1 ;;;; This file contains the definitions of float-specific number
2 ;;;; support (other than irrational stuff, which is in irrat.) There is
3 ;;;; code in here that assumes there are only two float formats: IEEE
4 ;;;; single and double. (LONG-FLOAT support has been added, but bugs
5 ;;;; may still remain due to old code which assumes this dichotomy.)
7 ;;;; This software is part of the SBCL system. See the README file for
10 ;;;; This software is derived from the CMU CL system, which was
11 ;;;; written at Carnegie Mellon University and released into the
12 ;;;; public domain. The software is in the public domain and is
13 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
14 ;;;; files for more information.
16 (in-package "SB!KERNEL")
20 (eval-when (:compile-toplevel :load-toplevel :execute)
22 ;;; These functions let us create floats from bits with the
23 ;;; significand uniformly represented as an integer. This is less
24 ;;; efficient for double floats, but is more convenient when making
25 ;;; special values, etc.
26 (defun single-from-bits (sign exp sig)
27 (declare (type bit sign) (type (unsigned-byte 24) sig)
28 (type (unsigned-byte 8) exp))
30 (dpb exp sb!vm:single-float-exponent-byte
31 (dpb sig sb!vm:single-float-significand-byte
32 (if (zerop sign) 0 -1)))))
33 (defun double-from-bits (sign exp sig)
34 (declare (type bit sign) (type (unsigned-byte 53) sig)
35 (type (unsigned-byte 11) exp))
36 (make-double-float (dpb exp sb!vm:double-float-exponent-byte
38 sb!vm:double-float-significand-byte
39 (if (zerop sign) 0 -1)))
40 (ldb (byte 32 0) sig)))
41 #!+(and long-float x86)
42 (defun long-from-bits (sign exp sig)
43 (declare (type bit sign) (type (unsigned-byte 64) sig)
44 (type (unsigned-byte 15) exp))
45 (make-long-float (logior (ash sign 15) exp)
46 (ldb (byte 32 32) sig)
47 (ldb (byte 32 0) sig)))
53 (defconstant least-positive-single-float (single-from-bits 0 0 1))
54 (defconstant least-positive-short-float least-positive-single-float)
55 (defconstant least-negative-single-float (single-from-bits 1 0 1))
56 (defconstant least-negative-short-float least-negative-single-float)
57 (defconstant least-positive-double-float (double-from-bits 0 0 1))
59 (defconstant least-positive-long-float least-positive-double-float)
60 #!+(and long-float x86)
61 (defconstant least-positive-long-float (long-from-bits 0 0 1))
62 (defconstant least-negative-double-float (double-from-bits 1 0 1))
64 (defconstant least-negative-long-float least-negative-double-float)
65 #!+(and long-float x86)
66 (defconstant least-negative-long-float (long-from-bits 1 0 1))
68 (defconstant least-positive-normalized-single-float
69 (single-from-bits 0 sb!vm:single-float-normal-exponent-min 0))
70 (defconstant least-positive-normalized-short-float
71 least-positive-normalized-single-float)
72 (defconstant least-negative-normalized-single-float
73 (single-from-bits 1 sb!vm:single-float-normal-exponent-min 0))
74 (defconstant least-negative-normalized-short-float
75 least-negative-normalized-single-float)
76 (defconstant least-positive-normalized-double-float
77 (double-from-bits 0 sb!vm:double-float-normal-exponent-min 0))
79 (defconstant least-positive-normalized-long-float
80 least-positive-normalized-double-float)
81 #!+(and long-float x86)
82 (defconstant least-positive-normalized-long-float
83 (long-from-bits 0 sb!vm:long-float-normal-exponent-min
84 (ash sb!vm:long-float-hidden-bit 32)))
85 (defconstant least-negative-normalized-double-float
86 (double-from-bits 1 sb!vm:double-float-normal-exponent-min 0))
88 (defconstant least-negative-normalized-long-float
89 least-negative-normalized-double-float)
90 #!+(and long-float x86)
91 (defconstant least-negative-normalized-long-float
92 (long-from-bits 1 sb!vm:long-float-normal-exponent-min
93 (ash sb!vm:long-float-hidden-bit 32)))
95 (defconstant most-positive-single-float
96 (single-from-bits 0 sb!vm:single-float-normal-exponent-max
97 (ldb sb!vm:single-float-significand-byte -1)))
98 (defconstant most-positive-short-float most-positive-single-float)
99 (defconstant most-negative-single-float
100 (single-from-bits 1 sb!vm:single-float-normal-exponent-max
101 (ldb sb!vm:single-float-significand-byte -1)))
102 (defconstant most-negative-short-float most-negative-single-float)
103 (defconstant most-positive-double-float
104 (double-from-bits 0 sb!vm:double-float-normal-exponent-max
105 (ldb (byte sb!vm:double-float-digits 0) -1)))
107 (defconstant most-positive-long-float most-positive-double-float)
108 #!+(and long-float x86)
109 (defconstant most-positive-long-float
110 (long-from-bits 0 sb!vm:long-float-normal-exponent-max
111 (ldb (byte sb!vm:long-float-digits 0) -1)))
112 (defconstant most-negative-double-float
113 (double-from-bits 1 sb!vm:double-float-normal-exponent-max
114 (ldb (byte sb!vm:double-float-digits 0) -1)))
116 (defconstant most-negative-long-float most-negative-double-float)
117 #!+(and long-float x86)
118 (defconstant most-negative-long-float
119 (long-from-bits 1 sb!vm:long-float-normal-exponent-max
120 (ldb (byte sb!vm:long-float-digits 0) -1)))
122 ;;; We don't want to do these DEFCONSTANTs at cross-compilation time,
123 ;;; because the cross-compilation host might not support floating
124 ;;; point infinities. Putting them inside a LET removes
125 ;;; toplevel-formness, so that any EVAL-WHEN trickiness in the
126 ;;; DEFCONSTANT forms is suppressed.
