1 ;;;; This file contains all the irrational functions. (Actually, most
2 ;;;; of the work is done by calling out to C.)
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!KERNEL")
15 ;;;; miscellaneous constants, utility functions, and macros
18 #!+long-float 3.14159265358979323846264338327950288419716939937511l0
19 #!-long-float 3.14159265358979323846264338327950288419716939937511d0)
21 ;;; Make these INLINE, since the call to C is at least as compact as a
22 ;;; Lisp call, and saves number consing to boot.
23 (eval-when (:compile-toplevel :execute)
25 (sb!xc:defmacro def-math-rtn (name num-args)
26 (let ((function (symbolicate "%" (string-upcase name)))
27 (args (loop for i below num-args
28 collect (intern (format nil "ARG~D" i)))))
30 (declaim (inline ,function))
31 (defun ,function ,args
34 (function double-float
35 ,@(loop repeat num-args
36 collect 'double-float)))
39 (defun handle-reals (function var)
40 `((((foreach fixnum single-float bignum ratio))
41 (coerce (,function (coerce ,var 'double-float)) 'single-float))
47 #!+x86 ;; for constant folding
48 (macrolet ((def (name ll)
49 `(defun ,name ,ll (,name ,@ll))))
62 #!+x86-64 ;; for constant folding
63 (macrolet ((def (name ll)
64 `(defun ,name ,ll (,name ,@ll))))
67 ;;;; stubs for the Unix math library
69 ;;;; Many of these are unnecessary on the X86 because they're built
73 #!-x86 (def-math-rtn "sin" 1)
74 #!-x86 (def-math-rtn "cos" 1)
75 #!-x86 (def-math-rtn "tan" 1)
76 #!-x86 (def-math-rtn "atan" 1)
77 #!-x86 (def-math-rtn "atan2" 2)
80 (def-math-rtn "acos" 1)
81 (def-math-rtn "asin" 1)
82 (def-math-rtn "cosh" 1)
83 (def-math-rtn "sinh" 1)
84 (def-math-rtn "tanh" 1)
87 (def-math-rtn "asinh" 1)
88 (def-math-rtn "acosh" 1)
89 (def-math-rtn "atanh" 1)))
94 (declaim (inline %asin))
96 (%atan (/ number (sqrt (- 1 (* number number))))))
97 (declaim (inline %acos))
99 (- (/ pi 2) (%asin number)))
100 (declaim (inline %cosh))
101 (defun %cosh (number)
102 (/ (+ (exp number) (exp (- number))) 2))
103 (declaim (inline %sinh))
104 (defun %sinh (number)
105 (/ (- (exp number) (exp (- number))) 2))
106 (declaim (inline %tanh))
107 (defun %tanh (number)
108 (/ (%sinh number) (%cosh number))))
109 (declaim (inline %asinh))
110 (defun %asinh (number)
111 (log (+ number (sqrt (+ (* number number) 1.0d0))) #.(exp 1.0d0)))
112 (declaim (inline %acosh))
113 (defun %acosh (number)
114 (log (+ number (sqrt (- (* number number) 1.0d0))) #.(exp 1.0d0)))
115 (declaim (inline %atanh))
116 (defun %atanh (number)
117 (let ((ratio (/ (+ 1 number) (- 1 number))))
118 ;; Were we effectively zero?
121 (/ (log ratio #.(exp 1.0d0)) 2.0d0)))))
123 ;;; exponential and logarithmic
124 #!-x86 (def-math-rtn "exp" 1)
125 #!-x86 (def-math-rtn "log" 1)
126 #!-x86 (def-math-rtn "log10" 1)
127 #!-(and win32 x86) (def-math-rtn "pow" 2)
128 #!-(or x86 x86-64) (def-math-rtn "sqrt" 1)
129 #!-win32 (def-math-rtn "hypot" 2)
130 #!-x86 (def-math-rtn "log1p" 1)
134 ;; This is written in a peculiar way to avoid overflow. Note that in
135 ;; sqrt(x^2 + y^2), either square or the sum can overflow.
137 ;; Factoring x^2 out of sqrt(x^2 + y^2) gives us the expression
138 ;; |x|sqrt(1 + (y/x)^2), which, assuming |x| >= |y|, can only overflow
139 ;; if |x| is sufficiently large.
141 ;; The ZEROP test suffices (y is non-negative) to guard against
142 ;; divisions by zero: x >= y > 0.
143 (declaim (inline %hypot))
145 (declare (type double-float x y))
153 (* x (sqrt (1+ (* y/x y/x)))))))))
159 "Return e raised to the power NUMBER."
160 (number-dispatch ((number number))
161 (handle-reals %exp number)
163 (* (exp (realpart number))
164 (cis (imagpart number))))))
166 ;;; INTEXP -- Handle the rational base, integer power case.
