1 ;;;; the implementation of the programmer's interface to writing
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;; FIXME: There are an awful lot of package prefixes in this code.
16 ;;; Couldn't we have SB-DI use the SB-C and SB-VM packages?
20 ;;;; The interface to building debugging tools signals conditions that
21 ;;;; prevent it from adhering to its contract. These are
22 ;;;; serious-conditions because the program using the interface must
23 ;;;; handle them before it can correctly continue execution. These
24 ;;;; debugging conditions are not errors since it is no fault of the
25 ;;;; programmers that the conditions occur. The interface does not
26 ;;;; provide for programs to detect these situations other than
27 ;;;; calling a routine that detects them and signals a condition. For
28 ;;;; example, programmers call A which may fail to return successfully
29 ;;;; due to a lack of debug information, and there is no B the they
30 ;;;; could have called to realize A would fail. It is not an error to
31 ;;;; have called A, but it is an error for the program to then ignore
32 ;;;; the signal generated by A since it cannot continue without A's
33 ;;;; correctly returning a value or performing some operation.
35 ;;;; Use DEBUG-SIGNAL to signal these conditions.
37 (define-condition debug-condition (serious-condition)
41 "All DEBUG-CONDITIONs inherit from this type. These are serious conditions
42 that must be handled, but they are not programmer errors."))
44 (define-condition no-debug-info (debug-condition)
45 ((code-component :reader no-debug-info-code-component
46 :initarg :code-component))
48 (:documentation "There is no usable debugging information available.")
49 (:report (lambda (condition stream)
50 (declare (ignore condition))
53 "no debug information available for ~S~%"
54 (no-debug-info-code-component condition)))))
56 (define-condition no-debug-function-returns (debug-condition)
57 ((debug-function :reader no-debug-function-returns-debug-function
58 :initarg :debug-function))
61 "The system could not return values from a frame with DEBUG-FUNCTION since
62 it lacked information about returning values.")
63 (:report (lambda (condition stream)
64 (let ((fun (debug-function-function
65 (no-debug-function-returns-debug-function condition))))
67 "~&Cannot return values from ~:[frame~;~:*~S~] since ~
68 the debug information lacks details about returning ~
72 (define-condition no-debug-blocks (debug-condition)
73 ((debug-function :reader no-debug-blocks-debug-function
74 :initarg :debug-function))
76 (:documentation "The debug-function has no debug-block information.")
77 (:report (lambda (condition stream)
78 (format stream "~&~S has no debug-block information."
79 (no-debug-blocks-debug-function condition)))))
81 (define-condition no-debug-vars (debug-condition)
82 ((debug-function :reader no-debug-vars-debug-function
83 :initarg :debug-function))
85 (:documentation "The debug-function has no DEBUG-VAR information.")
86 (:report (lambda (condition stream)
87 (format stream "~&~S has no debug variable information."
88 (no-debug-vars-debug-function condition)))))
90 (define-condition lambda-list-unavailable (debug-condition)
91 ((debug-function :reader lambda-list-unavailable-debug-function
92 :initarg :debug-function))
95 "The debug-function has no lambda-list since argument DEBUG-VARs are
97 (:report (lambda (condition stream)
98 (format stream "~&~S has no lambda-list information available."
99 (lambda-list-unavailable-debug-function condition)))))
101 (define-condition invalid-value (debug-condition)
102 ((debug-var :reader invalid-value-debug-var :initarg :debug-var)
103 (frame :reader invalid-value-frame :initarg :frame))
104 (:report (lambda (condition stream)
105 (format stream "~&~S has :invalid or :unknown value in ~S."
106 (invalid-value-debug-var condition)
107 (invalid-value-frame condition)))))
109 (define-condition ambiguous-variable-name (debug-condition)
110 ((name :reader ambiguous-variable-name-name :initarg :name)
111 (frame :reader ambiguous-variable-name-frame :initarg :frame))
112 (:report (lambda (condition stream)
113 (format stream "~&~S names more than one valid variable in ~S."
114 (ambiguous-variable-name-name condition)
115 (ambiguous-variable-name-frame condition)))))
117 ;;;; errors and DEBUG-SIGNAL
119 ;;; The debug-internals code tries to signal all programmer errors as
120 ;;; subtypes of DEBUG-ERROR. There are calls to ERROR signalling
121 ;;; SIMPLE-ERRORs, but these dummy checks in the code and shouldn't
124 ;;; While under development, this code also signals errors in code
125 ;;; branches that remain unimplemented.
127 (define-condition debug-error (error) ()
130 "All programmer errors from using the interface for building debugging
131 tools inherit from this type."))
133 (define-condition unhandled-debug-condition (debug-error)
134 ((condition :reader unhandled-debug-condition-condition :initarg :condition))
135 (:report (lambda (condition stream)
136 (format stream "~&unhandled DEBUG-CONDITION:~%~A"
137 (unhandled-debug-condition-condition condition)))))
139 (define-condition unknown-code-location (debug-error)
140 ((code-location :reader unknown-code-location-code-location
141 :initarg :code-location))
142 (:report (lambda (condition stream)
143 (format stream "~&invalid use of an unknown code-location: ~S"
144 (unknown-code-location-code-location condition)))))
146 (define-condition unknown-debug-var (debug-error)
147 ((debug-var :reader unknown-debug-var-debug-var :initarg :debug-var)
148 (debug-function :reader unknown-debug-var-debug-function
149 :initarg :debug-function))
150 (:report (lambda (condition stream)
151 (format stream "~&~S is not in ~S."
152 (unknown-debug-var-debug-var condition)
153 (unknown-debug-var-debug-function condition)))))
155 (define-condition invalid-control-stack-pointer (debug-error)
157 (:report (lambda (condition stream)
158 (declare (ignore condition))
160 (write-string "invalid control stack pointer" stream))))
162 (define-condition frame-function-mismatch (debug-error)
163 ((code-location :reader frame-function-mismatch-code-location
164 :initarg :code-location)
165 (frame :reader frame-function-mismatch-frame :initarg :frame)
166 (form :reader frame-function-mismatch-form :initarg :form))
167 (:report (lambda (condition stream)
170 "~&Form was preprocessed for ~S,~% but called on ~S:~% ~S"
171 (frame-function-mismatch-code-location condition)
172 (frame-function-mismatch-frame condition)
173 (frame-function-mismatch-form condition)))))
175 ;;; This signals debug-conditions. If they go unhandled, then signal
176 ;;; an UNHANDLED-DEBUG-CONDITION error.
178 ;;; ??? Get SIGNAL in the right package!
179 (defmacro debug-signal (datum &rest arguments)
180 `(let ((condition (make-condition ,datum ,@arguments)))
182 (error 'unhandled-debug-condition :condition condition)))
186 ;;;; Most of these structures model information stored in internal
187 ;;;; data structures created by the compiler. Whenever comments
188 ;;;; preface an object or type with "compiler", they refer to the
189 ;;;; internal compiler thing, not to the object or type with the same
190 ;;;; name in the "DI" package.
194 ;;; These exist for caching data stored in packed binary form in
195 ;;; compiler debug-functions. Debug-functions store these.
196 (defstruct (debug-var (:constructor nil))
197 ;; the name of the variable
198 (symbol (required-argument) :type symbol)
199 ;; a unique integer identification relative to other variables with the same
201 (id 0 :type sb!c::index)
202 ;; Does the variable always have a valid value?
203 (alive-p nil :type boolean))
204 (def!method print-object ((debug-var debug-var) stream)
205 (print-unreadable-object (debug-var stream :type t :identity t)
208 (debug-var-symbol debug-var)
209 (debug-var-id debug-var))))
212 (setf (fdocumentation 'debug-var-id 'function)
213 "Returns the integer that makes DEBUG-VAR's name and package unique
214 with respect to other DEBUG-VARs in the same function.")
216 (defstruct (compiled-debug-var
218 (:constructor make-compiled-debug-var
219 (symbol id alive-p sc-offset save-sc-offset)))
220 ;; Storage class and offset. (unexported).
221 (sc-offset nil :type sb!c::sc-offset)
222 ;; Storage class and offset when saved somewhere.
223 (save-sc-offset nil :type (or sb!c::sc-offset null)))
225 (defstruct (interpreted-debug-var
226 (:include debug-var (alive-p t))
227 (:constructor make-interpreted-debug-var (symbol ir1-var)))
228 ;; This is the IR1 structure that holds information about interpreted vars.
229 (ir1-var nil :type sb!c::lambda-var))
233 ;;; These represent call-frames on the stack.
234 (defstruct (frame (:constructor nil))
235 ;; the next frame up, or NIL when top frame
236 (up nil :type (or frame null))
237 ;; the previous frame down, or NIL when the bottom frame. Before
238 ;; computing the next frame down, this slot holds the frame pointer
239 ;; to the control stack for the given frame. This lets us get the
240 ;; next frame down and the return-pc for that frame.
241 (%down :unparsed :type (or frame (member nil :unparsed)))
242 ;; the debug-function for the function whose call this frame
244 (debug-function nil :type debug-function)
245 ;; the code-location to continue upon return to frame
246 (code-location nil :type code-location)
247 ;; an a-list of catch-tags to code-locations
248 (%catches :unparsed :type (or list (member :unparsed)))
249 ;; pointer to frame on control stack. (unexported) When this frame
250 ;; is an interpreted-frame, this pointer is an index into the
251 ;; interpreter's stack.
253 ;; This is the frame's number for prompt printing. Top is zero.
254 (number 0 :type index))
257 (setf (fdocumentation 'frame-up 'function)
258 "Returns the frame immediately above frame on the stack. When frame is
259 the top of the stack, this returns nil.")
262 (setf (fdocumentation 'frame-debug-function 'function)
263 "Returns the debug-function for the function whose call frame represents.")
266 (setf (fdocumentation 'frame-code-location 'function)
267 "Returns the code-location where the frame's debug-function will continue
268 running when program execution returns to this frame. If someone
269 interrupted this frame, the result could be an unknown code-location.")
271 (defstruct (compiled-frame
273 (:constructor make-compiled-frame
274 (pointer up debug-function code-location number
275 #!+gengc saved-state-chain
277 ;; This indicates whether someone interrupted the frame.
278 ;; (unexported). If escaped, this is a pointer to the state that was
279 ;; saved when we were interrupted. On the non-gengc system, this is
280 ;; a pointer to an os_context_t, i.e. the third argument to an
281 ;; SA_SIGACTION-style signal handler. On the gengc system, this is a
282 ;; state pointer from SAVED-STATE-CHAIN.
284 ;; a list of SAPs to saved states. Each time we unwind past an
285 ;; exception, we pop the next entry off this list. When we get to
286 ;; the end of the list, there is nothing else on the stack.
287 #!+gengc (saved-state-chain nil :type list))
288 (def!method print-object ((obj compiled-frame) str)
289 (print-unreadable-object (obj str :type t)
291 "~S~:[~;, interrupted~]"
292 (debug-function-name (frame-debug-function obj))
293 (compiled-frame-escaped obj))))
295 (defstruct (interpreted-frame
297 (:constructor make-interpreted-frame
298 (pointer up debug-function code-location number
299 real-frame closure)))
300 ;; This points to the compiled-frame for SB!EVAL:INTERNAL-APPLY-LOOP.
301 (real-frame nil :type compiled-frame)
302 ;; This is the closed over data used by the interpreter.
303 (closure nil :type simple-vector))
304 (def!method print-object ((obj interpreted-frame) str)
305 (print-unreadable-object (obj str :type t)
306 (prin1 (debug-function-name (frame-debug-function obj)) str)))
310 ;;; These exist for caching data stored in packed binary form in
311 ;;; compiler debug-functions. *COMPILED-DEBUG-FUNCTIONS* maps a
312 ;;; SB!C::DEBUG-FUNCTION to a DEBUG-FUNCTION. There should only be one
313 ;;; DEBUG-FUNCTION in existence for any function; that is, all
314 ;;; code-locations and other objects that reference DEBUG-FUNCTIONs
315 ;;; point to unique objects. This is due to the overhead in cached
317 (defstruct debug-function
318 ;; Some representation of the function arguments. See
319 ;; DEBUG-FUNCTION-LAMBDA-LIST.
320 ;; NOTE: must parse vars before parsing arg list stuff.
321 (%lambda-list :unparsed)
322 ;; Cached DEBUG-VARS information. (unexported).
323 ;; These are sorted by their name.
324 (%debug-vars :unparsed :type (or simple-vector null (member :unparsed)))
325 ;; Cached debug-block information. This is NIL when we have tried to
326 ;; parse the packed binary info, but none is available.
327 (blocks :unparsed :type (or simple-vector null (member :unparsed)))
328 ;; The actual function if available.
329 (%function :unparsed :type (or null function (member :unparsed))))
330 (def!method print-object ((obj debug-function) stream)
331 (print-unreadable-object (obj stream :type t)
332 (prin1 (debug-function-name obj) stream)))
334 (defstruct (compiled-debug-function
335 (:include debug-function)
336 (:constructor %make-compiled-debug-function
337 (compiler-debug-fun component)))
338 ;; Compiler's dumped debug-function information. (unexported).
339 (compiler-debug-fun nil :type sb!c::compiled-debug-function)
340 ;; Code object. (unexported).
342 ;; The :FUNCTION-START breakpoint (if any) used to facilitate
343 ;; function end breakpoints.
344 (end-starter nil :type (or null breakpoint)))
346 ;;; This maps SB!C::COMPILED-DEBUG-FUNCTIONs to
347 ;;; COMPILED-DEBUG-FUNCTIONs, so we can get at cached stuff and not
348 ;;; duplicate COMPILED-DEBUG-FUNCTION structures.
349 (defvar *compiled-debug-functions* (make-hash-table :test 'eq))
351 ;;; Make a COMPILED-DEBUG-FUNCTION for a SB!C::COMPILER-DEBUG-FUNCTION
352 ;;; and its component. This maps the latter to the former in
353 ;;; *COMPILED-DEBUG-FUNCTIONS*. If there already is a
354 ;;; COMPILED-DEBUG-FUNCTION, then this returns it from
355 ;;; *COMPILED-DEBUG-FUNCTIONS*.
356 (defun make-compiled-debug-function (compiler-debug-fun component)
357 (or (gethash compiler-debug-fun *compiled-debug-functions*)
358 (setf (gethash compiler-debug-fun *compiled-debug-functions*)
359 (%make-compiled-debug-function compiler-debug-fun component))))
361 (defstruct (interpreted-debug-function
362 (:include debug-function)
363 (:constructor %make-interpreted-debug-function (ir1-lambda)))
364 ;; This is the IR1 lambda that this debug-function represents.
365 (ir1-lambda nil :type sb!c::clambda))
367 (defstruct (bogus-debug-function
368 (:include debug-function)
369 (:constructor make-bogus-debug-function
370 (%name &aux (%lambda-list nil) (%debug-vars nil)
371 (blocks nil) (%function nil))))
374 (defvar *ir1-lambda-debug-function* (make-hash-table :test 'eq))
376 (defun make-interpreted-debug-function (ir1-lambda)
377 (let ((home-lambda (sb!c::lambda-home ir1-lambda)))
378 (or (gethash home-lambda *ir1-lambda-debug-function*)
379 (setf (gethash home-lambda *ir1-lambda-debug-function*)
380 (%make-interpreted-debug-function home-lambda)))))
384 ;;; These exist for caching data stored in packed binary form in compiler
386 (defstruct (debug-block (:constructor nil))
387 ;; Code-locations where execution continues after this block.
388 (successors nil :type list)
389 ;; This indicates whether the block is a special glob of code shared by
390 ;; various functions and tucked away elsewhere in a component. This kind of
391 ;; block has no start code-location. In an interpreted-debug-block, this is
392 ;; always nil. This slot is in all debug-blocks since it is an exported
394 (elsewhere-p nil :type boolean))
395 (def!method print-object ((obj debug-block) str)
396 (print-unreadable-object (obj str :type t)
397 (prin1 (debug-block-function-name obj) str)))
400 (setf (fdocumentation 'debug-block-successors 'function)
401 "Returns the list of possible code-locations where execution may continue
402 when the basic-block represented by debug-block completes its execution.")
405 (setf (fdocumentation 'debug-block-elsewhere-p 'function)
406 "Returns whether debug-block represents elsewhere code.")
408 (defstruct (compiled-debug-block (:include debug-block)
410 make-compiled-debug-block
411 (code-locations successors elsewhere-p)))
412 ;; Code-location information for the block.
413 (code-locations nil :type simple-vector))
415 (defstruct (interpreted-debug-block (:include debug-block
417 (:constructor %make-interpreted-debug-block
419 ;; This is the IR1 block this debug-block represents.
420 (ir1-block nil :type sb!c::cblock)
421 ;; Code-location information for the block.
422 (locations :unparsed :type (or (member :unparsed) simple-vector)))
424 (defvar *ir1-block-debug-block* (make-hash-table :test 'eq))
426 ;;; Make a DEBUG-BLOCK for the interpreter's IR1-BLOCK. If we have it
427 ;;; in the cache, return it. If we need to make it, then first make
428 ;;; DEBUG-BLOCKs for all the IR1-BLOCKs in IR1-BLOCK's home lambda;
429 ;;; this makes sure all the successors of IR1-BLOCK have DEBUG-BLOCKs.
430 ;;; We need this to fill in the resulting DEBUG-BLOCK's successors
431 ;;; list with DEBUG-BLOCKs, not IR1-BLOCKs. After making all the
432 ;;; possible DEBUG-BLOCKs we'll need to reference, go back over the
433 ;;; list of new DEBUG-BLOCKs and fill in their successor slots with
434 ;;; lists of DEBUG-BLOCKs. Then look up our argument IR1-BLOCK to find
435 ;;; its DEBUG-BLOCK since we know we have it now.
436 (defun make-interpreted-debug-block (ir1-block)
437 (check-type ir1-block sb!c::cblock)
438 (let ((res (gethash ir1-block *ir1-block-debug-block*)))
440 (let ((lambda (sb!c::block-home-lambda ir1-block)))
441 (sb!c::do-blocks (block (sb!c::block-component ir1-block))
442 (when (eq lambda (sb!c::block-home-lambda block))
443 (push (setf (gethash block *ir1-block-debug-block*)
444 (%make-interpreted-debug-block block))
447 (let* ((successors nil)
448 (cblock (interpreted-debug-block-ir1-block block))
449 (succ (sb!c::block-succ cblock))
453 (sb!c::component-tail
454 (sb!c::block-component cblock))))
457 (dolist (sblock valid-succ)
458 (let ((dblock (gethash sblock *ir1-block-debug-block*)))
460 (push dblock successors))))
461 (setf (debug-block-successors block) (nreverse successors))))
462 (gethash ir1-block *ir1-block-debug-block*)))))
466 ;;; This is an internal structure that manages information about a
467 ;;; breakpoint locations. See *COMPONENT-BREAKPOINT-OFFSETS*.