128 (defconstant single-float-positive-infinity
129 (single-from-bits 0 (1+ sb!vm:single-float-normal-exponent-max) 0))
130 (defconstant short-float-positive-infinity single-float-positive-infinity)
131 (defconstant single-float-negative-infinity
132 (single-from-bits 1 (1+ sb!vm:single-float-normal-exponent-max) 0))
133 (defconstant short-float-negative-infinity single-float-negative-infinity)
134 (defconstant double-float-positive-infinity
135 (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0))
137 (defconstant long-float-positive-infinity double-float-positive-infinity)
138 #!+(and long-float x86)
139 (defconstant long-float-positive-infinity
140 (long-from-bits 0 (1+ sb!vm:long-float-normal-exponent-max)
141 (ash sb!vm:long-float-hidden-bit 32)))
142 (defconstant double-float-negative-infinity
143 (double-from-bits 1 (1+ sb!vm:double-float-normal-exponent-max) 0))
145 (defconstant long-float-negative-infinity double-float-negative-infinity)
146 #!+(and long-float x86)
147 (defconstant long-float-negative-infinity
148 (long-from-bits 1 (1+ sb!vm:long-float-normal-exponent-max)
149 (ash sb!vm:long-float-hidden-bit 32)))
150 ) ; LET-to-suppress-possible-EVAL-WHENs
152 (defconstant single-float-epsilon
153 (single-from-bits 0 (- sb!vm:single-float-bias
154 (1- sb!vm:single-float-digits)) 1))
155 (defconstant short-float-epsilon single-float-epsilon)
156 (defconstant single-float-negative-epsilon
157 (single-from-bits 0 (- sb!vm:single-float-bias sb!vm:single-float-digits) 1))
158 (defconstant short-float-negative-epsilon single-float-negative-epsilon)
159 (defconstant double-float-epsilon
160 (double-from-bits 0 (- sb!vm:double-float-bias
161 (1- sb!vm:double-float-digits)) 1))
163 (defconstant long-float-epsilon double-float-epsilon)
164 #!+(and long-float x86)
165 (defconstant long-float-epsilon
166 (long-from-bits 0 (- sb!vm:long-float-bias (1- sb!vm:long-float-digits))
167 (+ 1 (ash sb!vm:long-float-hidden-bit 32))))
168 (defconstant double-float-negative-epsilon
169 (double-from-bits 0 (- sb!vm:double-float-bias sb!vm:double-float-digits) 1))
171 (defconstant long-float-negative-epsilon double-float-negative-epsilon)
172 #!+(and long-float x86)
173 (defconstant long-float-negative-epsilon
174 (long-from-bits 0 (- sb!vm:long-float-bias sb!vm:long-float-digits)
175 (+ 1 (ash sb!vm:long-float-hidden-bit 32))))
177 ;;;; float predicates and environment query
180 (declaim (maybe-inline float-denormalized-p float-infinity-p float-nan-p
181 float-trapping-nan-p))
183 (defun float-denormalized-p (x)
185 "Return true if the float X is denormalized."
186 (number-dispatch ((x float))
188 (and (zerop (ldb sb!vm:single-float-exponent-byte (single-float-bits x)))
191 (and (zerop (ldb sb!vm:double-float-exponent-byte
192 (double-float-high-bits x)))
194 #!+(and long-float x86)
196 (and (zerop (ldb sb!vm:long-float-exponent-byte (long-float-exp-bits x)))
199 (defmacro !define-float-dispatching-function
200 (name doc single double #!+(and long-float x86) long)
203 (number-dispatch ((x float))
205 (let ((bits (single-float-bits x)))
206 (and (> (ldb sb!vm:single-float-exponent-byte bits)
207 sb!vm:single-float-normal-exponent-max)
210 (let ((hi (double-float-high-bits x))
211 (lo (double-float-low-bits x)))
212 (declare (ignorable lo))
213 (and (> (ldb sb!vm:double-float-exponent-byte hi)
214 sb!vm:double-float-normal-exponent-max)
216 #!+(and long-float x86)
218 (let ((exp (long-float-exp-bits x))
219 (hi (long-float-high-bits x))
220 (lo (long-float-low-bits x)))
221 (declare (ignorable lo))
222 (and (> (ldb sb!vm:long-float-exponent-byte exp)
223 sb!vm:long-float-normal-exponent-max)
226 (!define-float-dispatching-function float-infinity-p
227 "Return true if the float X is an infinity (+ or -)."