168 (declaim (type (or integer null) *intexp-maximum-exponent*))
169 (defparameter *intexp-maximum-exponent* nil)
171 ;;; This function precisely calculates base raised to an integral
172 ;;; power. It separates the cases by the sign of power, for efficiency
173 ;;; reasons, as powers can be calculated more efficiently if power is
174 ;;; a positive integer. Values of power are calculated as positive
175 ;;; integers, and inverted if negative.
176 (defun intexp (base power)
177 (when (and *intexp-maximum-exponent*
178 (> (abs power) *intexp-maximum-exponent*))
179 (error "The absolute value of ~S exceeds ~S."
180 power '*intexp-maximum-exponent*))
181 (cond ((minusp power)
182 (/ (intexp base (- power))))
186 (do ((nextn (ash power -1) (ash power -1))
187 (total (if (oddp power) base 1)
188 (if (oddp power) (* base total) total)))
189 ((zerop nextn) total)
190 (setq base (* base base))
191 (setq power nextn)))))
193 ;;; If an integer power of a rational, use INTEXP above. Otherwise, do
194 ;;; floating point stuff. If both args are real, we try %POW right
195 ;;; off, assuming it will return 0 if the result may be complex. If
196 ;;; so, we call COMPLEX-POW which directly computes the complex
197 ;;; result. We also separate the complex-real and real-complex cases
198 ;;; from the general complex case.
199 (defun expt (base power)
201 "Return BASE raised to the POWER."
203 (if (and (zerop base) (floatp power))
204 (error 'arguments-out-of-domain-error
205 :operands (list base power)
207 :references (list '(:ansi-cl :function expt)))
208 (let ((result (1+ (* base power))))
209 (if (and (floatp result) (float-nan-p result))
212 (labels (;; determine if the double float is an integer.
213 ;; 0 - not an integer
217 (declare (type (unsigned-byte 31) ihi)
218 (type (unsigned-byte 32) lo)
219 (optimize (speed 3) (safety 0)))
221 (declare (type fixnum isint))
222 (cond ((>= ihi #x43400000) ; exponent >= 53
225 (let ((k (- (ash ihi -20) #x3ff))) ; exponent
226 (declare (type (mod 53) k))
228 (let* ((shift (- 52 k))
229 (j (logand (ash lo (- shift))))
231 (declare (type (mod 32) shift)
232 (type (unsigned-byte 32) j j2))
234 (setq isint (- 2 (logand j 1))))))
236 (let* ((shift (- 20 k))
237 (j (ash ihi (- shift)))
239 (declare (type (mod 32) shift)
240 (type (unsigned-byte 31) j j2))
242 (setq isint (- 2 (logand j 1))))))))))
244 (real-expt (x y rtype)
245 (let ((x (coerce x 'double-float))
246 (y (coerce y 'double-float)))
247 (declare (double-float x y))
248 (let* ((x-hi (sb!kernel:double-float-high-bits x))
249 (x-lo (sb!kernel:double-float-low-bits x))
250 (x-ihi (logand x-hi #x7fffffff))
251 (y-hi (sb!kernel:double-float-high-bits y))
252 (y-lo (sb!kernel:double-float-low-bits y))
253 (y-ihi (logand y-hi #x7fffffff)))
254 (declare (type (signed-byte 32) x-hi y-hi)
255 (type (unsigned-byte 31) x-ihi y-ihi)
256 (type (unsigned-byte 32) x-lo y-lo))
258 (when (zerop (logior y-ihi y-lo))
259 (return-from real-expt (coerce 1d0 rtype)))
261 ;; FIXME: Hardcoded qNaN/sNaN values are not portable.
262 (when (or (> x-ihi #x7ff00000)
263 (and (= x-ihi #x7ff00000) (/= x-lo 0))
265 (and (= y-ihi #x7ff00000) (/= y-lo 0)))
266 (return-from real-expt (coerce (+ x y) rtype)))
267 (let ((yisint (if (< x-hi 0) (isint y-ihi y-lo) 0)))
268 (declare (type fixnum yisint))
269 ;; special value of y
270 (when (and (zerop y-lo) (= y-ihi #x7ff00000))
272 (return-from real-expt
273 (cond ((and (= x-ihi #x3ff00000) (zerop x-lo))
275 (coerce (- y y) rtype))
276 ((>= x-ihi #x3ff00000)
277 ;; (|x|>1)**+-inf = inf,0
282 ;; (|x|<1)**-,+inf = inf,0
285 (coerce 0 rtype))))))
287 (let ((abs-x (abs x)))
288 (declare (double-float abs-x))
289 ;; special value of x
290 (when (and (zerop x-lo)
291 (or (= x-ihi #x7ff00000) (zerop x-ihi)
292 (= x-ihi #x3ff00000)))
293 ;; x is +-0,+-inf,+-1
294 (let ((z (if (< y-hi 0)
295 (/ 1 abs-x) ; z = (1/|x|)
297 (declare (double-float z))
299 (cond ((and (= x-ihi #x3ff00000) (zerop yisint))
301 (let ((y*pi (* y pi)))
302 (declare (double-float y*pi))
303 (return-from real-expt
305 (coerce (%cos y*pi) rtype)
306 (coerce (%sin y*pi) rtype)))))
308 ;; (x<0)**odd = -(|x|**odd)
310 (return-from real-expt (coerce z rtype))))
314 (coerce (sb!kernel::%pow x y) rtype)
316 (let ((pow (sb!kernel::%pow abs-x y)))
317 (declare (double-float pow))
320 (coerce (* -1d0 pow) rtype))
324 (let ((y*pi (* y pi)))
325 (declare (double-float y*pi))
327 (coerce (* pow (%cos y*pi))
329 (coerce (* pow (%sin y*pi))
331 (complex-expt (base power)
332 (if (and (zerop base) (plusp (realpart power)))
334 (exp (* power (log base))))))
335 (declare (inline real-expt complex-expt))
336 (number-dispatch ((base number) (power number))
337 (((foreach fixnum (or bignum ratio) (complex rational)) integer)
339 (((foreach single-float double-float) rational)
340 (real-expt base power '(dispatch-type base)))
341 (((foreach fixnum (or bignum ratio) single-float)
342 (foreach ratio single-float))
343 (real-expt base power 'single-float))
344 (((foreach fixnum (or bignum ratio) single-float double-float)
346 (real-expt base power 'double-float))
347 ((double-float single-float)
348 (real-expt base power 'double-float))
349 ;; Handle (expt <complex> <rational>), except the case dealt with
350 ;; in the first clause above, (expt <(complex rational)> <integer>).