468 (defstruct (breakpoint-data (:constructor make-breakpoint-data
470 ;; This is the component in which the breakpoint lies.
472 ;; This is the byte offset into the component.
473 (offset nil :type sb!c::index)
474 ;; The original instruction replaced by the breakpoint.
475 (instruction nil :type (or null (unsigned-byte 32)))
476 ;; A list of user breakpoints at this location.
477 (breakpoints nil :type list))
478 (def!method print-object ((obj breakpoint-data) str)
479 (print-unreadable-object (obj str :type t)
480 (format str "~S at ~S"
482 (debug-function-from-pc (breakpoint-data-component obj)
483 (breakpoint-data-offset obj)))
484 (breakpoint-data-offset obj))))
486 (defstruct (breakpoint (:constructor %make-breakpoint
487 (hook-function what kind %info)))
488 ;; This is the function invoked when execution encounters the
489 ;; breakpoint. It takes a frame, the breakpoint, and optionally a
490 ;; list of values. Values are supplied for :FUNCTION-END breakpoints
491 ;; as values to return for the function containing the breakpoint.
492 ;; :FUNCTION-END breakpoint hook-functions also take a cookie
493 ;; argument. See COOKIE-FUN slot.
494 (hook-function nil :type function)
495 ;; CODE-LOCATION or DEBUG-FUNCTION
496 (what nil :type (or code-location debug-function))
497 ;; :CODE-LOCATION, :FUNCTION-START, or :FUNCTION-END for that kind
498 ;; of breakpoint. :UNKNOWN-RETURN-PARTNER if this is the partner of
499 ;; a :code-location breakpoint at an :UNKNOWN-RETURN code-location.
500 (kind nil :type (member :code-location :function-start :function-end
501 :unknown-return-partner))
502 ;; Status helps the user and the implementation.
503 (status :inactive :type (member :active :inactive :deleted))
504 ;; This is a backpointer to a breakpoint-data.
505 (internal-data nil :type (or null breakpoint-data))
506 ;; With code-locations whose type is :UNKNOWN-RETURN, there are
507 ;; really two breakpoints: one at the multiple-value entry point,
508 ;; and one at the single-value entry point. This slot holds the
509 ;; breakpoint for the other one, or NIL if this isn't at an
510 ;; :UNKNOWN-RETURN code location.
511 (unknown-return-partner nil :type (or null breakpoint))
512 ;; :FUNCTION-END breakpoints use a breakpoint at the :FUNCTION-START
513 ;; to establish the end breakpoint upon function entry. We do this
514 ;; by frobbing the LRA to jump to a special piece of code that
515 ;; breaks and provides the return values for the returnee. This slot
516 ;; points to the start breakpoint, so we can activate, deactivate,
518 (start-helper nil :type (or null breakpoint))
519 ;; This is a hook users supply to get a dynamically unique cookie
520 ;; for identifying :FUNCTION-END breakpoint executions. That is, if
521 ;; there is one :FUNCTION-END breakpoint, but there may be multiple
522 ;; pending calls of its function on the stack. This function takes
523 ;; the cookie, and the hook-function takes the cookie too.
524 (cookie-fun nil :type (or null function))
525 ;; This slot users can set with whatever information they find useful.
527 (def!method print-object ((obj breakpoint) str)
528 (let ((what (breakpoint-what obj)))
529 (print-unreadable-object (obj str :type t)
534 (debug-function (debug-function-name what)))
537 (debug-function (breakpoint-kind obj)))))))
540 (setf (fdocumentation 'breakpoint-hook-function 'function)
541 "Returns the breakpoint's function the system calls when execution encounters
542 the breakpoint, and it is active. This is SETF'able.")
545 (setf (fdocumentation 'breakpoint-what 'function)
546 "Returns the breakpoint's what specification.")
549 (setf (fdocumentation 'breakpoint-kind 'function)
550 "Returns the breakpoint's kind specification.")
554 (defstruct (code-location (:constructor nil))
555 ;; This is the debug-function containing code-location.
556 (debug-function nil :type debug-function)
557 ;; This is initially :UNSURE. Upon first trying to access an
558 ;; :unparsed slot, if the data is unavailable, then this becomes t,
559 ;; and the code-location is unknown. If the data is available, this
560 ;; becomes nil, a known location. We can't use a separate type
561 ;; code-location for this since we must return code-locations before
562 ;; we can tell whether they're known or unknown. For example, when
563 ;; parsing the stack, we don't want to unpack all the variables and
564 ;; blocks just to make frames.
565 (%unknown-p :unsure :type (member t nil :unsure))
566 ;; This is the debug-block containing code-location. Possibly toss
567 ;; this out and just find it in the blocks cache in debug-function.
568 (%debug-block :unparsed :type (or debug-block (member :unparsed)))
569 ;; This is the number of forms processed by the compiler or loader
570 ;; before the top-level form containing this code-location.
571 (%tlf-offset :unparsed :type (or sb!c::index (member :unparsed)))
572 ;; This is the depth-first number of the node that begins
573 ;; code-location within its top-level form.
574 (%form-number :unparsed :type (or sb!c::index (member :unparsed))))
575 (def!method print-object ((obj code-location) str)
576 (print-unreadable-object (obj str :type t)
577 (prin1 (debug-function-name (code-location-debug-function obj))
581 (setf (fdocumentation 'code-location-debug-function 'function)
582 "Returns the debug-function representing information about the function
583 corresponding to the code-location.")
585 (defstruct (compiled-code-location
586 (:include code-location)
587 (:constructor make-known-code-location
588 (pc debug-function %tlf-offset %form-number
589 %live-set kind &aux (%unknown-p nil)))
590 (:constructor make-compiled-code-location (pc debug-function)))
591 ;; This is an index into debug-function's component slot.
592 (pc nil :type sb!c::index)
593 ;; This is a bit-vector indexed by a variable's position in
594 ;; DEBUG-FUNCTION-DEBUG-VARS indicating whether the variable has a
595 ;; valid value at this code-location. (unexported).
596 (%live-set :unparsed :type (or simple-bit-vector (member :unparsed)))
597 ;; (unexported) To see SB!C::LOCATION-KIND, do
598 ;; (SB!KERNEL:TYPE-EXPAND 'SB!C::LOCATION-KIND).
599 (kind :unparsed :type (or (member :unparsed) sb!c::location-kind)))
601 (defstruct (interpreted-code-location
602 (:include code-location
604 (:constructor make-interpreted-code-location
605 (ir1-node debug-function)))
606 ;; This is an index into debug-function's component slot.
607 (ir1-node nil :type sb!c::node))
611 #!-sb-fluid (declaim (inline debug-source-root-number))
612 (defun debug-source-root-number (debug-source)
614 "Returns the number of top-level forms processed by the compiler before
615 compiling this source. If this source is uncompiled, this is zero. This
616 may be zero even if the source is compiled since the first form in the first
617 file compiled in one compilation, for example, must have a root number of
618 zero -- the compiler saw no other top-level forms before it."
619 (sb!c::debug-source-source-root debug-source))
622 (setf (fdocumentation 'sb!c::debug-source-from 'function)
623 "Returns an indication of the type of source. The following are the possible
625 :file from a file (obtained by COMPILE-FILE if compiled).
626 :lisp from Lisp (obtained by COMPILE if compiled).")
629 (setf (fdocumentation 'sb!c::debug-source-name 'function)
630 "Returns the actual source in some sense represented by debug-source, which
631 is related to DEBUG-SOURCE-FROM:
632 :file the pathname of the file.
633 :lisp a lambda-expression.")
636 (setf (fdocumentation 'sb!c::debug-source-created 'function)
637 "Returns the universal time someone created the source. This may be nil if
641 (setf (fdocumentation 'sb!c::debug-source-compiled 'function)
642 "Returns the time someone compiled the source. This is nil if the source
646 (setf (fdocumentation 'sb!c::debug-source-start-positions 'function)
647 "This function returns the file position of each top-level form as an array
648 if debug-source is from a :file. If DEBUG-SOURCE-FROM is :lisp,
652 (setf (fdocumentation 'sb!c::debug-source-p 'function)
653 "Returns whether object is a debug-source.")
657 ;;; This is used in FIND-ESCAPE-FRAME and with the bogus components
658 ;;; and LRAs used for :function-end breakpoints. When a components
659 ;;; debug-info slot is :bogus-lra, then the real-lra-slot contains the
660 ;;; real component to continue executing, as opposed to the bogus
661 ;;; component which appeared in some frame's LRA location.
662 (defconstant real-lra-slot sb!vm:code-constants-offset)
664 ;;; These are magically converted by the compiler.
665 (defun current-sp () (current-sp))
666 (defun current-fp () (current-fp))
667 (defun stack-ref (s n) (stack-ref s n))
668 (defun %set-stack-ref (s n value) (%set-stack-ref s n value))
669 (defun function-code-header (fun) (function-code-header fun))
670 #!-gengc (defun lra-code-header (lra) (lra-code-header lra))
671 (defun make-lisp-obj (value) (make-lisp-obj value))
672 (defun get-lisp-obj-address (thing) (get-lisp-obj-address thing))
673 (defun function-word-offset (fun) (function-word-offset fun))
675 #!-sb-fluid (declaim (inline cstack-pointer-valid-p))
676 (defun cstack-pointer-valid-p (x)
677 (declare (type system-area-pointer x))
678 #!-x86 ; stack grows toward high address values
679 (and (sap< x (current-sp))
680 (sap<= #!-gengc (int-sap control-stack-start)
681 #!+gengc (mutator-control-stack-base)
683 (zerop (logand (sap-int x) #b11)))
684 #!+x86 ; stack grows toward low address values
685 (and (sap>= x (current-sp))
686 (sap> (int-sap control-stack-end) x)
687 (zerop (logand (sap-int x) #b11))))
690 (sb!alien:def-alien-routine component-ptr-from-pc (system-area-pointer)
691 (pc system-area-pointer))
694 (defun component-from-component-ptr (component-ptr)
695 (declare (type system-area-pointer component-ptr))
696 (make-lisp-obj (logior (sap-int component-ptr)
697 sb!vm:other-pointer-type)))
704 (defun compute-lra-data-from-pc (pc)
705 (declare (type system-area-pointer pc))
706 (let ((component-ptr (component-ptr-from-pc pc)))
707 (unless (sap= component-ptr (int-sap #x0))
708 (let* ((code (component-from-component-ptr component-ptr))
709 (code-header-len (* (get-header-data code) sb!vm:word-bytes))
710 (pc-offset (- (sap-int pc)
711 (- (get-lisp-obj-address code)
712 sb!vm:other-pointer-type)
714 ; (format t "c-lra-fpc ~A ~A ~A~%" pc code pc-offset)
715 (values pc-offset code)))))
717 (defconstant sb!vm::nargs-offset #.sb!vm::ecx-offset)
719 ;;; Check for a valid return address - it could be any valid C/Lisp
722 ;;; XXX Could be a little smarter.
723 #!-sb-fluid (declaim (inline ra-pointer-valid-p))
724 (defun ra-pointer-valid-p (ra)
725 (declare (type system-area-pointer ra))
727 ;; Not the first page which is unmapped.
728 (>= (sap-int ra) 4096)
729 ;; Not a Lisp stack pointer.
730 (not (cstack-pointer-valid-p ra))))
732 ;;; Try to find a valid previous stack. This is complex on the x86 as
733 ;;; it can jump between C and Lisp frames. To help find a valid frame
734 ;;; it searches backwards.
736 ;;; XXX Should probably check whether it has reached the bottom of the
739 ;;; XXX Should handle interrupted frames, both Lisp and C. At present it
740 ;;; manages to find a fp trail, see linux hack below.
741 (defun x86-call-context (fp &key (depth 8))
742 (declare (type system-area-pointer fp)
744 ;;(format t "*CC ~S ~S~%" fp depth)
746 ((not (cstack-pointer-valid-p fp))
747 #+nil (format t "debug invalid fp ~S~%" fp)
750 ;; Check the two possible frame pointers.
751 (let ((lisp-ocfp (sap-ref-sap fp (- (* (1+ sb!vm::ocfp-save-offset) 4))))
752 (lisp-ra (sap-ref-sap fp (- (* (1+ sb!vm::return-pc-save-offset)
754 (c-ocfp (sap-ref-sap fp (* 0 sb!vm:word-bytes)))
755 (c-ra (sap-ref-sap fp (* 1 sb!vm:word-bytes))))
756 (cond ((and (sap> lisp-ocfp fp) (cstack-pointer-valid-p lisp-ocfp)
757 (ra-pointer-valid-p lisp-ra)
758 (sap> c-ocfp fp) (cstack-pointer-valid-p c-ocfp)
759 (ra-pointer-valid-p c-ra))
761 "*C Both valid ~S ~S ~S ~S~%"
762 lisp-ocfp lisp-ra c-ocfp c-ra)
763 ;; Look forward another step to check their validity.
764 (let ((lisp-path-fp (x86-call-context lisp-ocfp
766 (c-path-fp (x86-call-context c-ocfp :depth (- depth 1))))
767 (cond ((and lisp-path-fp c-path-fp)
768 ;; Both still seem valid - choose the smallest.
769 #+nil (format t "debug: both still valid ~S ~S ~S ~S~%"
770 lisp-ocfp lisp-ra c-ocfp c-ra)
771 (if (sap< lisp-ocfp c-ocfp)
772 (values lisp-ra lisp-ocfp)
773 (values c-ra c-ocfp)))
775 ;; The lisp convention is looking good.
776 #+nil (format t "*C lisp-ocfp ~S ~S~%" lisp-ocfp lisp-ra)
777 (values lisp-ra lisp-ocfp))
779 ;; The C convention is looking good.
780 #+nil (format t "*C c-ocfp ~S ~S~%" c-ocfp c-ra)
781 (values c-ra c-ocfp))
783 ;; Neither seems right?
784 #+nil (format t "debug: no valid2 fp found ~S ~S~%"
787 ((and (sap> lisp-ocfp fp) (cstack-pointer-valid-p lisp-ocfp)
788 (ra-pointer-valid-p lisp-ra))
789 ;; The lisp convention is looking good.
790 #+nil (format t "*C lisp-ocfp ~S ~S~%" lisp-ocfp lisp-ra)
791 (values lisp-ra lisp-ocfp))
792 ((and (sap> c-ocfp fp) (cstack-pointer-valid-p c-ocfp)
793 #!-linux (ra-pointer-valid-p c-ra))
794 ;; The C convention is looking good.
795 #+nil (format t "*C c-ocfp ~S ~S~%" c-ocfp c-ra)
796 (values c-ra c-ocfp))
798 #+nil (format t "debug: no valid fp found ~S ~S~%"
804 ;;; Convert the descriptor into a SAP. The bits all stay the same, we just
805 ;;; change our notion of what we think they are.
806 #!-sb-fluid (declaim (inline descriptor-sap))
807 (defun descriptor-sap (x)
808 (int-sap (get-lisp-obj-address x)))
812 "Returns the top frame of the control stack as it was before calling this
814 (multiple-value-bind (fp pc) (%caller-frame-and-pc)
815 (possibly-an-interpreted-frame
816 (compute-calling-frame (descriptor-sap fp)
817 #!-gengc pc #!+gengc (descriptor-sap pc)
821 (defun flush-frames-above (frame)
823 "Flush all of the frames above FRAME, and renumber all the frames below
825 (setf (frame-up frame) nil)
826 (do ((number 0 (1+ number))
827 (frame frame (frame-%down frame)))
828 ((not (frame-p frame)))
829 (setf (frame-number frame) number)))
831 ;;; We have to access the old-fp and return-pc out of frame and pass them to
832 ;;; COMPUTE-CALLING-FRAME.
833 (defun frame-down (frame)
835 "Returns the frame immediately below frame on the stack. When frame is
836 the bottom of the stack, this returns nil."
837 (let ((down (frame-%down frame)))
838 (if (eq down :unparsed)
839 (let* ((real (frame-real-frame frame))
840 (debug-fun (frame-debug-function real)))
841 (setf (frame-%down frame)
843 (compiled-debug-function
844 (let ((c-d-f (compiled-debug-function-compiler-debug-fun
846 (possibly-an-interpreted-frame
847 (compute-calling-frame
850 real sb!vm::ocfp-save-offset
851 (sb!c::compiled-debug-function-old-fp c-d-f)))
854 real sb!vm::lra-save-offset
855 (sb!c::compiled-debug-function-return-pc c-d-f))
859 real sb!vm::ra-save-offset
860 (sb!c::compiled-debug-function-return-pc c-d-f)))
863 (bogus-debug-function
864 (let ((fp (frame-pointer real)))
865 (when (cstack-pointer-valid-p fp)
867 (multiple-value-bind (ra ofp) (x86-call-context fp)
868 (compute-calling-frame ofp ra frame))
870 (compute-calling-frame
872 (sap-ref-sap fp (* sb!vm::ocfp-save-offset
876 (sap-ref-32 fp (* sb!vm::ocfp-save-offset
880 (stack-ref fp sb!vm::lra-save-offset)
882 (sap-ref-sap fp (* sb!vm::ra-save-offset
887 ;;; Get the old FP or return PC out of FRAME. STACK-SLOT is the
888 ;;; standard save location offset on the stack. LOC is the saved
889 ;;; SC-OFFSET describing the main location.
891 (defun get-context-value (frame stack-slot loc)
892 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
893 (type sb!c::sc-offset loc))
894 (let ((pointer (frame-pointer frame))
895 (escaped (compiled-frame-escaped frame)))
897 (sub-access-debug-var-slot pointer loc escaped)
898 (stack-ref pointer stack-slot))))
900 (defun get-context-value (frame stack-slot loc)
901 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
902 (type sb!c::sc-offset loc))
903 (let ((pointer (frame-pointer frame))
904 (escaped (compiled-frame-escaped frame)))
906 (sub-access-debug-var-slot pointer loc escaped)
908 (#.sb!vm::ocfp-save-offset
909 (stack-ref pointer stack-slot))
910 (#.sb!vm::lra-save-offset
911 (sap-ref-sap pointer (- (* (1+ stack-slot) 4))))))))
914 (defun (setf get-context-value) (value frame stack-slot loc)
915 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
916 (type sb!c::sc-offset loc))
917 (let ((pointer (frame-pointer frame))
918 (escaped (compiled-frame-escaped frame)))
920 (sub-set-debug-var-slot pointer loc value escaped)
921 (setf (stack-ref pointer stack-slot) value))))
924 (defun (setf get-context-value) (value frame stack-slot loc)
925 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
926 (type sb!c::sc-offset loc))
927 (let ((pointer (frame-pointer frame))
928 (escaped (compiled-frame-escaped frame)))
930 (sub-set-debug-var-slot pointer loc value escaped)
932 (#.sb!vm::ocfp-save-offset
933 (setf (stack-ref pointer stack-slot) value))
934 (#.sb!vm::lra-save-offset
935 (setf (sap-ref-sap pointer (- (* (1+ stack-slot) 4))) value))))))
937 (defvar *debugging-interpreter* nil
939 "When set, the debugger foregoes making interpreted-frames, so you can
940 debug the functions that manifest the interpreter.")