228 (zerop (ldb sb!vm:single-float-significand-byte bits))
229 (and (zerop (ldb sb!vm:double-float-significand-byte hi))
231 #!+(and long-float x86)
232 (and (zerop (ldb sb!vm:long-float-significand-byte hi))
235 (!define-float-dispatching-function float-nan-p
236 "Return true if the float X is a NaN (Not a Number)."
237 (not (zerop (ldb sb!vm:single-float-significand-byte bits)))
238 (or (not (zerop (ldb sb!vm:double-float-significand-byte hi)))
240 #!+(and long-float x86)
241 (or (not (zerop (ldb sb!vm:long-float-significand-byte hi)))
244 (!define-float-dispatching-function float-trapping-nan-p
245 "Return true if the float X is a trapping NaN (Not a Number)."
246 (zerop (logand (ldb sb!vm:single-float-significand-byte bits)
247 sb!vm:single-float-trapping-nan-bit))
248 (zerop (logand (ldb sb!vm:double-float-significand-byte hi)
249 sb!vm:double-float-trapping-nan-bit))
250 #!+(and long-float x86)
251 (zerop (logand (ldb sb!vm:long-float-significand-byte hi)
252 sb!vm:long-float-trapping-nan-bit)))
254 ;;; If denormalized, use a subfunction from INTEGER-DECODE-FLOAT to find the
255 ;;; actual exponent (and hence how denormalized it is), otherwise we just
256 ;;; return the number of digits or 0.
257 #!-sb-fluid (declaim (maybe-inline float-precision))
258 (defun float-precision (f)
260 "Return a non-negative number of significant digits in its float argument.
261 Will be less than FLOAT-DIGITS if denormalized or zero."
262 (macrolet ((frob (digits bias decode)
264 ((float-denormalized-p f)
265 (multiple-value-bind (ignore exp) (,decode f)
266 (declare (ignore ignore))
268 (+ ,digits (1- ,digits) ,bias exp))))
271 (number-dispatch ((f float))
273 (frob sb!vm:single-float-digits sb!vm:single-float-bias
274 integer-decode-single-denorm))
276 (frob sb!vm:double-float-digits sb!vm:double-float-bias
277 integer-decode-double-denorm))
280 (frob sb!vm:long-float-digits sb!vm:long-float-bias
281 integer-decode-long-denorm)))))
283 (defun float-sign (float1 &optional (float2 (float 1 float1)))
285 "Return a floating-point number that has the same sign as
286 FLOAT1 and, if FLOAT2 is given, has the same absolute value
288 (declare (float float1 float2))
289 (* (if (etypecase float1
290 (single-float (minusp (single-float-bits float1)))
291 (double-float (minusp (double-float-high-bits float1)))
293 (long-float (minusp (long-float-exp-bits float1))))
298 (defun float-format-digits (format)
300 ((short-float single-float) sb!vm:single-float-digits)
301 ((double-float #!-long-float long-float) sb!vm:double-float-digits)
303 (long-float sb!vm:long-float-digits)))
305 #!-sb-fluid (declaim (inline float-digits float-radix))
307 (defun float-digits (f)
308 (number-dispatch ((f float))
309 ((single-float) sb!vm:single-float-digits)
310 ((double-float) sb!vm:double-float-digits)
312 ((long-float) sb!vm:long-float-digits)))
314 (defun float-radix (x)
316 "Return (as an integer) the radix b of its floating-point argument."
319 ;;;; INTEGER-DECODE-FLOAT and DECODE-FLOAT
322 (declaim (maybe-inline integer-decode-single-float
323 integer-decode-double-float))
325 ;;; Handle the denormalized case of INTEGER-DECODE-FLOAT for SINGLE-FLOAT.
326 (defun integer-decode-single-denorm (x)
327 (declare (type single-float x))
328 (let* ((bits (single-float-bits (abs x)))
329 (sig (ash (ldb sb!vm:single-float-significand-byte bits) 1))
331 (declare (type (unsigned-byte 24) sig)
332 (type (integer 0 23) extra-bias))
334 (unless (zerop (logand sig sb!vm:single-float-hidden-bit))
336 (setq sig (ash sig 1))
339 (- (- sb!vm:single-float-bias)
340 sb!vm:single-float-digits
342 (if (minusp (float-sign x)) -1 1))))
344 ;;; Handle the single-float case of INTEGER-DECODE-FLOAT. If an infinity or
345 ;;; NaN, error. If a denorm, call i-d-s-DENORM to handle it.