351 (((foreach (complex rational) (complex single-float)
352 (complex double-float))
354 (* (expt (abs base) power)
355 (cis (* power (phase base)))))
356 ;; The next three clauses handle (expt <real> <complex>).
357 (((foreach fixnum (or bignum ratio) single-float)
358 (foreach (complex single-float) (complex rational)))
359 (complex-expt base power))
360 (((foreach fixnum (or bignum ratio) single-float)
361 (complex double-float))
362 (complex-expt (coerce base 'double-float) power))
363 ((double-float complex)
364 (complex-expt base power))
365 ;; The next three clauses handle (expt <complex> <float>) and
366 ;; (expt <complex> <complex>).
367 (((foreach (complex single-float) (complex rational))
368 (foreach (complex single-float) (complex rational) single-float))
369 (complex-expt base power))
370 (((foreach (complex single-float) (complex rational))
371 (foreach (complex double-float) double-float))
372 (complex-expt (coerce base '(complex double-float)) power))
373 (((complex double-float)
374 (foreach complex double-float single-float))
375 (complex-expt base power))))))
377 ;;; FIXME: Maybe rename this so that it's clearer that it only works
380 (declare (type integer x))
383 ;; Write x = 2^n*f where 1/2 < f <= 1. Then log2(x) = n +
384 ;; log2(f). So we grab the top few bits of x and scale that
385 ;; appropriately, take the log of it and add it to n.
387 ;; Motivated by an attempt to get LOG to work better on bignums.
388 (let ((n (integer-length x)))
389 (if (< n sb!vm:double-float-digits)
390 (log (coerce x 'double-float) 2.0d0)
391 (let ((f (ldb (byte sb!vm:double-float-digits
392 (- n sb!vm:double-float-digits))
394 (+ n (log (scale-float (coerce f 'double-float)
395 (- sb!vm:double-float-digits))
398 (defun log (number &optional (base nil base-p))
400 "Return the logarithm of NUMBER in the base BASE, which defaults to e."
404 (if (or (typep number 'double-float) (typep base 'double-float))
407 ((and (typep number '(integer (0) *))
408 (typep base '(integer (0) *)))
409 (coerce (/ (log2 number) (log2 base)) 'single-float))
410 ((and (typep number 'integer) (typep base 'double-float))
411 ;; No single float intermediate result
412 (/ (log2 number) (log base 2.0d0)))
413 ((and (typep number 'double-float) (typep base 'integer))
414 (/ (log number 2.0d0) (log2 base)))
416 (/ (log number) (log base))))
417 (number-dispatch ((number number))
418 (((foreach fixnum bignum))
420 (complex (log (- number)) (coerce pi 'single-float))
421 (coerce (/ (log2 number) (log (exp 1.0d0) 2.0d0)) 'single-float)))
424 (complex (log (- number)) (coerce pi 'single-float))
425 (let ((numerator (numerator number))
426 (denominator (denominator number)))
427 (if (= (integer-length numerator)
428 (integer-length denominator))
429 (coerce (%log1p (coerce (- number 1) 'double-float))
431 (coerce (/ (- (log2 numerator) (log2 denominator))
432 (log (exp 1.0d0) 2.0d0))
434 (((foreach single-float double-float))
435 ;; Is (log -0) -infinity (libm.a) or -infinity + i*pi (Kahan)?
436 ;; Since this doesn't seem to be an implementation issue
437 ;; I (pw) take the Kahan result.