942 ;;; This takes a newly computed frame, FRAME, and the frame above it
943 ;;; on the stack, UP-FRAME, which is possibly NIL. FRAME is NIL when
944 ;;; we hit the bottom of the control stack. When FRAME represents a
945 ;;; call to SB!EVAL::INTERNAL-APPLY-LOOP, we make an interpreted frame
946 ;;; to replace FRAME. The interpreted frame points to FRAME.
947 (defun possibly-an-interpreted-frame (frame up-frame)
949 (not (eq (debug-function-name (frame-debug-function frame))
950 'sb!eval::internal-apply-loop))
951 *debugging-interpreter*
952 (compiled-frame-escaped frame))
954 (flet ((get-var (name location)
955 (let ((vars (sb!di:ambiguous-debug-vars
956 (sb!di:frame-debug-function frame) name)))
957 (when (or (null vars) (> (length vars) 1))
958 (error "zero or more than one ~A variable in ~
959 SB!EVAL::INTERNAL-APPLY-LOOP"
960 (string-downcase name)))
961 (if (eq (debug-var-validity (car vars) location)
964 (let* ((code-loc (frame-code-location frame))
965 (ptr-var (get-var "FRAME-PTR" code-loc))
966 (node-var (get-var "NODE" code-loc))
967 (closure-var (get-var "CLOSURE" code-loc)))
968 (if (and ptr-var node-var closure-var)
969 (let* ((node (debug-var-value node-var frame))
970 (d-fun (make-interpreted-debug-function
971 (sb!c::block-home-lambda (sb!c::node-block
973 (make-interpreted-frame
974 (debug-var-value ptr-var frame)
977 (make-interpreted-code-location node d-fun)
980 (debug-var-value closure-var frame)))
983 ;;; This returns a frame for the one existing in time immediately
984 ;;; prior to the frame referenced by current-fp. This is current-fp's
985 ;;; caller or the next frame down the control stack. If there is no
986 ;;; down frame, this returns nil for the bottom of the stack. Up-frame
987 ;;; is the up link for the resulting frame object, and it is nil when
988 ;;; we call this to get the top of the stack.
990 ;;; The current frame contains the pointer to the temporally previous
991 ;;; frame we want, and the current frame contains the pc at which we
992 ;;; will continue executing upon returning to that previous frame.
994 ;;; Note: Sometimes LRA is actually a fixnum. This happens when lisp
995 ;;; calls into C. In this case, the code object is stored on the stack
996 ;;; after the LRA, and the LRA is the word offset.
998 (defun compute-calling-frame (caller lra up-frame)
999 (declare (type system-area-pointer caller))
1000 (when (cstack-pointer-valid-p caller)
1001 (multiple-value-bind (code pc-offset escaped)
1003 (multiple-value-bind (word-offset code)
1005 (let ((fp (frame-pointer up-frame)))
1007 (stack-ref fp (1+ sb!vm::lra-save-offset))))
1008 (values (get-header-data lra)
1009 (lra-code-header lra)))
1012 (* (1+ (- word-offset (get-header-data code)))
1015 (values :foreign-function
1018 (find-escaped-frame caller))
1019 (if (and (code-component-p code)
1020 (eq (%code-debug-info code) :bogus-lra))
1021 (let ((real-lra (code-header-ref code real-lra-slot)))
1022 (compute-calling-frame caller real-lra up-frame))
1023 (let ((d-fun (case code
1024 (:undefined-function
1025 (make-bogus-debug-function
1026 "undefined function"))
1028 (make-bogus-debug-function
1029 "foreign function call land"))
1031 (make-bogus-debug-function
1032 "bogus stack frame"))
1034 (debug-function-from-pc code pc-offset)))))
1035 (make-compiled-frame caller up-frame d-fun
1036 (code-location-from-pc d-fun pc-offset
1038 (if up-frame (1+ (frame-number up-frame)) 0)
1042 (defun compute-calling-frame (caller ra up-frame)
1043 (declare (type system-area-pointer caller ra))
1044 ; (format t "ccf: ~A ~A ~A~%" caller ra up-frame)
1045 (when (cstack-pointer-valid-p caller)
1046 ; (format t "ccf2~%")
1047 ;; First check for an escaped frame.
1048 (multiple-value-bind (code pc-offset escaped) (find-escaped-frame caller)
1050 ;; If it's escaped it may be a function end breakpoint trap.
1051 ; (format t "ccf2: escaped ~S ~S~%" code pc-offset)
1052 (when (and (code-component-p code)
1053 (eq (%code-debug-info code) :bogus-lra))
1054 ;; If :bogus-lra grab the real lra.
1055 (setq pc-offset (code-header-ref
1056 code (1+ real-lra-slot)))
1057 (setq code (code-header-ref code real-lra-slot))
1058 ; (format t "ccf3 :bogus-lra ~S ~S~%" code pc-offset)
1062 (multiple-value-setq (pc-offset code)
1063 (compute-lra-data-from-pc ra))
1064 ; (format t "ccf4 ~S ~S~%" code pc-offset)
1066 (setf code :foreign-function
1070 (let ((d-fun (case code
1071 (:undefined-function
1072 (make-bogus-debug-function
1073 "undefined function"))
1075 (make-bogus-debug-function
1076 "foreign function call land"))
1078 (make-bogus-debug-function
1079 "bogus stack frame"))
1081 (debug-function-from-pc code pc-offset)))))
1082 (make-compiled-frame caller up-frame d-fun
1083 (code-location-from-pc d-fun pc-offset
1085 (if up-frame (1+ (frame-number up-frame)) 0)
1089 ;;; FIXME: The original CMU CL code had support for this case, but it
1090 ;;; must have been fairly stale even in CMU CL, since it had
1091 ;;; references to the MIPS package, and there have been enough
1092 ;;; relevant changes in SBCL (particularly using
1093 ;;; POSIX/SIGACTION0-style signal context instead of BSD-style
1094 ;;; sigcontext) that this code is unmaintainable (since as of
1095 ;;; sbcl-0.6.7, and for the foreseeable future, we can't test it,
1096 ;;; since we only support X86 and its gencgc).
1098 ;;; If we restore this case, the best approach would be to go back to
1099 ;;; the original CMU CL code and start from there.
1100 (eval-when (:compile-toplevel :load-toplevel :execute)
1101 (error "hopelessly stale"))
1103 (defun find-escaped-frame (frame-pointer)
1104 (declare (type system-area-pointer frame-pointer))
1105 (dotimes (index sb!impl::*free-interrupt-context-index* (values nil 0 nil))
1106 (sb!alien:with-alien
1107 ((lisp-interrupt-contexts (array (* os-context-t) nil)
1109 (let ((context (sb!alien:deref lisp-interrupt-contexts index)))
1110 (when (= (sap-int frame-pointer)
1111 (sb!vm:context-register context sb!vm::cfp-offset))
1113 (let* ((component-ptr (component-ptr-from-pc
1114 (sb!vm:context-pc context)))
1115 (code (unless (sap= component-ptr (int-sap #x0))
1116 (component-from-component-ptr component-ptr))))
1118 (return (values code 0 context)))
1119 (let* ((code-header-len (* (get-header-data code)
1122 (- (sap-int (sb!vm:context-pc context))
1123 (- (get-lisp-obj-address code)
1124 sb!vm:other-pointer-type)
1126 (unless (<= 0 pc-offset
1127 (* (code-header-ref code sb!vm:code-code-size-slot)
1129 ;; We were in an assembly routine. Therefore, use the
1132 ;; FIXME: Should this be WARN or ERROR or what?
1133 (format t "** pc-offset ~S not in code obj ~S?~%"
1136 (values code pc-offset context))))))))))
1138 ;;; Find the code object corresponding to the object represented by
1139 ;;; bits and return it. We assume bogus functions correspond to the
1140 ;;; undefined-function.
1142 (defun code-object-from-bits (bits)
1143 (declare (type (unsigned-byte 32) bits))
1144 (let ((object (make-lisp-obj bits)))
1145 (if (functionp object)
1146 (or (function-code-header object)
1147 :undefined-function)
1148 (let ((lowtag (get-lowtag object)))
1149 (if (= lowtag sb!vm:other-pointer-type)
1150 (let ((type (get-type object)))
1151 (cond ((= type sb!vm:code-header-type)
1153 ((= type sb!vm:return-pc-header-type)
1154 (lra-code-header object))
1158 ;;; SB!KERNEL:*SAVED-STATE-CHAIN* -- maintained by the C code as a
1159 ;;; list of SAPs, each SAP pointing to a saved exception state.
1161 (declaim (special *saved-state-chain*))
1164 ;;; (DEFUN LOOKUP-TRACE-TABLE-ENTRY (COMPONENT PC) ..)
1165 ;;; for this case, but it hasn't been maintained in SBCL.
1167 (eval-when (:compile-toplevel :load-toplevel :execute)
1168 (error "hopelessly stale"))
1171 ;;; (DEFUN EXTRACT-INFO-FROM-STATE (STATE) ..)
1172 ;;; for this case, but it hasn't been maintained in SBCL.
1174 (eval-when (:compile-toplevel :load-toplevel :execute)
1175 (error "hopelessly stale"))
1178 ;;; (DEFUN COMPUTE-CALLING-FRAME (OCFP RA UP-FRAME) ..)
1179 ;;; for this case, but it hasn't been maintained in SBCL.
1181 (eval-when (:compile-toplevel :load-toplevel :execute)
1182 (error "hopelessly stale"))
1184 ;;;; frame utilities
1186 ;;; This returns a COMPILED-DEBUG-FUNCTION for code and pc. We fetch
1187 ;;; the SB!C::DEBUG-INFO and run down its function-map to get a
1188 ;;; SB!C::COMPILED-DEBUG-FUNCTION from the pc. The result only needs
1189 ;;; to reference the component, for function constants, and the
1190 ;;; SB!C::COMPILED-DEBUG-FUNCTION.
1191 (defun debug-function-from-pc (component pc)
1192 (let ((info (%code-debug-info component)))
1195 (debug-signal 'no-debug-info :code-component component))
1196 ((eq info :bogus-lra)
1197 (make-bogus-debug-function "function end breakpoint"))
1199 (let* ((function-map (get-debug-info-function-map info))
1200 (len (length function-map)))
1201 (declare (simple-vector function-map))
1203 (make-compiled-debug-function (svref function-map 0) component)
1206 (>= pc (sb!c::compiled-debug-function-elsewhere-pc
1207 (svref function-map 0)))))
1208 (declare (type sb!int:index i))
1211 (< pc (if elsewhere-p
1212 (sb!c::compiled-debug-function-elsewhere-pc
1213 (svref function-map (1+ i)))
1214 (svref function-map i))))
1215 (return (make-compiled-debug-function
1216 (svref function-map (1- i))
1220 ;;; This returns a code-location for the COMPILED-DEBUG-FUNCTION,
1221 ;;; DEBUG-FUN, and the pc into its code vector. If we stopped at a
1222 ;;; breakpoint, find the CODE-LOCATION for that breakpoint. Otherwise,
1223 ;;; make an :UNSURE code location, so it can be filled in when we
1224 ;;; figure out what is going on.
1225 (defun code-location-from-pc (debug-fun pc escaped)
1226 (or (and (compiled-debug-function-p debug-fun)
1228 (let ((data (breakpoint-data
1229 (compiled-debug-function-component debug-fun)
1231 (when (and data (breakpoint-data-breakpoints data))
1232 (let ((what (breakpoint-what
1233 (first (breakpoint-data-breakpoints data)))))
1234 (when (compiled-code-location-p what)
1236 (make-compiled-code-location pc debug-fun)))
1238 (defun frame-catches (frame)
1240 "Returns an a-list mapping catch tags to code-locations. These are
1241 code-locations at which execution would continue with frame as the top
1242 frame if someone threw to the corresponding tag."
1244 #!-gengc (descriptor-sap sb!impl::*current-catch-block*)
1245 #!+gengc (mutator-current-catch-block))
1247 (fp (frame-pointer (frame-real-frame frame))))
1249 (when (zerop (sap-int catch)) (return (nreverse res)))
1253 (* sb!vm:catch-block-current-cont-slot
1258 (* sb!vm:catch-block-current-cont-slot
1259 sb!vm:word-bytes))))
1260 (let* (#!-(or gengc x86)
1261 (lra (stack-ref catch sb!vm:catch-block-entry-pc-slot))
1264 catch (* sb!vm:catch-block-entry-pc-slot
1268 (stack-ref catch sb!vm:catch-block-current-code-slot))
1270 (component (component-from-component-ptr
1271 (component-ptr-from-pc ra)))
1274 (* (- (1+ (get-header-data lra))
1275 (get-header-data component))
1279 (get-lisp-obj-address component)
1280 (get-header-data component))
1281 sb!vm:other-pointer-type)
1284 (- (get-lisp-obj-address component)
1285 sb!vm:other-pointer-type)
1286 (* (get-header-data component) sb!vm:word-bytes))))
1288 (stack-ref catch sb!vm:catch-block-tag-slot)
1291 (sap-ref-32 catch (* sb!vm:catch-block-tag-slot
1293 (make-compiled-code-location
1294 offset (frame-debug-function frame)))
1299 (* sb!vm:catch-block-previous-catch-slot
1304 (* sb!vm:catch-block-previous-catch-slot
1305 sb!vm:word-bytes)))))))
1307 ;;; If an interpreted frame, return the real frame, otherwise frame.
1308 (defun frame-real-frame (frame)
1310 (compiled-frame frame)
1311 (interpreted-frame (interpreted-frame-real-frame frame))))
1313 ;;;; operations on DEBUG-FUNCTIONs
1315 (defmacro do-debug-function-blocks ((block-var debug-function &optional result)
1318 "Executes the forms in a context with block-var bound to each debug-block in
1319 debug-function successively. Result is an optional form to execute for
1320 return values, and DO-DEBUG-FUNCTION-BLOCKS returns nil if there is no
1321 result form. This signals a no-debug-blocks condition when the
1322 debug-function lacks debug-block information."
1323 (let ((blocks (gensym))
1325 `(let ((,blocks (debug-function-debug-blocks ,debug-function)))
1326 (declare (simple-vector ,blocks))
1327 (dotimes (,i (length ,blocks) ,result)
1328 (let ((,block-var (svref ,blocks ,i)))
1331 (defmacro do-debug-function-variables ((var debug-function &optional result)
1334 "Executes body in a context with var bound to each debug-var in
1335 debug-function. This returns the value of executing result (defaults to
1336 nil). This may iterate over only some of debug-function's variables or none
1337 depending on debug policy; for example, possibly the compilation only
1338 preserved argument information."
1339 (let ((vars (gensym))
1341 `(let ((,vars (debug-function-debug-vars ,debug-function)))
1342 (declare (type (or null simple-vector) ,vars))
1344 (dotimes (,i (length ,vars) ,result)
1345 (let ((,var (svref ,vars ,i)))
1349 (defun debug-function-function (debug-function)
1351 "Returns the Common Lisp function associated with the debug-function. This
1352 returns nil if the function is unavailable or is non-existent as a user
1353 callable function object."
1354 (let ((cached-value (debug-function-%function debug-function)))
1355 (if (eq cached-value :unparsed)
1356 (setf (debug-function-%function debug-function)
1357 (etypecase debug-function
1358 (compiled-debug-function
1360 (compiled-debug-function-component debug-function))
1362 (sb!c::compiled-debug-function-start-pc
1363 (compiled-debug-function-compiler-debug-fun
1365 (do ((entry (%code-entry-points component)
1366 (%function-next entry)))
1369 (sb!c::compiled-debug-function-start-pc
1370 (compiled-debug-function-compiler-debug-fun
1371 (function-debug-function entry))))
1373 (interpreted-debug-function
1374 (sb!c::lambda-eval-info-function
1376 (interpreted-debug-function-ir1-lambda debug-function))))
1377 (bogus-debug-function nil)))
1380 (defun debug-function-name (debug-function)
1382 "Returns the name of the function represented by debug-function. This may
1383 be a string or a cons; do not assume it is a symbol."
1384 (etypecase debug-function
1385 (compiled-debug-function
1386 (sb!c::compiled-debug-function-name
1387 (compiled-debug-function-compiler-debug-fun debug-function)))
1388 (interpreted-debug-function
1389 (sb!c::lambda-name (interpreted-debug-function-ir1-lambda
1391 (bogus-debug-function
1392 (bogus-debug-function-%name debug-function))))
1394 (defun function-debug-function (fun)
1396 "Returns a debug-function that represents debug information for function."
1397 (case (get-type fun)
1398 (#.sb!vm:closure-header-type
1399 (function-debug-function (%closure-function fun)))
1400 (#.sb!vm:funcallable-instance-header-type
1401 (cond ((sb!eval:interpreted-function-p fun)
1402 (make-interpreted-debug-function
1403 (or (sb!eval::interpreted-function-definition fun)
1404 (sb!eval::convert-interpreted-fun fun))))
1406 (function-debug-function (funcallable-instance-function fun)))))
1407 ((#.sb!vm:function-header-type #.sb!vm:closure-function-header-type)
1408 (let* ((name (%function-name fun))
1409 (component (function-code-header fun))
1412 (and (sb!c::compiled-debug-function-p x)
1413 (eq (sb!c::compiled-debug-function-name x) name)
1414 (eq (sb!c::compiled-debug-function-kind x) nil)))
1415 (get-debug-info-function-map
1416 (%code-debug-info component)))))
1418 (make-compiled-debug-function res component)
1419 ;; KLUDGE: comment from CMU CL:
1420 ;; This used to be the non-interpreted branch, but
1421 ;; William wrote it to return the debug-fun of fun's XEP
1422 ;; instead of fun's debug-fun. The above code does this
1423 ;; more correctly, but it doesn't get or eliminate all
1424 ;; appropriate cases. It mostly works, and probably
1425 ;; works for all named functions anyway.