346 (defun integer-decode-single-float (x)
347 (declare (single-float x))
348 (let* ((bits (single-float-bits (abs x)))
349 (exp (ldb sb!vm:single-float-exponent-byte bits))
350 (sig (ldb sb!vm:single-float-significand-byte bits))
351 (sign (if (minusp (float-sign x)) -1 1))
352 (biased (- exp sb!vm:single-float-bias sb!vm:single-float-digits)))
353 (declare (fixnum biased))
354 (unless (<= exp sb!vm:single-float-normal-exponent-max)
355 (error "can't decode NaN or infinity: ~S" x))
356 (cond ((and (zerop exp) (zerop sig))
357 (values 0 biased sign))
358 ((< exp sb!vm:single-float-normal-exponent-min)
359 (integer-decode-single-denorm x))
361 (values (logior sig sb!vm:single-float-hidden-bit) biased sign)))))
363 ;;; like INTEGER-DECODE-SINGLE-DENORM, only doubly so
364 (defun integer-decode-double-denorm (x)
365 (declare (type double-float x))
366 (let* ((high-bits (double-float-high-bits (abs x)))
367 (sig-high (ldb sb!vm:double-float-significand-byte high-bits))
368 (low-bits (double-float-low-bits x))
369 (sign (if (minusp (float-sign x)) -1 1))
370 (biased (- (- sb!vm:double-float-bias) sb!vm:double-float-digits)))
373 (extra-bias (- sb!vm:double-float-digits 33))
375 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
377 (unless (zerop (logand sig bit)) (return))
378 (setq sig (ash sig 1))
380 (values (ash sig (- sb!vm:double-float-digits 32))
381 (truly-the fixnum (- biased extra-bias))
383 (let ((sig (ash sig-high 1))
385 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
387 (unless (zerop (logand sig sb!vm:double-float-hidden-bit))
389 (setq sig (ash sig 1))
391 (values (logior (ash sig 32) (ash low-bits (1- extra-bias)))
392 (truly-the fixnum (- biased extra-bias))
395 ;;; like INTEGER-DECODE-SINGLE-FLOAT, only doubly so
396 (defun integer-decode-double-float (x)
397 (declare (double-float x))
399 (hi (double-float-high-bits abs))
400 (lo (double-float-low-bits abs))
401 (exp (ldb sb!vm:double-float-exponent-byte hi))
402 (sig (ldb sb!vm:double-float-significand-byte hi))
403 (sign (if (minusp (float-sign x)) -1 1))
404 (biased (- exp sb!vm:double-float-bias sb!vm:double-float-digits)))
405 (declare (fixnum biased))
406 (unless (<= exp sb!vm:double-float-normal-exponent-max)
407 (error "Can't decode NaN or infinity: ~S." x))
408 (cond ((and (zerop exp) (zerop sig) (zerop lo))
409 (values 0 biased sign))
410 ((< exp sb!vm:double-float-normal-exponent-min)
411 (integer-decode-double-denorm x))
414 (logior (ash (logior (ldb sb!vm:double-float-significand-byte hi)
415 sb!vm:double-float-hidden-bit)
420 #!+(and long-float x86)
421 (defun integer-decode-long-denorm (x)
422 (declare (type long-float x))
423 (let* ((high-bits (long-float-high-bits (abs x)))
424 (sig-high (ldb sb!vm:long-float-significand-byte high-bits))
425 (low-bits (long-float-low-bits x))
426 (sign (if (minusp (float-sign x)) -1 1))
427 (biased (- (- sb!vm:long-float-bias) sb!vm:long-float-digits)))
430 (extra-bias (- sb!vm:long-float-digits 33))
432 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
434 (unless (zerop (logand sig bit)) (return))
435 (setq sig (ash sig 1))
437 (values (ash sig (- sb!vm:long-float-digits 32))
438 (truly-the fixnum (- biased extra-bias))
440 (let ((sig (ash sig-high 1))
442 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
444 (unless (zerop (logand sig sb!vm:long-float-hidden-bit))
446 (setq sig (ash sig 1))
448 (values (logior (ash sig 32) (ash low-bits (1- extra-bias)))
449 (truly-the fixnum (- biased extra-bias))
452 #!+(and long-float x86)
453 (defun integer-decode-long-float (x)
454 (declare (long-float x))
455 (let* ((hi (long-float-high-bits x))
456 (lo (long-float-low-bits x))
457 (exp-bits (long-float-exp-bits x))
458 (exp (ldb sb!vm:long-float-exponent-byte exp-bits))
459 (sign (if (minusp exp-bits) -1 1))
460 (biased (- exp sb!vm:long-float-bias sb!vm:long-float-digits)))
461 (declare (fixnum biased))
462 (unless (<= exp sb!vm:long-float-normal-exponent-max)
463 (error "can't decode NaN or infinity: ~S" x))
464 (cond ((and (zerop exp) (zerop hi) (zerop lo))
465 (values 0 biased sign))
466 ((< exp sb!vm:long-float-normal-exponent-min)
467 (integer-decode-long-denorm x))
469 (values (logior (ash hi 32) lo) biased sign)))))
471 ;;; Dispatch to the correct type-specific i-d-f function.