438 (if (< (float-sign number)
439 (coerce 0 '(dispatch-type number)))
440 (complex (log (- number)) (coerce pi '(dispatch-type number)))
441 (coerce (%log (coerce number 'double-float))
442 '(dispatch-type number))))
444 (complex-log number)))))
448 "Return the square root of NUMBER."
449 (number-dispatch ((number number))
450 (((foreach fixnum bignum ratio))
452 (complex-sqrt number)
453 (coerce (%sqrt (coerce number 'double-float)) 'single-float)))
454 (((foreach single-float double-float))
456 (complex-sqrt (complex number))
457 (coerce (%sqrt (coerce number 'double-float))
458 '(dispatch-type number))))
460 (complex-sqrt number))))
462 ;;;; trigonometic and related functions
466 "Return the absolute value of the number."
467 (number-dispatch ((number number))
468 (((foreach single-float double-float fixnum rational))
471 (let ((rx (realpart number))
472 (ix (imagpart number)))
475 (sqrt (+ (* rx rx) (* ix ix))))
477 (coerce (%hypot (coerce rx 'double-float)
478 (coerce ix 'double-float))
483 (defun phase (number)
485 "Return the angle part of the polar representation of a complex number.
486 For complex numbers, this is (atan (imagpart number) (realpart number)).
487 For non-complex positive numbers, this is 0. For non-complex negative
492 (coerce pi 'single-float)
495 (if (minusp (float-sign number))
496 (coerce pi 'single-float)
499 (if (minusp (float-sign number))
500 (coerce pi 'double-float)
503 (atan (imagpart number) (realpart number)))))
507 "Return the sine of NUMBER."
508 (number-dispatch ((number number))
509 (handle-reals %sin number)
511 (let ((x (realpart number))
512 (y (imagpart number)))
513 (complex (* (sin x) (cosh y))
514 (* (cos x) (sinh y)))))))
518 "Return the cosine of NUMBER."
519 (number-dispatch ((number number))
520 (handle-reals %cos number)
522 (let ((x (realpart number))
523 (y (imagpart number)))
524 (complex (* (cos x) (cosh y))
525 (- (* (sin x) (sinh y))))))))
529 "Return the tangent of NUMBER."
530 (number-dispatch ((number number))
531 (handle-reals %tan number)
533 (complex-tan number))))
537 "Return cos(Theta) + i sin(Theta), i.e. exp(i Theta)."
538 (declare (type real theta))
539 (complex (cos theta) (sin theta)))
543 "Return the arc sine of NUMBER."
544 (number-dispatch ((number number))
546 (if (or (> number 1) (< number -1))
547 (complex-asin number)
548 (coerce (%asin (coerce number 'double-float)) 'single-float)))
549 (((foreach single-float double-float))
550 (if (or (> number (coerce 1 '(dispatch-type number)))
551 (< number (coerce -1 '(dispatch-type number))))
552 (complex-asin (complex number))
553 (coerce (%asin (coerce number 'double-float))
554 '(dispatch-type number))))
556 (complex-asin number))))
560 "Return the arc cosine of NUMBER."
561 (number-dispatch ((number number))
563 (if (or (> number 1) (< number -1))
564 (complex-acos number)
565 (coerce (%acos (coerce number 'double-float)) 'single-float)))
566 (((foreach single-float double-float))
567 (if (or (> number (coerce 1 '(dispatch-type number)))
568 (< number (coerce -1 '(dispatch-type number))))
569 (complex-acos (complex number))
570 (coerce (%acos (coerce number 'double-float))
571 '(dispatch-type number))))
573 (complex-acos number))))
575 (defun atan (y &optional (x nil xp))
577 "Return the arc tangent of Y if X is omitted or Y/X if X is supplied."
580 (declare (type double-float y x)
581 (values double-float))
584 (if (plusp (float-sign x))
587 (float-sign y (/ pi 2)))
589 (number-dispatch ((y real) (x real))
591 (foreach double-float single-float fixnum bignum ratio))
592 (atan2 y (coerce x 'double-float)))
593 (((foreach single-float fixnum bignum ratio)
595 (atan2 (coerce y 'double-float) x))
596 (((foreach single-float fixnum bignum ratio)
597 (foreach single-float fixnum bignum ratio))
598 (coerce (atan2 (coerce y 'double-float) (coerce x 'double-float))
600 (number-dispatch ((y number))
601 (handle-reals %atan y)
605 ;;; It seems that every target system has a C version of sinh, cosh,
606 ;;; and tanh. Let's use these for reals because the original
607 ;;; implementations based on the definitions lose big in round-off
608 ;;; error. These bad definitions also mean that sin and cos for
609 ;;; complex numbers can also lose big.
613 "Return the hyperbolic sine of NUMBER."
614 (number-dispatch ((number number))
615 (handle-reals %sinh number)
617 (let ((x (realpart number))
618 (y (imagpart number)))
619 (complex (* (sinh x) (cos y))
620 (* (cosh x) (sin y)))))))
624 "Return the hyperbolic cosine of NUMBER."