1427 (debug-function-from-pc component
1428 (* (- (function-word-offset fun)
1429 (get-header-data component))
1430 sb!vm:word-bytes)))))))
1432 (defun debug-function-kind (debug-function)
1434 "Returns the kind of the function which is one of :OPTIONAL, :EXTERNAL,
1435 :TOP-level, :CLEANUP, or NIL."
1436 ;; FIXME: This "is one of" information should become part of the function
1437 ;; declamation, not just a doc string
1438 (etypecase debug-function
1439 (compiled-debug-function
1440 (sb!c::compiled-debug-function-kind
1441 (compiled-debug-function-compiler-debug-fun debug-function)))
1442 (interpreted-debug-function
1443 (sb!c::lambda-kind (interpreted-debug-function-ir1-lambda
1445 (bogus-debug-function
1448 (defun debug-var-info-available (debug-function)
1450 "Is there any variable information for DEBUG-FUNCTION?"
1451 (not (not (debug-function-debug-vars debug-function))))
1453 (defun debug-function-symbol-variables (debug-function symbol)
1455 "Returns a list of debug-vars in debug-function having the same name
1456 and package as symbol. If symbol is uninterned, then this returns a list of
1457 debug-vars without package names and with the same name as symbol. The
1458 result of this function is limited to the availability of variable
1459 information in debug-function; for example, possibly debug-function only
1460 knows about its arguments."
1461 (let ((vars (ambiguous-debug-vars debug-function (symbol-name symbol)))
1462 (package (and (symbol-package symbol)
1463 (package-name (symbol-package symbol)))))
1464 (delete-if (if (stringp package)
1466 (let ((p (debug-var-package-name var)))
1467 (or (not (stringp p))
1468 (string/= p package))))
1470 (stringp (debug-var-package-name var))))
1473 (defun ambiguous-debug-vars (debug-function name-prefix-string)
1474 "Returns a list of debug-vars in debug-function whose names contain
1475 name-prefix-string as an intial substring. The result of this function is
1476 limited to the availability of variable information in debug-function; for
1477 example, possibly debug-function only knows about its arguments."
1478 (declare (simple-string name-prefix-string))
1479 (let ((variables (debug-function-debug-vars debug-function)))
1480 (declare (type (or null simple-vector) variables))
1482 (let* ((len (length variables))
1483 (prefix-len (length name-prefix-string))
1484 (pos (find-variable name-prefix-string variables len))
1487 ;; Find names from pos to variable's len that contain prefix.
1488 (do ((i pos (1+ i)))
1490 (let* ((var (svref variables i))
1491 (name (debug-var-symbol-name var))
1492 (name-len (length name)))
1493 (declare (simple-string name))
1494 (when (/= (or (string/= name-prefix-string name
1495 :end1 prefix-len :end2 name-len)
1500 (setq res (nreverse res)))
1503 ;;; This returns a position in variables for one containing name as an
1504 ;;; initial substring. End is the length of variables if supplied.
1505 (defun find-variable (name variables &optional end)
1506 (declare (simple-vector variables)
1507 (simple-string name))
1508 (let ((name-len (length name)))
1509 (position name variables
1510 :test #'(lambda (x y)
1511 (let* ((y (debug-var-symbol-name y))
1513 (declare (simple-string y))
1514 (and (>= y-len name-len)
1515 (string= x y :end1 name-len :end2 name-len))))
1516 :end (or end (length variables)))))
1518 (defun debug-function-lambda-list (debug-function)
1520 "Returns a list representing the lambda-list for debug-function. The list
1521 has the following structure:
1522 (required-var1 required-var2
1524 (:optional var3 suppliedp-var4)
1527 (:rest var6) (:rest var7)
1529 (:keyword keyword-symbol var8 suppliedp-var9)
1530 (:keyword keyword-symbol var10)
1533 Each VARi is a DEBUG-VAR; however it may be the symbol :deleted it
1534 is unreferenced in debug-function. This signals a lambda-list-unavailable
1535 condition when there is no argument list information."
1536 (etypecase debug-function
1537 (compiled-debug-function
1538 (compiled-debug-function-lambda-list debug-function))
1539 (interpreted-debug-function
1540 (interpreted-debug-function-lambda-list debug-function))
1541 (bogus-debug-function
1544 ;;; The hard part is when the lambda-list is unparsed. If it is
1545 ;;; unparsed, and all the arguments are required, this is still pretty
1546 ;;; easy; just whip the appropriate DEBUG-VARs into a list. Otherwise,
1547 ;;; we have to pick out the funny arguments including any suppliedp
1548 ;;; variables. In this situation, the ir1-lambda is an external entry
1549 ;;; point that takes arguments users really pass in. It looks at those
1550 ;;; and computes defaults and suppliedp variables, ultimately passing
1551 ;;; everything defined as a a parameter to the real function as final
1552 ;;; arguments. If this has to compute the lambda list, it caches it in
1554 (defun interpreted-debug-function-lambda-list (debug-function)
1555 (let ((lambda-list (debug-function-%lambda-list debug-function))
1556 (debug-vars (debug-function-debug-vars debug-function))
1557 (ir1-lambda (interpreted-debug-function-ir1-lambda debug-function))
1559 (if (eq lambda-list :unparsed)
1560 (flet ((frob (v debug-vars)
1561 (if (sb!c::lambda-var-refs v)
1563 :key #'interpreted-debug-var-ir1-var)
1565 (let ((xep-args (sb!c::lambda-optional-dispatch ir1-lambda)))
1567 (eq (sb!c::optional-dispatch-main-entry xep-args)
1569 ;; There are rest, optional, keyword, and suppliedp vars.
1570 (let ((final-args (sb!c::lambda-vars ir1-lambda)))
1571 (dolist (xep-arg (sb!c::optional-dispatch-arglist xep-args))
1572 (let ((info (sb!c::lambda-var-arg-info xep-arg))
1573 (final-arg (pop final-args)))
1575 (case (sb!c::arg-info-kind info)
1577 (push (frob final-arg debug-vars) res))
1579 (push (list :keyword
1580 (sb!c::arg-info-keyword info)
1581 (frob final-arg debug-vars))
1584 (push (list :rest (frob final-arg debug-vars))
1587 (push (list :optional
1588 (frob final-arg debug-vars))
1590 (when (sb!c::arg-info-supplied-p info)
1593 (list (frob (pop final-args) debug-vars)))))
1595 (push (frob final-arg debug-vars) res)))))
1596 (setf (debug-function-%lambda-list debug-function)
1598 ;; All required args, so return them in a list.
1599 (dolist (v (sb!c::lambda-vars ir1-lambda)
1600 (setf (debug-function-%lambda-list debug-function)
1602 (push (frob v debug-vars) res)))))
1603 ;; Everything's unparsed and cached, so return it.
1606 ;;; If this has to compute the lambda list, it caches it in debug-function.
1607 (defun compiled-debug-function-lambda-list (debug-function)
1608 (let ((lambda-list (debug-function-%lambda-list debug-function)))
1609 (cond ((eq lambda-list :unparsed)
1610 (multiple-value-bind (args argsp)
1611 (parse-compiled-debug-function-lambda-list debug-function)
1612 (setf (debug-function-%lambda-list debug-function) args)
1615 (debug-signal 'lambda-list-unavailable
1616 :debug-function debug-function))))
1618 ((bogus-debug-function-p debug-function)
1620 ((sb!c::compiled-debug-function-arguments
1621 (compiled-debug-function-compiler-debug-fun
1623 ;; If the packed information is there (whether empty or not) as
1624 ;; opposed to being nil, then returned our cached value (nil).
1627 ;; Our cached value is nil, and the packed lambda-list information
1628 ;; is nil, so we don't have anything available.
1629 (debug-signal 'lambda-list-unavailable
1630 :debug-function debug-function)))))
1632 ;;; COMPILED-DEBUG-FUNCTION-LAMBDA-LIST calls this when a
1633 ;;; compiled-debug-function has no lambda-list information cached. It
1634 ;;; returns the lambda-list as the first value and whether there was
1635 ;;; any argument information as the second value. Therefore, nil and t
1636 ;;; means there were no arguments, but nil and nil means there was no
1637 ;;; argument information.
1638 (defun parse-compiled-debug-function-lambda-list (debug-function)
1639 (let ((args (sb!c::compiled-debug-function-arguments
1640 (compiled-debug-function-compiler-debug-fun
1646 (values (coerce (debug-function-debug-vars debug-function) 'list)
1649 (let ((vars (debug-function-debug-vars debug-function))
1654 (declare (type (or null simple-vector) vars))
1656 (when (>= i len) (return))
1657 (let ((ele (aref args i)))
1662 ;; Deleted required arg at beginning of args array.
1663 (push :deleted res))
1664 (sb!c::optional-args
1667 ;; SUPPLIED-P var immediately following keyword or
1668 ;; optional. Stick the extra var in the result
1669 ;; element representing the keyword or optional,
1670 ;; which is the previous one.
1672 (list (compiled-debug-function-lambda-list-var
1673 args (incf i) vars))))
1676 (compiled-debug-function-lambda-list-var
1677 args (incf i) vars))
1680 ;; Just ignore the fact that the next two args are
1681 ;; the more arg context and count, and act like they
1682 ;; are regular arguments.
1686 (push (list :keyword
1688 (compiled-debug-function-lambda-list-var
1689 args (incf i) vars))
1692 ;; We saw an optional marker, so the following
1693 ;; non-symbols are indexes indicating optional
1695 (push (list :optional (svref vars ele)) res))
1697 ;; Required arg at beginning of args array.
1698 (push (svref vars ele) res))))
1700 (values (nreverse res) t))))))
1702 ;;; This is used in COMPILED-DEBUG-FUNCTION-LAMBDA-LIST.
1703 (defun compiled-debug-function-lambda-list-var (args i vars)
1704 (declare (type (simple-array * (*)) args)
1705 (simple-vector vars))
1706 (let ((ele (aref args i)))
1707 (cond ((not (symbolp ele)) (svref vars ele))
1708 ((eq ele 'sb!c::deleted) :deleted)
1709 (t (error "malformed arguments description")))))
1711 (defun compiled-debug-function-debug-info (debug-fun)
1712 (%code-debug-info (compiled-debug-function-component debug-fun)))
1714 ;;;; unpacking variable and basic block data
1716 (defvar *parsing-buffer*
1717 (make-array 20 :adjustable t :fill-pointer t))
1718 (defvar *other-parsing-buffer*
1719 (make-array 20 :adjustable t :fill-pointer t))
1720 ;;; PARSE-DEBUG-BLOCKS, PARSE-DEBUG-VARS and UNCOMPACT-FUNCTION-MAP
1721 ;;; use this to unpack binary encoded information. It returns the
1722 ;;; values returned by the last form in body.
1724 ;;; This binds buffer-var to *parsing-buffer*, makes sure it starts at
1725 ;;; element zero, and makes sure if we unwind, we nil out any set
1726 ;;; elements for GC purposes.
1728 ;;; This also binds other-var to *other-parsing-buffer* when it is
1729 ;;; supplied, making sure it starts at element zero and that we nil
1730 ;;; out any elements if we unwind.
1732 ;;; This defines the local macro RESULT that takes a buffer, copies
1733 ;;; its elements to a resulting simple-vector, nil's out elements, and
1734 ;;; restarts the buffer at element zero. RESULT returns the
1736 (eval-when (:compile-toplevel :execute)
1737 (sb!xc:defmacro with-parsing-buffer ((buffer-var &optional other-var)
1739 (let ((len (gensym))
1742 (let ((,buffer-var *parsing-buffer*)
1743 ,@(if other-var `((,other-var *other-parsing-buffer*))))
1744 (setf (fill-pointer ,buffer-var) 0)
1745 ,@(if other-var `((setf (fill-pointer ,other-var) 0)))
1746 (macrolet ((result (buf)
1747 `(let* ((,',len (length ,buf))
1748 (,',res (make-array ,',len)))
1749 (replace ,',res ,buf :end1 ,',len :end2 ,',len)
1750 (fill ,buf nil :end ,',len)
1751 (setf (fill-pointer ,buf) 0)
1754 (fill *parsing-buffer* nil)
1755 ,@(if other-var `((fill *other-parsing-buffer* nil))))))
1758 ;;; The argument is a debug internals structure. This returns the
1759 ;;; debug-blocks for debug-function, regardless of whether we have
1760 ;;; unpacked them yet. It signals a no-debug-blocks condition if it
1761 ;;; can't return the blocks.
1762 (defun debug-function-debug-blocks (debug-function)
1763 (let ((blocks (debug-function-blocks debug-function)))
1764 (cond ((eq blocks :unparsed)
1765 (setf (debug-function-blocks debug-function)
1766 (parse-debug-blocks debug-function))
1767 (unless (debug-function-blocks debug-function)
1768 (debug-signal 'no-debug-blocks
1769 :debug-function debug-function))
1770 (debug-function-blocks debug-function))
1773 (debug-signal 'no-debug-blocks
1774 :debug-function debug-function)))))
1776 ;;; This returns a simple-vector of debug-blocks or nil. NIL indicates
1777 ;;; there was no basic block information.
1778 (defun parse-debug-blocks (debug-function)
1779 (etypecase debug-function
1780 (compiled-debug-function
1781 (parse-compiled-debug-blocks debug-function))
1782 (bogus-debug-function
1783 (debug-signal 'no-debug-blocks :debug-function debug-function))
1784 (interpreted-debug-function
1785 (parse-interpreted-debug-blocks debug-function))))
1787 ;;; This does some of the work of PARSE-DEBUG-BLOCKS.
1788 (defun parse-compiled-debug-blocks (debug-function)
1789 (let* ((debug-fun (compiled-debug-function-compiler-debug-fun
1791 (var-count (length (debug-function-debug-vars debug-function)))
1792 (blocks (sb!c::compiled-debug-function-blocks debug-fun))
1793 ;; KLUDGE: 8 is a hard-wired constant in the compiler for the
1794 ;; element size of the packed binary representation of the
1796 (live-set-len (ceiling var-count 8))
1797 (tlf-number (sb!c::compiled-debug-function-tlf-number debug-fun)))
1798 (unless blocks (return-from parse-compiled-debug-blocks nil))
1799 (macrolet ((aref+ (a i) `(prog1 (aref ,a ,i) (incf ,i))))
1800 (with-parsing-buffer (blocks-buffer locations-buffer)
1802 (len (length blocks))
1805 (when (>= i len) (return))
1806 (let ((succ-and-flags (aref+ blocks i))
1808 (declare (type (unsigned-byte 8) succ-and-flags)
1810 (dotimes (k (ldb sb!c::compiled-debug-block-nsucc-byte
1812 (push (sb!c::read-var-integer blocks i) successors))
1814 (dotimes (k (sb!c::read-var-integer blocks i)
1815 (result locations-buffer))
1816 (let ((kind (svref sb!c::*compiled-code-location-kinds*
1819 (sb!c::read-var-integer blocks i)))
1820 (tlf-offset (or tlf-number
1821 (sb!c::read-var-integer blocks
1823 (form-number (sb!c::read-var-integer blocks i))
1824 (live-set (sb!c::read-packed-bit-vector
1825 live-set-len blocks i)))
1826 (vector-push-extend (make-known-code-location
1827 pc debug-function tlf-offset
1828 form-number live-set kind)
1830 (setf last-pc pc))))
1831 (block (make-compiled-debug-block
1832 locations successors
1834 sb!c::compiled-debug-block-elsewhere-p
1835 succ-and-flags))))))
1836 (vector-push-extend block blocks-buffer)
1837 (dotimes (k (length locations))
1838 (setf (code-location-%debug-block (svref locations k))
1840 (let ((res (result blocks-buffer)))
1841 (declare (simple-vector res))
1842 (dotimes (i (length res))
1843 (let* ((block (svref res i))
1845 (dolist (ele (debug-block-successors block))
1846 (push (svref res ele) succs))
1847 (setf (debug-block-successors block) succs)))
1850 ;;; This does some of the work of PARSE-DEBUG-BLOCKS.
1851 (defun parse-interpreted-debug-blocks (debug-function)
1852 (let ((ir1-lambda (interpreted-debug-function-ir1-lambda debug-function)))
1853 (with-parsing-buffer (buffer)
1854 (sb!c::do-blocks (block (sb!c::block-component
1855 (sb!c::node-block (sb!c::lambda-bind
1857 (when (eq ir1-lambda (sb!c::block-home-lambda block))
1858 (vector-push-extend (make-interpreted-debug-block block) buffer)))
1861 ;;; The argument is a debug internals structure. This returns nil if
1862 ;;; there is no variable information. It returns an empty
1863 ;;; simple-vector if there were no locals in the function. Otherwise
1864 ;;; it returns a simple-vector of DEBUG-VARs.
1865 (defun debug-function-debug-vars (debug-function)
1866 (let ((vars (debug-function-%debug-vars debug-function)))
1867 (if (eq vars :unparsed)
1868 (setf (debug-function-%debug-vars debug-function)
1869 (etypecase debug-function
1870 (compiled-debug-function
1871 (parse-compiled-debug-vars debug-function))
1872 (bogus-debug-function nil)
1873 (interpreted-debug-function
1874 (parse-interpreted-debug-vars debug-function))))
1877 ;;; This grabs all the variables from DEBUG-FUN's ir1-lambda, from the
1878 ;;; IR1 lambda vars, and all of its LET's. Each LET is an IR1 lambda.
1879 ;;; For each variable, we make an INTERPRETED-DEBUG-VAR. We then SORT
1880 ;;; all the variables by name. Then we go through, and for any
1881 ;;; duplicated names we distinguish the INTERPRETED-DEBUG-VARs by
1882 ;;; setting their id slots to a distinct number.
1883 (defun parse-interpreted-debug-vars (debug-fun)
1884 (let* ((ir1-lambda (interpreted-debug-function-ir1-lambda debug-fun))
1885 (vars (flet ((frob (ir1-lambda buf)
1886 (dolist (v (sb!c::lambda-vars ir1-lambda))
1888 (let* ((id (sb!c::leaf-name v)))
1889 (make-interpreted-debug-var id v))
1891 (with-parsing-buffer (buf)
1892 (frob ir1-lambda buf)
1893 (dolist (let-lambda (sb!c::lambda-lets ir1-lambda))
1894 (frob let-lambda buf))
1896 (declare (simple-vector vars))
1897 (sort vars #'string< :key #'debug-var-symbol-name)
1898 (let ((len (length vars)))
1904 (let* ((var-i (svref vars i))
1905 (var-j (svref vars j))
1906 (name (debug-var-symbol-name var-i)))
1907 (when (string= name (debug-var-symbol-name var-j))
1910 (setf (debug-var-id var-j) count)
1911 (when (= (incf j) len) (return-from PUNT))
1912 (setf var-j (svref vars j))
1913 (when (string/= name (debug-var-symbol-name var-j))
1918 (when (= j len) (return))))))))
1921 ;;; Vars is the parsed variables for a minimal debug function. We need to
1922 ;;; assign names of the form ARG-NNN. We must pad with leading zeros, since
1923 ;;; the arguments must be in alphabetical order.