472 (defun integer-decode-float (x)
474 "Return three values:
475 1) an integer representation of the significand.
476 2) the exponent for the power of 2 that the significand must be multiplied
477 by to get the actual value. This differs from the DECODE-FLOAT exponent
478 by FLOAT-DIGITS, since the significand has been scaled to have all its
479 digits before the radix point.
480 3) -1 or 1 (i.e. the sign of the argument.)"
481 (number-dispatch ((x float))
483 (integer-decode-single-float x))
485 (integer-decode-double-float x))
488 (integer-decode-long-float x))))
490 #!-sb-fluid (declaim (maybe-inline decode-single-float decode-double-float))
492 ;;; Handle the denormalized case of DECODE-SINGLE-FLOAT. We call
493 ;;; INTEGER-DECODE-SINGLE-DENORM and then make the result into a float.
494 (defun decode-single-denorm (x)
495 (declare (type single-float x))
496 (multiple-value-bind (sig exp sign) (integer-decode-single-denorm x)
497 (values (make-single-float
498 (dpb sig sb!vm:single-float-significand-byte
499 (dpb sb!vm:single-float-bias
500 sb!vm:single-float-exponent-byte
502 (truly-the fixnum (+ exp sb!vm:single-float-digits))
505 ;;; Handle the single-float case of DECODE-FLOAT. If an infinity or NaN,
506 ;;; error. If a denorm, call d-s-DENORM to handle it.
507 (defun decode-single-float (x)
508 (declare (single-float x))
509 (let* ((bits (single-float-bits (abs x)))
510 (exp (ldb sb!vm:single-float-exponent-byte bits))
511 (sign (float-sign x))
512 (biased (truly-the single-float-exponent
513 (- exp sb!vm:single-float-bias))))
514 (unless (<= exp sb!vm:single-float-normal-exponent-max)
515 (error "can't decode NaN or infinity: ~S" x))
517 (values 0.0f0 biased sign))
518 ((< exp sb!vm:single-float-normal-exponent-min)
519 (decode-single-denorm x))
521 (values (make-single-float
522 (dpb sb!vm:single-float-bias
523 sb!vm:single-float-exponent-byte
527 ;;; like DECODE-SINGLE-DENORM, only doubly so
528 (defun decode-double-denorm (x)
529 (declare (double-float x))
530 (multiple-value-bind (sig exp sign) (integer-decode-double-denorm x)
531 (values (make-double-float
532 (dpb (logand (ash sig -32) (lognot sb!vm:double-float-hidden-bit))
533 sb!vm:double-float-significand-byte
534 (dpb sb!vm:double-float-bias
535 sb!vm:double-float-exponent-byte 0))
536 (ldb (byte 32 0) sig))
537 (truly-the fixnum (+ exp sb!vm:double-float-digits))
540 ;;; like DECODE-SINGLE-FLOAT, only doubly so
541 (defun decode-double-float (x)
542 (declare (double-float x))
544 (hi (double-float-high-bits abs))
545 (lo (double-float-low-bits abs))
546 (exp (ldb sb!vm:double-float-exponent-byte hi))
547 (sign (float-sign x))
548 (biased (truly-the double-float-exponent
549 (- exp sb!vm:double-float-bias))))
550 (unless (<= exp sb!vm:double-float-normal-exponent-max)
551 (error "can't decode NaN or infinity: ~S" x))
553 (values 0.0d0 biased sign))
554 ((< exp sb!vm:double-float-normal-exponent-min)
555 (decode-double-denorm x))
557 (values (make-double-float
558 (dpb sb!vm:double-float-bias
559 sb!vm:double-float-exponent-byte hi)
563 #!+(and long-float x86)
564 (defun decode-long-denorm (x)
565 (declare (long-float x))
566 (multiple-value-bind (sig exp sign) (integer-decode-long-denorm x)
567 (values (make-long-float sb!vm:long-float-bias (ash sig -32)
568 (ldb (byte 32 0) sig))
569 (truly-the fixnum (+ exp sb!vm:long-float-digits))
572 #!+(and long-float x86)
573 (defun decode-long-float (x)
574 (declare (long-float x))
575 (let* ((hi (long-float-high-bits x))
576 (lo (long-float-low-bits x))
577 (exp-bits (long-float-exp-bits x))
578 (exp (ldb sb!vm:long-float-exponent-byte exp-bits))
579 (sign (if (minusp exp-bits) -1l0 1l0))
580 (biased (truly-the long-float-exponent
581 (- exp sb!vm:long-float-bias))))
582 (unless (<= exp sb!vm:long-float-normal-exponent-max)
583 (error "can't decode NaN or infinity: ~S" x))
585 (values 0.0l0 biased sign))
586 ((< exp sb!vm:long-float-normal-exponent-min)
587 (decode-long-denorm x))
589 (values (make-long-float
590 (dpb sb!vm:long-float-bias sb!vm:long-float-exponent-byte
596 ;;; Dispatch to the appropriate type-specific function.