625 (number-dispatch ((number number))
626 (handle-reals %cosh number)
628 (let ((x (realpart number))
629 (y (imagpart number)))
630 (complex (* (cosh x) (cos y))
631 (* (sinh x) (sin y)))))))
635 "Return the hyperbolic tangent of NUMBER."
636 (number-dispatch ((number number))
637 (handle-reals %tanh number)
639 (complex-tanh number))))
641 (defun asinh (number)
643 "Return the hyperbolic arc sine of NUMBER."
644 (number-dispatch ((number number))
645 (handle-reals %asinh number)
647 (complex-asinh number))))
649 (defun acosh (number)
651 "Return the hyperbolic arc cosine of NUMBER."
652 (number-dispatch ((number number))
654 ;; acosh is complex if number < 1
656 (complex-acosh number)
657 (coerce (%acosh (coerce number 'double-float)) 'single-float)))
658 (((foreach single-float double-float))
659 (if (< number (coerce 1 '(dispatch-type number)))
660 (complex-acosh (complex number))
661 (coerce (%acosh (coerce number 'double-float))
662 '(dispatch-type number))))
664 (complex-acosh number))))
666 (defun atanh (number)
668 "Return the hyperbolic arc tangent of NUMBER."
669 (number-dispatch ((number number))
671 ;; atanh is complex if |number| > 1
672 (if (or (> number 1) (< number -1))
673 (complex-atanh number)
674 (coerce (%atanh (coerce number 'double-float)) 'single-float)))
675 (((foreach single-float double-float))
676 (if (or (> number (coerce 1 '(dispatch-type number)))
677 (< number (coerce -1 '(dispatch-type number))))
678 (complex-atanh (complex number))
679 (coerce (%atanh (coerce number 'double-float))
680 '(dispatch-type number))))
682 (complex-atanh number))))
685 ;;;; not-OLD-SPECFUN stuff
687 ;;;; (This was conditional on #-OLD-SPECFUN in the CMU CL sources,
688 ;;;; but OLD-SPECFUN was mentioned nowhere else, so it seems to be
689 ;;;; the standard special function system.)
691 ;;;; This is a set of routines that implement many elementary
692 ;;;; transcendental functions as specified by ANSI Common Lisp. The
693 ;;;; implementation is based on Kahan's paper.
695 ;;;; I believe I have accurately implemented the routines and are
696 ;;;; correct, but you may want to check for your self.
698 ;;;; These functions are written for CMU Lisp and take advantage of
699 ;;;; some of the features available there. It may be possible,
700 ;;;; however, to port this to other Lisps.
702 ;;;; Some functions are significantly more accurate than the original
703 ;;;; definitions in CMU Lisp. In fact, some functions in CMU Lisp
704 ;;;; give the wrong answer like (acos #c(-2.0 0.0)), where the true
705 ;;;; answer is pi + i*log(2-sqrt(3)).
707 ;;;; All of the implemented functions will take any number for an
708 ;;;; input, but the result will always be a either a complex
709 ;;;; single-float or a complex double-float.
711 ;;;; general functions:
723 ;;;; utility functions:
726 ;;;; internal functions:
727 ;;;; square coerce-to-complex-type cssqs complex-log-scaled
730 ;;;; Kahan, W. "Branch Cuts for Complex Elementary Functions, or Much
731 ;;;; Ado About Nothing's Sign Bit" in Iserles and Powell (eds.) "The
732 ;;;; State of the Art in Numerical Analysis", pp. 165-211, Clarendon
735 ;;;; The original CMU CL code requested:
736 ;;;; Please send any bug reports, comments, or improvements to
737 ;;;; Raymond Toy at <email address deleted during 2002 spam avalanche>.
739 ;;; FIXME: In SBCL, the floating point infinity constants like
740 ;;; SB!EXT:DOUBLE-FLOAT-POSITIVE-INFINITY aren't available as
741 ;;; constants at cross-compile time, because the cross-compilation
742 ;;; host might not have support for floating point infinities. Thus,
743 ;;; they're effectively implemented as special variable references,
744 ;;; and the code below which uses them might be unnecessarily
745 ;;; inefficient. Perhaps some sort of MAKE-LOAD-TIME-VALUE hackery
746 ;;; should be used instead? (KLUDGED 2004-03-08 CSR, by replacing the
747 ;;; special variable references with (probably equally slow)
750 ;;; FIXME: As of 2004-05, when PFD noted that IMAGPART and COMPLEX
751 ;;; differ in their interpretations of the real line, IMAGPART was
752 ;;; patch, which without a certain amount of effort would have altered
753 ;;; all the branch cut treatment. Clients of these COMPLEX- routines
754 ;;; were patched to use explicit COMPLEX, rather than implicitly
755 ;;; passing in real numbers for treatment with IMAGPART, and these
756 ;;; COMPLEX- functions altered to require arguments of type COMPLEX;
757 ;;; however, someone needs to go back to Kahan for the definitive
758 ;;; answer for treatment of negative real floating point numbers and
759 ;;; branch cuts. If adjustment is needed, it is probably the removal
760 ;;; of explicit calls to COMPLEX in the clients of irrational
761 ;;; functions. -- a slightly bitter CSR, 2004-05-16
763 (declaim (inline square))
765 (declare (double-float x))
768 ;;; original CMU CL comment, apparently re. SCALB and LOGB and
770 ;;; If you have these functions in libm, perhaps they should be used
771 ;;; instead of these Lisp versions. These versions are probably good
772 ;;; enough, especially since they are portable.