1924 (defun assign-minimal-var-names (vars)
1925 (declare (simple-vector vars))
1926 (let* ((len (length vars))
1927 (width (length (format nil "~D" (1- len)))))
1929 (setf (compiled-debug-var-symbol (svref vars i))
1930 (intern (format nil "ARG-~V,'0D" width i)
1931 ;; KLUDGE: It's somewhat nasty to have a bare
1932 ;; package name string here. It would probably be
1933 ;; better to have #.(FIND-PACKAGE "SB!DEBUG")
1934 ;; instead, since then at least it would transform
1935 ;; correctly under package renaming and stuff.
1936 ;; However, genesis can't handle dumped packages..
1939 ;; FIXME: Maybe this could be fixed by moving the
1940 ;; whole debug-int.lisp file to warm init? (after
1941 ;; which dumping a #.(FIND-PACKAGE ..) expression
1942 ;; would work fine) If this is possible, it would
1943 ;; probably be a good thing, since minimizing the
1944 ;; amount of stuff in cold init is basically good.
1947 ;;; Parse the packed representation of DEBUG-VARs from
1948 ;;; DEBUG-FUNCTION's SB!C::COMPILED-DEBUG-FUNCTION, returning a vector
1949 ;;; of DEBUG-VARs, or NIL if there was no information to parse.
1950 (defun parse-compiled-debug-vars (debug-function)
1951 (let* ((cdebug-fun (compiled-debug-function-compiler-debug-fun debug-function))
1952 (packed-vars (sb!c::compiled-debug-function-variables cdebug-fun))
1953 (args-minimal (eq (sb!c::compiled-debug-function-arguments cdebug-fun)
1957 (buffer (make-array 0 :fill-pointer 0 :adjustable t)))
1958 ((>= i (length packed-vars))
1959 (let ((result (coerce buffer 'simple-vector)))
1961 (assign-minimal-var-names result))
1963 (flet ((geti () (prog1 (aref packed-vars i) (incf i))))
1964 (let* ((flags (geti))
1965 (minimal (logtest sb!c::compiled-debug-var-minimal-p flags))
1966 (deleted (logtest sb!c::compiled-debug-var-deleted-p flags))
1967 (live (logtest sb!c::compiled-debug-var-environment-live flags))
1968 (save (logtest sb!c::compiled-debug-var-save-loc-p flags))
1969 (symbol (if minimal nil (geti)))
1970 (id (if (logtest sb!c::compiled-debug-var-id-p flags)
1973 (sc-offset (if deleted 0 (geti)))
1974 (save-sc-offset (if save (geti) nil)))
1975 (assert (not (and args-minimal (not minimal))))
1976 (vector-push-extend (make-compiled-debug-var symbol
1983 ;;;; unpacking minimal debug functions
1985 (eval-when (:compile-toplevel :execute)
1987 ;;; sleazoid "macro" to keep our indentation sane in UNCOMPACT-FUNCTION-MAP
1988 (sb!xc:defmacro make-uncompacted-debug-fun ()
1989 '(sb!c::make-compiled-debug-function
1991 (let ((base (ecase (ldb sb!c::minimal-debug-function-name-style-byte
1993 (#.sb!c::minimal-debug-function-name-symbol
1994 (intern (sb!c::read-var-string map i)
1995 (sb!c::compiled-debug-info-package info)))
1996 (#.sb!c::minimal-debug-function-name-packaged
1997 (let ((pkg (sb!c::read-var-string map i)))
1998 (intern (sb!c::read-var-string map i) pkg)))
1999 (#.sb!c::minimal-debug-function-name-uninterned
2000 (make-symbol (sb!c::read-var-string map i)))
2001 (#.sb!c::minimal-debug-function-name-component
2002 (sb!c::compiled-debug-info-name info)))))
2003 (if (logtest flags sb!c::minimal-debug-function-setf-bit)
2006 :kind (svref sb!c::*minimal-debug-function-kinds*
2007 (ldb sb!c::minimal-debug-function-kind-byte options))
2010 (let ((len (sb!c::read-var-integer map i)))
2011 (prog1 (subseq map i (+ i len))
2013 :arguments (when vars-p :minimal)
2015 (ecase (ldb sb!c::minimal-debug-function-returns-byte options)
2016 (#.sb!c::minimal-debug-function-returns-standard
2018 (#.sb!c::minimal-debug-function-returns-fixed
2020 (#.sb!c::minimal-debug-function-returns-specified
2021 (with-parsing-buffer (buf)
2022 (dotimes (idx (sb!c::read-var-integer map i))
2023 (vector-push-extend (sb!c::read-var-integer map i) buf))
2025 :return-pc (sb!c::read-var-integer map i)
2026 :old-fp (sb!c::read-var-integer map i)
2027 :nfp (when (logtest flags sb!c::minimal-debug-function-nfp-bit)
2028 (sb!c::read-var-integer map i))
2031 (setq code-start-pc (+ code-start-pc (sb!c::read-var-integer map i)))
2032 (+ code-start-pc (sb!c::read-var-integer map i)))
2034 (setq elsewhere-pc (+ elsewhere-pc (sb!c::read-var-integer map i)))))
2038 ;;; Return a normal function map derived from a minimal debug info
2039 ;;; function map. This involves looping parsing
2040 ;;; minimal-debug-functions and then building a vector out of them.
2042 ;;; FIXME: This and its helper macro just above become dead code now
2043 ;;; that we no longer use compacted function maps.
2044 (defun uncompact-function-map (info)
2045 (declare (type sb!c::compiled-debug-info info))
2047 ;; (This is stubified until we solve the problem of representing
2048 ;; debug information in a way which plays nicely with package renaming.)
2049 (error "FIXME: dead code UNCOMPACT-FUNCTION-MAP (was stub)")
2051 (let* ((map (sb!c::compiled-debug-info-function-map info))
2056 (declare (type (simple-array (unsigned-byte 8) (*)) map))
2057 (sb!int:collect ((res))
2059 (when (= i len) (return))
2060 (let* ((options (prog1 (aref map i) (incf i)))
2061 (flags (prog1 (aref map i) (incf i)))
2062 (vars-p (logtest flags
2063 sb!c::minimal-debug-function-variables-bit))
2064 (dfun (make-uncompacted-debug-fun)))
2068 (coerce (cdr (res)) 'simple-vector))))
2070 ;;; a map from minimal DEBUG-INFO function maps to unpacked
2071 ;;; versions thereof
2072 (defvar *uncompacted-function-maps* (make-hash-table :test 'eq))
2074 ;;; Return a FUNCTION-MAP for a given COMPILED-DEBUG-info object. If
2075 ;;; the info is minimal, and has not been parsed, then parse it.
2077 ;;; FIXME: Now that we no longer use the MINIMAL-DEBUG-FUNCTION
2078 ;;; representation, calls to this function can be replaced by calls to
2079 ;;; the bare COMPILED-DEBUG-INFO-FUNCTION-MAP slot accessor function,
2080 ;;; and this function and everything it calls become dead code which
2082 (defun get-debug-info-function-map (info)
2083 (declare (type sb!c::compiled-debug-info info))
2084 (let ((map (sb!c::compiled-debug-info-function-map info)))
2085 (if (simple-vector-p map)
2087 (or (gethash map *uncompacted-function-maps*)
2088 (setf (gethash map *uncompacted-function-maps*)
2089 (uncompact-function-map info))))))
2093 ;;; If we're sure of whether code-location is known, return T or NIL.
2094 ;;; If we're :UNSURE, then try to fill in the code-location's slots.
2095 ;;; This determines whether there is any debug-block information, and
2096 ;;; if code-location is known.
2098 ;;; ??? IF this conses closures every time it's called, then break off the
2099 ;;; :UNSURE part to get the HANDLER-CASE into another function.
2100 (defun code-location-unknown-p (basic-code-location)
2101 (ecase (code-location-%unknown-p basic-code-location)
2105 (setf (code-location-%unknown-p basic-code-location)
2106 (handler-case (not (fill-in-code-location basic-code-location))
2107 (no-debug-blocks () t))))))
2109 ;;; Return the DEBUG-BLOCK containing code-location if it is available.
2110 ;;; Some debug policies inhibit debug-block information, and if none
2111 ;;; is available, then this signals a NO-DEBUG-BLOCKS condition.
2112 (defun code-location-debug-block (basic-code-location)
2113 (let ((block (code-location-%debug-block basic-code-location)))
2114 (if (eq block :unparsed)
2115 (etypecase basic-code-location
2116 (compiled-code-location
2117 (compute-compiled-code-location-debug-block basic-code-location))
2118 (interpreted-code-location
2119 (setf (code-location-%debug-block basic-code-location)
2120 (make-interpreted-debug-block
2122 (interpreted-code-location-ir1-node basic-code-location))))))
2125 ;;; Store and return BASIC-CODE-LOCATION's debug-block. We determines
2126 ;;; the correct one using the code-location's pc. We use
2127 ;;; DEBUG-FUNCTION-DEBUG-BLOCKS to return the cached block information
2128 ;;; or signal a NO-DEBUG-BLOCKS condition. The blocks are sorted by
2129 ;;; their first code-location's pc, in ascending order. Therefore, as
2130 ;;; soon as we find a block that starts with a pc greater than
2131 ;;; basic-code-location's pc, we know the previous block contains the
2132 ;;; pc. If we get to the last block, then the code-location is either
2133 ;;; in the second to last block or the last block, and we have to be
2134 ;;; careful in determining this since the last block could be code at
2135 ;;; the end of the function. We have to check for the last block being
2136 ;;; code first in order to see how to compare the code-location's pc.
2137 (defun compute-compiled-code-location-debug-block (basic-code-location)
2138 (let* ((pc (compiled-code-location-pc basic-code-location))
2139 (debug-function (code-location-debug-function
2140 basic-code-location))
2141 (blocks (debug-function-debug-blocks debug-function))
2142 (len (length blocks)))
2143 (declare (simple-vector blocks))
2144 (setf (code-location-%debug-block basic-code-location)
2150 (let ((last (svref blocks end)))
2152 ((debug-block-elsewhere-p last)
2154 (sb!c::compiled-debug-function-elsewhere-pc
2155 (compiled-debug-function-compiler-debug-fun
2157 (svref blocks (1- end))
2160 (compiled-code-location-pc
2161 (svref (compiled-debug-block-code-locations last)
2163 (svref blocks (1- end)))
2165 (declare (type sb!c::index i end))
2167 (compiled-code-location-pc
2168 (svref (compiled-debug-block-code-locations
2171 (return (svref blocks (1- i)))))))))
2173 (defun code-location-debug-source (code-location)
2175 "Returns the code-location's debug-source."
2176 (etypecase code-location
2177 (compiled-code-location
2178 (let* ((info (compiled-debug-function-debug-info
2179 (code-location-debug-function code-location)))
2180 (sources (sb!c::compiled-debug-info-source info))
2181 (len (length sources)))
2182 (declare (list sources))
2184 (debug-signal 'no-debug-blocks :debug-function
2185 (code-location-debug-function code-location)))
2188 (do ((prev sources src)
2189 (src (cdr sources) (cdr src))
2190 (offset (code-location-top-level-form-offset code-location)))
2191 ((null src) (car prev))
2192 (when (< offset (sb!c::debug-source-source-root (car src)))
2193 (return (car prev)))))))
2194 (interpreted-code-location
2196 (let ((sb!c::*lexenv* (make-null-lexenv)))
2197 (sb!c::debug-source-for-info
2198 (sb!c::component-source-info
2199 (sb!c::block-component
2201 (interpreted-code-location-ir1-node code-location))))))))))
2203 (defun code-location-top-level-form-offset (code-location)
2205 "Returns the number of top-level forms before the one containing
2206 code-location as seen by the compiler in some compilation unit. A
2207 compilation unit is not necessarily a single file, see the section on
2209 (when (code-location-unknown-p code-location)
2210 (error 'unknown-code-location :code-location code-location))
2211 (let ((tlf-offset (code-location-%tlf-offset code-location)))
2212 (cond ((eq tlf-offset :unparsed)
2213 (etypecase code-location
2214 (compiled-code-location
2215 (unless (fill-in-code-location code-location)
2216 ;; This check should be unnecessary. We're missing
2217 ;; debug info the compiler should have dumped.
2218 (error "internal error: unknown code location"))
2219 (code-location-%tlf-offset code-location))
2220 (interpreted-code-location
2221 (setf (code-location-%tlf-offset code-location)
2222 (sb!c::source-path-tlf-number
2223 (sb!c::node-source-path
2224 (interpreted-code-location-ir1-node code-location)))))))
2227 (defun code-location-form-number (code-location)
2229 "Returns the number of the form corresponding to code-location. The form
2230 number is derived by a walking the subforms of a top-level form in
2232 (when (code-location-unknown-p code-location)
2233 (error 'unknown-code-location :code-location code-location))
2234 (let ((form-num (code-location-%form-number code-location)))
2235 (cond ((eq form-num :unparsed)
2236 (etypecase code-location
2237 (compiled-code-location
2238 (unless (fill-in-code-location code-location)
2239 ;; This check should be unnecessary. We're missing
2240 ;; debug info the compiler should have dumped.
2241 (error "internal error: unknown code location"))
2242 (code-location-%form-number code-location))
2243 (interpreted-code-location
2244 (setf (code-location-%form-number code-location)
2245 (sb!c::source-path-form-number
2246 (sb!c::node-source-path
2247 (interpreted-code-location-ir1-node code-location)))))))
2250 (defun code-location-kind (code-location)
2252 "Return the kind of CODE-LOCATION, one of:
2253 :interpreted, :unknown-return, :known-return, :internal-error,
2254 :non-local-exit, :block-start, :call-site, :single-value-return,
2256 (when (code-location-unknown-p code-location)
2257 (error 'unknown-code-location :code-location code-location))
2258 (etypecase code-location
2259 (compiled-code-location
2260 (let ((kind (compiled-code-location-kind code-location)))
2261 (cond ((not (eq kind :unparsed)) kind)
2262 ((not (fill-in-code-location code-location))
2263 ;; This check should be unnecessary. We're missing
2264 ;; debug info the compiler should have dumped.
2265 (error "internal error: unknown code location"))
2267 (compiled-code-location-kind code-location)))))
2268 (interpreted-code-location
2271 ;;; This returns CODE-LOCATION's live-set if it is available. If
2272 ;;; there is no debug-block information, this returns NIL.
2273 (defun compiled-code-location-live-set (code-location)
2274 (if (code-location-unknown-p code-location)
2276 (let ((live-set (compiled-code-location-%live-set code-location)))
2277 (cond ((eq live-set :unparsed)
2278 (unless (fill-in-code-location code-location)
2279 ;; This check should be unnecessary. We're missing
2280 ;; debug info the compiler should have dumped.
2282 ;; FIXME: This error and comment happen over and over again.
2283 ;; Make them a shared function.
2284 (error "internal error: unknown code location"))
2285 (compiled-code-location-%live-set code-location))
2288 ;;; true if OBJ1 and OBJ2 are the same place in the code
2289 (defun code-location= (obj1 obj2)
2291 (compiled-code-location
2293 (compiled-code-location
2294 (and (eq (code-location-debug-function obj1)
2295 (code-location-debug-function obj2))
2296 (sub-compiled-code-location= obj1 obj2)))
2297 (interpreted-code-location
2299 (interpreted-code-location
2301 (compiled-code-location
2303 (interpreted-code-location
2304 (eq (interpreted-code-location-ir1-node obj1)
2305 (interpreted-code-location-ir1-node obj2)))))))
2306 (defun sub-compiled-code-location= (obj1 obj2)
2307 (= (compiled-code-location-pc obj1)
2308 (compiled-code-location-pc obj2)))
2310 ;;; Fill in CODE-LOCATION's :UNPARSED slots, returning T or NIL
2311 ;;; depending on whether the code-location was known in its
2312 ;;; debug-function's debug-block information. This may signal a
2313 ;;; NO-DEBUG-BLOCKS condition due to DEBUG-FUNCTION-DEBUG-BLOCKS, and
2314 ;;; it assumes the %UNKNOWN-P slot is already set or going to be set.
2315 (defun fill-in-code-location (code-location)
2316 (declare (type compiled-code-location code-location))
2317 (let* ((debug-function (code-location-debug-function code-location))
2318 (blocks (debug-function-debug-blocks debug-function)))
2319 (declare (simple-vector blocks))
2320 (dotimes (i (length blocks) nil)
2321 (let* ((block (svref blocks i))
2322 (locations (compiled-debug-block-code-locations block)))
2323 (declare (simple-vector locations))
2324 (dotimes (j (length locations))
2325 (let ((loc (svref locations j)))
2326 (when (sub-compiled-code-location= code-location loc)
2327 (setf (code-location-%debug-block code-location) block)
2328 (setf (code-location-%tlf-offset code-location)
2329 (code-location-%tlf-offset loc))
2330 (setf (code-location-%form-number code-location)
2331 (code-location-%form-number loc))
2332 (setf (compiled-code-location-%live-set code-location)
2333 (compiled-code-location-%live-set loc))
2334 (setf (compiled-code-location-kind code-location)
2335 (compiled-code-location-kind loc))
2336 (return-from fill-in-code-location t))))))))
2338 ;;;; operations on DEBUG-BLOCKs
2340 (defmacro do-debug-block-locations ((code-var debug-block &optional return)
2343 "Executes forms in a context with code-var bound to each code-location in
2344 debug-block. This returns the value of executing result (defaults to nil)."
2345 (let ((code-locations (gensym))
2347 `(let ((,code-locations (debug-block-code-locations ,debug-block)))
2348 (declare (simple-vector ,code-locations))
2349 (dotimes (,i (length ,code-locations) ,return)
2350 (let ((,code-var (svref ,code-locations ,i)))
2353 (defun debug-block-function-name (debug-block)
2355 "Returns the name of the function represented by debug-function. This may
2356 be a string or a cons; do not assume it is a symbol."
2357 (etypecase debug-block
2358 (compiled-debug-block
2359 (let ((code-locs (compiled-debug-block-code-locations debug-block)))
2360 (declare (simple-vector code-locs))
2361 (if (zerop (length code-locs))
2362 "??? Can't get name of debug-block's function."