597 (defun decode-float (f)
599 "Return three values:
600 1) a floating-point number representing the significand. This is always
601 between 0.5 (inclusive) and 1.0 (exclusive).
602 2) an integer representing the exponent.
603 3) -1.0 or 1.0 (i.e. the sign of the argument.)"
604 (number-dispatch ((f float))
606 (decode-single-float f))
608 (decode-double-float f))
611 (decode-long-float f))))
615 #!-sb-fluid (declaim (maybe-inline scale-single-float scale-double-float))
617 ;;; Handle float scaling where the X is denormalized or the result is
618 ;;; denormalized or underflows to 0.
619 (defun scale-float-maybe-underflow (x exp)
620 (multiple-value-bind (sig old-exp) (integer-decode-float x)
621 (let* ((digits (float-digits x))
622 (new-exp (+ exp old-exp digits
624 (single-float sb!vm:single-float-bias)
625 (double-float sb!vm:double-float-bias))))
626 (sign (if (minusp (float-sign x)) 1 0)))
630 (single-float sb!vm:single-float-normal-exponent-min)
631 (double-float sb!vm:double-float-normal-exponent-min)))
632 (when (sb!vm:current-float-trap :inexact)
633 (error 'floating-point-inexact :operation 'scale-float
634 :operands (list x exp)))
635 (when (sb!vm:current-float-trap :underflow)
636 (error 'floating-point-underflow :operation 'scale-float
637 :operands (list x exp)))
638 (let ((shift (1- new-exp)))
639 (if (< shift (- (1- digits)))
642 (single-float (single-from-bits sign 0 (ash sig shift)))
643 (double-float (double-from-bits sign 0 (ash sig shift)))))))
646 (single-float (single-from-bits sign new-exp sig))
647 (double-float (double-from-bits sign new-exp sig))))))))
649 ;;; Called when scaling a float overflows, or the original float was a
650 ;;; NaN or infinity. If overflow errors are trapped, then error,
651 ;;; otherwise return the appropriate infinity. If a NaN, signal or not
653 (defun scale-float-maybe-overflow (x exp)
655 ((float-infinity-p x)
656 ;; Infinity is infinity, no matter how small...
659 (when (and (float-trapping-nan-p x)
660 (sb!vm:current-float-trap :invalid))
661 (error 'floating-point-invalid-operation :operation 'scale-float
662 :operands (list x exp)))
665 (when (sb!vm:current-float-trap :overflow)
666 (error 'floating-point-overflow :operation 'scale-float
667 :operands (list x exp)))
668 (when (sb!vm:current-float-trap :inexact)
669 (error 'floating-point-inexact :operation 'scale-float
670 :operands (list x exp)))
673 (single-float single-float-positive-infinity)
674 (double-float double-float-positive-infinity))))))
676 ;;; Scale a single or double float, calling the correct over/underflow
678 (defun scale-single-float (x exp)
679 (declare (single-float x) (fixnum exp))
680 (let* ((bits (single-float-bits x))
681 (old-exp (ldb sb!vm:single-float-exponent-byte bits))
682 (new-exp (+ old-exp exp)))
685 ((or (< old-exp sb!vm:single-float-normal-exponent-min)
686 (< new-exp sb!vm:single-float-normal-exponent-min))
687 (scale-float-maybe-underflow x exp))
688 ((or (> old-exp sb!vm:single-float-normal-exponent-max)
689 (> new-exp sb!vm:single-float-normal-exponent-max))
690 (scale-float-maybe-overflow x exp))
692 (make-single-float (dpb new-exp
693 sb!vm:single-float-exponent-byte
695 (defun scale-double-float (x exp)
696 (declare (double-float x) (fixnum exp))
697 (let* ((hi (double-float-high-bits x))
698 (lo (double-float-low-bits x))
699 (old-exp (ldb sb!vm:double-float-exponent-byte hi))
700 (new-exp (+ old-exp exp)))
703 ((or (< old-exp sb!vm:double-float-normal-exponent-min)
704 (< new-exp sb!vm:double-float-normal-exponent-min))
705 (scale-float-maybe-underflow x exp))
706 ((or (> old-exp sb!vm:double-float-normal-exponent-max)
707 (> new-exp sb!vm:double-float-normal-exponent-max))
708 (scale-float-maybe-overflow x exp))
710 (make-double-float (dpb new-exp sb!vm:double-float-exponent-byte hi)
713 #!+(and x86 long-float)
714 (defun scale-long-float (x exp)
715 (declare (long-float x) (fixnum exp))
718 ;;; Dispatch to the correct type-specific scale-float function.