774 ;;; Compute 2^N * X without computing 2^N first. (Use properties of
775 ;;; the underlying floating-point format.)
776 (declaim (inline scalb))
778 (declare (type double-float x)
779 (type double-float-exponent n))
782 ;;; This is like LOGB, but X is not infinity and non-zero and not a
783 ;;; NaN, so we can always return an integer.
784 (declaim (inline logb-finite))
785 (defun logb-finite (x)
786 (declare (type double-float x))
787 (multiple-value-bind (signif exponent sign)
789 (declare (ignore signif sign))
790 ;; DECODE-FLOAT is almost right, except that the exponent is off
794 ;;; Compute an integer N such that 1 <= |2^N * x| < 2.
795 ;;; For the special cases, the following values are used:
798 ;;; +/- infinity +infinity
801 (declare (type double-float x))
802 (cond ((float-nan-p x)
804 ((float-infinity-p x)
805 ;; DOUBLE-FLOAT-POSITIVE-INFINITY
806 (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0))
808 ;; The answer is negative infinity, but we are supposed to
809 ;; signal divide-by-zero, so do the actual division
815 ;;; This function is used to create a complex number of the
816 ;;; appropriate type:
817 ;;; Create complex number with real part X and imaginary part Y
818 ;;; such that has the same type as Z. If Z has type (complex
819 ;;; rational), the X and Y are coerced to single-float.
820 #!+long-float (eval-when (:compile-toplevel :load-toplevel :execute)
821 (error "needs work for long float support"))
822 (declaim (inline coerce-to-complex-type))
823 (defun coerce-to-complex-type (x y z)
824 (declare (double-float x y)
826 (if (typep (realpart z) 'double-float)
828 ;; Convert anything that's not already a DOUBLE-FLOAT (because
829 ;; the initial argument was a (COMPLEX DOUBLE-FLOAT) and we
830 ;; haven't done anything to lose precision) to a SINGLE-FLOAT.
831 (complex (float x 1f0)
834 ;;; Compute |(x+i*y)/2^k|^2 scaled to avoid over/underflow. The
835 ;;; result is r + i*k, where k is an integer.
836 #!+long-float (eval-when (:compile-toplevel :load-toplevel :execute)
837 (error "needs work for long float support"))
839 (let ((x (float (realpart z) 1d0))
840 (y (float (imagpart z) 1d0)))
841 ;; Would this be better handled using an exception handler to
842 ;; catch the overflow or underflow signal? For now, we turn all
843 ;; traps off and look at the accrued exceptions to see if any
844 ;; signal would have been raised.
845 (with-float-traps-masked (:underflow :overflow)
846 (let ((rho (+ (square x) (square y))))
847 (declare (optimize (speed 3) (space 0)))
848 (cond ((and (or (float-nan-p rho)
849 (float-infinity-p rho))
850 (or (float-infinity-p (abs x))
851 (float-infinity-p (abs y))))
852 ;; DOUBLE-FLOAT-POSITIVE-INFINITY
854 (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0)
857 ;; (/ least-positive-double-float double-float-epsilon)
860 (sb!kernel:make-double-float #x1fffff #xfffffffe)
862 (error "(/ least-positive-long-float long-float-epsilon)")))
863 (traps (ldb sb!vm::float-sticky-bits
864 (sb!vm:floating-point-modes))))
865 ;; Overflow raised or (underflow raised and rho <
867 (or (not (zerop (logand sb!vm:float-overflow-trap-bit traps)))
868 (and (not (zerop (logand sb!vm:float-underflow-trap-bit
871 ;; If we're here, neither x nor y are infinity and at
872 ;; least one is non-zero.. Thus logb returns a nice
874 (let ((k (- (logb-finite (max (abs x) (abs y))))))
875 (values (+ (square (scalb x k))
876 (square (scalb y k)))
881 ;;; principal square root of Z
883 ;;; Z may be RATIONAL or COMPLEX; the result is always a COMPLEX.
884 (defun complex-sqrt (z)
885 ;; KLUDGE: Here and below, we can't just declare Z to be of type
886 ;; COMPLEX, because one-arg COMPLEX on rationals returns a rational.
887 ;; Since there isn't a rational negative zero, this is OK from the
888 ;; point of view of getting the right answer in the face of branch
889 ;; cuts, but declarations of the form (OR RATIONAL COMPLEX) are
890 ;; still ugly. -- CSR, 2004-05-16
891 (declare (type (or complex rational) z))
892 (multiple-value-bind (rho k)
894 (declare (type (or (member 0d0) (double-float 0d0)) rho)
896 (let ((x (float (realpart z) 1.0d0))
897 (y (float (imagpart z) 1.0d0))
900 (declare (double-float x y eta nu))
903 ;; space 0 to get maybe-inline functions inlined.