2363 (debug-function-name
2364 (code-location-debug-function (svref code-locs 0))))))
2365 (interpreted-debug-block
2366 (sb!c::lambda-name (sb!c::block-home-lambda
2367 (interpreted-debug-block-ir1-block debug-block))))))
2369 (defun debug-block-code-locations (debug-block)
2370 (etypecase debug-block
2371 (compiled-debug-block
2372 (compiled-debug-block-code-locations debug-block))
2373 (interpreted-debug-block
2374 (interpreted-debug-block-code-locations debug-block))))
2376 (defun interpreted-debug-block-code-locations (debug-block)
2377 (let ((code-locs (interpreted-debug-block-locations debug-block)))
2378 (if (eq code-locs :unparsed)
2379 (with-parsing-buffer (buf)
2380 (sb!c::do-nodes (node cont (interpreted-debug-block-ir1-block
2382 (vector-push-extend (make-interpreted-code-location
2384 (make-interpreted-debug-function
2385 (sb!c::block-home-lambda (sb!c::node-block
2388 (setf (interpreted-debug-block-locations debug-block)
2392 ;;;; operations on debug variables
2394 (defun debug-var-symbol-name (debug-var)
2395 (symbol-name (debug-var-symbol debug-var)))
2397 ;;; FIXME: Make sure that this isn't called anywhere that it wouldn't
2398 ;;; be acceptable to have NIL returned, or that it's only called on
2399 ;;; DEBUG-VARs whose symbols have non-NIL packages.
2400 (defun debug-var-package-name (debug-var)
2401 (package-name (symbol-package (debug-var-symbol debug-var))))
2403 (defun debug-var-valid-value (debug-var frame)
2405 "Returns the value stored for DEBUG-VAR in frame. If the value is not
2406 :valid, then this signals an invalid-value error."
2407 (unless (eq (debug-var-validity debug-var (frame-code-location frame))
2409 (error 'invalid-value :debug-var debug-var :frame frame))
2410 (debug-var-value debug-var frame))
2412 (defun debug-var-value (debug-var frame)
2414 "Returns the value stored for DEBUG-VAR in frame. The value may be
2415 invalid. This is SETF'able."
2416 (etypecase debug-var
2418 (check-type frame compiled-frame)
2419 (let ((res (access-compiled-debug-var-slot debug-var frame)))
2420 (if (indirect-value-cell-p res)
2421 (sb!c:value-cell-ref res)
2423 (interpreted-debug-var
2424 (check-type frame interpreted-frame)
2425 (sb!eval::leaf-value-lambda-var
2426 (interpreted-code-location-ir1-node (frame-code-location frame))
2427 (interpreted-debug-var-ir1-var debug-var)
2428 (frame-pointer frame)
2429 (interpreted-frame-closure frame)))))
2431 ;;; This returns what is stored for the variable represented by
2432 ;;; DEBUG-VAR relative to the FRAME. This may be an indirect value
2433 ;;; cell if the variable is both closed over and set.
2434 (defun access-compiled-debug-var-slot (debug-var frame)
2435 (let ((escaped (compiled-frame-escaped frame)))
2437 (sub-access-debug-var-slot
2438 (frame-pointer frame)
2439 (compiled-debug-var-sc-offset debug-var)
2441 (sub-access-debug-var-slot
2442 (frame-pointer frame)
2443 (or (compiled-debug-var-save-sc-offset debug-var)
2444 (compiled-debug-var-sc-offset debug-var))))))
2446 ;;; a helper function for working with possibly-invalid values:
2447 ;;; Do (MAKE-LISP-OBJ VAL) only if the value looks valid.
2449 ;;; (Such values can arise in registers on machines with conservative
2450 ;;; GC, and might also arise in debug variable locations when
2451 ;;; those variables are invalid.)
2452 (defun make-valid-lisp-obj (val)
2453 (/show0 "entering MAKE-VALID-LISP-OBJ, VAL=..")
2454 #!+sb-show (%primitive print (sb!impl::hexstr val))
2457 (zerop (logand val 3))
2459 (and (zerop (logand val #xffff0000)) ; Top bits zero
2460 (= (logand val #xff) sb!vm:base-char-type)) ; Char tag
2462 (= val sb!vm:unbound-marker-type)
2465 ;; Check that the pointer is valid. XXX Could do a better
2466 ;; job. FIXME: e.g. by calling out to an is_valid_pointer
2467 ;; routine in the C runtime support code
2468 (or (< sb!vm:read-only-space-start val
2469 (* sb!vm:*read-only-space-free-pointer*
2471 (< sb!vm:static-space-start val
2472 (* sb!vm:*static-space-free-pointer*
2474 (< sb!vm:dynamic-space-start val
2475 (sap-int (dynamic-space-free-pointer))))))
2480 ;;; (DEFUN SUB-ACCESS-DEBUG-VAR-SLOT (FP SC-OFFSET &OPTIONAL ESCAPED) ..)
2481 ;;; code for this case.
2483 (eval-when (:compile-toplevel :load-toplevel :execute)
2484 (error "hopelessly stale"))
2487 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2488 (declare (type system-area-pointer fp))
2489 (/show0 "entering SUB-ACCESS-DEBUG-VAR-SLOT, FP,SC-OFFSET,ESCAPED=..")
2490 #!+sb-show (%primitive print (sb!impl::hexstr fp))
2491 #!+sb-show (%primitive print (sb!impl::hexstr sc-offset))
2492 #!+sb-show (%primitive print (sb!impl::hexstr escaped))
2493 (macrolet ((with-escaped-value ((var) &body forms)
2495 (let ((,var (sb!vm:context-register
2497 (sb!c:sc-offset-offset sc-offset))))
2498 (/show0 "in escaped case, ,VAR value=..")
2499 #!+sb-show (%primitive print (sb!impl::hexstr ,var))
2501 :invalid-value-for-unescaped-register-storage))
2502 (escaped-float-value (format)
2504 (sb!vm:context-float-register
2505 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2506 :invalid-value-for-unescaped-register-storage))
2507 (escaped-complex-float-value (format)
2510 (sb!vm:context-float-register
2511 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2512 (sb!vm:context-float-register
2513 escaped (1+ (sb!c:sc-offset-offset sc-offset)) ',format))
2514 :invalid-value-for-unescaped-register-storage)))
2515 (ecase (sb!c:sc-offset-scn sc-offset)
2516 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2517 (/show0 "case of ANY-REG-SC-NUMBER or DESCRIPTOR-REG-SC-NUMBER")
2519 (with-escaped-value (val)
2521 #!+sb-show (%primitive print (sb!impl::hexstr val))
2522 (make-valid-lisp-obj val))))
2523 (#.sb!vm:base-char-reg-sc-number
2524 (/show0 "case of BASE-CHAR-REG-SC-NUMBER")
2525 (with-escaped-value (val)
2527 (#.sb!vm:sap-reg-sc-number
2528 (/show0 "case of SAP-REG-SC-NUMBER")
2529 (with-escaped-value (val)
2531 (#.sb!vm:signed-reg-sc-number
2532 (/show0 "case of SIGNED-REG-SC-NUMBER")
2533 (with-escaped-value (val)
2534 (if (logbitp (1- sb!vm:word-bits) val)
2535 (logior val (ash -1 sb!vm:word-bits))
2537 (#.sb!vm:unsigned-reg-sc-number
2538 (/show0 "case of UNSIGNED-REG-SC-NUMBER")
2539 (with-escaped-value (val)
2541 (#.sb!vm:single-reg-sc-number
2542 (/show0 "case of SINGLE-REG-SC-NUMBER")
2543 (escaped-float-value single-float))
2544 (#.sb!vm:double-reg-sc-number
2545 (/show0 "case of DOUBLE-REG-SC-NUMBER")
2546 (escaped-float-value double-float))
2548 (#.sb!vm:long-reg-sc-number
2549 (/show0 "case of LONG-REG-SC-NUMBER")
2550 (escaped-float-value long-float))
2551 (#.sb!vm:complex-single-reg-sc-number
2552 (/show0 "case of COMPLEX-SINGLE-REG-SC-NUMBER")
2553 (escaped-complex-float-value single-float))
2554 (#.sb!vm:complex-double-reg-sc-number
2555 (/show0 "case of COMPLEX-DOUBLE-REG-SC-NUMBER")
2556 (escaped-complex-float-value double-float))
2558 (#.sb!vm:complex-long-reg-sc-number
2559 (/show0 "case of COMPLEX-LONG-REG-SC-NUMBER")
2560 (escaped-complex-float-value long-float))
2561 (#.sb!vm:single-stack-sc-number
2562 (/show0 "case of SINGLE-STACK-SC-NUMBER")
2563 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2564 sb!vm:word-bytes))))
2565 (#.sb!vm:double-stack-sc-number
2566 (/show0 "case of DOUBLE-STACK-SC-NUMBER")
2567 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2568 sb!vm:word-bytes))))
2570 (#.sb!vm:long-stack-sc-number
2571 (/show0 "case of LONG-STACK-SC-NUMBER")
2572 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2573 sb!vm:word-bytes))))
2574 (#.sb!vm:complex-single-stack-sc-number
2575 (/show0 "case of COMPLEX-STACK-SC-NUMBER")
2577 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2579 (sap-ref-single fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2580 sb!vm:word-bytes)))))
2581 (#.sb!vm:complex-double-stack-sc-number
2582 (/show0 "case of COMPLEX-DOUBLE-STACK-SC-NUMBER")
2584 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2586 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2587 sb!vm:word-bytes)))))
2589 (#.sb!vm:complex-long-stack-sc-number
2590 (/show0 "case of COMPLEX-LONG-STACK-SC-NUMBER")
2592 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2594 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2595 sb!vm:word-bytes)))))
2596 (#.sb!vm:control-stack-sc-number
2597 (/show0 "case of CONTROL-STACK-SC-NUMBER")
2598 (stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2599 (#.sb!vm:base-char-stack-sc-number
2600 (/show0 "case of BASE-CHAR-STACK-SC-NUMBER")
2602 (sap-ref-32 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2603 sb!vm:word-bytes)))))
2604 (#.sb!vm:unsigned-stack-sc-number
2605 (/show0 "case of UNSIGNED-STACK-SC-NUMBER")
2606 (sap-ref-32 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2607 sb!vm:word-bytes))))
2608 (#.sb!vm:signed-stack-sc-number
2609 (/show0 "case of SIGNED-STACK-SC-NUMBER")
2610 (signed-sap-ref-32 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2611 sb!vm:word-bytes))))
2612 (#.sb!vm:sap-stack-sc-number
2613 (/show0 "case of SAP-STACK-SC-NUMBER")
2614 (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2615 sb!vm:word-bytes)))))))
2617 ;;; This stores value as the value of DEBUG-VAR in FRAME. In the
2618 ;;; COMPILED-DEBUG-VAR case, access the current value to determine if
2619 ;;; it is an indirect value cell. This occurs when the variable is
2620 ;;; both closed over and set. For INTERPRETED-DEBUG-VARs just call
2621 ;;; SB!EVAL::SET-LEAF-VALUE-LAMBDA-VAR with the right interpreter
2623 (defun %set-debug-var-value (debug-var frame value)
2624 (etypecase debug-var
2626 (check-type frame compiled-frame)
2627 (let ((current-value (access-compiled-debug-var-slot debug-var frame)))
2628 (if (indirect-value-cell-p current-value)
2629 (sb!c:value-cell-set current-value value)
2630 (set-compiled-debug-var-slot debug-var frame value))))
2631 (interpreted-debug-var
2632 (check-type frame interpreted-frame)
2633 (sb!eval::set-leaf-value-lambda-var
2634 (interpreted-code-location-ir1-node (frame-code-location frame))
2635 (interpreted-debug-var-ir1-var debug-var)
2636 (frame-pointer frame)
2637 (interpreted-frame-closure frame)
2641 ;;; This stores value for the variable represented by debug-var
2642 ;;; relative to the frame. This assumes the location directly contains
2643 ;;; the variable's value; that is, there is no indirect value cell
2644 ;;; currently there in case the variable is both closed over and set.
2645 (defun set-compiled-debug-var-slot (debug-var frame value)
2646 (let ((escaped (compiled-frame-escaped frame)))
2648 (sub-set-debug-var-slot (frame-pointer frame)
2649 (compiled-debug-var-sc-offset debug-var)
2651 (sub-set-debug-var-slot
2652 (frame-pointer frame)
2653 (or (compiled-debug-var-save-sc-offset debug-var)
2654 (compiled-debug-var-sc-offset debug-var))
2658 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2659 (macrolet ((set-escaped-value (val)
2661 (setf (sb!vm:context-register
2663 (sb!c:sc-offset-offset sc-offset))
2666 (set-escaped-float-value (format val)
2668 (setf (sb!vm:context-float-register
2670 (sb!c:sc-offset-offset sc-offset)
2674 (with-nfp ((var) &body body)
2675 `(let ((,var (if escaped
2677 (sb!vm:context-register escaped
2681 (* sb!vm::nfp-save-offset
2684 (%alpha::make-number-stack-pointer
2686 (* sb!vm::nfp-save-offset
2687 sb!vm:word-bytes))))))
2689 (ecase (sb!c:sc-offset-scn sc-offset)
2690 ((#.sb!vm:any-reg-sc-number
2691 #.sb!vm:descriptor-reg-sc-number
2692 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2695 (get-lisp-obj-address value))))
2696 (#.sb!vm:base-char-reg-sc-number
2697 (set-escaped-value (char-code value)))
2698 (#.sb!vm:sap-reg-sc-number
2699 (set-escaped-value (sap-int value)))
2700 (#.sb!vm:signed-reg-sc-number
2701 (set-escaped-value (logand value (1- (ash 1 sb!vm:word-bits)))))
2702 (#.sb!vm:unsigned-reg-sc-number
2703 (set-escaped-value value))
2704 (#.sb!vm:non-descriptor-reg-sc-number
2705 (error "Local non-descriptor register access?"))
2706 (#.sb!vm:interior-reg-sc-number
2707 (error "Local interior register access?"))
2708 (#.sb!vm:single-reg-sc-number
2709 (set-escaped-float-value single-float value))
2710 (#.sb!vm:double-reg-sc-number
2711 (set-escaped-float-value double-float value))
2713 (#.sb!vm:long-reg-sc-number
2714 (set-escaped-float-value long-float value))
2715 (#.sb!vm:complex-single-reg-sc-number
2717 (setf (sb!vm:context-float-register escaped
2718 (sb!c:sc-offset-offset sc-offset)
2721 (setf (sb!vm:context-float-register
2722 escaped (1+ (sb!c:sc-offset-offset sc-offset))
2726 (#.sb!vm:complex-double-reg-sc-number
2728 (setf (sb!vm:context-float-register
2729 escaped (sb!c:sc-offset-offset sc-offset) 'double-float)
2731 (setf (sb!vm:context-float-register
2733 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 2 #!-sparc 1)
2738 (#.sb!vm:complex-long-reg-sc-number
2740 (setf (sb!vm:context-float-register
2741 escaped (sb!c:sc-offset-offset sc-offset) 'long-float)
2743 (setf (sb!vm:context-float-register
2745 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2749 (#.sb!vm:single-stack-sc-number
2751 (setf (sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2753 (the single-float value))))
2754 (#.sb!vm:double-stack-sc-number
2756 (setf (sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2758 (the double-float value))))
2760 (#.sb!vm:long-stack-sc-number
2762 (setf (sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2764 (the long-float value))))
2765 (#.sb!vm:complex-single-stack-sc-number
2767 (setf (sap-ref-single
2768 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:word-bytes))
2769 (the single-float (realpart value)))
2770 (setf (sap-ref-single
2771 nfp (* (1+ (sb!c:sc-offset-offset sc-offset))
2773 (the single-float (realpart value)))))
2774 (#.sb!vm:complex-double-stack-sc-number
2776 (setf (sap-ref-double
2777 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:word-bytes))
2778 (the double-float (realpart value)))
2779 (setf (sap-ref-double
2780 nfp (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2782 (the double-float (realpart value)))))
2784 (#.sb!vm:complex-long-stack-sc-number
2787 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:word-bytes))
2788 (the long-float (realpart value)))
2790 nfp (* (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2792 (the long-float (realpart value)))))
2793 (#.sb!vm:control-stack-sc-number
2794 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2795 (#.sb!vm:base-char-stack-sc-number
2797 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2799 (char-code (the character value)))))
2800 (#.sb!vm:unsigned-stack-sc-number
2802 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2804 (the (unsigned-byte 32) value))))
2805 (#.sb!vm:signed-stack-sc-number
2807 (setf (signed-sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2809 (the (signed-byte 32) value))))
2810 (#.sb!vm:sap-stack-sc-number
2812 (setf (sap-ref-sap nfp (* (sb!c:sc-offset-offset sc-offset)
2814 (the system-area-pointer value)))))))
2817 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2818 (macrolet ((set-escaped-value (val)
2820 (setf (sb!vm:context-register
2822 (sb!c:sc-offset-offset sc-offset))
2825 (ecase (sb!c:sc-offset-scn sc-offset)
2826 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2829 (get-lisp-obj-address value))))
2830 (#.sb!vm:base-char-reg-sc-number
2831 (set-escaped-value (char-code value)))
2832 (#.sb!vm:sap-reg-sc-number
2833 (set-escaped-value (sap-int value)))
2834 (#.sb!vm:signed-reg-sc-number
2835 (set-escaped-value (logand value (1- (ash 1 sb!vm:word-bits)))))
2836 (#.sb!vm:unsigned-reg-sc-number
2837 (set-escaped-value value))
2838 (#.sb!vm:single-reg-sc-number
2839 #+nil ;; don't have escaped floats.
2840 (set-escaped-float-value single-float value))
2841 (#.sb!vm:double-reg-sc-number
2842 #+nil ;; don't have escaped floats -- still in npx?
2843 (set-escaped-float-value double-float value))
2845 (#.sb!vm:long-reg-sc-number
2846 #+nil ;; don't have escaped floats -- still in npx?