719 (defun scale-float (f ex)
721 "Return the value (* f (expt (float 2 f) ex)), but with no unnecessary loss
722 of precision or overflow."
723 (number-dispatch ((f float))
725 (scale-single-float f ex))
727 (scale-double-float f ex))
730 (scale-long-float f ex))))
732 ;;;; converting to/from floats
734 (defun float (number &optional (other () otherp))
736 "Converts any REAL to a float. If OTHER is not provided, it returns a
737 SINGLE-FLOAT if NUMBER is not already a FLOAT. If OTHER is provided, the
738 result is the same float format as OTHER."
740 (number-dispatch ((number real) (other float))
741 (((foreach rational single-float double-float #!+long-float long-float)
742 (foreach single-float double-float #!+long-float long-float))
743 (coerce number '(dispatch-type other))))
746 (coerce number 'single-float))))
748 (macrolet ((frob (name type)
750 (number-dispatch ((x real))
751 (((foreach single-float double-float #!+long-float long-float
755 (bignum-to-float x ',type))
757 (float-ratio x ',type))))))
758 (frob %single-float single-float)
759 (frob %double-float double-float)
761 (frob %long-float long-float))
763 ;;; Convert a ratio to a float. We avoid any rounding error by doing an
764 ;;; integer division. Accuracy is important to preserve read/print
765 ;;; consistency, since this is ultimately how the reader reads a float. We
766 ;;; scale the numerator by a power of two until the division results in the
767 ;;; desired number of fraction bits, then do round-to-nearest.
768 (defun float-ratio (x format)
769 (let* ((signed-num (numerator x))
770 (plusp (plusp signed-num))
771 (num (if plusp signed-num (- signed-num)))
772 (den (denominator x))
773 (digits (float-format-digits format))
775 (declare (fixnum digits scale))
776 ;; Strip any trailing zeros from the denominator and move it into the scale
777 ;; factor (to minimize the size of the operands.)
778 (let ((den-twos (1- (integer-length (logxor den (1- den))))))
779 (declare (fixnum den-twos))
780 (decf scale den-twos)
781 (setq den (ash den (- den-twos))))
782 ;; Guess how much we need to scale by from the magnitudes of the numerator
783 ;; and denominator. We want one extra bit for a guard bit.
784 (let* ((num-len (integer-length num))
785 (den-len (integer-length den))
786 (delta (- den-len num-len))
787 (shift (1+ (the fixnum (+ delta digits))))
788 (shifted-num (ash num shift)))
789 (declare (fixnum delta shift))
791 (labels ((float-and-scale (bits)
792 (let* ((bits (ash bits -1))
793 (len (integer-length bits)))
794 (cond ((> len digits)
795 (aver (= len (the fixnum (1+ digits))))
796 (scale-float (floatit (ash bits -1)) (1+ scale)))
798 (scale-float (floatit bits) scale)))))
800 (let ((sign (if plusp 0 1)))
803 (single-from-bits sign sb!vm:single-float-bias bits))
805 (double-from-bits sign sb!vm:double-float-bias bits))
808 (long-from-bits sign sb!vm:long-float-bias bits))))))
810 (multiple-value-bind (fraction-and-guard rem)
811 (truncate shifted-num den)
812 (let ((extra (- (integer-length fraction-and-guard) digits)))
813 (declare (fixnum extra))
816 ((oddp fraction-and-guard)
820 (if (zerop (logand fraction-and-guard 2))
822 (1+ fraction-and-guard)))
823 (float-and-scale (1+ fraction-and-guard)))))
825 (return (float-and-scale fraction-and-guard)))))
826 (setq shifted-num (ash shifted-num -1))
830 These might be useful if we ever have a machine without float/integer
831 conversion hardware. For now, we'll use special ops that
832 uninterruptibly frob the rounding modes & do ieee round-to-integer.
834 ;;; The compiler compiles a call to this when we are doing %UNARY-TRUNCATE
835 ;;; and the result is known to be a fixnum. We can avoid some generic
836 ;;; arithmetic in this case.
837 (defun %unary-truncate-single-float/fixnum (x)
838 (declare (single-float x) (values fixnum))
839 (locally (declare (optimize (speed 3) (safety 0)))
840 (let* ((bits (single-float-bits x))
841 (exp (ldb sb!vm:single-float-exponent-byte bits))
842 (frac (logior (ldb sb!vm:single-float-significand-byte bits)
843 sb!vm:single-float-hidden-bit))
844 (shift (- exp sb!vm:single-float-digits sb!vm:single-float-bias)))
845 (when (> exp sb!vm:single-float-normal-exponent-max)
846 (error 'floating-point-invalid-operation :operator 'truncate
848 (if (<= shift (- sb!vm:single-float-digits))
850 (let ((res (ash frac shift)))
851 (declare (type (unsigned-byte 31) res))
856 ;;; Double-float version of this operation (see above single op).