904 (declare (optimize (speed 3) (space 0)))
906 (if (not (float-nan-p x))
907 (setf rho (+ (scalb (abs x) (- k)) (sqrt rho))))
912 (setf k (1- (ash k -1)))
913 (setf rho (+ rho rho))))
915 (setf rho (scalb (sqrt rho) k))
921 (when (not (float-infinity-p (abs nu)))
922 (setf nu (/ (/ nu rho) 2d0)))
925 (setf nu (float-sign y rho))))
926 (coerce-to-complex-type eta nu z)))))
928 ;;; Compute log(2^j*z).
930 ;;; This is for use with J /= 0 only when |z| is huge.
931 (defun complex-log-scaled (z j)
932 (declare (type (or rational complex) z)
934 ;; The constants t0, t1, t2 should be evaluated to machine
935 ;; precision. In addition, Kahan says the accuracy of log1p
936 ;; influences the choices of these constants but doesn't say how to
937 ;; choose them. We'll just assume his choices matches our
938 ;; implementation of log1p.
939 (let ((t0 (load-time-value
941 (sb!kernel:make-double-float #x3fe6a09e #x667f3bcd)
943 (error "(/ (sqrt 2l0))")))
944 ;; KLUDGE: if repeatable fasls start failing under some weird
945 ;; xc host, this 1.2d0 might be a good place to examine: while
946 ;; it _should_ be the same in all vaguely-IEEE754 hosts, 1.2
947 ;; is not exactly representable, so something could go wrong.
950 (ln2 (load-time-value
952 (sb!kernel:make-double-float #x3fe62e42 #xfefa39ef)
954 (error "(log 2l0)")))
955 (x (float (realpart z) 1.0d0))
956 (y (float (imagpart z) 1.0d0)))
957 (multiple-value-bind (rho k)
959 (declare (optimize (speed 3)))
960 (let ((beta (max (abs x) (abs y)))
961 (theta (min (abs x) (abs y))))
962 (coerce-to-complex-type (if (and (zerop k)
966 (/ (%log1p (+ (* (- beta 1.0d0)
975 ;;; log of Z = log |Z| + i * arg Z
977 ;;; Z may be any number, but the result is always a complex.
978 (defun complex-log (z)
979 (declare (type (or rational complex) z))
980 (complex-log-scaled z 0))
982 ;;; KLUDGE: Let us note the following "strange" behavior. atanh 1.0d0
983 ;;; is +infinity, but the following code returns approx 176 + i*pi/4.
984 ;;; The reason for the imaginary part is caused by the fact that arg
985 ;;; i*y is never 0 since we have positive and negative zeroes. -- rtoy
986 ;;; Compute atanh z = (log(1+z) - log(1-z))/2.
987 (defun complex-atanh (z)
988 (declare (type (or rational complex) z))
990 (theta (/ (sqrt most-positive-double-float) 4.0d0))
991 (rho (/ 4.0d0 (sqrt most-positive-double-float)))
992 (half-pi (/ pi 2.0d0))
993 (rp (float (realpart z) 1.0d0))
994 (beta (float-sign rp 1.0d0))
996 (y (* beta (- (float (imagpart z) 1.0d0))))
999 ;; Shouldn't need this declare.
1000 (declare (double-float x y))
1002 (declare (optimize (speed 3)))
1003 (cond ((or (> x theta)
1005 ;; To avoid overflow...
1006 (setf nu (float-sign y half-pi))
1007 ;; ETA is real part of 1/(x + iy). This is x/(x^2+y^2),
1008 ;; which can cause overflow. Arrange this computation so
1009 ;; that it won't overflow.
1010 (setf eta (let* ((x-bigger (> x (abs y)))
1011 (r (if x-bigger (/ y x) (/ x y)))
1012 (d (+ 1.0d0 (* r r))))
1017 ;; Should this be changed so that if y is zero, eta is set
1018 ;; to +infinity instead of approx 176? In any case
1019 ;; tanh(176) is 1.0d0 within working precision.
1020 (let ((t1 (+ 4d0 (square y)))
1021 (t2 (+ (abs y) rho)))
1022 (setf eta (log (/ (sqrt (sqrt t1))
1026 (+ half-pi (atan (* 0.5d0 t2))))))))
1028 (let ((t1 (+ (abs y) rho)))
1029 ;; Normal case using log1p(x) = log(1 + x)
1031 (%log1p (/ (* 4.0d0 x)
1032 (+ (square (- 1.0d0 x))
1039 (coerce-to-complex-type (* beta eta)
1043 ;;; Compute tanh z = sinh z / cosh z.