2847 (set-escaped-float-value long-float value))
2848 (#.sb!vm:single-stack-sc-number
2849 (setf (sap-ref-single
2850 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2852 (the single-float value)))
2853 (#.sb!vm:double-stack-sc-number
2854 (setf (sap-ref-double
2855 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2857 (the double-float value)))
2859 (#.sb!vm:long-stack-sc-number
2861 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2863 (the long-float value)))
2864 (#.sb!vm:complex-single-stack-sc-number
2865 (setf (sap-ref-single
2866 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2868 (realpart (the (complex single-float) value)))
2869 (setf (sap-ref-single
2870 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2872 (imagpart (the (complex single-float) value))))
2873 (#.sb!vm:complex-double-stack-sc-number
2874 (setf (sap-ref-double
2875 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2877 (realpart (the (complex double-float) value)))
2878 (setf (sap-ref-double
2879 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2881 (imagpart (the (complex double-float) value))))
2883 (#.sb!vm:complex-long-stack-sc-number
2885 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2887 (realpart (the (complex long-float) value)))
2889 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2891 (imagpart (the (complex long-float) value))))
2892 (#.sb!vm:control-stack-sc-number
2893 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2894 (#.sb!vm:base-char-stack-sc-number
2895 (setf (sap-ref-32 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2897 (char-code (the character value))))
2898 (#.sb!vm:unsigned-stack-sc-number
2899 (setf (sap-ref-32 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2901 (the (unsigned-byte 32) value)))
2902 (#.sb!vm:signed-stack-sc-number
2903 (setf (signed-sap-ref-32
2904 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset)) sb!vm:word-bytes)))
2905 (the (signed-byte 32) value)))
2906 (#.sb!vm:sap-stack-sc-number
2907 (setf (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2909 (the system-area-pointer value))))))
2911 ;;; The method for setting and accessing COMPILED-DEBUG-VAR values use
2912 ;;; this to determine if the value stored is the actual value or an
2913 ;;; indirection cell.
2914 (defun indirect-value-cell-p (x)
2915 (and (= (get-lowtag x) sb!vm:other-pointer-type)
2916 (= (get-type x) sb!vm:value-cell-header-type)))
2918 ;;; If the variable is always alive, then it is valid. If the
2919 ;;; code-location is unknown, then the variable's validity is
2920 ;;; :unknown. Once we've called CODE-LOCATION-UNKNOWN-P, we know the
2921 ;;; live-set information has been cached in the code-location.
2922 (defun debug-var-validity (debug-var basic-code-location)
2924 "Returns three values reflecting the validity of DEBUG-VAR's value
2925 at BASIC-CODE-LOCATION:
2926 :VALID The value is known to be available.
2927 :INVALID The value is known to be unavailable.
2928 :UNKNOWN The value's availability is unknown."
2929 (etypecase debug-var
2931 (compiled-debug-var-validity debug-var basic-code-location))
2932 (interpreted-debug-var
2933 (check-type basic-code-location interpreted-code-location)
2934 (let ((validp (rassoc (interpreted-debug-var-ir1-var debug-var)
2935 (sb!c::lexenv-variables
2937 (interpreted-code-location-ir1-node
2938 basic-code-location))))))
2939 (if validp :valid :invalid)))))
2941 ;;; This is the method for DEBUG-VAR-VALIDITY for COMPILED-DEBUG-VARs.
2942 ;;; For safety, make sure basic-code-location is what we think.
2943 (defun compiled-debug-var-validity (debug-var basic-code-location)
2944 (check-type basic-code-location compiled-code-location)
2945 (cond ((debug-var-alive-p debug-var)
2946 (let ((debug-fun (code-location-debug-function basic-code-location)))
2947 (if (>= (compiled-code-location-pc basic-code-location)
2948 (sb!c::compiled-debug-function-start-pc
2949 (compiled-debug-function-compiler-debug-fun debug-fun)))
2952 ((code-location-unknown-p basic-code-location) :unknown)
2954 (let ((pos (position debug-var
2955 (debug-function-debug-vars
2956 (code-location-debug-function basic-code-location)))))
2958 (error 'unknown-debug-var
2959 :debug-var debug-var
2961 (code-location-debug-function basic-code-location)))
2962 ;; There must be live-set info since basic-code-location is known.
2963 (if (zerop (sbit (compiled-code-location-live-set basic-code-location)
2970 ;;; This code produces and uses what we call source-paths. A
2971 ;;; source-path is a list whose first element is a form number as
2972 ;;; returned by CODE-LOCATION-FORM-NUMBER and whose last element is a
2973 ;;; top-level-form number as returned by
2974 ;;; CODE-LOCATION-TOP-LEVEL-FORM-NUMBER. The elements from the last to
2975 ;;; the first, exclusively, are the numbered subforms into which to
2976 ;;; descend. For example:
2978 ;;; (let ((a (aref x 3)))
2980 ;;; The call to AREF in this example is form number 5. Assuming this
2981 ;;; DEFUN is the 11'th top-level-form, the source-path for the AREF
2982 ;;; call is as follows:
2984 ;;; Given the DEFUN, 3 gets you the LET, 1 gets you the bindings, 0
2985 ;;; gets the first binding, and 1 gets the AREF form.
2987 ;;; Temporary buffer used to build form-number => source-path translation in
2988 ;;; FORM-NUMBER-TRANSLATIONS.
2989 (defvar *form-number-temp* (make-array 10 :fill-pointer 0 :adjustable t))
2991 ;;; Table used to detect CAR circularities in FORM-NUMBER-TRANSLATIONS.
2992 (defvar *form-number-circularity-table* (make-hash-table :test 'eq))
2994 ;;; The vector elements are in the same format as the compiler's
2995 ;;; NODE-SOUCE-PATH; that is, the first element is the form number and the last
2996 ;;; is the top-level-form number.
2997 (defun form-number-translations (form tlf-number)
2999 "This returns a table mapping form numbers to source-paths. A source-path
3000 indicates a descent into the top-level-form form, going directly to the
3001 subform corressponding to the form number."
3002 (clrhash *form-number-circularity-table*)
3003 (setf (fill-pointer *form-number-temp*) 0)
3004 (sub-translate-form-numbers form (list tlf-number))
3005 (coerce *form-number-temp* 'simple-vector))
3006 (defun sub-translate-form-numbers (form path)
3007 (unless (gethash form *form-number-circularity-table*)
3008 (setf (gethash form *form-number-circularity-table*) t)
3009 (vector-push-extend (cons (fill-pointer *form-number-temp*) path)
3014 (declare (fixnum pos))
3017 (when (atom subform) (return))
3018 (let ((fm (car subform)))
3020 (sub-translate-form-numbers fm (cons pos path)))
3022 (setq subform (cdr subform))
3023 (when (eq subform trail) (return)))))
3027 (setq trail (cdr trail)))))))
3029 (defun source-path-context (form path context)
3031 "Form is a top-level form, and path is a source-path into it. This returns
3032 the form indicated by the source-path. Context is the number of enclosing
3033 forms to return instead of directly returning the source-path form. When
3034 context is non-zero, the form returned contains a marker, #:****HERE****,
3035 immediately before the form indicated by path."
3036 (declare (type unsigned-byte context))
3037 ;; Get to the form indicated by path or the enclosing form indicated
3038 ;; by context and path.
3039 (let ((path (reverse (butlast (cdr path)))))
3040 (dotimes (i (- (length path) context))
3041 (let ((index (first path)))
3042 (unless (and (listp form) (< index (length form)))
3043 (error "Source path no longer exists."))
3044 (setq form (elt form index))
3045 (setq path (rest path))))
3046 ;; Recursively rebuild the source form resulting from the above
3047 ;; descent, copying the beginning of each subform up to the next
3048 ;; subform we descend into according to path. At the bottom of the
3049 ;; recursion, we return the form indicated by path preceded by our
3050 ;; marker, and this gets spliced into the resulting list structure
3051 ;; on the way back up.
3052 (labels ((frob (form path level)
3053 (if (or (zerop level) (null path))
3056 `(#:***here*** ,form))
3057 (let ((n (first path)))
3058 (unless (and (listp form) (< n (length form)))
3059 (error "Source path no longer exists."))
3060 (let ((res (frob (elt form n) (rest path) (1- level))))
3061 (nconc (subseq form 0 n)
3062 (cons res (nthcdr (1+ n) form))))))))
3063 (frob form path context))))
3065 ;;;; PREPROCESS-FOR-EVAL and EVAL-IN-FRAME
3067 ;;; Create a SYMBOL-MACROLET for each variable valid at the location which
3068 ;;; accesses that variable from the frame argument.
3069 (defun preprocess-for-eval (form loc)
3071 "Return a function of one argument that evaluates form in the lexical
3072 context of the basic-code-location loc. PREPROCESS-FOR-EVAL signals a
3073 no-debug-vars condition when the loc's debug-function has no
3074 debug-var information available. The returned function takes the frame
3075 to get values from as its argument, and it returns the values of form.
3076 The returned function signals the following conditions: invalid-value,
3077 ambiguous-variable-name, and frame-function-mismatch"
3078 (declare (type code-location loc))
3079 (let ((n-frame (gensym))
3080 (fun (code-location-debug-function loc)))
3081 (unless (debug-var-info-available fun)
3082 (debug-signal 'no-debug-vars :debug-function fun))
3083 (sb!int:collect ((binds)
3085 (do-debug-function-variables (var fun)
3086 (let ((validity (debug-var-validity var loc)))
3087 (unless (eq validity :invalid)
3088 (let* ((sym (debug-var-symbol var))
3089 (found (assoc sym (binds))))
3091 (setf (second found) :ambiguous)
3092 (binds (list sym validity var)))))))
3093 (dolist (bind (binds))
3094 (let ((name (first bind))
3096 (ecase (second bind)
3098 (specs `(,name (debug-var-value ',var ,n-frame))))
3100 (specs `(,name (debug-signal 'invalid-value :debug-var ',var
3103 (specs `(,name (debug-signal 'ambiguous-variable-name :name ',name
3104 :frame ,n-frame)))))))
3105 (let ((res (coerce `(lambda (,n-frame)
3106 (declare (ignorable ,n-frame))
3107 (symbol-macrolet ,(specs) ,form))
3110 ;; This prevents these functions from being used in any
3111 ;; location other than a function return location, so
3112 ;; maybe this should only check whether frame's
3113 ;; debug-function is the same as loc's.
3114 (unless (code-location= (frame-code-location frame) loc)
3115 (debug-signal 'frame-function-mismatch
3116 :code-location loc :form form :frame frame))
3117 (funcall res frame))))))
3119 ;;; Evaluate FORM in the lexical context of FRAME's current code
3120 ;;; location, returning the results of the evaluation.
3121 (defun eval-in-frame (frame form)
3122 (declare (type frame frame))
3123 (funcall (preprocess-for-eval form (frame-code-location frame)) frame))
3127 ;;;; user-visible interface
3129 ;;; Create and return a breakpoint. When program execution encounters
3130 ;;; the breakpoint, the system calls HOOK-FUNCTION. HOOK-FUNCTION takes the
3131 ;;; current frame for the function in which the program is running and the
3132 ;;; breakpoint object.
3134 ;;; WHAT and KIND determine where in a function the system invokes
3135 ;;; HOOK-FUNCTION. WHAT is either a code-location or a debug-function.
3136 ;;; KIND is one of :CODE-LOCATION, :FUNCTION-START, or :FUNCTION-END.
3137 ;;; Since the starts and ends of functions may not have code-locations
3138 ;;; representing them, designate these places by supplying WHAT as a
3139 ;;; debug-function and KIND indicating the :FUNCTION-START or
3140 ;;; :FUNCTION-END. When WHAT is a debug-function and kind is
3141 ;;; :FUNCTION-END, then hook-function must take two additional
3142 ;;; arguments, a list of values returned by the function and a
3143 ;;; FUNCTION-END-COOKIE.
3145 ;;; INFO is information supplied by and used by the user.
3147 ;;; FUNCTION-END-COOKIE is a function. To implement :FUNCTION-END
3148 ;;; breakpoints, the system uses starter breakpoints to establish the
3149 ;;; :FUNCTION-END breakpoint for each invocation of the function. Upon
3150 ;;; each entry, the system creates a unique cookie to identify the
3151 ;;; invocation, and when the user supplies a function for this
3152 ;;; argument, the system invokes it on the frame and the cookie. The
3153 ;;; system later invokes the :FUNCTION-END breakpoint hook on the same
3154 ;;; cookie. The user may save the cookie for comparison in the hook
3157 ;;; Signal an error if WHAT is an unknown code-location.
3158 (defun make-breakpoint (hook-function what
3159 &key (kind :code-location) info function-end-cookie)
3162 (when (code-location-unknown-p what)
3163 (error "cannot make a breakpoint at an unknown code location: ~S"
3165 (assert (eq kind :code-location))
3166 (let ((bpt (%make-breakpoint hook-function what kind info)))
3168 (interpreted-code-location
3169 (error "Breakpoints in interpreted code are currently unsupported."))
3170 (compiled-code-location
3171 ;; This slot is filled in due to calling CODE-LOCATION-UNKNOWN-P.
3172 (when (eq (compiled-code-location-kind what) :unknown-return)
3173 (let ((other-bpt (%make-breakpoint hook-function what
3174 :unknown-return-partner
3176 (setf (breakpoint-unknown-return-partner bpt) other-bpt)
3177 (setf (breakpoint-unknown-return-partner other-bpt) bpt)))))
3179 (compiled-debug-function
3182 (%make-breakpoint hook-function what kind info))
3184 (unless (eq (sb!c::compiled-debug-function-returns
3185 (compiled-debug-function-compiler-debug-fun what))
3187 (error ":FUNCTION-END breakpoints are currently unsupported ~
3188 for the known return convention."))
3190 (let* ((bpt (%make-breakpoint hook-function what kind info))
3191 (starter (compiled-debug-function-end-starter what)))
3193 (setf starter (%make-breakpoint #'list what :function-start nil))
3194 (setf (breakpoint-hook-function starter)
3195 (function-end-starter-hook starter what))
3196 (setf (compiled-debug-function-end-starter what) starter))
3197 (setf (breakpoint-start-helper bpt) starter)
3198 (push bpt (breakpoint-%info starter))
3199 (setf (breakpoint-cookie-fun bpt) function-end-cookie)
3201 (interpreted-debug-function
3202 (error ":function-end breakpoints are currently unsupported ~
3203 for interpreted-debug-functions."))))
3205 ;;; These are unique objects created upon entry into a function by a
3206 ;;; :FUNCTION-END breakpoint's starter hook. These are only created
3207 ;;; when users supply :FUNCTION-END-COOKIE to MAKE-BREAKPOINT. Also,
3208 ;;; the :FUNCTION-END breakpoint's hook is called on the same cookie
3209 ;;; when it is created.
3210 (defstruct (function-end-cookie
3211 (:print-object (lambda (obj str)
3212 (print-unreadable-object (obj str :type t))))
3213 (:constructor make-function-end-cookie (bogus-lra debug-fun)))
3214 ;; This is a pointer to the bogus-lra created for :function-end bpts.
3216 ;; This is the debug-function associated with the cookie.
3219 ;;; This maps bogus-lra-components to cookies, so that
3220 ;;; HANDLE-FUNCTION-END-BREAKPOINT can find the appropriate cookie for the
3221 ;;; breakpoint hook.
3222 (defvar *function-end-cookies* (make-hash-table :test 'eq))
3224 ;;; This returns a hook function for the start helper breakpoint
3225 ;;; associated with a :FUNCTION-END breakpoint. The returned function
3226 ;;; makes a fake LRA that all returns go through, and this piece of
3227 ;;; fake code actually breaks. Upon return from the break, the code
3228 ;;; provides the returnee with any values. Since the returned function
3229 ;;; effectively activates FUN-END-BPT on each entry to DEBUG-FUN's
3230 ;;; function, we must establish breakpoint-data about FUN-END-BPT.
3231 (defun function-end-starter-hook (starter-bpt debug-fun)
3232 (declare (type breakpoint starter-bpt)
3233 (type compiled-debug-function debug-fun))
3234 #'(lambda (frame breakpoint)
3235 (declare (ignore breakpoint)
3237 (let ((lra-sc-offset
3238 (sb!c::compiled-debug-function-return-pc
3239 (compiled-debug-function-compiler-debug-fun debug-fun))))
3240 (multiple-value-bind (lra component offset)
3242 (get-context-value frame
3243 #!-gengc sb!vm::lra-save-offset
3244 #!+gengc sb!vm::ra-save-offset
3246 (setf (get-context-value frame
3247 #!-gengc sb!vm::lra-save-offset
3248 #!+gengc sb!vm::ra-save-offset
3251 (let ((end-bpts (breakpoint-%info starter-bpt)))
3252 (let ((data (breakpoint-data component offset)))
3253 (setf (breakpoint-data-breakpoints data) end-bpts)
3254 (dolist (bpt end-bpts)
3255 (setf (breakpoint-internal-data bpt) data)))
3256 (let ((cookie (make-function-end-cookie lra debug-fun)))
3257 (setf (gethash component *function-end-cookies*) cookie)
3258 (dolist (bpt end-bpts)
3259 (let ((fun (breakpoint-cookie-fun bpt)))
3260 (when fun (funcall fun frame cookie))))))))))
3262 ;;; This takes a FUNCTION-END-COOKIE and a frame, and it returns
3263 ;;; whether the cookie is still valid. A cookie becomes invalid when
3264 ;;; the frame that established the cookie has exited. Sometimes cookie
3265 ;;; holders are unaware of cookie invalidation because their
3266 ;;; :FUNCTION-END breakpoint hooks didn't run due to THROW'ing.
3268 ;;; This takes a frame as an efficiency hack since the user probably
3269 ;;; has a frame object in hand when using this routine, and it saves
3270 ;;; repeated parsing of the stack and consing when asking whether a
3271 ;;; series of cookies is valid.
3272 (defun function-end-cookie-valid-p (frame cookie)
3273 (let ((lra (function-end-cookie-bogus-lra cookie))
3274 (lra-sc-offset (sb!c::compiled-debug-function-return-pc
3275 (compiled-debug-function-compiler-debug-fun
3276 (function-end-cookie-debug-fun cookie)))))
3277 (do ((frame frame (frame-down frame)))
3279 (when (and (compiled-frame-p frame)
3281 (get-context-value frame
3282 #!-gengc sb!vm::lra-save-offset
3283 #!+gengc sb!vm::ra-save-offset
3287 ;;;; ACTIVATE-BREAKPOINT
3289 ;;; Cause the system to invoke the breakpoint's hook-function until
3290 ;;; the next call to DEACTIVATE-BREAKPOINT or DELETE-BREAKPOINT. The
3291 ;;; system invokes breakpoint hook functions in the opposite order
3292 ;;; that you activate them.
3293 (defun activate-breakpoint (breakpoint)
3294 (when (eq (breakpoint-status breakpoint) :deleted)
3295 (error "cannot activate a deleted breakpoint: ~S" breakpoint))
3296 (unless (eq (breakpoint-status breakpoint) :active)
3297 (ecase (breakpoint-kind breakpoint)
3299 (let ((loc (breakpoint-what breakpoint)))
3301 (interpreted-code-location
3302 (error "Breakpoints in interpreted code are currently unsupported."))
