know that selecting the
3272 ;; STEP-OUT restart is valid inside this
3273 (let ((sb!impl::*step-out* :maybe))
3274 ;; Pass the return values of the call to
3275 ;; STEP-VALUES, which will signal a
3276 ;; condition with them in the VALUES slot.
3278 (multiple-value-call #'sb!impl::step-values
3281 ;; If the user selected the STEP-OUT
3282 ;; restart during the call, resume
3284 (when (eq sb!impl::*step-out* t)
3285 (sb!impl::enable-stepping))))
3286 ;; STEP-NEXT / CONTINUE / OUT selected:
3287 ;; Disable the stepper for the duration of
3289 (sb!impl::with-stepping-disabled
3291 (new-callee (etypecase callee
3293 (let ((fdefn (make-fdefn (gensym))))
3294 (setf (fdefn-fun fdefn) fun)
3297 ;; And then store the wrapper in the same place.
3298 (setf (context-register context callee-register-offset)
3299 (get-lisp-obj-address new-callee)))))
3301 ;;; Given a signal context, fetch the step-info that's been stored in
3302 ;;; the debug info at the trap point.
3303 (defun single-step-info-from-context (context)
3304 (multiple-value-bind (pc-offset code)
3305 (compute-lra-data-from-pc (context-pc context))
3306 (let* ((debug-fun (debug-fun-from-pc code pc-offset))
3307 (location (code-location-from-pc debug-fun
3312 (fill-in-code-location location)
3313 (code-location-debug-source location)
3314 (compiled-code-location-step-info location))
3318 ;;; Return the frame that triggered a single-step condition. Used to
3319 ;;; provide a *STACK-TOP-HINT*.
3320 (defun find-stepped-frame ()