1044 (defun complex-tanh (z)
1045 (declare (type (or rational complex) z))
1046 (let ((x (float (realpart z) 1.0d0))
1047 (y (float (imagpart z) 1.0d0)))
1049 ;; space 0 to get maybe-inline functions inlined
1050 (declare (optimize (speed 3) (space 0)))
1054 (sb!kernel:make-double-float #x406633ce #x8fb9f87e)
1056 (error "(/ (+ (log 2l0) (log most-positive-long-float)) 4l0)")))
1057 (coerce-to-complex-type (float-sign x)
1060 (let* ((tv (%tan y))
1061 (beta (+ 1.0d0 (* tv tv)))
1063 (rho (sqrt (+ 1.0d0 (* s s)))))
1064 (if (float-infinity-p (abs tv))
1065 (coerce-to-complex-type (/ rho s)
1068 (let ((den (+ 1.0d0 (* beta s s))))
1069 (coerce-to-complex-type (/ (* beta rho s)
1074 ;;; Compute acos z = pi/2 - asin z.
1076 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
1077 (defun complex-acos (z)
1078 ;; Kahan says we should only compute the parts needed. Thus, the
1079 ;; REALPART's below should only compute the real part, not the whole
1080 ;; complex expression. Doing this can be important because we may get
1081 ;; spurious signals that occur in the part that we are not using.
1083 ;; However, we take a pragmatic approach and just use the whole
1086 ;; NOTE: The formula given by Kahan is somewhat ambiguous in whether
1087 ;; it's the conjugate of the square root or the square root of the
1088 ;; conjugate. This needs to be checked.
1090 ;; I checked. It doesn't matter because (conjugate (sqrt z)) is the
1091 ;; same as (sqrt (conjugate z)) for all z. This follows because
1093 ;; (conjugate (sqrt z)) = exp(0.5*log |z|)*exp(-0.5*j*arg z).
1095 ;; (sqrt (conjugate z)) = exp(0.5*log|z|)*exp(0.5*j*arg conj z)
1097 ;; and these two expressions are equal if and only if arg conj z =
1098 ;; -arg z, which is clearly true for all z.
1099 (declare (type (or rational complex) z))
1100 (let ((sqrt-1+z (complex-sqrt (+ 1 z)))
1101 (sqrt-1-z (complex-sqrt (- 1 z))))
1102 (with-float-traps-masked (:divide-by-zero)
1103 (complex (* 2 (atan (/ (realpart sqrt-1-z)
1104 (realpart sqrt-1+z))))
1105 (asinh (imagpart (* (conjugate sqrt-1+z)
1108 ;;; Compute acosh z = 2 * log(sqrt((z+1)/2) + sqrt((z-1)/2))
1110 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
1111 (defun complex-acosh (z)
1112 (declare (type (or rational complex) z))
1113 (let ((sqrt-z-1 (complex-sqrt (- z 1)))
1114 (sqrt-z+1 (complex-sqrt (+ z 1))))
1115 (with-float-traps-masked (:divide-by-zero)
1116 (complex (asinh (realpart (* (conjugate sqrt-z-1)
1118 (* 2 (atan (/ (imagpart sqrt-z-1)
1119 (realpart sqrt-z+1))))))))
1121 ;;; Compute asin z = asinh(i*z)/i.
1123 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
1124 (defun complex-asin (z)
1125 (declare (type (or rational complex) z))
1126 (let ((sqrt-1-z (complex-sqrt (- 1 z)))
1127 (sqrt-1+z (complex-sqrt (+ 1 z))))
1128 (with-float-traps-masked (:divide-by-zero)
1129 (complex (atan (/ (realpart z)
1130 (realpart (* sqrt-1-z sqrt-1+z))))
1131 (asinh (imagpart (* (conjugate sqrt-1-z)
1134 ;;; Compute asinh z = log(z + sqrt(1 + z*z)).
1136 ;;; Z may be any number, but the result is always a complex.
1137 (defun complex-asinh (z)
1138 (declare (type (or rational complex) z))
1139 ;; asinh z = -i * asin (i*z)
1140 (let* ((iz (complex (- (imagpart z)) (realpart z)))
1141 (result (complex-asin iz)))
1142 (complex (imagpart result)
1143 (- (realpart result)))))
1145 ;;; Compute atan z = atanh (i*z) / i.
1147 ;;; Z may be any number, but the result is always a complex.
1148 (defun complex-atan (z)
1149 (declare (type (or rational complex) z))
1150 ;; atan z = -i * atanh (i*z)
1151 (let* ((iz (complex (- (imagpart z)) (realpart z)))
1152 (result (complex-atanh iz)))
1153 (complex (imagpart result)
1154 (- (realpart result)))))
1156 ;;; Compute tan z = -i * tanh(i * z)
1158 ;;; Z may be any number, but the result is always a complex.
1159 (defun complex-tan (z)
1160 (declare (type (or rational complex) z))
1161 ;; tan z = -i * tanh(i*z)
1162 (let* ((iz (complex (- (imagpart z)) (realpart z)))
1163 (result (complex-tanh iz)))
1164 (complex (imagpart result)
1165 (- (realpart result)))))