3303 (compiled-code-location
3304 (activate-compiled-code-location-breakpoint breakpoint)
3305 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3307 (activate-compiled-code-location-breakpoint other)))))))
3309 (etypecase (breakpoint-what breakpoint)
3310 (compiled-debug-function
3311 (activate-compiled-function-start-breakpoint breakpoint))
3312 (interpreted-debug-function
3313 (error "I don't know how you made this, but they're unsupported: ~S"
3314 (breakpoint-what breakpoint)))))
3316 (etypecase (breakpoint-what breakpoint)
3317 (compiled-debug-function
3318 (let ((starter (breakpoint-start-helper breakpoint)))
3319 (unless (eq (breakpoint-status starter) :active)
3320 ;; may already be active by some other :FUNCTION-END breakpoint
3321 (activate-compiled-function-start-breakpoint starter)))
3322 (setf (breakpoint-status breakpoint) :active))
3323 (interpreted-debug-function
3324 (error "I don't know how you made this, but they're unsupported: ~S"
3325 (breakpoint-what breakpoint)))))))
3328 (defun activate-compiled-code-location-breakpoint (breakpoint)
3329 (declare (type breakpoint breakpoint))
3330 (let ((loc (breakpoint-what breakpoint)))
3331 (declare (type compiled-code-location loc))
3332 (sub-activate-breakpoint
3334 (breakpoint-data (compiled-debug-function-component
3335 (code-location-debug-function loc))
3336 (+ (compiled-code-location-pc loc)
3337 (if (or (eq (breakpoint-kind breakpoint)
3338 :unknown-return-partner)
3339 (eq (compiled-code-location-kind loc)
3340 :single-value-return))
3341 sb!vm:single-value-return-byte-offset
3344 (defun activate-compiled-function-start-breakpoint (breakpoint)
3345 (declare (type breakpoint breakpoint))
3346 (let ((debug-fun (breakpoint-what breakpoint)))
3347 (sub-activate-breakpoint
3349 (breakpoint-data (compiled-debug-function-component debug-fun)
3350 (sb!c::compiled-debug-function-start-pc
3351 (compiled-debug-function-compiler-debug-fun
3354 (defun sub-activate-breakpoint (breakpoint data)
3355 (declare (type breakpoint breakpoint)
3356 (type breakpoint-data data))
3357 (setf (breakpoint-status breakpoint) :active)
3359 (unless (breakpoint-data-breakpoints data)
3360 (setf (breakpoint-data-instruction data)
3362 (breakpoint-install (get-lisp-obj-address
3363 (breakpoint-data-component data))
3364 (breakpoint-data-offset data)))))
3365 (setf (breakpoint-data-breakpoints data)
3366 (append (breakpoint-data-breakpoints data) (list breakpoint)))
3367 (setf (breakpoint-internal-data breakpoint) data)))
3369 ;;;; DEACTIVATE-BREAKPOINT
3371 (defun deactivate-breakpoint (breakpoint)
3373 "This stops the system from invoking the breakpoint's hook-function."
3374 (when (eq (breakpoint-status breakpoint) :active)
3376 (let ((loc (breakpoint-what breakpoint)))
3378 ((or interpreted-code-location interpreted-debug-function)
3380 "Breakpoints in interpreted code are currently unsupported."))
3381 ((or compiled-code-location compiled-debug-function)
3382 (deactivate-compiled-breakpoint breakpoint)
3383 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3385 (deactivate-compiled-breakpoint other))))))))
3388 (defun deactivate-compiled-breakpoint (breakpoint)
3389 (if (eq (breakpoint-kind breakpoint) :function-end)
3390 (let ((starter (breakpoint-start-helper breakpoint)))
3391 (unless (find-if #'(lambda (bpt)
3392 (and (not (eq bpt breakpoint))
3393 (eq (breakpoint-status bpt) :active)))
3394 (breakpoint-%info starter))
3395 (deactivate-compiled-breakpoint starter)))
3396 (let* ((data (breakpoint-internal-data breakpoint))
3397 (bpts (delete breakpoint (breakpoint-data-breakpoints data))))
3398 (setf (breakpoint-internal-data breakpoint) nil)
3399 (setf (breakpoint-data-breakpoints data) bpts)
3402 (breakpoint-remove (get-lisp-obj-address
3403 (breakpoint-data-component data))
3404 (breakpoint-data-offset data)
3405 (breakpoint-data-instruction data)))
3406 (delete-breakpoint-data data))))
3407 (setf (breakpoint-status breakpoint) :inactive)
3410 ;;;; BREAKPOINT-INFO
3412 (defun breakpoint-info (breakpoint)
3414 "This returns the user-maintained info associated with breakpoint. This
3416 (breakpoint-%info breakpoint))
3417 (defun %set-breakpoint-info (breakpoint value)
3418 (setf (breakpoint-%info breakpoint) value)
3419 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3421 (setf (breakpoint-%info other) value))))
3423 ;;;; BREAKPOINT-ACTIVE-P and DELETE-BREAKPOINT
3425 (defun breakpoint-active-p (breakpoint)
3427 "This returns whether breakpoint is currently active."
3428 (ecase (breakpoint-status breakpoint)
3430 ((:inactive :deleted) nil)))
3432 (defun delete-breakpoint (breakpoint)
3434 "This frees system storage and removes computational overhead associated with
3435 breakpoint. After calling this, breakpoint is completely impotent and can
3436 never become active again."
3437 (let ((status (breakpoint-status breakpoint)))
3438 (unless (eq status :deleted)
3439 (when (eq status :active)
3440 (deactivate-breakpoint breakpoint))
3441 (setf (breakpoint-status breakpoint) :deleted)
3442 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3444 (setf (breakpoint-status other) :deleted)))
3445 (when (eq (breakpoint-kind breakpoint) :function-end)
3446 (let* ((starter (breakpoint-start-helper breakpoint))
3447 (breakpoints (delete breakpoint
3448 (the list (breakpoint-info starter)))))
3449 (setf (breakpoint-info starter) breakpoints)
3451 (delete-breakpoint starter)
3452 (setf (compiled-debug-function-end-starter
3453 (breakpoint-what breakpoint))
3457 ;;;; C call out stubs
3459 ;;; This actually installs the break instruction in the component. It
3460 ;;; returns the overwritten bits. You must call this in a context in
3461 ;;; which GC is disabled, so that Lisp doesn't move objects around
3462 ;;; that C is pointing to.
3463 (sb!alien:def-alien-routine "breakpoint_install" sb!c-call:unsigned-long
3464 (code-obj sb!c-call:unsigned-long)
3465 (pc-offset sb!c-call:int))
3467 ;;; This removes the break instruction and replaces the original
3468 ;;; instruction. You must call this in a context in which GC is disabled
3469 ;;; so Lisp doesn't move objects around that C is pointing to.
3470 (sb!alien:def-alien-routine "breakpoint_remove" sb!c-call:void
3471 (code-obj sb!c-call:unsigned-long)
3472 (pc-offset sb!c-call:int)
3473 (old-inst sb!c-call:unsigned-long))
3475 (sb!alien:def-alien-routine "breakpoint_do_displaced_inst" sb!c-call:void
3476 (scp (* os-context-t))
3477 (orig-inst sb!c-call:unsigned-long))
3479 ;;;; breakpoint handlers (layer between C and exported interface)
3481 ;;; This maps components to a mapping of offsets to breakpoint-datas.
3482 (defvar *component-breakpoint-offsets* (make-hash-table :test 'eq))
3484 ;;; This returns the breakpoint-data associated with component cross
3485 ;;; offset. If none exists, this makes one, installs it, and returns it.
3486 (defun breakpoint-data (component offset &optional (create t))
3487 (flet ((install-breakpoint-data ()
3489 (let ((data (make-breakpoint-data component offset)))
3490 (push (cons offset data)
3491 (gethash component *component-breakpoint-offsets*))
3493 (let ((offsets (gethash component *component-breakpoint-offsets*)))
3495 (let ((data (assoc offset offsets)))
3498 (install-breakpoint-data)))
3499 (install-breakpoint-data)))))
3501 ;;; We use this when there are no longer any active breakpoints
3502 ;;; corresponding to data.
3503 (defun delete-breakpoint-data (data)
3504 (let* ((component (breakpoint-data-component data))
3505 (offsets (delete (breakpoint-data-offset data)
3506 (gethash component *component-breakpoint-offsets*)
3509 (setf (gethash component *component-breakpoint-offsets*) offsets)
3510 (remhash component *component-breakpoint-offsets*)))
3513 ;;; The C handler for interrupts calls this when it has a
3514 ;;; debugging-tool break instruction. This does NOT handle all breaks;
3515 ;;; for example, it does not handle breaks for internal errors.
3516 (defun handle-breakpoint (offset component signal-context)
3517 (/show0 "entering HANDLE-BREAKPOINT")
3518 (let ((data (breakpoint-data component offset nil)))
3520 (error "unknown breakpoint in ~S at offset ~S"
3521 (debug-function-name (debug-function-from-pc component offset))
3523 (let ((breakpoints (breakpoint-data-breakpoints data)))
3524 (if (or (null breakpoints)
3525 (eq (breakpoint-kind (car breakpoints)) :function-end))
3526 (handle-function-end-breakpoint-aux breakpoints data signal-context)
3527 (handle-breakpoint-aux breakpoints data
3528 offset component signal-context)))))
3530 ;;; This holds breakpoint-datas while invoking the breakpoint hooks
3531 ;;; associated with that particular component and location. While they
3532 ;;; are executing, if we hit the location again, we ignore the
3533 ;;; breakpoint to avoid infinite recursion. Function-end breakpoints
3534 ;;; must work differently since the breakpoint-data is unique for each
3536 (defvar *executing-breakpoint-hooks* nil)
3538 ;;; This handles code-location and debug-function :FUNCTION-START
3540 (defun handle-breakpoint-aux (breakpoints data offset component signal-context)
3541 (/show0 "entering HANDLE-BREAKPOINT-AUX")
3543 (error "internal error: breakpoint that nobody wants"))
3544 (unless (member data *executing-breakpoint-hooks*)
3545 (let ((*executing-breakpoint-hooks* (cons data
3546 *executing-breakpoint-hooks*)))
3547 (invoke-breakpoint-hooks breakpoints component offset)))
3548 ;; At this point breakpoints may not hold the same list as
3549 ;; BREAKPOINT-DATA-BREAKPOINTS since invoking hooks may have allowed
3550 ;; a breakpoint deactivation. In fact, if all breakpoints were
3551 ;; deactivated then data is invalid since it was deleted and so the
3552 ;; correct one must be looked up if it is to be used. If there are
3553 ;; no more breakpoints active at this location, then the normal
3554 ;; instruction has been put back, and we do not need to
3555 ;; DO-DISPLACED-INST.
3556 (let ((data (breakpoint-data component offset nil)))
3557 (when (and data (breakpoint-data-breakpoints data))
3558 ;; The breakpoint is still active, so we need to execute the
3559 ;; displaced instruction and leave the breakpoint instruction
3560 ;; behind. The best way to do this is different on each machine,
3561 ;; so we just leave it up to the C code.
3562 (breakpoint-do-displaced-inst signal-context
3563 (breakpoint-data-instruction data))
3564 ; Under HPUX we can't sigreturn so bp-do-disp-i has to return.
3565 #!-(or hpux irix x86)
3566 (error "BREAKPOINT-DO-DISPLACED-INST returned?"))))
3568 (defun invoke-breakpoint-hooks (breakpoints component offset)
3569 (let* ((debug-fun (debug-function-from-pc component offset))
3570 (frame (do ((f (top-frame) (frame-down f)))
3571 ((eq debug-fun (frame-debug-function f)) f))))
3572 (dolist (bpt breakpoints)
3573 (funcall (breakpoint-hook-function bpt)
3575 ;; If this is an :UNKNOWN-RETURN-PARTNER, then pass the
3576 ;; hook function the original breakpoint, so that users
3577 ;; aren't forced to confront the fact that some
3578 ;; breakpoints really are two.
3579 (if (eq (breakpoint-kind bpt) :unknown-return-partner)
3580 (breakpoint-unknown-return-partner bpt)
3583 (defun handle-function-end-breakpoint (offset component context)
3584 (/show0 "entering HANDLE-FUNCTION-END-BREAKPOINT")
3585 (let ((data (breakpoint-data component offset nil)))
3587 (error "unknown breakpoint in ~S at offset ~S"
3588 (debug-function-name (debug-function-from-pc component offset))
3590 (let ((breakpoints (breakpoint-data-breakpoints data)))
3592 (assert (eq (breakpoint-kind (car breakpoints)) :function-end))
3593 (handle-function-end-breakpoint-aux breakpoints data context)))))
3595 ;;; Either HANDLE-BREAKPOINT calls this for :FUNCTION-END breakpoints
3596 ;;; [old C code] or HANDLE-FUNCTION-END-BREAKPOINT calls this directly
3598 (defun handle-function-end-breakpoint-aux (breakpoints data signal-context)
3599 (/show0 "entering HANDLE-FUNCTION-END-BREAKPOINT-AUX")
3600 (delete-breakpoint-data data)
3603 (declare (optimize (inhibit-warnings 3)))
3604 (sb!alien:sap-alien signal-context (* os-context-t))))
3605 (frame (do ((cfp (sb!vm:context-register scp sb!vm::cfp-offset))
3606 (f (top-frame) (frame-down f)))
3607 ((= cfp (sap-int (frame-pointer f))) f)
3608 (declare (type (unsigned-byte #.sb!vm:word-bits) cfp))))
3609 (component (breakpoint-data-component data))
3610 (cookie (gethash component *function-end-cookies*)))
3611 (remhash component *function-end-cookies*)
3612 (dolist (bpt breakpoints)
3613 (funcall (breakpoint-hook-function bpt)
3615 (get-function-end-breakpoint-values scp)
3618 (defun get-function-end-breakpoint-values (scp)
3619 (let ((ocfp (int-sap (sb!vm:context-register
3621 #!-x86 sb!vm::ocfp-offset
3622 #!+x86 sb!vm::ebx-offset)))
3623 (nargs (make-lisp-obj
3624 (sb!vm:context-register scp sb!vm::nargs-offset)))
3625 (reg-arg-offsets '#.sb!vm::*register-arg-offsets*)
3628 (dotimes (arg-num nargs)
3629 (push (if reg-arg-offsets
3631 (sb!vm:context-register scp (pop reg-arg-offsets)))
3632 (stack-ref ocfp arg-num))
3634 (nreverse results)))
3636 ;;;; MAKE-BOGUS-LRA (used for :FUNCTION-END breakpoints)
3643 (+ sb!vm:code-constants-offset #!-x86 1 #!+x86 2))
3645 ;;; FIXME: This is also defined in debug-vm.lisp. Which definition
3646 ;;; takes precedence? (One definition uses ALLOCATE-CODE-OBJECT, and
3647 ;;; the other has been hacked for X86 GENCGC to use
3648 ;;; ALLOCATE-DYNAMIC-CODE-OBJECT..)
3649 (defun make-bogus-lra (real-lra &optional known-return-p)
3651 "Make a bogus LRA object that signals a breakpoint trap when returned to. If
3652 the breakpoint trap handler returns, REAL-LRA is returned to. Three values
3653 are returned: the bogus LRA object, the code component it is part of, and
3654 the PC offset for the trap instruction."
3656 (let* ((src-start (foreign-symbol-address "function_end_breakpoint_guts"))
3657 (src-end (foreign-symbol-address "function_end_breakpoint_end"))
3658 (trap-loc (foreign-symbol-address "function_end_breakpoint_trap"))
3659 (length (sap- src-end src-start))
3662 #!-(and x86 gencgc) sb!c:allocate-code-object
3663 #!+(and x86 gencgc) sb!c::allocate-dynamic-code-object
3664 (1+ bogus-lra-constants)
3666 (dst-start (code-instructions code-object)))
3667 (declare (type system-area-pointer
3668 src-start src-end dst-start trap-loc)
3669 (type index length))
3670 (setf (%code-debug-info code-object) :bogus-lra)
3671 (setf (code-header-ref code-object sb!vm:code-trace-table-offset-slot)
3674 (setf (code-header-ref code-object real-lra-slot) real-lra)
3676 (multiple-value-bind (offset code) (compute-lra-data-from-pc real-lra)
3677 (setf (code-header-ref code-object real-lra-slot) code)
3678 (setf (code-header-ref code-object (1+ real-lra-slot)) offset))
3679 (setf (code-header-ref code-object known-return-p-slot)
3681 (system-area-copy src-start 0 dst-start 0 (* length sb!vm:byte-bits))
3682 (sb!vm:sanctify-for-execution code-object)
3684 (values dst-start code-object (sap- trap-loc src-start))
3686 (let ((new-lra (make-lisp-obj (+ (sap-int dst-start)
3687 sb!vm:other-pointer-type))))
3690 (logandc2 (+ sb!vm:code-constants-offset bogus-lra-constants 1)
3692 (sb!vm:sanctify-for-execution code-object)
3693 (values new-lra code-object (sap- trap-loc src-start))))))
3697 ;;; This appears here because it cannot go with the debug-function
3698 ;;; interface since DO-DEBUG-BLOCK-LOCATIONS isn't defined until after
3699 ;;; the debug-function routines.
3701 (defun debug-function-start-location (debug-fun)
3703 "This returns a code-location before the body of a function and after all
3704 the arguments are in place. If this cannot determine that location due to
3705 a lack of debug information, it returns nil."
3706 (etypecase debug-fun
3707 (compiled-debug-function
3708 (code-location-from-pc debug-fun
3709 (sb!c::compiled-debug-function-start-pc
3710 (compiled-debug-function-compiler-debug-fun
3713 (interpreted-debug-function
3714 ;; Return the first location if there are any, otherwise NIL.
3715 (handler-case (do-debug-function-blocks (block debug-fun nil)
3716 (do-debug-block-locations (loc block nil)
3717 (return-from debug-function-start-location loc)))
3718 (no-debug-blocks (condx)
3719 (declare (ignore condx))
3722 (defun print-code-locations (function)
3723 (let ((debug-fun (function-debug-function function)))
3724 (do-debug-function-blocks (block debug-fun)
3725 (do-debug-block-locations (loc block)
3726 (fill-in-code-location loc)
3727 (format t "~S code location at ~D"
3728 (compiled-code-location-kind loc)
3729 (compiled-code-location-pc loc))
3730 (sb!debug::print-code-location-source-form loc 0)