857 (defun %unary-truncate-double-float/fixnum (x)
858 (declare (double-float x) (values fixnum))
859 (locally (declare (optimize (speed 3) (safety 0)))
860 (let* ((hi-bits (double-float-high-bits x))
861 (exp (ldb sb!vm:double-float-exponent-byte hi-bits))
862 (frac (logior (ldb sb!vm:double-float-significand-byte hi-bits)
863 sb!vm:double-float-hidden-bit))
864 (shift (- exp (- sb!vm:double-float-digits sb!vm:n-word-bits)
865 sb!vm:double-float-bias)))
866 (when (> exp sb!vm:double-float-normal-exponent-max)
867 (error 'floating-point-invalid-operation :operator 'truncate
869 (if (<= shift (- sb!vm:n-word-bits sb!vm:double-float-digits))
871 (let* ((res-hi (ash frac shift))
872 (res (if (plusp shift)
875 (ash (double-float-low-bits x)
876 (- shift sb!vm:n-word-bits))))
878 (declare (type (unsigned-byte 31) res-hi res))
884 ;;; This function is called when we are doing a truncate without any funky
885 ;;; divisor, i.e. converting a float or ratio to an integer. Note that we do
886 ;;; *not* return the second value of truncate, so it must be computed by the
887 ;;; caller if needed.
889 ;;; In the float case, we pick off small arguments so that compiler can use
890 ;;; special-case operations. We use an exclusive test, since (due to round-off
891 ;;; error), (float most-positive-fixnum) may be greater than
892 ;;; most-positive-fixnum.
893 (defun %unary-truncate (number)
894 (number-dispatch ((number real))
896 ((ratio) (values (truncate (numerator number) (denominator number))))
897 (((foreach single-float double-float #!+long-float long-float))
898 (if (< (float most-negative-fixnum number)
900 (float most-positive-fixnum number))
901 (truly-the fixnum (%unary-truncate number))
902 (multiple-value-bind (bits exp) (integer-decode-float number)
903 (let ((res (ash bits exp)))
908 ;;; Similar to %UNARY-TRUNCATE, but rounds to the nearest integer. If we
909 ;;; can't use the round primitive, then we do our own round-to-nearest on the
910 ;;; result of i-d-f. [Note that this rounding will really only happen with
911 ;;; double floats, since the whole single-float fraction will fit in a fixnum,
912 ;;; so all single-floats larger than most-positive-fixnum can be precisely
913 ;;; represented by an integer.]
914 (defun %unary-round (number)
915 (number-dispatch ((number real))
917 ((ratio) (values (round (numerator number) (denominator number))))
918 (((foreach single-float double-float #!+long-float long-float))
919 (if (< (float most-negative-fixnum number)
921 (float most-positive-fixnum number))
922 (truly-the fixnum (%unary-round number))
923 (multiple-value-bind (bits exp) (integer-decode-float number)
924 (let* ((shifted (ash bits exp))
925 (rounded (if (and (minusp exp)
928 (lognot (ash -1 (- exp))))
938 "RATIONAL produces a rational number for any real numeric argument. This is
939 more efficient than RATIONALIZE, but it assumes that floating-point is
940 completely accurate, giving a result that isn't as pretty."
941 (number-dispatch ((x real))
942 (((foreach single-float double-float #!+long-float long-float))
943 (multiple-value-bind (bits exp) (integer-decode-float x)
946 (let* ((int (if (minusp x) (- bits) bits))
947 (digits (float-digits x))
950 (integer-/-integer int (ash 1 (+ digits (- ex))))
951 (integer-/-integer (ash int ex) (ash 1 digits)))))))
954 (defun rationalize (x)
956 "Converts any REAL to a RATIONAL. Floats are converted to a simple rational
957 representation exploiting the assumption that floats are only accurate to
958 their precision. RATIONALIZE (and also RATIONAL) preserve the invariant:
959 (= x (float (rationalize x) x))"
960 (number-dispatch ((x real))
961 (((foreach single-float double-float #!+long-float long-float))
962 ;; Thanks to Kim Fateman, who stole this function rationalize-float from
963 ;; macsyma's rational. Macsyma'a rationalize was written by the legendary
964 ;; Gosper (rwg). Guy Steele said about Gosper, "He has been called the
965 ;; only living 17th century mathematician and is also the best pdp-10
966 ;; hacker I know." So, if you can understand or debug this code you win
968 (cond ((minusp x) (- (rationalize (- x))))
971 (let ((eps (etypecase x
972 (single-float single-float-epsilon)
973 (double-float double-float-epsilon)
975 (long-float long-float-epsilon)))
978 (do ((xx x (setq y (/ (float 1.0 x) (- xx (float a x)))))
979 (num (setq a (truncate x))
980 (+ (* (setq a (truncate y)) num) onum))
981 (den 1 (+ (* a den) oden))
984 ((and (not (zerop den))
985 (not (> (abs (/ (- x (/ (float num x)
989 (integer-/-integer num den))
990 (declare ((dispatch-type x) xx)))))))